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Exact performance of concatenated quantum codes
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When a logical qubit is protected using a quantum error-correcting code, the net effect of coding, decoher-
ence(a physical channel acting on qubits in the codewadd recovery can be represented exactly by an
effective channel acting directly on the logical qubit. In this paper we describe a procedure for deriving the
map between physical and effective channels that results from a given coding and recovery procedure. We
show that the map for a concatenation of codes is given by the composition of the maps for the constituent
codes. This perspective leads us to an efficient means for calculating the exact performance of quantum codes
with arbitrary levels of concatenation. We present explicit results for single-bit Pauli channels. For certain
codes under the symmetric depolarizing channel, we use the coding maps to compute exact threshold error
probabilities for achievability of perfect fidelity in the infinite concatenation limit.
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[. INTRODUCTION to accurately describe the evolution of the encoded informa-
tion.
The methods of quantum error correctidh-3] have, in In this work we take a different approach to characterizing

principle, provided a means for suppressing destructive degrror-correcting codes, which leads to a simple, exact analy-
coherence in quantum computer memories and quantu§is for arbitrary error models. As suggested above, a code
communication channels. In practice, however, a finite-size@fansforms the physical dynamics of the device into the ef-
error-correcting code can only protect against a subset dective dynamics of the encoded information. In Sec. Il we
possible errors; one expects that protected information will€rive this transformation for arbitrary noise, and present a
still degrade, albeit to a lesser degree. The problem of chaomPact method for its calculation. , o
acterizing a quantum code’s performance could thus be Ir_1 the case .Of identical, uncor_related noise on |nd|V|_duaI
phrased as follows: what are the effective noise dynamics jubns, this notion becomes particularly natural: encoding a

the encoded information that result from the physical nois ogical quit in ;everal physical q_ubits yields an evolution
dynamics in the computing or communication device? ess noisy than if the logical qubit had been stored, unen-

. . ) . . oded, in a single physical qubit. Thus a code acts as a map
One could address this quespon by direct simulation otgn the space of qubit dynamics, mapping the dynamics of a
the quantum d,yr,‘am',cs a”‘?' coding procedgre. However, _foéinglephysicalqubit to the dynamics of the encodeatjical
codes of nontrivial size, this approach rapidly becomes ing it |n Sec. 11l we show how to calculate this map, and in
tractable. For example, in studies of fault tolerafiépone  gec v we use these maps to dramatically simplify the cal-
often considers families of concatenated cofi8S]. An cylation of effective dynamics for concatenated codes when
N-qublt code concatenated with itself times erIdS an  the physica] dynamics do not Coup|e code blocks.
N“-qubit code, providing better error resistance with increas- In Sec. V, we restrict our attention to uncorrelated single-
ing /. For even modest values Nfand/’, simulation of the  bit Pauli errors, and in Sec. VI we calculate the exact perfor-
resulting 4N)_dimensional Hilbert space requires massivemance of several codes of interest under these error models.
computational resources; using simulation to find theFinally, in Sec. VIl we use the coding maps to calculate the
asymptotic performance as— (as required for fault- performance of certain concatenated codes, and find the ex-
tolerant applicationsis simply not on option. act threshold error probability for perfect fidelity in the infi-
Instead, a guantum code is often characterized by the Seite concatenation limit. These thresholds serve as important
of discrete errors that it can perfectly corrdéf. For ex-  figures of merit for concatenation schemes, and for the codes
ample, the Shor nine-bit codé] was designed to perfectly considered here we find that the traditional approximate
correct arbitrary decoherence acting on a single bit in thénethods underestimate these thresholds by up to 44%. Sec-
nine-bit register. Typical analyses of such codes implicitlytion VIII concludes, suggesting potential future applications
assume that the physical dynamics can be described Hgr these techniques.
single-bit errors occurring at some probabilistic rate; if this
rate is smalle.g.,O(p) for p<1], the probability that these
errors will accumulate into a multibit uncorrectable error is
also smalle.g.,0(p?)]. This type of leading-order analysis
is limited to a weak-noise regime, and to error models In this section we first describe error-correcting codes us-
strongly resembling the errors against which the code proing a language that will facilitate the subsequent develop-
tects. Outside this regime, these approximation methods faihent. We will then present our method for exactly describing
the effective dynamics of the encoded information. Though
for clarity we restrict our discussion to codes storing a single
*Electronic address: brahn@caltech.edu qubit (sometimes callet=1 code$ all the presented meth-

II. DESCRIBING CODE PERFORMANCE WITH
EFFECTIVE CHANNELS
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p(0) p(t) . N thus if the transmitted state j0), thereceived state is
_7°, [Encoding Noise Dec%dmg il M p(0)], which we write asp(t) for consistency.
£ N After the noise process, an attempt is made to recover the

initial register statep(0) from the current register stapgt)

FIG. 1. The error-correction process: a logical single-qubit state)Oy applying a quantum operatioR, which may be written
po is encoded in aMN-qubit register ap(0). A noise process trans- ’

forms the register to staj@(t), which is then decoded to yield the
logical single-qubit state; .

qu genergllze naturally to codes storing quantum informa- R[p(t)]zz Ajp(t)AjT with 2 A}“Ajzl. ®)
tion of arbitrary dimension. i i

As an important preliminary, it can be argued7] that all
physically possible transformations taking quantum states
on a Hilbert spacé to statesp’ on a Hilbert spacé{’ may As the initial statep(0) is known to be in the codespace, it is
be written in the following form: clearly more beneficial to return the staiét) to the code-
space than to do otherwise: lacking any other information,
one could at least prepare the completely mixed state in the
codespacé (]0)(0|+|1)(1]), yielding an average fidelity of

3, rather than leaving the register outside the codespace,

where theA,; are linear operators frori to 7' and1 de- yielding a fidelity of 0. We will therefore restrict our atten-
notes the identity operator oK. Such transformations are tion to error-correction processég® that take all register
called quantum operationsr channels and are necessarily States back to the codespa€Ehat is, we assume no leakage
linear, trace preserving, and completely positive. It is easy t@rrors during recovery.

see that the composition of quantum operations is also a With the above assumption, the postrecovery state
guantum operation(One also sees definitions requiring only R[ p(t)] has support entirely on the codespace; thus it can be
EJ-AJ-TAjsl, corresponding to the weaker requirement that adescribed by its restriction to the codespace, the logical
quantum operation be trace nonincreasing rather than trac@ngle-qubit statep; such that& p;]=R[p(t)]. Call D
preserving. However, the requirement of trace preservation is £ToR the decoding operationshown to be a quantum
better suited to our purposes here. See Rdffor a discus-  operation in Lemma 1 of Appendix)B

sion of the distinction.

p—p' =2 ApAl with X ATA=1, ()
i ]

A. The error-correction process Dlp(t)]= BTR[p(t)]B= 2 BTA]-p(t)AJTB. (4

The error-correction process, consisting of encoding,
noise, and decoding, is depicted in Fig. 1; we consider each
stage in turn. ArN-qubit codeC uses a register dfl qubits
to encode a single logical quhif0)+ 8|1) by preparing the ~ With this definition,p¢=D[p(t)]. We will consider the logi-
register in the stater|0)+ 8|1), where|0) and|1) are or- cal stateps as the outcome of the error-gorrectiqn process,
thogonal states in thedimensional Hilbert space of the and therefore may say that the code is given by its encoding
register. The codespad@e., the space of initial register and decoding operations, i.€=(¢,D).
stateg is spanned by these two states. In what follows it will ~ To build intuition for the decoding operatidR, we note
be convenient to describe states by density matrices: let thigat for most codes considered in the literat(aed all of the
logical qubit be given by, and the initial register state by specific codes considered later in this papi¥e recovery

p(0). Writing B=[0%(0|+[1)(1|, the encoding operation ~Procedure is given in a particular form. First, a syndrome

& po—p(0) is given by measurement is made, projecting the register state onto one
of 2N~1 orthogonal two-dimensional subspaces; let the mea-
p(0)=Epo]=BpoB". (2)  surement be specified by projectd;}. After the measure-
ment (whose outcome is given by the index of the corre-
As B'B=|0)(0|+|1){(1|]=1, £is a quantum operation. sponding projector the recovery operatoR; acts on the

After the encoding, the register state evolves due to someegister, unitarily mapping the subspace projecte®pipack
noise dynamics. In the setting of a quantum computeto the codespace. For such codes, the recovery superoperator
memory, the dynamics are continuous in time; assuming evds given by Eq.(3) with A;=R;P;, andR[p(t)] is the ex-
lution for a timet, we havep(t) =A;[p(0)] with N; a quan-  pected state that results from averaging over syndrome mea-
tum operation depending continuously @n(For master surement outcomes.
equation evolutiop= L[ p], we have\;=e*!.) We will of- For codes of this form, lef|0;),|1;)} denote the ortho-
ten omit the subscripttand simply writeV. In the setting of ~normal basis for the syndrome space projectedPhbysuch
a quantum communication channel, the noise process is usthat R;|0;)=|0) andR;|1;)=[1). ThenR;P;=|0)(0;|+|1)
ally given by the discrete application of a quantum operationx(1j|, and using the expression fdrgiven in Eq.(4) yields
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written as a 4«4 matrix with a simple interpretatioriSee
Dip(t)]=> B'R Pip(t)P/R'B Ref.[8] for a full discussion of qubit channels represented in
. this fashion).
For each Pauli matrixre{l,X,Y,Z}, let(a)o=tr(opg).
=2 (10)(0;1+[1)(1;)p(t)(0;)¢0] +1;)(1)). The Pauli matrices form a basis for qubit density matrices,
: and so the initial logical qubip, may be linearly param-
(5)  etrized by its expectation valués), as follows:

Thusp;=D[p(t)] is the sum of the single-qubit density ma- 1 1 1 1

trices that result from restricting(t) to each of the syn- Po=7 (Dol + 5 (X)X +5(Y)oY+ 5(Z)oZ. ©)
drome spaces, with bas{$0;),/1;)} determined by the re-

covery operator. (As the trace of a density matrix must be 1 we will always

As an example, consider the bit-flip codg], a three- have(l)=1, but it will be convenient to include this term.
qubit code that protects against single bit-flip errors. TheSimilarly, the final logical qubitp; may be linearly param-

bit-flip code’s encoding transformation is given by etrized by its expectation valudsr);=tr(op;). Thus the
o o effective channeff may be written as the mapping from the
|0)—|0)=|000), |1)—|1)=]|11D). (6)  expectation valueéo), of pg to the expectation valugsr);

_ _ of pr. Writing  po=((1)0.(X)0.(Y)e.(Z)o)" and p
After the action of some error dynamics, the syndrome mea= ((1);,(X);,{Y)¢ .(Z))", the linearity ofG allows it to be
surement then projects the register state into one of four SUE/ritten as the & 4 matrix such tha,t;f:gﬁo. The fidelity of

spaces: the pom_jespace. itself, and the three.subspaces. B3ure logical qubip, through the effective channel is then
result from flipping the first, second, or third bit of states in .

_1°T> _ 17T _
the codespace. The corresponding recovery operator simpfjVe" by trlpopr) = 2 popt= 2 PoYpo. Thus to fully character
flips the appropriate bit back, attempting to reverse the errof2€ the effective channef we need only find the entries of

Thus the basis specifying the decoding operation is given b{fS 4% 4 matrix representatioriMore generally, if the code
Stored ad-dimensional state rather than the two-dimensional

105)=000), |10)=]111) state of a qubit, the logical density matriggsandp; would
’ ’ be expanded in the basis of the identity matrix and dfe
0,)=]100, |1,)=|01D) —1 generators of SW), andG would be represented as a
1/ — 3 1/ — ]

d?x d? matrix.
To find these matrix elements, we consider the encoding

02)=1010), |1)=[10D), and decoding processes in more detail. Lettiyg denote
1& o], the encoding transformatiafi acts onpg [given by
|05)=[001), [13)=[110). (1) Eq.(9)] to prepare the initial register state
We will use the bit-flip code as an example throughout this p(0)=(1)oE| +{X)oEx+(Y)oEy+(Z)oE,. (10

work.
Thus the encoding operatiafis completely characterized
by the E, operators, which are easily constructed from the

B. Calculating the effective dynamics
9 y codewords:

The transformatiopy,— p; gives the effective dynamics
of the encoded information resulting from the physical dy- 1 — - —
namicsV. Let G be the map giving these effective dynamics: E, :§(|0><0| +[1)(1),
pi=Gl po]. From the above discussion, the effective dynam-
ics are simply the result of encoding, followed by noise, 1
followed by decoding, i.e., Ex:§(|0><1|+|1>(0|),
G="DoN?E, (8) 1
As G is the composition of quantum operatiafis\, andD, Ev 2( o)l +il1)0D),
it is itself a quantum operation. We may therefore ¢athe
effective channalescribing the cod€= (&, D) and physical 1 — = — —
e (&) and phy Ez=> ([0)(0] - [T)(1). v
Because the effective channglis only a map on single
qubit states, it should have a compact description—in parAs expected,p(0) is the statepy on the codespace, and
ticular, a description much more compact than some arbitraryanishes elsewhere.
noise \ acting onN-qubit states. By calculating such a com-  Now consider the decoding process, which vyields the
pact description, we may easily find the effective evolutionlogical statep; . We may express the expectation val(es;

of an arbitrary initial stateyy without explicitly considering in terms ofp(t), the register state prior to recovery, as fol-
the physical noise dynamics. As we now sh@vmay be lows:
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(o)=tr(op) =tr{oD[p(t)]}=1tr 2 aB'Ap(HATB]. D.=$ (040, | +11,)(1,]),
(12

Exploiting the cyclic property of the trace and noting that DX=2 (10;)¢2] +12;)¢0; ),
BoB'=&o]=2E,, we have J

(o)=tr(D,p(t)) where D,=2> ATE,A;. (13 DY:; (—=i0)(2;|+i]1;)(0y]),
J

Thus the decoding operatidh is completely characterized
by theD,, operators. Dz=; (10,4051 =2;)¢1;])- (17)

Substitutingp(t) =M p(0)] into Eq. (13), we have({o);
=tr{D,Mp(0)]}. Substituting in the expression fer(0)  Thys we see that in this cag, is simply the sum of the

given by Eq.(10) then yields operatorso acting on each of the syndrome spaces, \idith
eigenstate$0;) and|1;) determined by the recovery proce-
_ / dure. Note thaD, is the identity operator on the entire reg-
=tr| D Ey |- 14 ; :
(o) ( #A{E (0")oE, D 19 iSter space.
Letting the matrix elements @ be given by [ll. CODING AS A MAP ON CHANNELS
Gyor =tr(D ME, 1) (15) One often considers noise modglsconsisting of uncor-
related noise on each of th¢ physical qubits. This type of
for 0,0’ €{I,X,Y,Z}, we have(a)=S,/G,,(c")o, i.€., model arises naturally in a communication setting, where the
5=Gp 7 register qubits are sent over a noisy transmission line one at
f— 0-

To completely characterize the effective changigthen, a time, and is also appropriate for various physical imple-
mentations of a quantum computéBy contrast, one can

we need to only compute these matrix elements. In fact, trace ; : . . .
o T . a B also consider error models in which correlated noise domi-
preservation(i.e., (1);={l)o) requiresG, =1 andG,x=Gy

=G,z=0. Thus the effect on the logical information of the nates{9].) For such models, we may write
potentially complex dynamics of the-qubit register space Ne VDo VD . .. g D= ArDeN (18)
are characterized by the remaining twelve matrix elements of '

g. If Nis time dependent, then the only observable effects OI/]yhereN(l) is a quantum operation on a single qubit.

this time-depende_nce will appear in the time dependen_ce " The goal of encoding a qubit is to suppress decoherence:
the fg‘"” ’ dan:jt_gt g'vﬁs tth?heffﬁt'vf chang;/l for gorre{-cglon multiple qubits are employed to yield an effective charhel
periormed at ime. Note that tneé dynamics/ néed not D€\ hich should be less noisy than the channel resulting from
related to those against which the code was designed to prgioring information in a single physical qubit, namely?.

tect. A code can thus be seen as a map on channels, takigto

We have thus shown that the effective dynamics may b . e _ )
calculated by evaluating Eq15), which requires construct- %&ﬁrsomﬁ;igiggrr:? p&gb&mdec (£,D), define the

ing the E, and D, operators. TheE, operators are easily
understood to be the operators that actason the code- C. A/(1) _ (1)@N
X e O~ =Deo of. 19

space and vanish elsewhere; to build intuition for g N N 19
operators, consider codes whose recovery is specified by We now derive an expression for the coding nfaf of
syndrome measurement project¢fy} and recovery opera- an arbitrary cod€=(&,D). In Sec. Il B we described how
tors{R;} as discussed in Segr. I!LA. For thesg codes, we haVﬁ1ay be specified by its matrix elemerds, ., given by Eq.
Aj=R;P;, and soD,=2%;P{RiE,R;P;. This expression (15 gjncen ™ is a single-qubit quantum operation, it may
may be simplified by noting tha, maps the codespace 10 15 phe written as aX4 matrix such that ifV® takesp to
itself and vanishes elsewhere, aR unitarily maps the o', then§’=J\/(1)5. We seek an expression for the matrix

i ) J . uni-
f;ﬁcemqoéefﬁidsbgé eto rtg% c(:tzgeSp?(():e{sg:‘u:‘niglgngsnr:es elements of the effective channglin terms of the matrix
ty map pace proj Byto van elements of the physical channgl).

; T _pt
elsewhere, i.e.P|R/E,R;P;=R/E,R;. We therefore have Operators orN qubits may be written as sums of tensor
products ofN Pauli matrices; we may therefore write the

D,=2> RJTEa-Rj . (16p andD, operators describing=(&,D) as
]
Using the expressions foE, given in Eg.(11) and R E, = ;‘é af#i}(%m)@“-@(%ﬂm), (20)
=10)(0;| +[1)(1;|, we have (1.X..2)
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DO': 2 ﬁf—vi}V]_@' . '®VN. (21) gin
{l,XI,Y,Z}
D

AddA
Adddl

Din
. . . Po . e~ (I Pi
For example, for the bit-flip code described in Sec. Il A by —— E = N :}
Egs.(6) and(7), we may calculate the,,, andD, operators o -
using Egs(11) and(17); expanding the results in the basis of . - o
Pauli operators yields em 3 g D"
1 — ~
Ei=<(l +1Z2Z+2Z21Z+2Z2Z1), Y T
8 g D
1 FIG. 2. The error-correction process for the concatenated code
EX:g(XXX_ XYY=YXY=YYX), COUC™ = (€,D); hereC®= (£ D s a three-qubit code and
C"= (& D) is a five-qubit code. The noise proce¥sacts on the
1 entire 15-qubit register.

EY=§(—YYY+YXX+XYX~I—XXY),

ent noise model acts on each physical qubit, s N
@---a NN, simply replaceV?) with A in Eq. (25).]

iMi Viki

1
E;=5(ZZZ+ZI1+1ZI+112), (22)

and IV. CONCATENATED CODES

D=1, We now consider concatenated codids]. We first de-
scribe the procedure for constructing such codes, and then

Dy=XXX, show how the coding map@€ make the calculation of the
effective channels for such codes straightforward.

DY=£(YYY+YXX+XYX+XXY), ,
2 A. Constructing concatenated codes
1 We now describe how two codes may be concatenated to
D,==(—ZZZ+ZI+IZI+11Z). (23 form a larger code; the procedure is depicted in Fig. 2. Let
2 the two codes be aNl-qubit codeC®'= (£°*,D°Y), called
the outer code, and aN-qubit codeC"=(£"™,D™M), called
the inner code. A logical qubj, is encoded first using the
outer codeC®", yielding theM-qubit state€®“{ p,]. Each of
N L 1o a)ra (1) 1 these qubits is then encoded by the inner code; i.e., the map
Mzpa® - @zun]=NVlzpm]® . 0N zun], and  ging . g cin= (£iMoM 4015 one p,]. The composition
tr(A®B)(C®D)]=tr(AC)tr(BD) yields of these encodings forms the encoding map for the concat-
enated code:

To find the matrix elements of the effective channel, we
substitute Eqs(18), (20), and (21) into the expression for
these matrix elements given by E@15). Noting that

. (29

N
Goor= 2 (ﬂfyi}afﬁli}iﬂl tr(v N[5 ])

{uit i Z‘:(‘Sin)@)MOEOUt‘ (26)

From the orthogonality of Pauli matrices, the matix;,

when written as a vector of expectation values &d inthe ;. £ 5] are called blocks; each block contaiNsubits.
mi component and zeros elsewhere. Furthew; ) is sim- '

- (1) 1 ~ A After the encoding, a noise proces$ acts on the entire
ply the v; component ofp. Thus tr; N’ [gﬂi])—NVi’ui , MN-qubit register.
and we have A simple error-correction schentand one that seems rea-
N sonable for use in a scalable architecfur@herently corrects
B R 1 each of the code blocks based on the inner code, and then
gtm'_{#i}sz} ('B{Vi}a{m}iHl N(m)u)' (29 corrects the entire register based on the outer code. That is,
the decoding map for the concatenated code is given by
Thus the matrix elements ¢f can be expressed as poly-
nomials of the matrix elements ¢f "), with the polynomial FH— pou,pinaM 27)
coefficients depending only on ti&,, andD, of the code.
These polynomials specif2©. By computing these polyno- . ] )
mials for a codeC, one can easily calculate the effective We denote the concatenated codsith this correction
channel for the cod€ due to any error model with identical, schemg by C°“{C™) =(&,D); note that C°“(C™) is an
uncorrelated noise acting on each physical qibig differ- M N-qubit code.

The M sections of the register encoding each of Mhegubits
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B. Effective channels for concatenated codes dp

Y
Suppose that we have computed the effective cha@nel dt ﬁX[p]+ LY[p]+ EZ[p] (32

due to a cod&€™= (&M DM with some noise dynamic¥/,
and wish to consider the effective changzetesulting from
the concatenated codz®“{(C™). We assume that ead{tbit
block in the register evolves according to the noise dynamics 1 1

N and no cross-block correlations are introduced, i.e., that Lpl=cpc’— ECTCp— EPCTC (33
the evolution operator on the N-bit register is

where for any linear qubit operatarthe Lindblad decoher-
ence operator; is given by

and vy is a measure of the noise strength. This master equa-
tion is easily solved, yielding a qubit channel with matrix
representation

N=NON® - - - @N=NEM, (28)

By definition, we havef = DoN°E. Substituting Eqs(26),

(27), and(298) into this expression yields 1 0 0 0
-yt
C—= Pout,pHin®@M, Ar®@M, cin®@ M, cout dep_ 0 e 0
G="DOUbDNEMo N MoginEMo NP=l 0 0 o7 o (34)
:DOUB(Di”oNogin)@’MogOUt 0 0 0 v
e
:Doutogchogout, (29)

Before calculating effective channels due to this error model,
it will be useful to discuss the more general set of channels
whose matrix representation is diagonal. As we will see,
these channels correspond to single-bit Pauli channels, and
will allow us to demonstrate the power of the techniques
developed above.

Consider a qubit channel given by a diagonal matrix
G c™ 20 N, From trace preservatioW{P=1, so let the channel

(9). B0 ith NE=x, N{N=y, andNV)=z be denotedx,y,z] for

. . j compactnesgThus the depolarizing chann@4) is given by
Thus given the effective Channel for a co@@ and an error e} 7t e " e="]) In Ref. [11] it is shown that complete

compute the effective channel due to the concatenated code

where we have use@= D™ Ne£M. This result makes sense:
each of theM blocks of N bits represents a single logical
qubit encoded irC", and as the block has dynami&§ this
logical qubit’s evolution will be described by. Comparing
with the definition of the coding maf19), we then have

Cout(Cln) —Xt+y+z=1,
Further, suppose that the original noise matiehad the
form of uncorrelated noise on single physical qubits, as X—y+z<1,

given by Eq. (18. Then G=QC"(N®Y), and so G

= 0" (W D)), We may therefore conclude that com-
posing coding maps gives the coding map for the concat- —x—y—z=<1. (35)
enated code, i.e.,

x+y—z=<1,

_ ) Now consider the single-bit Pauli channel in which the
Qe =c™Mnc". (31 transmitted state is subjected to the Pauli operatoh and
Z with exclusive probabilitiepy, py, andpz, i.e.,

More generally, we may characterize both the finite and
asymptotic behavior of any concatenation scheme involving (1= Px= Py~ Pz)p+PxXpX+pyYpY+pzZpZ.
the codeqC,} by computing the map&C©«. Then the finite (36)
concatenation schem@,(C,( . ..Cy .. .)) is characterized i js easy to show that this channel has the diagonal matrix
by ch(cz( o Ch )= choQCZo. .. oQCn_ We expect the representation
typical Q€ to be sufficiently well behaved that standard dy-
namical systems method&0] will yield the /' —co limit of [1-2(py+Pz),1-2(pxtpz),1-2(px+py)], (37)
(Q°)”; one need not compose th&¢)” explicitly. In Sec.

VII, we will consider such asymptotic limits in more detail. and so any Pauli channel is a diagonal channel. The converse
is also true: choosing,=(1+x—-y—2)/4, py=(1—x+y
—2)/4, andp,=(1—x—y+2z)/4 yields the channdlx,y,z],

and the complete positivity constraint35) yield the stan-

As an application of the methods presented above, we wiltlard probability rulespy,py,pz=0 and px+py+pz=1.
consider the commonly-considered error model in whichThus any diagonal channel may be realized as a Pauli chan-
each physical register qubit is subjected to the symmetrioel. Pauli channels are among the most commonly consid-
depolarizing channdl3]. These single-qubit noise dynamics ered error models in the literature, and we will restrict our
are given by the master equation attention to diagonal channels for the remainder of this work.

V. DIAGONAL CHANNELS
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The effect of a diagonal channel on a qubit is simple to
interpret: we have(X);=x(X)o, (Y)i=y{(Y)o, and (Z);
=2(Z)o. Thus theX, Y, andZ components op, decay in-
dependently, and we may therefore speak of the decoherenc.s
of (X), {Y), and(Z). Recalling from Sec. II B that the fi-
delity of a pure state through a qubit channégl is given by

157Gp, the respective fidelities oX, Y, and Z eigenstates 06
through the channel arg(1+x), 3(1+y), and 1(1+2). 05
More generally, the fidelity of a pure stafeequiring (X)?2
+(Y)2+(Z)?=1] is given by 3(1+x(X)?+y(Y)? 04
+2(Z)?). A common figure of merit for a channel is the o3
worst-case fidelity of a pure state, which for a diagonal chan-
nel is 3[1+min(x,y,2)]. Thus if for a given error model a

0.9}

code C yields an effective channéglx,y,z] and a codeC’ 8 .

yields an effective channgk’,y’,z'], we say thatC outper- . . . L

forms C’ if min(x,y,2>min(x",y’,z’). % 0.2 0.4 0.6 0.8 1 12
Many commonly considered codes astbilizer codes n

[3,12], which are designed to detect and correct Pauli errors; g1 3 The effective channék™(t),y™(t),2°(t)] due to the

it would therefore not be so surprising if the coding maps fory¢_fjip code under the symmetric depolarizing channel. The respec-
such codes were particularly well behaved when acting on @ye fidelities ofX, Y, andZ eigenstates for correction performed at
Pauli channel. In fact, as proved in Appendix A,Gfis &  {imet are given bys[1+xP(t)], 2[1+yP(t)], and 3[1+2°(t)].
stabilizer code andv) is diagonal, the2¢(WV W) is also

diagonal. Thus just as arbitrary codes act as maps on thend thus the decoherence(d) is suppressed by the bit-flip
space of qubit channels, stabilizer codes act as maps on thgde. Howeverx®(t)=y"(t)<e ", and thus the decoher-

space of diagonal qubit channels. ences of X) and(Y) are increased by the bit-flip code.
More generally, for any &x,z<1 we haveiz—1z3>z
VI. EXACT PERFORMANCE FOR SEVERAL CODES and x3<x, so for any physical channel in this regime the
OF INTEREST bit-flip code always suppresses decoherencéZofand in-

_ , creases decoherence (KX). Decoherence ofY) is sup-
We WI||' now present thg effective channels for severalpressed whex>2/3 and G<y< \3x?— 2, and increased

) J . : ) it-flip code
thus, as described in the preceding section, the effeCtivg,eages the fidelity of some transmitted states at the ex-

Cha”r.‘e's will also be %iagonal. The diagonal elementg of th'f)ense of others, and thus the bit-flip code is outperformed by
effective channelj=0"([x,y,z]) may be calculated either ' ging the logical qubit in a single physical bit.

using the coding map methods presented in Sec. Ill, or using o vever, as the bit-flip code is designed to only protect
the stabilizer formalism as shown in Appendix A, which may gainst physical bit-fligX) errors, it should not be expected

be computationally advantageous. For each code, we Wily'nerform well in the presence of arbitrary Pauli errors. If
compute the effective channel for a general diagonal erro,

i ve consider physical channels with on¥yerrors, we find
model[x,y,z], and then |rLt§rpreEtt2e [e?ul'gs for the symmet- ot the bit-flip code suppresses decoherence of all encoded
ric depolgrlglng Chanrle'k/t P= [Ie e e 7. ) _ states. More precisely, suppose that the physical qubits are

The bit-flip code, first mentioned in Sec. Il A, is a stabi- gyolving via a Pauli channe36) with only X errors, i.e.,
lizer code; lettingQ"" denote the corresponding coding map, py=p,=0. Then [x,y,z]=[1,1-2py,1-2py], and
we find OM([x,y,2])=[1,1- 3%+ 3p%, 1- 2pk+3py). Thus we
have reproduced the usual result of a leading-order analysis:
QP([x,y,z])=[x3,3x’y—3y3, 32— 32°]. (38 the bit-flip code suppresses decoherence du¥ &rors to
orderp%.
As the bit-flip code is only a three-qubit code, it is not un- Now consider the three-qubit phase-flip cofdd, with
reasonable to check this result with more conventional methencoding |+ )+>|+ + +) for |+)=1/y2(|0)+]|1)). This
ods, e.g., by counting bit-flip and phase-flip errors, or bycode is completely analogous to the bit-flip code, detecting
working in the Heisenberg picture to compute the evolutionand correcting single phase-fli@) errors instead of single
of the relevant expectation values. However, for larger codebit-flip (X) errors. The phase-flip code’s coding m@g' is
such computations will rapidly become unmanageable. exactly the same as that of the bit-flip code, with the role of
To examine the bit-flip code acting under the symmetricX andZ interchanged,
depolarizing  channel,  define [x®'(t),y®'(t),z(t)]
= QNP the functionsx™, y°f, andz°" are plotted in QP([x,y,z])=[3x—3x3 222y —L1y3 4. (39
Fig. 3 along withe "' (describing the decoherence of the
physical qubits for comparison. We see that'(t)>e™ ", The concatenation phase-flit-flip) yields the Shor nine-bit
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the channel on th& andZ components oﬁo interchanged:
QP ([x,y,z])=[2%,32°y— 3y3,3x— %3] [compare to Eq.
(39)]. We could then use this version of the phase-flip code
to define an alternative version of the Shor code with the
encoding |0)~>1/,/8(]000)+[111))®3, |1)~>1/,/8(|000)
—|112))®3. Call this code Shor II, with corresponding cod-
ing mapQ Shorl'= QP O We find

QshorII([X’y,Z]):[R(z),Q(X,y,Z),P(X)]u (42)

with the polynomialsP, Q, andR defined by Eq(41). Com-
paring to Eq.(40), we see that again this modification of the
Shor code simply interchanges the effect of the chann&{ on

andZ components 050. Assuming that the encoded logical
states are randomly distributéds opposed to always send-
ing Z eigenstates, for examplehe choice of using the Shor
code or the Shor Il code is simply one of aesthetics: the
effective channels are identical up to the interchange of the
decoherence dfX) and(Z). However, as we will see in the
next section, this choice does have an impact when these

code [1,3] with encoding |+ )—1//8(|000 = |111)®3 ~ codes are concatenated. .
Thus&ggho]rzﬂpfonbf. EvalSalting this\/c—o(||”npc?éiti(|)n t1>>y) using For comparison, we consider two other stabilizer codes of

. interest. The Steane codi2,3] is a seven-bit code designed
the coding map¢38) and (39, to correct errors consisting either of a Pauli err, (Y, or
Qshorx.y. z]) = QPO ([x,y, Z) on a single qubit of the codeword, or of Xrand aZ error

(xy.2]) (@%([xy.2D) on separate qubits. We find

FIG. 4. The effective channgk®M(t),ySM"{t),z5"°(t)] due to
the Shor code under the symmetric depolarizing channel.

~[P(0),Q(xy,2 R, (40
[P00.Q0y.2).R(2)] Q%eexy 7)) =[S0, T(xy.2,52)] (43

where
with
— 3y3_1y9
P(x)=3x"=3Xx, S(x)=1x3— 2x7,

Yo T(xy.2) =15y *+ 55y~ B(x*+2)y*+ FxPy 2. (44

Qx.y,2)=3(32—32°)°(3x%y— 3y®) — 3 (5x
Stean Stean Stean — () Stean dep, . ;
R(z)= (37— 1533 41 Let [x>angt),y>'®antt), z5¢t) | = Q>N TD); we find
(2)=(32-22) 4D that the functionxSteane ySteane gndzSteanegre qualitatively
gimilar to the analogous functions of the Shor code. If they

(The combinatoric analysis required to reproduce this resu e : i
were plotted in Fig. 4, these functions would be interspersed

by counting bit-flip and phase-flip errors would be quite te-

dious) between the plotted curves: for all valuestofO, we have
Shor. St st sh st sh

To examine the Shor code acting on the symmetric dep? = Z o= X7 21 x>0 y >iEans- y =19l Though the Shor

larizing channel, let  [xSMo(t),ySho(t), 25t ] code more effectively suppresses decoherence for lodical

= Shog Nde@. the functionsxS"® yShor ‘andzShor are plot- eigenstates, the Steane code performs better in the worst case
t ’ 1 Ll .
ted in Fig. 4. We see that for short timésr equivalently, (Y €igenstates and thus outperforms the Shor code.

weak noise-strengtly), the Shor code suppresses decoher- . The f"’?'b't code[3,13,14 corrects Pauli errors on a
ence of(X), (Y), and(Z). For long times, however, the single qubit of the codeword. We find

code increases the decoherence of all three expectation val- Five _

ues, and ag>"{(t)>x5M"(t)>ySM(t), in an intermediate O Dxy, 2D =[U(xy.2),Uy.2),U(zxy)] (49
regime the code suppresses the decoherence of some of {hfn

expectation values while increasing that of others. Thus to

suppress the decoherence of an arbitrary logical state, correc- U(X,Y,2)=2x(y?+2%) — 3xy?z?— :x°. (46)
tion needs to be performed at a tirnevhenyS™{(t)>e "

Above we defined the phase-flip code by the encoding.etting [ x7Vé(t),y™Ve(t),z7Ve(t) ] = QFVY(N %R yields xFve
|=)—|= = +); we could have also used the encoding given=y™e=z""¢ as expected from the symmetries of the code
by |0)—|+++), |1)—|———). Call the code with this and of the mag)"'e. Thus the fidelity of a state through this
encoding phase-flip Il, with coding mapP"'. As this modi-  channel is independent of the state. These functions also
fication of the phase-flip code simply interchanges the enhave behavior qualitatively similar to those plotted in Fig. 4,
codedX andZ eigenstates, the new effective channel is sim-and fort>0 we havezS"o% zFvex zSteans, yShor Th g the
ply that of the original phase-flip code with the effects of five-bit code outperforms both the Shor and Steane codes.
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T T T T I 1 T T T T

FIG. 5. The functiong,, where[x,(t),y (t),z,(t)] is the ef- FIG. 6. The functiorR(z_) (plottgd as the thick curyeObserve
fective channel for” concatenations of the Shor code under thethat the map—R(z) has fixed points at 0, 1, ard. The arrows
symmetric depolarizing channel. depict the iteration of this map pushing points in the intervat¥)Q,

toward O and points in the intervat®{,1) toward 1.
VII. EXACT PERFORMANCE AND THRESHOLDS

FOR CERTAIN CONCATENATION SCHEMES cate that the threshold takes into account only noise in the

We now consider the effective channel due to families of'€gister, rather than gate or measurement errors which are
concatenated codes under the symmetric depolarizing cha@lSO considered in fault-tolerant settindale now show how
nel. First, consider the Shor code concatenated with itéelf the coding mag2®"*"may be used to find this threshold.
times, denoted by Sher/. From Sec. IV, we know that the ~ Observe in Fig. 5 that all the plots af(t) intersect at a
Coding map for this code is given by()(ShOF/) point (ytz,z*). ertlng QShOI’ in the form (40), we have
=(SM%.. . .o()Sho= ()59 As () SM'takes diagonal chan- Z,+1(t) =R(z,(t)). The functionR(z) is plotted in Fig. 6.
nels to diagonal channels, the effective channel due to Shoie see that the map—R(z) has fixed points at 0, 1, and a

—/ is also diagonal. Let point z*~0.7297. [We find z* by numerically solvingz
=R(z) on the interval (0,1)]. lterating the map pushes
[X(1),y A(1),2,(1)]=(QS°) (NP, (47 points in the interval (@) toward 0, and pushes points in

the interval ¢*,1) toward 1. In the language of dynamical
which may be calculated using the polynomials @F""  systemg10], 0 and 1 are attracting fixed points, ardis a

given in Eq.(41). repelling fixed point. This behavior leads to the shape of the
The functiong,(t) for 0</'<4 are plotted in Fig. 5. We plots in Fig. 5. We then invere—"z=7* to find Y
immediately observe that as— the functionsz,(t) ap-  =0.3151. The functiofP(x) has the same qualitative behav-
proach a step function. Denoting the step function’s time ofior on (0,1) asR(z), so we may similarly findk*~0.9003
discontinuity byt;, we havez, (t)— 6(t;—t) where and yt;~0.1050.
We cannot use the same method to fifid asy, . 1(t) is
f(x) = 0 x<0 (48) a function ofx(t), y,(t), andz,(t), not of y (t) alone.
1 x>0. [This problem is evident from plots of the functiogs(t):

though these functions approach a step function in£he
For t<t}, each layer of concatenation decreases(fip  — limit, they do not all intersect at a point as the plots of
decoherence, yielding perfect preservation of the encoded, (t) do.] However, we now argue that findirt§ andt> is
(Z) information in the infinite concatenation limit. However, sufficient to findty. For t<ty, x,(t)—1 andz,(t)—1.
for t>t}, the(Z) decoherence increases. Thus in the infiniteUsing the complete positivity constrain@®5), we find that if
concatenation limit, the code will perfectly proté@) of the  [x,y,z] is a channelx=z=1 impliesy=1. Since the space
logical qubit if correction is performed prior t3 ; if correc-  of channel§x,y,z] is closed and boundg@ consists of the
tion is performed after this time, ajlZ) information is lost. ~ boundary and interior of a tetrahedronif), x,(t)—1 and
Similarly, the functionsx,(t) andy(t) approach step z,(t)—1 implies y,(t)—1. Now for ti<t<t}, x,(t)
function limits as/—oo; call the discontinuous times of —0, and z,(t)—1. Using the complete positivity con-
these step functiont, andt . To perfectly protect an arbi- straints(35), we find that if[X,y,z] is a channelx=0 and
trary state in the infinite concatenation limit, correction mustz=1 implies y=0. Thus we may conclude that for these
be performed prior ta,=min(ty ty,t5). We callty, thestor-  values oft, y,(t)—0. We now havey,(t)—1 for t<t},
age threshold(We use the term “storage threshold” to indi- andy,(t)—0 for t>t§, thus we concludg{=t5. More
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. TABLE 1. Code storage threshold resultsee text for discus- given by Eq.(45), has a different form. However, asf?ep
sion) has the symmetric form[x,x,x] and Q"¢ preserves
this symmetry by taking  [Xx,X,X] to
[U(X,X,X),U(X,X,X),U(X,X,X)], we may findti=t{=t5
o X,Y 7 XY b XY.Z XY.Z simply by finding the fixed point ok—U(X,X,X). Results
yt* 01050 03151 0.1618 02150 0.1383 0.2027 &€ summarized in Table |. We find that the five-bit code has
bun 0.0748 0.1121 0.0969 01376 the !argest threshold, gand .th.erefo_re.the be;t performance in

the infinite concatenation limit. It is interesting to note that
the Shor Il code outperforms the Steane code in the infinite
concatenation limit, even though the opposite is true for only
generally, if we knowt} and t;, thent} is given by one layer of each code.
min(ty,t5). We may therefore conclude thatt{~0.1050, We conclude our discussion of the thresholds by compar-
and soyty,~0.1050.(The value ofty could also be obtained ing the exact values giy, to those calculated with traditional
from the dynamics of the polynomial mags Q, and R leading-order techniqués.g., in Rgf.[3]). First conS|d|er the
without making reference to the complete positivity con-five-bit code. Under the symmetric Pauli Ch?‘!’néﬁ’au(p)i
straint, but the method presented here requires less argumeh-Physical qubit is unmodified with probability-1p. The
tation) five-bit code perfectly protects its encoded information if no
We may also phrase these thresholds in the language &fore than one of thPe T.'Ve physical qubits are subjected to a
finitely probable errors. Consider the symmetric Pauli chanPauli error. UnderV™*"((p), the probability of no errors on
nel given by Eq.(36) with py=py=p,=p/3. This channel any physical qubit is (+ p)°, and the probability of exactly
subjects a qubit to a random Pauli error with probabifity ©ne error is B(1—p)*. We then assume that all greater-
and is described by/Pi(p)=[1—%p,1—4p,1— ¢p]. Ob- weight errors are uncorrgctable,sand find thaét1 the probgblhty
serve that the symmetric Pauli channel and the symmetrigfof? g;’”?ﬁta?r:e eh”?(; ISI (tp) J;hSp(ll_p) f;lt_ 1r(]3_l3h
-, Pauli3 (4 _ Aot p®). The threshold valugy, is the value ofp at whic
(ie/[\)[(()jle%rlzllr_lﬁuschiinntﬁle aiﬁ‘inirtilat(?:nc%nat(igﬁl Iiriit z/\)/ith the single physical qubit and the encoded information have
pauly . . ; ; , the same probability of error. Thus to estimate the threshold
NT2(p) acting on each register qubit, the) of the IochaI we solve 1-10p?=1-—p, yielding py=5. Thus the
qubit will be perfectly protected ip<p;=3(1—€e ). |eading-order calculation underestimates the actual threshold
Define the threshold probabilitp,,=min{py,py.p5}; for p (0.1376 by 27%. (The assumption that all errors of greater
<pw, all encoded qubits are perfectly protected in the infi-weight are uncorrectable assures that the approximation un-
nite concatenation limit. Values foyt and py, appear in  derestimates, rather than overestimates, the threshihe.
Table 1. Steane code corrects all weight-one errors, and weight-two
We now use similar methods to derive thresholds for theerrors consisting of aX on one bit and & on another bit. A
Shor 11, Steane, and five-bit codes presented in the precedirgimilar calculation finds the probability of a correctable error
section. First, consider the Shor Il code. Lettobe 1-%p?+0(p?), yielding p,~0.0612, a 37% under-
[x'/(t),y’/(t),z’/(t)]z(QShof”)/(/\/felj, They/(t) approach estimate. The Shor code corrects all weight-one errors, and
a step function ag’—=, but x/(t) and z/(t) approach a vv_eight-two errors such that ary andY operators occur in
limit cycle of period 2: we find thak}, and zj,,, both different blocks, and any and Z errors occur in the same
approach(t} —t) for some value of!, whilex}, , , andz}, block. The probability of a correctable error is found to be

. - { 1—16p2+0(p?), yielding p;,=0.0625, a 16% underesti-
approachd(t; - t) for some distinct value of;. From the mate. The analysis is exactly the same for the Shor Il code,

form of Q""" given in Eq.(42), we see thak, . ;(t) is@  yet the Shor Il code has a very different threshold; in this
function of z(t), andz) 4(t) a function ofx (t), soitis  case, the leading-order result underestimates the threshold by
not so surprising that the sequenzgx;,z;,X5, ... CON-  44%.
verges and the sequeneg,z;,x;,z3, ... converges. To
find the threshold, we simply consider the sequence of chan- VIll. CONCLUSION
nels[x;,.y5, 25,1, generated by the mag)®""")2. From We have shown how a code’s performance for a given
Eq. (42) we see th"?‘txé(/ﬂ): R(P(x;,)) and Zé(/fl) error model can be described by the effective channel for the
=P(R(z3,)). Thus to find the valuet, ty, andt7, we find  encoded information. The methods presented for calculating
the fixed points of the maps—R(P(x)) andz—P(R(2)),  the effective channel have allowed us to find the perfor-
and proceed as with the Shor code. As shown in Table I, Wegnance of several codes of interest under single-bit Pauli
find that, compared to the Shor code, the Shor Il code haghannels, and further have allowed us to find thresholds de-
greater values fory andt{, and a lesser value fo} . Asthe  scribing these codes’ asymptotic limits of concatenation un-
thresholdty, is given by the minimum of these three values, der the symmetric depolarizing channel. Though we chose to
the Shor Il code outperforms the Shor code in the infiniterestrict our attention to diagonal channels, these methods can
concatenation limit. be applied to any uncorrelated error modg@.g., the

The map)s*®@" given by Eq.(43), has the same form as amplitude-damping channg], which is nondiagonal and
the Shor code maf40), and therefore we can use the samewill substantially simplify the exact analysis of code perfor-
methods to find the Steane code thresholds. The Afaf5, mance in these more general settings.

Code Shor Shor I Steane  Five-bit
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We believe that this effective channel description of code=—vyvyy z=77z The above expression reproduces the ex-
performance may be useful in other contexts as well. I:OEressions for th&,, presented in Eq22). Without the sta-
example, this work could be extended to take account opjlizer formalism, deriving Eq(22) is an exercise in expand-
encoding and decoding circuit errors, thereby providing &ng projectors in a basis of Pauli operators; with this method
method for calculating exact fault-tolerant thresholds. Alsothe computation is very simple.
by providing a comprehensive method for describing the per-  \we now construct th®,, operators for the stabilizer code.
formance of a quantum code without reference to a particulafs in Sec. Il A, let{P;} be the projectors describing the
error model(e.g., bit-flip and phase-flip errorperhaps these  syndrome measurement. For a stabilizer code, the recovery
methods will allow us to address open questions such as tI“t?‘peratorst are each chosen to be a Pauli operator taking the
optimal code for a given error model, and the quantum changpace projected b; back to the codespace. Consider the
nel capacity. expression foD, given by Eq.(16); substituting in the ex-

pression(A2) for E,, we have
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cussions. either commute or anticommute. For two Pauli operakors
andW, let »(V,W)==*=1 for VW= *+WYV. Commuting the
APPENDIX A: STABILIZER CODES R; to the left in the above expression and noting Iﬁf;\IRj
AND DIAGONAL CHANNELS =1,

In this appendix we consider the effective changel
=Q°WN®)) when N is diagonal andC is a stabilizer D —

|~

> (SaR) 7Ry ,0)So

code. We show tha is also diagonal, and show how the 1S £

stabilizer formalism facilitates its calculation. The reader un-

familiar with stabilizer codes is directed to R¢8] for an :i S f.So

. . . ko’Sko- (A4)
introduction, and to Ref[12] for a more complete discus- |S| <

sion.

Since N is diagonal, the termsl(vill)Li in the expression \jith fro=2i7(Se,R) 7(R; ,o). Again, as an example, con-
for the effective channel25) vanish forv;# u;. Thus we  sider the stabilizer definition of the bit-flip code. The recov-

have ery operators aréll, XII, IXI, andIXI. Evaluating the
N above expression foD, yields the previous result of Eq.
— o a’ (1) (23)
gvv’_{%} B{m}“{m}iﬂl Nmm ’ (A1) Using the expression#2) and (A4) for the E,, andD,,

operators in the stabilizer formalism, we will now find the
dramatically simplifying the calculation off. The coeffi- CoefﬁcientSag‘ii} andﬁfyi} as defined in Eq920) and(21).

cientsef, ) andfy, ) are defined in terms of the,» andD,  gince s is a Pauli operator, the sunis2) and (Ad) are
operators in Eqs(20) and (21); to calculate these operators expansions of these operatdts, andD,, in the Pauli basis;
we now consider the codg in more detail. if we were to write down these sums explicitly for a given

Let C be a stabilizer code given by stabiliz8~{S,} C stabilizer code, the coefficients and 8 could be read off
+={1,X,Y,Z}#N, storing one qubit in aiN-qubit register. The immediately, e.g., from Eqg22) and (23).
stabilizerS defines the codespace, and the logical operators This approach may be formalized as follows. First, note
1,X,Y,ZC ={I,X,Y,Z}*N determine the particular basis of thatS, and ¢ are both Hermitian Pauli operators, and they
codewordg0), |1). Recall that theE,, operators act as¢’ ~ commute; therefore their product is also a Hermitian Pauli
on the codespace and vanish elsewhere. It can be shown thgerator, i_e,,sk;e ={l ,x,Y,Z}®N, For any operatoV =
Pc=(1/5])2Sk acts as a projector onto the codespace, and- u;® - - - @ uy With e {l,X,Y,Z}, let $(V)=u1®- - -
by definition the logical operators’ act aso’ on the code- ®uy, and leta(V) e{0,4} such thatV=(—1)2" (V).
space. Thus Then, usingS|=2N"1, we may rewrite Eqs(A2) and(A4)

as

_ 1 _
E, =iPco’ = 3 ; S’ (A2) .
Ep=2 (~1)¥) S (S), (A5)

will act as3 o’ on the codespace and vanish elsewhere.

As an example, consider the bit-flip code introduced in
Sec. Il A. The bit-flip code may be specified as a stabilizer i

o D = (—1)a5) ¢ 7). A6
code, with S={111,2Z1,12Z,21Z}, T=11, X=XXX, Y 4 ;( ) g Mo #(Sc0) (A6)
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Comparing Eq.(A5) with the definition Of“?;;i} in Eq.
(20), we see that each term of the sum okerontributes to
a single coeﬁicientag(sk;,), as (1/2) ¢(Sk;’) is of the
form (u1®---®3uy). Similarly, each term in Eq(A6)
contributes to a single coefficie;&‘;(sk;) . Lemma 2 of Ap-
pendix B shows thatb(Sk;)¢¢(Sk;) unlessk=k’ and
o=0'. Thus each term in EJA5) contributes to aistinct

coefficienta’, and each term itA6) contributes to a
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where ¢;(V) denotesu; for ¢(V)=u1®--- Q@ uy. Now as
N®=[x,y,z], the product of the matrix elements.of!) in
the previous expression is simply a productxd, y’s, and
Z's; each factor appears as many timesraspectively X, Y,

andZ appear ing(So). Lettingw,(p) denote ther weight
of a Pauli operatop, e.g.,wx(XY X)=2, we have

1

Gyt =8y S S XSy (Se) WS

k
(A10)

#(S’)?
distinct coefficientﬁ‘;(sk;). We may therefore simply read
off the coefficients from Eq9A5) and (A6), yielding

APPENDIX B

This appendix contains lemmas deferred from previous
sections.

o __1\a(Sa’)
o5 (=17, (A7) Lemma 1The decoding operatioP given by Eq.(4) is a
L quantum operation.
o = Proof. From Eq.(4) we have
Bisin=(~ 1" gy, (A8) 4@

) Dip]=>, BTA pA'B. (B1)
and all otherafﬂi} and ,Bf#i} vanishing. Le] ; iPr
We now evaluat&g=Q (N M) whereN P =[x,y,z] us-

) e ” To prove thatD is a quantum operation, we must show that
ing Eq.(A1). The only nonvanishing term@{m} occur when

H1® - @ uN= ¢(Sk;) for somek and o, and the only non- 2 (A]-TB)(BTAJ-) =1, (B2)
vanishing terms af;;i} occur when w(® ...Quy !

wherel is the identity on the register space. As we assumed
that R maps all states into the codespace, we can choose the
operatorsA; to only have range on the codespace. With such

a choice, AIA;=Al(|0)(0]+[1)(1[)A;=A/BB'A;. We
therefore have

=¢>(Sk;’) for some k and ¢’. Thus the coefficients
B{yaf,; of Eq. (A1) will vanish unlessu;®: - - ®uy

= p(So)=d(So’) for somek and k’. As proved in
Lemma 2 of Appendix B, this cannot happen whei# o’.
Thus all the matrix element§, . vanish wheno#¢', i.e.,
G is diagonal.

Having demonstrated that the coding m@p of a stabi-
lizer codeC takes diagonal channels to diagonal channels,
and becauség;, =1 from trace preservation, we need to only From Eg.(3) we haveEJ-AjTAj=1, and soD is a quantum

; (AB)(B'A)= 2 AlA; . (B3)

computeGyx, Gyy, and Gz, by using Eq.(Al) to find G operation. [ |
=QC([x,y,z]). These computations can be performed using Lemma 2.For a stabilizer code with stabilizdS,} and
the methods of Sec. Ill, but we conclude this section byjggical operators{c}, and ¢ defined in Appendix A,

expressing these elements by using the stabilizer formalis
which may be computationally advantageous.

Consider the diagonal ternt,, given by Eq.(Al). We
need to only sum over the nonvanishing coefficiesmtand
B, which are given by Eq9A7) and (A8). Substituting in
these expressions yields

M(S0) # d(So o) unlessk=k’ ando=o".
Proof. Suppose we haved(S.o)=¢(Swo’); then
Sk;= iSk,;’. As the stabilizerss, and S, act trivially on
the codespaceS.o and + S, o’ act respectively ag and

+ ¢’ on the codespace. Thus we must have =+ ¢', which
requiresoc=o¢’' and the* sign be positive. We now have

S.o= S, o; right-multiplying by o yields S,= S, , and thus
k=k’. [ |

N
1
_ (1) _ _
gao'_ ; |S| fk"'Hl N¢i(5ka)¢i(sk”) !

(A9)
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