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Following a review of the probe optimization of Slutsky, Rao, Sun, and Fair{fAbps. Rev. A57, 2383
(1998] for the standard four-state protocol of quantum key distribution, | generalize the optimization to a
variable angle between the signal bases. | calculate the corresponding maximum Renyi information gain by the
probe, and determine the optimum probe parameters. A larger set of optimum probe parameters is found for the
standard protocol than was known previously.
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I. INTRODUCTION the secret key, following error correction and privacy ampli-
fication[9,10]. Using the Vernam cipher, the key can then be
Since the pioneering discoveries of Wieshgfand Ben- used to encode a message which can be securely transmitted
nett and Brassarf2,3], research efforts by many investiga- over an open communication line and then decoded, using
tors have significantly advanced the field of quantum crypthe shared secret key at the receiv&@he encrypted message
tography[4]. The primary emphasis of the research has beegan be created at the transmitter by adding the key to the
placed on quantum key distribution, the generation by meansessage and can be decrypted at the receiver by subtracting
of quantum mechanics of a secure random binary sequendke shared secret key.
which can be used together with the Vernam ciptmre- Numerous analyses of various eavesdropping strategies
time pad [5] for secure encryption and decryption. Various have appeared in the literature. A recent review is given in
protocols have been devised for quantum key distributionRef. [4]. The present work is limited to an individual attack
including the single-particle four-state Bennett-Brassardn which each transmitted photon is measured by an indepen-
1984 protocol(BB84) [2], the single-particle two-state Ben- dent probe after the photon polarization basis is revealed. In
nett 1992 protoco(B92) [6], and the two-particle entangled- addition to the individual attack, other approaches include:
state Einstein-Podolsky-Rosd] protocol. However, the coherent collective attacks in which the eavesdropper en-
original BB84 protocol is presently the most practical andtangles a separate probe with each transmitted photon and
robust protocol. measures all probes together as one system; and also coher-
One effective implementation of the BB84 protod@l]  ent joint attacks in which a single probe is entangled with the
uses single photons linearly polarized along one of the fouentire set of carrier photons. However, these approaches re-
basis vectors of two sets of coplanar orthogonal bases orguire maintenance of coherent superpositions of large num-
ented at an angle of 45&quivalently,#/4) relative to each bers of states, and this is not currently feasible.
other. The polarization measurement operators in one basis For the standard four-stat@B84) protocol [2] of key
do not commute with those in the other, since they corredistribution in quantum cryptography, Slutsky, Rao, Sun, and
spond to nonorthogonal polarization states. At a fundamentdfainman[11] performed an eavesdropping probe optimiza-
level, the potential security of the key rests on the fact thation, which on average yields the most information to the
nonorthogonal photon polarization measurement operatorsavesdropper for a given error rate caused by the probe. A
do not commute, and this results in quantum uncertainty ifFuchs-Peres probd1,17 is considered, which is the most
the measurement of those states by an eavesdropping probeneral possible probe consistent with unitarity. Each indi-
[8]. Before transmission of each photon, the transmitter andidual transmitted photon is made to interact with the probe
the receiver each independently and randomly select one &b that the carrier and the probe are left in an entangled state,
the two bases. The transmitter sends a single photon witand projective measurement by the probe, made subsequent
polarization chosen at random along one of the orthogonab projective measurement by the legitimate receiver, yields
basis vectors in the chosen basis. The receiver makes a pisformation about the carrier state. The probe optimization is
larization measurement in its chosen basis. Next, the trandsased on maximizing the Renyi information gain by the
mitter and the receiver, using a public communication chanprobe on corrected data for a given error rate induced by the
nel, openly compare their choices of basis, withoutprobe in the legitimate receiver. Corrected data include data
disclosing the polarization states transmitted or receivedremaining after discarding inconclusive results and also er-
Events in which the transmitter and the receiver choose difroneous data as determined by block checksums and bisec-
ferent bases are ignored, while the remaining events idealliive search. A minimum overlap of the probe states which are
have completely correlated polarization states. The two oreorrelated with the signal statébecause of the entangle-
thogonal states in each of the two bases encode binary numend determines the maximum Renyi information gain by
bers 0 and 1, and thus a sequence of photons transmitted the probe. This is related to the idea that the more nearly
this manner can establish a random binary sequence sharedhogonal the correlated probe states are, the easier they are
by both the transmitter and the receiver and can then serve &s distinguish. The optimization is needed to establish the
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security of the key against individual attack. The upperwhere|y;;) is the projected state of the probe when polar-
bound on Renyi information gain by the probe is needed irization stateli) is transmitted, and polarization stajg is
determining the number of bits which must be sacrificed durdetected by the receiver in the presence of the pfahg

ing privacy amplification in order that it be exponentially = From Egs.(1) and(8) of Ref.[11], it follows that

unlikely that more than token leakage of the final key be

available to the eavesdropper following key distillation [ i) =(ulU|uaw), 3
[9-11]. The results of the probe optimization in R¢11] _ ) .

were obtained for the standard protocol with an angle of gswhereU is the general unitary operator producmg the en-
between the signal bases. The present work generalizes tia'd9lement of the probe states with the signal states, or
probe optimization for an arbitrary angle between the signal
bases and determines the maximum information gain by the
probe and the optimum values for the probe parameters. The X U(|eg)ycosa+|e;)sina)@|w). (4)
standard BB84 protocol with an angle of 45° between the

signal bases is shown to yield the least information to theHere|ey) and|e;) are orthonormal basis vectors in the plane
probe. However, sensitivity to practical tuning variations inof the polarization states of the signfd) is the initial state
this angle can _be useful in quantifying_tolerances. Also, &f the probe, andv=3(7/2— 6) is half the complement of
larger set of optimum probe parameters |s.found for the stary, angle?z cos Y((ulv)/|ullu]) between the two nonorthogo-
dard BB84 protocol than was known previously. nal linear-polarization statels)y and [v) of the signal(see

In Sec. Il, a detailed review is given of the optimization of _. ) —
the standard BB84 protocol by Slutskyal.[11]. Section IlI Fig. 2 of Ref.[11]; | also refer tod as the angle between the

along with Appendix A establishes the necessary condition&V0 °rthogonal basegu),|u)} and{|v),[v)}). Using Eq.(2)

for the existence of possible extrema of the overlap of cor® Ref-[11]in Eq. (4) above, one obtains

related probe states for an arbitrary angle between the signal, .\ _, :

bases. Section IV along with Appendix B identifies the pos—fw”‘)_( (€olsina+(e|cosa)
sible extrema and associated probe parameters. Section V .

determines an analytical algebraic expression for the maxi- x| cosa Y, |en)®| Do) +sina; |e)®|®y,) |,
mum Renyi information gain by the probe for fixed error rate " "

and angle between the signal bases. A useful symmetry, in- (5
volving interchange of the signal states, is exploited to ac- i

commodate angles lesser or greater than 45°. Also, two seydhere|® ;) are the unnormalized nonorthogonal states of
of optimum probe parameters are determined, which botfhe probe. Equatiof6) becomes

ga;r]ersg:)yr?d to the same optimization. Section VI contains a e |<I>01)c0§ a—| D )sir? at (|®yp)

| i) =(—(€g|Sina+(e;|cosa)

—|® o)) sina cosa, (6)

Il. PROBE OPTIMIZATION FOR STANDARD BB84

PROTOCOL and substituting Eq(6) in Eq. (2), and using the symmetry

properties of the probe statg$1-13, and Eqs.(3a), (3b),
In this section, the probe optimization of Rgt1] is ad- and(12) of Ref.[11], one obtains

dressed for the standard BB84 protocol in which the angle . . ) L

between the signal bases is restricted preciselytd Pi=3(1—d)+3(d—a)sin*2a—3csin2a,  (7)

(equivalently,a= /8 in Fig. 2 of Ref.[11]). From Sec. IV

and Table Il of Ref[11], one has for the induced error rdfe

in the receiver by the eavesdropping probe,

wherea, b, ¢, andd, expressed in terms of the eavesdropping
probe parameters, u, 6, and ¢, are given by[11,12

a=sir’ \ sin 2u+ cos \ cos 20 sin 2¢, (8)
E= Puut Puu (1)
Pyt PwtPutPy b=sir’ \ sin 2+ cos \ sin 2¢, 9
wherePj; is the probability that if a photon in polarization C=cos’ \ sin 20 cos 2, (10
stateli) is transmitted in the presence of the disturbing probe, )
i P gp d=si A +cog \ cos 26. (1)

the polarization stat) is detected by the legitimate receiver,
where{i,j}={u,u,v,v} corresponds to nonorthogonal polar-
ization stategu) and|v), and the statéu) orthogonal tgu),
and|v) orthogonal tdv). The stategu) and|v) both corre-

Summarizing Eq(7), along with other results in Appendix C
of Ref.[11], one has

spond to Boolean statd), and|u) and|v) correspond to Po=%(1+d)—i(d—a)si2a+icsin2a, (12

Boolean stat€0).
One has Pi=3(1—d)+3(d—a)sif2a—3csin2a, (13
Py = (il wy) =12, 2 Pu=3(1-d)+3(d—a)sif2a+3csin2a, (14
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Pa=4(1+d)~ L(d—a)si2a—Lcsin2e. (15 |400) =|Pog)cOS @+ | drpsin’ a
Substituting Eqs(12)—(15) in Eq. (1), one obtains +(|10) +[®op)sina cosa 9
E=1[1-d+(d—a)sirf2«]. (16 and

Also from Sec. IV of Ref[11], one has for the overla@ of

the probe states correlated with the signal states received by |4 =| P10 c0S' at | Dog)sirt a

the legitimate receiver, —(|®10)+|Poy))sine cosa. (20)
(Yl V) - 11
Q= r——-, (17) Using Egs.(19), (20), the symmetry propertiegl1-13 of
| uul ¥l the probe statelsb;;), and Eqs(12), (3a), (3b) of Ref.[11],
or equivalently, using Eq.2) in Eq. (17), one obtains one obtains
(udl ¥aw) (Yo Yy =3(a+b)+3(d—a)sir’ 2a. (21)
e Next, substituting Eqs(21), (12), and (15) in Eg. (18),
From Appendix C of Ref[11], one also has one obtains

Q=[3(a+b)+(d—a);sirP2a][3(1+d)+(—d+a)3 sir? 2a+cj3 sin2«] 12

X[3(1+d)+(—d+a) sif2a—c 3 sin2a] 2, (22)

in agreement with Eq.15) of Ref.[11]. The optimum infor-  also in agreement with Eq15) of Ref.[11].
mation gainl Ept by the probe is given in terms of the overlap ~ For any value ofE,, the numerator of Eq(26) has a

Q of correlated probe states by conditional (fixed error rateE;) minimum at some point
where the denominator has a conditional maximum, namely,
I ffpt: log,(2—Q?) (23 c=0. (This is further substantiated in the followindlearly,

the numerator of Eq26) for fixed Ey is minimum wherb is
(for the BB84 protocol, as well as the B92 protoddl1,13—  minimum. Before minimizingb, substituting Eqs(8) and

15]. It follows from Eq.(23) thatlspt is maximized wherQ (1) in Eqg. (24), one obtains

is minimized.
It is of interest to first limit the analysis to the standard g =1—1[sin? \(1+ sin2u)+cos \ cos 20(1+sin 2¢)]
BB84 protocol in whicha=7/8, corresponding to a 45° 27)

angle (9= w/2— 2= w/4) between the signal bases and also
between the two nonorthogonal polarization stdtg¢sand  or

lv) of the signal, namely,(ulv)=cosé=cos@/2—2a)

=sin 2a=cos(r/4)=2"'2. The conditional optimization in ' 2—4Ey—SirP N(1+sin 2u)
Ref.[11], which is performed for fixed error rafg is limited sin 2¢= o2\ cos 7 (28
to this case. In that case, Eq46) and(22) become
Eo=Eja—mp=3[1-3(d+a)] (24)  Next substituting Eq(28) in Eq.(9), in order to eliminate the
variable ¢, one gets
and
2—4Ey—sir? A(1+sin2
Ld+a)+b b=sir? \ sin2u+ 0 005259 M)—cosz)\.
= =T = 1 25
Qe @i 2 @9
respectively, in agreement with Eq4.5) of Ref. [11]. Sub-  In order thatb be minimum, so thaQ, can be minimum in
stituting Eq.(24) in Eq. (25), the latter becomes Eq. (26), one requires that in Eq. (29) satisfy
Qo (26) = (30

(2 202~ 7 =
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¢9b_0 31
N (31)
and
ab—O 32
290 (32

Substituting Eq.(29) in Egs. (30), (31), and (32), one re-
quires

Sir? \ cos 2#( 1- 20) =0, (33

sin 2\ (sin 2u + 1)(1— cos 26)20’ (34
sin 26 ) )

m[2—4Eo—smz M1+sin2u)]=0. (35

Equationg33)—(35) are necessary conditions for minimdm
andQq.
Equation(33) requires

sinA=0, (36)
cos 2u=0, (37)
or
cos 20=1. (39)
Equation(34) requires
sin2x=0, (39
sin2u=—1, (40)
or
cos 20=1. (41)
Equation(35) requires
sin260=0 (42)
or
SiP N(1+sin2u)=2—4E,. (43

A solution to Eqgs.(33)—(35), which leads to the optimi-
zation given in Ref[11], is given by

sinn=0, sin20=0, cos¥=e,==*1. (44)
Equationg44) satisfy Eqs(36), (39), and(42), and therefore
also Eqs(33)—(35). Next, substituting Eqg44) in Eq. (10),
one gets

c=0, (45)

consistent with the conditional maximum of the denominator

in Eq. (26), as declared above.
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Furthermore, substituting Eq#44) in Eqg. (28), one ob-
tains

sm2¢=§{1—2E@—1. (46)
0

Since onlyEy<1/2 is considered11], and clearlyEy=0,
then one requires

0<E,<1/2. (47)
Then substituting Eq46) in Eq. (47), one requires
0<ey(sin2¢+1)<2. (48)

Clearly one requireg,=+1 because ile,= —1, then Eq.
(48) implies sin 22<—1, which is impossible. Therefore, one
has in Eq.(44),
cos 20=¢,=1, (49
and Eq.(48) becomes
—1<sin2¢<1. (50

Next, substituting Eqg44) and(49) in Egs.(8)—(11), one
requires

a=sin 2¢, (51
b=sin2¢, (52
c=0, (53
and
d=1. (54)

[Equation(53) restates Eq45).] Next, substituting Eqg51)
and(54) in Eq. (24), one obtains
Eo=%(1-sin2¢), (595
and therefore
sin 2p=1—4E,. (56)

Also, substituting Eqs(52), (53), and(56) in Eq. (26), one
obtains

2
1-Ey

Qo=3— (57)
Equations(57), (44), (49), and (50)—(55) agree with Egs.
(16) of Ref.[11]. The choice ofu=0 in Ref.[11] is allowed
becauseu only enters througla andb in Egs.(8) and (9),
and according to Eq44), sinA=0. In general, however, any
p (0=u=) produces the same optimization. Alsos 7
satisfies Eq.44) as well asA=0. Other combinations of
Egs. (36)—(43) may also yield solutions, and this issue is
addressed in Sec. IV.

It is also well to further clarify the arguments of Appendix
E of Ref.[11]. Note that according to Eq9), b is indepen-
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dent of 4, and Eq in Eq. (27) is clearly least when cos2 L(a+b)+(d—a)isirt2a
=1, since in the last term of E§27), co$ \=0, and accord-
ing to Eq.(50), 0<(1+sin 2¢)<2. But then substituting Eqg.

Q= {}[1+d+(a—d)sir? 2a]?~ Lc?sir? 2o} 12

(49) in Eq. (27), the latter becomes (60)
Eo=21—1[1+siPAsin2u+cogrsin24]. (58  Also, from Eq.(16), it follows that

Substituting Eq(9) in Eq. (58), then (d—a)sir 2a=2E—1+d, (61)

Eo=3[1-D], (59 and substituting Eq(61) in Eq. (60), one obtains

whi'ch agrees wi.th Eq452) and(55). Acgording to Eq(59), La+b+d—1)+E

E, is @ monotonically decreasing functionlmfand the prob- = — ) (62

lem of minimizingb, subject to constarf, can be inverted {(1-E)?-3c?sin? 2o}

so thatE is minimized, subject to constabt One also sees _

by substituting Eqs(59) and(53) in Eq. (26) that Eq.(57) is From Eq.(61), it follows that

again obtained, and since E&?7) results from minimizingo

with E, constant, this is equivalent to minimiziriy, with b 2B 1+asir 2a

constant, and is consistent with Appendix E of Réfl]. In - cos 2a (63)
the following section, the analysis is continued for an arbi- _
trary angle between the signal bases. Next, using Eqs(8), (9), and(63), one can show that
lll. CONDITIONS FOR POSSIBLE EXTREMA g=a+b+d=(2-tarf 2a)sin’ A sin 2.+ cos'\

In this section, conditions for possible relative extrema : _ . 2E-1
are calculated of the overlap of correlated probe states of the X sin 2¢{ 1+ (1 tarf 2)cos 2] cos 2a’ (64
Fuchs-Peres proljd 1,12 for an arbitrary angle between the
signal bases. First, E¢22) can be rewritten as Next, substituting Eqs8) and(11) in Eqg. (16), one has

E=3[1—sir’ A\ —cos \ cos 20+ sir? 2a(sir? A +cos \ cos 20— Sir? \ sin 2u—cos \ cos 20 sin 2¢)]. (65)
It then follows from Eq.(65) that

coS N (1—cos 29) + sir? 2a(sir? A + cos \ cos 20— cos \ cos 20 sin 2¢) — 2E
Sir? 2a sinf \ '

sin2u= (66)

Next, substituting Eq(66) in Eq. (64) to eliminate dependence qn it follows that
g=a+b+d=cod \{(2—tarf 2a)[ cof 2a— cos 20(sin 2¢+ cof’ 2a) ]+ sin 2¢[ 1+ (1—tarf 2a)cos 20|} — 4 csé 2aE + 3.

(67)
|
Also, substituting the definition of, Eq. (64) in Eq. (62), 9Q
one obtains (9_0:0' (70
1
3(a-D+E
Q= ° _ , (68) 0Q
[(1-E)?— ic?sir? 2a]? e (71

whereq is given by Eq(67), cis given by Eq.(10), andE is
constant. Sinc€& is constant, and andc depend only on the
variables\, 6, and ¢, thenQ depends only on the variables
\, 6, and ¢. It then follows that possible extrema of the
overlapQ for fixed E must satisfy

In general, Eqs(69—(71) may determine absolute or

solutions to Eqs(69)—(71), giving the values of the probe

relative maximum, minimum, or saddle points in the space of
probe parameters. The minimu@ s sought here. Possible

parameters at the possible extrema, are derived in Appendix

A, and each possible solution corresponds to one of the fol-

aQ

o= lowing combinations in which the functiorts;, F,, andF3
IN

0, 69 are defined by EqgA5), (A10), and(A15), respectively,
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sinn=0, sin29=0, cos2)=0, (720 which for = 7/8 corresponds to the standard BB84 optimi-
zation, Eq.(57). However, the possibilities differ in the val-
sin\=0, sin20=0, F3=0, (73 ues of the optimized probe parameters.
First consider possibility(73). According to Egs.(Bl),
sinn=0, cos2)=0, F,=0, (74) (B4), and(B5), one has for the probe parameti&r, 6, and
¢l
sin\=0, F,=0, F3=0, (795
sin\ =0, (85
cos\ =0, (76)
sin26=0, cos2)=0, F,;=0, (77 cos =1, (86)
cos\=0, sin29=0, F,=0, (78) sin2¢=1-2E cs¢ 2a. (87
sin20=0, F;=0, F3=0, (79 Evidently, according to Eq$85) and (66), the probe param-
eter u is arbitrary (6= u=<m). In summary, then for possi-
cosh=0, F,=0, 80 pility (73), the optimized probe parameters are
cos2p=0, F1=0, F2=0, (8D {N,;,0,¢;siN\=0, cosP=1, sin2p=1-2E cs¢2a}.
cosh=0, F;=0, F,=0, (82 (88
F,=0, F,=0, F4=0. (83) Next, consider possibility76). According to Eqs(B81)

and(B82), one has
In the following section, together with Appendix B, the pos-
sible extrema and associated probe parameters are deter- cosA=0, (89
mined from possibilitieg72)—(83).
sin2u=1-2E cs¢ 2a. (90)
IV. EXTREMUM AND PROBE PARAMETERS

In Appendix B, possibilitie$72)—(83) are addressed. Pos- Evidently 6 and ¢ are arbitrary (6= f<,0<¢=<m). Thus
sibilities (72), (74), (75), and(81) are excluded because they for possibility (76), the optimized probe parameters are
cannot yield an optimization. Possibiliti€Z3), (76)—(80),

(82), and(83) all give the same result, E¢B10), namely, {\,u,0,¢; cosA=0, sin2u=1-2Ecsé2a}. (91)
_1+(1-2cs€20)E 84 For possibility (77), according to Egs.(B88), (B93),
1-E ' (B90), (B94), and(B16), the optimized probe parameters are
|
{N,u,0,¢; sin2usiP \=1—2E csé2a+cog\, cos¥=1, sin2p=+1}. (92)

For possibility(78), according to Eqs(B95), (B97), (B99), and(B101) or (B102), the optimized probe parameters are
{N\,u,0,¢; cosh=0, sin2u=1—2Ecs¢2a, cos2W=1} (93)
or
{\,;,0,¢; cosh=0, sin2u=1—-2Ecs¢2a, sin2¢=1—2cof2a, cosW=e,}. (94)

Equations(93) and (94) are apparently included in E¢1).
For possibility(79), according to Eqs(B107) and (B109), one has

{N,u,0,¢; sin2u sirP \=1—2E cs@ 2a—cog \ sin 2¢,cos 20=1}. (95)

Evidently Egs.(88) and (92) are included in Eq(95).
For possibility(80), according to Eqs(B110), (B112), and(B114) or (B115), one has

{N,u,0,¢; cosh=0, sin2u=1-2Ecsé2a, cos2W=1}, (96)
or, alternatively

IN,u,6,¢; cosn=0, sin2u=1—2Ecsé2a, sin2¢=1—2cof2a}. (97
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Equations(96) and (97) are evidently included in Eq91).
For possibility(82), according to Eqs(B121), (B124), and(B125), the optimum probe parameters are

{N,u,0,¢; cosn=0, sin2u=1—2Ecsé2a, sin2¢=1—2cof2a}. (98

Comparing Eq(98) with Eq. (92), it is evident that Eq(98) is included in Eq.(91)
Finally, for possibility(83), according to Eqs(B132—(B134), the optimum probe parameters are

N\, 0,¢; sin2usiPA=1—2Ecs¢2a—cog \ sin2¢4, cos2W=1, cog\=2(1—E)%(1—2 cof 2a—sin2¢)
x{sir? 2a cog 2¢[1+(1—2 csé 2a)E]} "1} (99

Comparing Eq(99) with Eq. (95), one sees that E¢Q9) is included in Eq.(95).
Equations(91) and (95) are different possible sets of optimized probe parameters, both of which correspond to the same
optimization, Eq.(84). In summary, the optimized sets of probe parameters are

{N,it,6,¢; cosh=0, sin2u=1-2Ecs¢2al, (100
{N,;,0,¢; sin2u siP \=1—2E cs@ 2a— cog \ sin 2¢,cos 20=1}. (102)
For a= /8, these reduce to
{\,u,0,¢; cos\=0, sin2u=1—4E}, (102
I\, 0,¢; sin2usirP \=1—4E—cog \ sin2¢, cos29=1}. (103

Equation(103), for sinA=0, corresponds to the standard op- and therefore the extremization does not correspond to a
timization in Ref.[11] and in Sec. Il above, but, other than minimum for &> 7/8. [For example, ifa=m/8+10° ¢, E

that, the two sets of optimized probe parameters given by=0.2, u/7=0.156816, \/7=0.3, #/7=0.1, and ¢/=
Egs.(102 and (103 were not found by the simplified argu- =0.75, one obtains, using Eg4.6), (60), and(8)—(11), the
ments appearing there. Both E¢$02) and (103 [together  value Q=0.500003 for the nonoptimized overlap; but Eq.
with Egs.(8)—(11), (24), and(26)] yield Eq.(57). It can also  (84) yields a larger valueQ=0.500 004. Also, ifa= 7/5,

be shown that all sets of optimum probe parameters followE=0.3, u/7=0.0711275\/7=0.7, 6/7=0.7, and ¢/

ing from Egs.(36)—-(43) are subsets of Eq101), and also =0.7, one obtain€) =0.348 28 for the nonoptimized over-

yield Eq. (57). lap, but Eq.(84) yields Q=0.909 509]
However, it is at this point essential to note the invariance
V. MAXIMUM INFORMATION GAIN of the error raté, Eq.(1), and the overla®, Eq.(17), under

an interchange of the states and|u); thus
In Sec. IV, it was determined that the only remaining pos-

sible extremum of the overla@Q of correlated probe states {E.Q} —— {E,Q}. (104)
for fixed error ratek is given by Eq.(84). | have found that Uy [a)

if one plots points using the general expression for the non-

optimized overlap given by the parametric E@0) and(16)  Also, from Fig. 2 of Ref.[11], it is evident that under the
along with Eqs(8)—(11) for a representative range of values interchange ofu) and|u), the angleé between the nonor-

of the error rateE and the probe parametexs u, 6, and¢,  thogonal polarization states becomes thus
and for a range o&=< 7/8, the nonoptimized values €J all

lie above the corresponding curves given by B4). Also,

by explicitly calculating the difference between the opti-
mized overlap, Eq(84), and the nonoptimized overlap, Egs.
(60) and (16), for representative ranges of the error rate and .
the probe parameters in the neighborhood surrounding eacﬁ"n
of the optimized sets, Eq6100 and(101), | have found that

for a=/8 or 7/9, the nonoptimized overlap is not decreas- a T (106)
ing, and therefore Eq84) does in fact represent a minimum. Uy [0

Also, it is evident from Eq(84) that the minimum overlap

Q, for constantE, decreases as decreases below/8. Ap-  Also, using Eq.(106), one has

parently, the optimization holds fot=< /8. However, for

a> /8, this is not the casfpoints resulting from Eqs60) {a=7/8} —— {a=n/8}. (107
and(16) fall above and below the curves given by E&4)], uy[u)

0—— 2a, (105

|u)[u)

equivalently, sincé= 7/2—2a,
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It then follows from Egs.(84), (106), and (107) that the
optimum overlap,

_ 1+(1-2cs¢2a)E
B 1-E ’

a<1l8, (108
becomes

1+ E

1-2cs@ 2(%— a)

a= /8,

TE , (109

{\,u,0,¢;cosh=0, sin2u=

(N, 0,¢;sin 2 sif A\=1—2E c¢s@ 2a—

become, fora— mw/4— «,

{N,u,6,¢;c05M=0, sin2u=1-2Esec¢2a},

{N, e, 0,¢;sin 2 sif \=1—2E seé 2a—

PHYSICAL REVIEW A66, 032303 (2002

or equivalently,

_ 1+(1-2sec2a)E
1-E '

a= /8.

(110

Also, the optimized sets of probe parameters, Ef80 and
(101), namely,

1-2Ecsé2a}, a<=l8, (111
cog\sin2¢, cosH=1}, a=mw/8 (112

a=1l/8, (113
cog\sin2¢, cosH=1}, a=x/8. (114

| have found that if one plots points using the general ex-w/8, or increases above/8. The standard BB84 protocol
pression for the nonoptimized overlap, given by the parametwith « = 7/8 yields the least information. Equatighl?) can

ric Egs.(60) and(16) along with Eqs.(8)—(11), for a repre-
sentative range of values of the error ré&deand the probe
parameters\, u, 6, and ¢, for a range ofe= /8, the non-
optimized values of) all lie above the corresponding curves
given by Eq.(110. Apparently, fora= /8, the optimiza-
tion, Eq.(110), holds.

With the restrictions ony, the maximum Renyi informa-
tion gain by the probe is given by E§23), namely, Refs.
[11,13-15,

I5=l0g,(2—-Q?), (115

whereQ is given by Eq.(108) for a< /8, and Eq(110) for

a= /8, or

1+(1-2csé2a)E

., a<ml/8
Q tE (116
"] 1+(1-2se@2a)E
( @) , a=m/8.
1-E
Thus for the BB84 protocol, one has
1+(1-2csé2a)E]?
Iogz(Z— ( @) ), a<l/8
R 1-E
opt ool 2 1+(1-2seé2a)E]? g
0| 2— 1-E , a=Tlo.
(117)

For a= /8, Eq. (117) produces Fig. 6 of Refl11], as it
must. AIso,I('fpt in Eqg. (117) increases a& decreases below

be used in the calculation of the secrecy capacity of the
BB84 protocol[16,17].

VI. SUMMARY

The maximum Renyi information gain, E¢117), by a
Fuchs-Peres probd 1,17 is calculated for a varying angle
between the signal bases in the four-state prot2dlof
quantum key distribution. The invariance of the error rate
and overlap under signal-state interchange, @§4), was
exploited to accommodate any angle between the signal
bases in the optimization. Two sets of optimized probe pa-
rameters, Eqs(111) and (112 for a</8, and Eqs(113
and (114 for a= /8, are found to yield the optimization.
Only a subset of one of these sets was found previdudly
for a=w/8 [EqQ. (112 with sin\=0 anda = 7/8, or equiva-
lently Eq. (103 with sin\=0]. When the angle between the
signal bases is the standard 45¢={/8), the result, Eq.
(57), of Slutsky, Rao, Sun, and Fainmii] is recovered. It
was shown by explicit calculations that E4.17) gives the
maximum information gain by the probe for a representative
range of values of. Also, the maximum Renyi information,
Eq. (117), for constant error rate, increases @slecreases
below #/8, or increases above/8. However, sensitivity to
practical tuning variations in the angle can be useful in quan-
tifying tolerances.
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c
C-=-2 co$ \ sin\ sir? 26 cos 2. (A3)
APPENDIX A: EXTREMA CONDITIONS

In this appendix, the sets of conditions given by Egs. _— .
(72—(83) for the existence of possible extrema of the over-req-[j?g; substituting EqsiA2) and (A3) in Eq. (A1), one

lap of correlated probe states are determined by using Egs.
(69—(71). First, substituting Eq(68) in Eqg. (69), one ob-

tains sin\ cosAF4(\,6,¢)=0, (A4)

aq g—1+2E
I\ [4(1-E)2—cZsirf2a]

i 2 ac—o Al
SIF catoy =0 (A1) where

F1(\,8,¢)=2{(2—tarf 2a)[ cof 2a— cos 26(sin 2¢+ cot 2a) ]+ sin 2¢[ 1+ (1—tarf 2a)cos 26]}

2(q—1+ 2E)
T I1-E)2-_ st 2a

Sir’ 2a co$ \ sir’ 26 cos 2¢. (A5)

Next, substituting Eq(68) in Eq. (70), one obtains Next, substituting Eq(68) in Eq. (71), one obtains
a9 q—1+2E : Jc d —1+2E ac
—+ : si?2ac—=0. (A6 il q ; 7%
96 [4(1-E)*—c”sin’ 2a] a0 (A0) 96 [4(1-E)2—cZsi?2a] S 2ac PP
(A11)

Using Eqgs.(67) and(10), it follows that

iq Using Eqgs.(67) and(10), one gets
— =2sin20cog \(sin2¢+2 cof 2a—1), (A7)

a6 iq
96 =2 cog \ cos 2p(1— cos 29), (A12)
Jc
c%=2 sin 26 cos' \ cos 29 cos 2. (A8)
Jc _ P i? )
Then substituting Eqs(A7) and (A8) in Eqg. (A6), one re- Cﬁ__z cosAsim26sin2¢cos2p.  (AL3)
quires
sin 20 COZ AF5(1. 0, $) =0, (A9) 'rl'ehen substituting Eq9A12) and (A13) in Eq. (All), one
quires
where
cos \ cos 26F3(\,6,¢$)=0, (A14)
Fo(N\,0,¢)=2(sin2¢+2 cof2a—1)
where
2(q—1+2E)
[4(1—E)°—c?sir’ 2a] N ) 2(q—1+2E)
,0,0)=2(1—cos20)— .
X Sir? 20 COZ \ €O 20.COZ 2. AN 0.8 [4(1-E)>- csif 2a]

(A10) X sir? 2a cog \ sir? 26 sin 2¢. (A15)
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Summarizing Eqs(A4), (A9), and (Al4), possible ex-

PHYSICAL REVIEW A66, 032303 (2002

F,=0, cos\=0. (A35)

trema of the overlap of correlated probe states are deter-

mined by

sin\ cos\F;(\,60,¢)=0, (A16)
sin 20 co$ NF,(\,6,¢)=0, (A17)
cog \ cos 2pF3(\,6,¢$)=0. (A18)

Three possible ways of satisfying E@\16) are
sinA=0, (A19)
CosA =0, (A20)
F,=0. (A21)

Two possible ways of satisfying EqeA19) and (Al17) are

sinA\=0, sin20=0, (A22)

sinA\=0, F,=0. (A23)
Two possible ways of satisfying EqéA22) and (A18), and
therefore also EqgA16) and(Al17), are

sinn=0, sin20=0,

cos 2p=0, (A24)

sinn=0, sin20=0, F3;=0. (A25)
Two possible ways of satisfying Eq§A23) and (A18),

and therefore also Eq$A16) and (Al7), are
sinA=0,

cos2p=0, F,=0, (A26)

Sin\=0, F,=0, F3=0. (A27)

Equation(A20) satisfies Eq9A17) and(A18). Therefore,
another way of satisfying Eq$A16)—(A18) is
cosh =0. (A28)

Three possible ways of satisfying Eq#&21) and (A17)
are

F,=0, sin29=0, (A29)
F,=0, cos\=0, (A30)
F]_:O, F2:0 (A31)

Three possible ways of satisfying E4829) and(A18), and
therefore also EqgA16) and(Al7), are

F,=0, sin20=0, cos2)=0, (A32)
F.=0, sin2=0, cos\=0, (A33)
F,=0, sin20=0, F3=0. (A34)

Equation (A30) satisfies Eq.(A18), and therefore, another

way of satisfying Eqs(A16)—(A18) is

Three possible ways of satisfying E¢8.31) and(A18), and
therefore also EqgA16) and(A17), are

F,=0, F,=0, cos2)=0, (A36)
F1=0, F,=0, cos\=0, (A37)
F,=0, F,=0, F3=0. (A38)

Summarizing Eqs(A24)—(A28) and (A32)—(A38), pos-
sible solutions to Eq4A16)—(A18) are determined by Egs.
(72—(83).

APPENDIX B: POSSIBLE EXTREMA OF OVERLAP OF
CORRELATED PROBE STATES

In this appendix, possible extrema of the overlap of cor-
related probe states, and also the associated probe param-
eters, are calculated. First consider possible extrema deter-
mined by possibility(73):

sin\=0, (B1)
sin26=0, (B2)
F;=0. (B3)
From Egs.(A15), (B2), and(B3), it follows that
cos 20=1. (B4)

Substituting Eqs(B1) and (B4) in Eq. (66), it follows that
sin2¢=1-2E cs¢ 2a. (B5)

Next, substituting EqgB1), (B2), and(B4) in Egs.(8)—(11),
one obtains

a=sin2¢, (B6)
b=sin 2¢, (B7)
c=0, (B8)
d=1. (B9)

Then substituting EqgB5)—(B9) in Eq. (62), one obtains

_ 1+(1-2cs¢2a)E
- 1-E

(B10)

For a= /8, Eq.(B10) becomes Eq(57), corresponding to
the standard BB84 optimizatidi.1].
Next, consider possibility72),

sin\=0, (B11)
sin26=0, (B12)
cos 2¢=0. (B13)
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From Egs.(B12) and(B13), it follows that

cos 2=e, (B14)
and
sin2¢=e,, (B15)
where
g=*1, e,==L1 (B1o)

Substituting Eqs(B11), (B14), and (B15) in Eq. (65), then
one requires
E=3[1-eytey(l—ey)sin 2a]. (B17)

Next, substituting Eqs(B11)—(B16) in Egs. (8)—(11), one
obtains

a=egey, (B18)
b=ey, (B19)
c=0, (B20)
d=e,. (B21)

Then substituting Eq¥B17)—(B21) in Eq. (62), one obtains

_ey(ltey) teyl—ey)sin 2a

T (lve)-efl-eysza - B2

Fore,==*1 ande,=+1, Eq.(B22) yields
Q=1. (B23

Fore,=*+1 ande,=—1, Eq.(B22) yields
Q=-1. (B24)

One concludes that possibility2) does not yield the mini-
mum overlap.
Next, consider possibility74),

sin\=0, (B25)
cos 2=0, (B26)
F,=0. (B27)

Next, substituting EqstA10) and (B26) in Eq. (B27), one
obtains
sin2¢=1-2 cot 2a. (B28)

Then combining Eqs(B26) and (B28), one requires

PHYSICAL REVIEW A 66, 032303 (2002

cof 2a=3(1—e,), (B29)

and therefore using E¢B16), one requireg,=—1, and
(B30)

a= /8.

Furthermore, using Eq$B25), (B26), and(B30) in Eq. (66),
one requires
E=1. (B31)

Therefore possibility74) does not yield a solution.
Next consider possibility75),

sin\=0, (B32)
F,=0, (B33
Fs=0 (B34)
Using Eqgs.(B32) and(10), one has
Cc=sin 26 cos 2. (B35)

Also, using Egs(B32), (B33), and(A10), one requires

q-1+2E B
4(1-E)°—c?sirf 2a|

(1—2 cof 2a—sin 2¢)

Sir’ 2a cos 20 cos 2¢
(B36)

Also, Eqgs.(B32), (B34), and(A15) require

1—cos 29

T S 2asif20sin2¢°
(B37)

q—-1+2E
4(1—E)°—c?sirf 2a

Furthermore, using EqB32), Eq. (67) becomes

q=(2—tarf 2a)[cof 2a— cos 2(sin 2¢+ cot 2a)]
+sin 2¢[ 1+ (1—tarf 2a)cos 20]— 4E cs¢ 2a+ 3.

(B39
Next equating Eqs(B36) and (B37) requires
(1—2 cof 2a—sin 2¢)sir? 26 sin 2¢
=(1—cos 20)cos 20 cos 2 ¢. (B39)

Next, multiplying Eq.(66) by sir? A and substituting Eq.
(B32), one gets

1-2E
1-sif2a(1—sin2¢)"

Ccos 20= (B40)

Then substituting EqB40) in Eq. (B39), one obtains

(1—2 cot 2a—sin 2¢)sin 2¢{[ 1—sir? 2a(1—sin 2¢)]>— (1— 2E)?}

=(1-2E)cos 2¢[1—sir’ 2a(1—sin2¢)— (1—2E)],

or equivalently,

(B41)
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[1—sir? 2a(1—sin 2¢)— (1—2E)]{(1—2E)cog 2¢— (1—2 cof 2a—sin 2¢)

X sin 2¢[ 1—sir? 2a(1—sin 2¢)+ (1—2E)]}=0. (B42)
Therefore, either
[1-sir’ 2a(1—sin2¢)—(1—2E)]=0 (B43)
or else
(1—2E)cog 2¢p— (1—2 cof 2a—sin 2¢)sin 2¢[ 1—sir? 2a(1—sin 2¢)+ (1—2E)]=0. (B44)
|
Equation(B43) gives p
sin2¢=x_— =, (B54)
sin2¢=1—-2E csé 2a, (B45) 3
which when substituted in E4B40) gives where
cos 20=1, (B46) X=cCc,+cC_, (B55)
and substituting EqeB32), (B45), (B46), and (8)—(11) in 1 312
Eq. (62), one again obtains the same solution resulting from Xo=— E(c++c,)t7i(c+—c,), (B56)
possibility (73), Egs.(B5)—(B10). However, Eq(B45) must
allslol be compatible with the remajning requirements if pos- B (B2 A3 1718
sibility (75) is to represent a solution. P ) LA (B57)
Alternatively, one has EqB44), which becomes the cu- = 2 \4 27 '
bic
1
a;sit2¢+a,sinf2¢+agsin2¢+a,=0, (B47) A:§(3q—p2), (B59)
where
1
a,=sir 2a, (B49) B= 2—7(2p3—9pq+ 27r), (B59)
a,=3—4sirt 2a, (B49)
a
a;=(2E—co€2a—1)(1-2cof2a),  (B50) P=3, (B60O)
a,=(1-2E). (B51) as
. . : . q=_ (B61)
The possible solutions to the cubic EB47) are given by a;
. p ay
Sin2¢p=x— 3 (B52) = —. (B62)
a;
sin26=x, — E, (B53) Ngxt, substituting Eq4B35) and(B40) in Eq. (B37), one
3 obtains

[2(1—E)—sirf 2a(1—sin2¢)]
[1—sir? 2a(1—sin2¢)]°

[2E—sir? 2a(1—sin2¢)]| 4(1—E)*— {[2E—sir? 2a(1—sin 2¢)]sir? 2a cog 2¢

+[1-sir? 2a(1—sin2¢)](q— 1+ 2E)sir? 2a sin 2¢} |=0. (B63)

Therefore, either

[2E—sir? 2a(1—sin2¢)]=0 (B64)
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or else

[2(1—E)—sir? 2a(1—-sin2¢4)]
[1—sir’ 2a(1—sin2¢)]°

X (q—1+ 2E)sir? 2a sin 2¢}. (B65)

4(1-E)*=

{[2E—sir? 2a(1—sin 2¢)]sir? 2a cog 2¢+[1—sir? 2a(1—sin 2¢)]

Equation(B64) gives
sin2¢=1—2E cs¢ 2a, (B66)

which together with Eqs(B40), (B32), (8)—(11), and(62) again yields the same result as possibi(it), Eqgs.(B5)—(B10).
However, Eqs(B45) and (B66) must also be compatible with the remaining restrictions, if possihifi§y is to represent a
solution.

Alternatively, one has EqB65). The quantityg appearing in Eq(B65) and given by Eq(B38) reduces using EqB40)
to

(1+sin 2¢)(1—2E)

A=SIN 20+ 220t si? 2a sin 2¢° (B67)

Then substituting EqB67) in Eq. (B65), one obtains the cubic
b;A%+byA2+bsA+b,=0, (B69)

where

A =cog 2a+sir? 2a sin 2¢, (B69)
b;=(1-2E)(1—2csé2a), (B70)
b,=4(1—E)?—sirf 2a+(1—2E)%(1—2 cs€2a)—(1—2E)(1+cog 2a—4 cof 2a), (B71)
by=—(1—2E)%(1+cog2a—4 cof 2a)+(1—2E)cog 2a(1—2 cof 2a), (B72
bs=(1—2E)?(1—2 cog 2a cof 2a). (B73)

[In obtaining Eq.(B68), an overall factor ofA was removed and ignored, sinde=0 can only be satisfied E=1/2.]
Next, substituting Eqs(B35), (B40), and(B67) in Eq. (B36), leads to the quintic

CySIP 2¢p+Cysint 2¢p+c3 S’ 2¢p+ ¢4 SI? 2+ €5 sin 2+ c5=0, (B74)

where
c,=sin’ 2a, (B75)
c,=si*2a(5 co 2a+2E—2), (B76)

Cy=sin' 2a(5— 12E+8E?) —sir’ 2a cog 2a(1—2E) — 2 sirf 2a(1—2E)2— 2 sirf 2a cog 2a+ 5 sirf 2a cos 2«
—sinf 2a, (B77)

c,=(1—2 cof 2a)[sir? 2a(1—2E)%— 4 sirf 2a(1—E)?+sir® 2a—sir? 2a cos' 2a]— 2 sirf 2a cos 2«
+2 sirf 2aE(1—2E) +8 sirf 2a cos 2a(1—E)?, (B79)

cs=(1—2 cof 2a)[ —8 sirf 2a co 2a(1—E)%+ 2 sirf 2a cog 2a]+4 coé 2a(1—E)?+sir? 2a(2—sirf 2a)(1— 2E)?
+sir? 2a cog 2a(1—2E)—sirf 2a cos 2a, (B79)

Ce=(1—2 cot 2a)[sir? 2a cod 2a—4 cod 2a(1—E)?—sir? 2a(1—2E)?] +sin® 2a(1—2E)2. (B80)
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In summary, the possibility75) requires that one of the Then substituting Eqs(B87)—(B90), (B93), and (B94) in
following three sets of equations be satisfiGd:Eqgs.(B47), Egs. (8)—(11), one again obtains Eq$B83)—(B86), and
(B68), and(B74); (ii) Egs.(B45), (B68), and(B74); (iii) Eqs.  (B10). Thus possibility(77) also gives the same result as
(B45) and (B74). But none of these alternative@), (i), or  possibility (73). Note, however, that the probe parameters
(iii) can be satisfied. It can be shown numerically that Eqsand A are restricted by EqB94). This is addressed in Sec.
(B47), (B68), and(B74) cannot be simultaneously satisfied. IV.

Evidently, it can also be shown numerically that E(45) Next, consider possibility78),
and(B74) cannot be simultaneously satisfié@ihis has been
verified explicitly for a= /9, #/8, and=/5.) Thus, possibil- cosh=0, (B9Y)
ity (75) apparently does not produce a solution.
Next, consider possibility76), sin20=0, (B96)
cosh =0. (B8Y) cos 20=e,, (B97)
Substituting Eq(B81) in Eqg. (66), one has F,=0. (B98)
sin2u=1-2E cs¢ 2a. (B82) Substituting Eq(B95) in Eq. (66), one gets
Next, substituting Eqs(B81) and (B82) in Egs. (8)—(11), sin2u=1—2E cs@ 2a (B99)
one obtains # '
a=1-2Ecsé2a, (B83) Sub§t|tut|ng Eqs(A5) and (B95—(B97) in Eq. (B98), one
obtains
b=1-2E cs¢ 2a, (B84) (1—e,)[sin 24+ cof 2a(2—tar? 2a)]=0. (B100)
c=0, (B89 Therefore, one requires
d=1. (B86) e,=1, (B102)

Then substituting EqgB83)—(B86) in Eq. (62), one again ¢ aiternatively,

obtains Eq(B10). Therefore, possibility76), gives the same

result as possibilitf73). Note, however, that the probe pa- sin2¢=1-2 cof 2a. (B102
rameteryu is restricted by Eq(B82), and the probe parameter

¢ is unrestricted, while for possibilit§73), ¢ is restricted by  Substituting Eqs(B95), (B96), and (B99) in Egs. (8)—(11),
Eq. (B5), andu is unrestricted. This is addressed in Sec. IV.one again obtains Eqe883)—(B86) and(B10). The differing

Next, consider possibility77), values of the probe parameters are addressed in Sec. IV.
) Next consider possibility79),
sin260=0, (B87)
sin260=0, (B103
cos 20=ey, (B89)
Cos 20=egy, B10
cos 2=0, (B8Y) ¢ (B104
F,=0, B10
sin2¢=e,, (B90) ! (B109
F,=0. (B91) Fs=0. (8106
Substituting Eqs(A5), and (B87)—(B90) in Eq. (B91), one Substituting Eqs(A15) and (B103) in Eq. (B106), one gets
requires cos20=1, (B107)
(1—ey[egcof 2a(2—tarf 2a)+1]=0, (B92) and therefore
and therefore

ey=1. (B93) ) _
in Eqg. (B104). Next, using Eqs(A5) and (B107), one sees

Next, substituting Eqs(B88), (B93), and(B90) in Eq. (66), that Eq.(B10Y) is satisfied. Also, substituting E¢B107) in
one gets Eq. (66), one obtains

sif 2a(1—e,cos \)—2E ___ sif2a(1—cos \ sin2¢)—2E
S 2a SN (B94) sin2p= Si? 2a SN

sin2u= (B109
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Then substituting EqgB103), (B107), and (B109) in Egs.
(8)—(11), one again obtains Eq$B83)—(B86) and (B10).
The differing values of the probe parameters are addressed
Sec. IV.

Next consider possibility80),

CosA =0, (B110
F,=0. (B111)

Substituting Eq(B110) in Eq. (66), one gets
sin2u=1-2E cs@ 2a. (B112

Next, substituting Eqs(A5) and (B110 in Eq. (B111), one
obtains

(1—cos 2)[sin2¢+2 cot2a—1]=0. (B113
Therefore one requires
cos20=1 (B114)
or else
sin2¢=1-2 cot 2a. (B115

Using Egs.(B110), (B112), and (B114) or (B115 in Egs.
(8)—(11), one again obtains Eq$B83)—(B86) and (B10).
The differing values of the probe parameters are addressed
Sec. IV.

Next, consider possibility81),
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Then substituting EqgA10) and (B117) in Eq. (B119), one
gets
in
1
cof 2a= 5(1—e¢), (B120)
which cannot be satisfied for arbitrany Therefore possibil-

ity (81) cannot represent a solution.
Next, consider possibility82),

cos\=0, (B121)
F,=0, (B122
F,=0. (B123

Substituting Eqs(A10) and (B121) in Eq. (B123), one ob-
tains

sin2¢=1—2 cof 2a. (B124)

Next, substituting Eqs(A5), (B121), and (B124) in Eq.
(B122), one gets a trivial identity for any co®2Then sub-
stituting Eq.(B121) in Eq. (66), one obtains

sin2u=1-2E cs¢ 2a, (B125

and, using Eq9B121), (B125), (8)—(11), and(62), then Eqs.
{B83)—(B86) and(B10) again follow. The differing values of
the probe parameters are addressed in Sec. IV.

Next consider possibility83),

cos 26=0, (B116) F,=0, (B126)
sin2¢=e,, (B117) F,=0, (B127)
F.1=0, (B119 F3=0. (B128)
F,=0. (B119 From Egs.(A5) and (B126), it follows that
|
Sirf 2acos'\ 4(13(2)_23223?? 2
—2{(2—tarf 2a)[ cot’ 2a— cos 20(sin 2¢+ cof 2a) ]+ sin 24[ 1+ (1 —tarf 2a)cos 20]}
T sif 26 cof 2¢ ' (B129
From Egs.(A10) and(B127), one gets
Sin’ 2a co$ A 4(13(2)_2322:22 2a|” - 2(si2025¢£ jo?gia_ s (B130
From Egs.(A15) and(B128), one gets
Sif 2a cos'\ 4(13(;_2}:225")12 2a|” szu(ni ;; :;226; : (B131)
Next, equating Eq9B129 and(B131) leads to
cos20=1, (B132

032303-15
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and Egs(B129 and(B131) are both identically satisfied. But then substituting B8{L32), (67), and(10) in Eq. (B130), one
obtains

2(1-E))(1—2 cof 2a—sin 2¢)

Cogk:sinz2a00522¢[1+(1—2 cs@2a)E]" (B133

Also, substituting Eqs(B132) in Eqg. (66) gives
sin2u sif A\=1—2E cs& 2a—cos \ sin 2¢. (B134)
Furthermore, substituting EqeB8132) and(B134) in Egs.(8)—(11) yields

a=1-2Ecs@2a, (B135
b=1-2E cs¢ 2a, (B136)
c=0, (B137)
d=1. (B138

Then substituting Eq$B135—(B138) in Eq. (62), one again obtains EgB10). The differing values of the probe parameters
are addressed in Sec. IV.
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