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Security proof of quantum cryptography based entirely on entanglement purification

Hans Aschauer* and Hans J. Briegel†
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We give a proof that entanglement purification, even with noisy apparatus, is sufficient to disentangle an
eavesdropper~Eve! from the communication channel. In the security regime, the purification process factorizes
the overall initial state into a tensor-product state of Alice and Bob, on one side, and Eve on the other side, thus
establishing a completely private, albeit noisy, quantum communication channel between Alice and Bob. The
security regime is found to coincide for all practical purposes with the purification regime of a two-way
recurrence protocol. This makes two-way entanglement purification protocols, which constitute an important
element in the quantum repeater, an efficient tool for secure long-distance quantum cryptography.

DOI: 10.1103/PhysRevA.66.032302 PACS number~s!: 03.67.Dd, 03.67.Hk, 03.65.Ta
to
is
h

he
u
t

ce
tu
ith

th
o
um
a
a

pu
b

el
h

he

-
ri

wh
io
a

ve

ke
ob
h
n

a,
e

be
ll

in

ols

ur-
n
ky-

key
phy
nst
the
lity,
n in

sy
no
lem
m
to

This
by

n-
or
dis-

-
by

e-
uss
n-

the
ur

atus
he

. V.
e

I. INTRODUCTION

A central problem of quantum communication is how
faithfully transmit unknown quantum states through a no
quantum channel@1#. While information is sent through suc
a channel~for example, an optical fiber!, the carriers of the
information interact with the channel, which gives rise to t
phenomenon of decoherence and absorption; an initially p
quantum state becomes a mixed state when it leaves
channel. For quantum communication purposes, it is ne
sary that the transmitted qubits retain their genuine quan
properties, for example, in form of an entanglement w
qubits on the other side of the channel.

There are two well-established methods to deal with
problem of noisy channels. The theory of quantum error c
rection @2,3# has mainly been developed to make quant
computation possible despite the effects of decoherence
imperfect apparatus. Since data transmission—like d
storage—can be regarded as a special case of a com
tional process, clearly quantum error correction can also
used for quantum communication through noisy chann
An alternative approach, which has been developed roug
in parallel with the theory of quantum error correction, is t
purification of mixed entangled states@4–6#.

In quantum cryptography@7,8#, noise in the communica
tion channel plays a crucial role. In the worst-case scena
all noise in the channel is attributed to an eavesdropper,
manipulates the qubits in order to gain as much informat
on their state as possible, while introducing only a moder
level of noise@9–12#.

To deal with this situation, two different techniques ha
been developed.Classical privacy amplificationallows the
eavesdropper to have partial knowledge about the raw
built up between the communicating parties Alice and B
From the raw key, a shorter key is ‘‘distilled’’ about whic
Eve has vanishing~i.e., exponentially small in some chose
security parameter! knowledge. Despite the simple ide
proofs taking into account all eavesdropping attacks allow
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by the laws of quantum mechanics have been shown to
technically involved@13–15#. Recently, Shor and Preski
@16# have given a simpler physical proof relating the ideas
Refs. @13,14# to quantum error correcting codes@2# and,
equivalently, to one-way entanglement purification protoc
@5#. Quantum privacy amplification~QPA! @6#, on the other
hand, employs a two-way entanglement purification rec
rence protocol@5# that eliminates any entanglement with a
eavesdropper by creating a few perfect Einstein-Podols
Rosen~EPR! pairs out of many imperfect~or impure! EPR
pairs. The perfect EPR pairs can then be used for secure
distribution in entanglement-based quantum cryptogra
@6,8,17#. In principle, this method guarantees security agai
any eavesdropping attack. However, the problem is that
QPA protocol assumes ideal quantum operations. In rea
these operations are themselves subject to noise. As show
Refs.@18–20#, there is an upper boundFmax for the achiev-
able fidelity of EPR pairs, which can be distilled using noi
apparatus.A priori, there is no way to be sure that there is
residual entanglement with an eavesdropper. This prob
could be solved if Alice and Bob had fault tolerant quantu
computers at their disposal, which could then be used
reduce the noise of the apparatus to any desired level.
was an essential assumption in the security proof given
Lo and Chau@21#.

In this paper, we show that the standard two-way e
tanglement purification protocol alone, with some min
modifications to accomodate certain security aspects as
cussed below, can be used to efficiently establish aperfectly
private quantum channel, even when both the physical chan
nel connecting the parties and the local apparatus used
Alice and Bob are noisy@22#.

In Sec. II we will briefly review the concepts of entangl
ment purification and of the quantum repeater, and disc
why it is interesting to combine the security features of e
tanglement purification with the long-distance feature of
quantum repeater. Section III will give the main result of o
work: we prove that it is possible tofactor outan eavesdrop-
per using entanglement purification, even when the appar
used by Alice and Bob is noisy. One important detail in t
proof is theflag update function, which we will derive in
Sec. IV. We conclude the paper with a discussion in Sec
©2002 The American Physical Society02-1
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II. ENTANGLEMENT PURIFICATION AND THE
QUANTUM REPEATER

A. Entanglement purification

As two-way entanglement purification protocols~2-EPP!
play an important role in this paper, we will briefly revie
one example of a a recurrence protocol that was described
Ref. @6#, and called QPA by the authors. It is important
note that we distinguish the entanglement purificationproto-
col from the distillationprocess. The first consists of proba
bilistic local operations~unitary rotations and measure
ments!, where two pairs of qubits are combined, and eith
one or zero pairs are kept, depending on the measurem
outcomes. The latter, on the other hand, is the proced
where the purification protocol is applied to large ensem
of pairs recursively~see Fig. 1!.

In the quantum privacy amplification 2-EPP, two pairs
qubits, shared by Alice and Bob, are considered to be in
staterA1B1

^ rA2B2
. Without loss of generality~see later!, we

may assume that the state of the pairs is of the Bell-diago
form,

rAB5AuF1&^F1u1BuC2&^C2u1CuC1&^C1u

1DuF2&^F2u. ~1!

Following Ref.@6#, the protocol consists of three steps.
~1! Alice applies to her qubits ap/2 rotation,Ux , Bob a

2p/2 rotation about thex axis,Ux
21 .

~2! Alice and Bob perform the bilateral controlled-NOT

~BCNOT! operation

BCNOTA1B1

A2B25CNOTA1

A2^ CNOTB1

B2

on the four qubits.
~3! Alice and Bob measure both qubits of the target p

A2B2 of the BCNOT operation in thez direction. If the mea-
surement results coincide, the source pairA1B1 is kept, oth-
erwise it is discarded. The target pair is always discarded
it is projected onto a product state by the bilateral meas
ment.

By a straigtforward calculation, one gets the result that
state of the remaining pair is still a Bell-diagonal state, w
the diagonal coefficients@6#

A85
A21B2

N
, B85

2CD

N
,

FIG. 1. The entanglement purification protocol~a! and the en-
tanglement distillation process~b!.
~2!
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and the normalization coefficientN5(A1B)21(C1D)2,
which is the probability that Alice’s and Bob’s measureme
results in step 3 coincide. Note that, up to the normalizati
these recurrence relations are a quadratic form in the co
cientsA, B, C, andD. These relations allow for the following
interpretation@which can be used to obtain the relations~2!
in the first place#. As all pairs are in the Bell-diagonal stat
~1!, one can interpretA, B, C, andD as the relative frequen
cies with which the statesuF1&,uC2&,uC1&, and uF2&, re-
spectively, appear in the ensemble. By looking at Eq.~2! one
finds that the result of combining twouF1& or two uC2&
pairs is auF1& pair, combining auC1& and auF2& ~or vice
versa! yields auC2& pair, and so on. Combinations ofA, B,
C, andD that do not occur in Eq.~2!, namely,AC, AD, BC,
andBD, are ‘‘filtered out,’’ i.e., they give different measure
ment results for the bilateral measurement in step 3 of
protocol. We will use this way of calculating recurrence r
lations for more complicated situations later.

Numerical calculations@6# and, later, an analytical inves
tigation @23# have shown that for all initial states~1! with
A.1/2, the recurrence relations~2! approach the fixpointA
51,B5C5D50; this means that given a sufficiently larg
number of initial pairs, Alice and Bob can distill asymptot
cally pure EPR pairs.

B. Entanglement purification with noisy apparatus
and the quantum repeater

Under realistic conditions, the local operations~quantum
gates, measurements! themselves, which constitute a purifi
cation protocol, will never be perfect and thus introduce
certain amount of noise to the ensemble when they are
plied by Alice and Bob. The following questions then aris
How does a protocol perform under the influence of lo
noise? How robust is it and what is the threshold for pur
cation? These questions have been dealt with in Refs.@18–
20#. The main results are, in brief, that for a finite level
local noise, there is a maximum achievable fidelityFmax
,1 beyond which purification is not possible. Similarly, th
minimum required fidelityFmin.1/2 for purification has in-
creased with respect to the ideal protocol@4#. The purifica-
tion regime @Fmin ,Fmax#@1/2,1# has thus become smalle
compared to the noiseless case. With an increasing n
level, the size of the purification regime shrinks until, at t
purification threshold,Fmin andFmax coincide and the proto-
col breaks down. At this point, the noise of the local ope
tions corresponds to a loss of information that is larger th
the gain of information by a distillation step in the ideal cas

For a moderate noise level~of the order of a few percen
for the recurrence protocols of Refs.@4,6#!, entanglement
purification remains an efficient tool for establishing hig
fidelity ~although not perfect! EPR pairs, and thus for quan
tum communication over distances of the order of the coh
ence length of a noisy channel. The restriction to t
coherence length is due to the fact that the fidelity of
initial ensemble needs to be above the valueFmin(.1/2).
2-2
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SECURITY PROOF OF QUANTUM CRYPTOGRAPHY . . . PHYSICAL REVIEW A66, 032302 ~2002!
Long-distance quantum communicationdescribes a situa
tion where the length of the channel connecting the partie
typically much longer than its coherence length and abso
tion length. As the depolarization errors and the absorp
losses scale exponentially with the length of the channel,
cannot send qubits directly through the channel.

To solve this problem, there are two solutions known. T
first is to treat quantum communication~QC! as a~very sim-
plistic! special case of quantum computation. The meth
of fault tolerant quantum computation@24,25# and quantum
error correction could then be used for the communicat
task. An explicit scheme for data transmission and stor
has been discussed by Knill and Laflamme@26#, using the
method of concatenated quantum coding. While this id
shows that it isin principle possible to get polynomial o
even polylogarithmic@27–29# scaling in quantum communi
cation, it has an important drawback: long-distance quan
communication using this idea is as difficult as fault tolera
quantum computation, despite the fact thatshortdistance QC
is ~from a technological point of view! already ready for
practical use.

The other solution for the long-distance problem is t
entanglement based quantum repeater@18,19# with two-way
classical communication. It employs both entanglement
rification @4–6# and entanglement swapping@30–32# in a
metaprotocol, the nested two-way entanglement purifica
protocol~NEPP!. The apparatus used for quantum operatio
in the NEPP tolerates noise on the~sub! percent level. As this
tolerance is two orders of magnitude less restrictive than
fault tolerant quantum computation, it seems to make
quantum repeater a promising concept also for practical
alization in the future. Please note that the quantum repe
has been designed not only to solve the problem ofdecoher-
ence, but also ofabsorption. For the latter, the possiblity o
quantum storage is required at the repeater stations. An
plicit implementation that takes into account absorption
given by the photonic channel of Refs.@33,34# ~see also Ref.
@35#!.

C. The quantum repeater and quantum privacy amplification

The aim of this paper, as mentioned in the Introduction
to show that entanglement distillation using realistic appa
tus is sufficient to createprivate entanglement@36# between
Alice and Bob, i.e., pairs of entangled qubits of which Eve
guaranteed to be disentangled even though they are not
EPR pairs. If these pairs are used to teleport quantum in
mation from Alice to Bob, they can be regarded as anoisy
but private quantum channel.

This will also prove the security of quantum communic
tion using the entanglement-based quantum repeater, sin
is only necessary to consider the outermost entanglem
purification step in the NEPP, which is performed by Ali
and Bob exclusively, i.e., without the support of the parties
the intermediate repeater stations. In particular, it is not n
essary to analyze the effect of noisy Bell measurements
the security. In the worst-case scenario, Alice and Bob
sume that all repeater stations are completely under E
control, anyway. For this reason, Alice and Bob are not
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The role of the quantum repeater in thesecurityproof is
thus the following. It tells us that it is possible to distribu
EPR pairs of high fidelity over arbitrary distances~with poly-
nomial overhead!, given that the noise level of the apparat
~or operations! used in the entanglement purification is b
low a certain~subpercent! level. The noise in the apparatu
will reflect itself in the fact that the final distributed pair
between Alice and Bob are also imperfect~i.e., not pure Bell
states!, and so the question arises whether these imper
pairs can be used for, e.g.,securekey distribution. The an-
swer is yes. Since the security regime practically coincid
with the purification regime~see Sec. III D!, quantum com-
munication is guaranteed to be secure whenever the n
level of the local operations is in the operation regime of
quantum repeater.

III. FACTORIZATION OF EVE

In this section we will show that 2-EPP with noisy app
ratus is sufficient to factor out Eve in the Hilbert spa
of Alice, Bob, their laboratories, and Eve. For the proo
we will first introduce the concept of the lab demon as
simple model of noise. Then we will consider the spec
case of binary pairs, where we have obtained analytical
sults. Using the same techniques, we generalize the resu
the case of Bell-diagonal ensembles. To conclude the pr
we show how the most general case of ensembles, desc
by an arbitray entangled state of all the qubits on Alice’s a
Bob’s side, can be reduced to the case of Bell-diagonal
sembles.

A. The effect of noise

In this section we will answer the following question
What is the effect of an error, introduced by some no
operation at a given point of the distillation process? W
restrict our attention to the following type of noise.

~1! It acts locally, i.e., the noise does not introduce cor
lations between remote quantum systems.

~2! It may introduce correlations between quantum s
tems on which a joint unitary operation is performed, e.g
controlled-NOT operation may be accompanied by correlat
two-qubit noise.

~3! It is memoryless, i.e., on a time scale imposed by
sequence of steps in a given protocol, there are no corr
tions between the ‘‘errors’’ that occur at different times.

The action of noisy apparatus on a quantum system
staterPB(H) can be formally described by some trace co
serving, completely positive map. Any such map can be w
ten in the operator-sum representation@37,1#,

r→(
i

AirAi
† , ~3!
2-3
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HANS ASCHAUER AND HANS J. BRIEGEL PHYSICAL REVIEW A66, 032302 ~2002!
with linear operatorsAi , that fulfill the normalization condi-
tion ( iAA†51. The operatorsAi are the so-calledKraus
operators@37#.

As we have seen above, in the purification protocol
controlled-NOT operation, which acts on two qubitsa1 and
a2, plays an important role. For that reason, it is necessar
consider noise that acts on a two-qubit Hilbert spaceH
5Ca1

2
^ Ca2

2 . Equation ~3! describes the most general no

selective operation that can, in principle, be implement
For technical reasons, however, we restrict our attention
the case that the Kraus operators are proportional to prod
of Pauli matrices. The reason for this choice is that Pa
operators map Bell states onto Bell states, which will all
us to introduce the very useful concept oferror flags later.

In the case of entanglement purification, the qubitsa1 and
a2 belong to Alice. On the other hand, we can only descr
the state of the pairs if we take Bob’s degrees of freedom
account. For that reason, we denote these degrees of free
by an ellipsis (•••). Thus, for noise in Alice’s apparatus, E
~3! can then be written as

ra1a2•••
→ (

m,n50

3

f mnsm
(a1)

sn
(a2)

ra1a2•••
sm

(a1)
sn

(a2) , ~4!

with the normalization condition(m,n50
3 f mn51. s05 id de-

notes the identity, ands1,s2, and s3 are the usual Pauli–
operators. A similar expresion exist for noise in Bob’s lab
ratory. Note that Eq.~4! includes, for an appropriate choic
of the coefficientsf mn , the one- and two-qubit depolarizin
channel and combinations thereof, as studied in R
@18,19#; but it is more general. Below, we will refer to thes
special Kraus operators aserror operators.

The proof can be extended to more general noise mo
if a slightly modified protocol is used, where the twirl oper
tion of step 1 is repeated after every distillation round@38#.
The concatenated operation, which consists of a gen
noisy operation followed by thisregularizationoperation, is
Bell diagonal, i.e., it maps Bell-diagonal states onto Be
diagonal states, but since it mapsall states to a Bell-diagona
state, it clearly cannot be written in the form~4!. However,
for the purpose of the proof, it is in fact only necessary t
the concatenated map restricted to the space of all B
diagonal ensembles can be written in the form~4!; we call
such a map arestricted Bell-diagonal map. Clearly, not all
restricted Bell-diagonal maps are of the form~4!, which can
be seen by considering a map that maps any Bell-diag
state to a pure Bell state. Such a map could, however, no
implemented locally. Thus the question remains whethe
restricted Bell-diagonal map that can be implemented loc
can be written in the form~4!. Though we are not aware of
formal proof of such a theorem, we conjecture that it ho
true: the reduced density operator of each qubit must rem
in the maximally mixed state, which is indeed guaranteed
a mixture of unitary rotations. We also have numerical e
dence that supports this conjecture. Note that in the cas
such an active regularization procedure, it is important t
the Pauli rotations in step 1 can be performend well eno
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to keep the evolution Bell diagonal. This is, however, no
problem, since Alice and Bob are able to propagate the P
rotations through the unitary operations of the EPP, wh
allows them to perform the rotations just before a measu
ment, or, equivalently, to rotate the measurement basis.
is similar to the concept of error correctors~where the error
consists inomittinga required Pauli-operation!, as described
in Sec. IV A, and to the by-product matrix formalism deve
oped in Ref.@39#.

The coefficientsf mn in Eq. ~4! can be interpreted as th
joint probability that the Pauli rotationssm andsn occur on
qubitsa1 anda2, respectively. For pedagogical purposes
employ the following interpretation of Eq.~4!. Imagine that
there is a~ficticious! little demon in Alice’s laboratory—the
‘‘lab demon’’—which applies in each step of the distillatio
process randomly, according to the probability distributi
f mn , the Pauli rotationsm and sn to the qubitsa1 and a2,
respectively. The lab demon summarizes all relevant asp
of the lab degrees of freedom involved in the noise proce

Noise in Bob’s laboratory, can, as long as we restrict o
selves to Bell-diagonal ensembles, be attributed to noise
troduced by Alice’s lab demon, without loss of generalit
this is, however, not a crucial restriction, as we will show
Sec. III E. It is also possible to think of a second lab dem
in Bob’s lab who acts similarly to Alice’s lab demon. Th
would not affect the arguments employed in this paper.

The lab demon does not only apply rotations randomly,
also maintains a list in which he keeps track of which ro
tion he has applied to which qubit pair in which step of t
distillation process. What we will show in the following se
tion is that, from the mere content of this list, the lab dem
will be able to extract—in the asymptotic limit—full infor
mation about the state of each residual pair of the ensem
This will then imply that, given the lab demons knowledg
the state of the distilled ensemble is a tensor product of p
Bell states. Furthermore, Eve cannot have information on
specific sequence of Bell pairs~beyond their relative
frequencies!—otherwise she would also be able to learn,
some extent, at which stage the lab demon has applied w
rotation.

From that it follows that Eve isfactored out, i.e., the
overall state of Alice’s, Bob’s and Eve’s particles is d
scribed a density operator of the form

rABE5S (
i , j 50

1

f ( i , j )uBi , j&AB^Bi , j u D ^ rE , ~5!

where( i , j f
( i , j )51, andBi , j describe the four Bell states a

defined in Sec. III E.
Note that the lab demon was only introduced for ped

gogical reasons. In reality, there will be other mechanisms
noise. However, all physical processes that result in the s
completely positive map~4! are equivalent, i.e., cannot b
distinguished from each other if we only know how the
map an input stater i onto an output stater f . In particular,
the processes must lead to the same level of security~regard-
less of whether or not error flags are measured or calcul
by anybody!: otherwise they would be distinguishable.
2-4
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SECURITY PROOF OF QUANTUM CRYPTOGRAPHY . . . PHYSICAL REVIEW A66, 032302 ~2002!
In order to separate conceptual considerations from
technical ones and to obtain analytical results, we will fi
concentrate on the special case of binary pairs and a sim
fied error model. After that, we generalize the results toany
initial state.

B. Binary pairs

In this section we restrict our attention to pairs in the st

rAB5AuF1&AB^F1u1BuC1&AB^C1u, ~6!

and to errors of the form

rAB
(1)

^ rAB
(2)→ (

m,nP$0,1%
f mnUm

(1)Un
(2)rAB

(1)
^ rAB

(2)Um
(1)†Un

(2)†,

~7!

with U0
( i )5 id(ai ) and U1

( i )5sx
(ai ) . Equation~7! describes a

two-bit correlated spin-flip channel. The indices 1 and 2 in-
dicate the source and target bit of the BCNOT operation, re-
spectively. It is straightforward to show that, using this er
model in the 2-EPP, binary pairs will be mapped onto bin
pairs.

At the beginning of the distillation process, Alice and Bo
share an ensemble of pairs described by Eq.~6!. Let us imag-
ine that the lab demon attaches one classical bit to each
which he will use for bookkeeping purposes. At this sta
all of these bits, which we call ‘‘error flags,’’ are set to zer
This reflects the fact that the lab demon has the samea priori
knowledge about the state of the ensemble as Alice and B

In each purification step, two of the pairs are combin
The lab demon first simulates the noise channel~7! on each
pair of pairs by the process described. Whenever he appl
sx operation to a qubit, he inverts the error flag of the c
responding pair. Alice and Bob then apply the 2-EPP to e
pair of pairs; if the measurement results in the last step of
protocol coincide, the source pair will be kept. Obvious
the error flag of that remaining pair will also depend on t
error flag of the the target pair, i.e., the error flag of t
remaining pair is a function of the error flags of both ‘‘pa
ent’’ pairs, which we call theflag update function. In the case
of binary pairs, the flag update function maps two bits~the
error flags ofboth parents! onto one bit. In total, there exis
16 different functionsf :$0,1%2→$0,1%. From these, the lab
demon chooses the logicalAND function as the flag updat
function, i.e., the error flag of the remaining pair is set to ‘‘
if and only if both parent’s error flags had the value ‘‘1.’’

After each purification step, the lab demon divides
pairs into two subensembles, according to the value of t
error flags. By a straightforward calculation, we obtain
the coefficientsAi and Bi , which completely describe th
state of the pairs in the subensemble with error flagi, the
following recurrence relations:
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A085
1

N
@ f 00~A0

212A0A1!1 f 11~B1
212B0B1!1 f s~A0B1

1A1B11A0B0!#,

A185
1

N
~ f 00A1

21 f 11B0
21 f sA1B0!,

~8!

B085
1

N
@ f 00~B0

212B0B1!1 f 11~A1
212A0A1!1 f s~B0A1

1B1A11B0A0!#,

B185
1

N
~ f 00B1

21 f 11A0
21 f sB1A0!,

with N5( f 001 f 11)@(A01A1)21(B01B1)2#12 f s(A0
1A1)(B01B1) and f s5 f 011 f 10.

For the case of uncorrelated noise,f mn5 f m f n , we obtain
the following analytical expression for the fixpoints of th
map ~8!:

A0
`5

1

2
6

Af 023/4

f 021
or A0

`5
1

2
,

~9!
A1

`50, B0
`50, B1

`512A0
` .

In the following, we will concentrate on the nontrivial fix
point defined by the plus sign in the expression forA0

` above,
which is the relevant fixpoint for our discussion. Note th
while Eq. ~9! gives a nontrivial fixpoint of Eq.~8! for f 0
>3/4, this does not imply that this fixpoint is an attractor.
order to investigate the attractor properties, we calculate
eigenvalues of the matrix of first derivatives,

MD5S ]A08

]A0

•••

]B18

]A0

A � A

]A08

]B1

•••

]B18

]B1

DU
fixpoint

. ~10!

We find that the modulus of the eigenvalues of this mat
is smaller than unity forf 0

crit50.771 844 51, f 0<1, which
means that in this interval, the fixpoint~9! is also an attractor.
This is in excellent agreement with a numerical evaluation
Eq. ~8!, where we found that 0.771 82, f 0

crit,0.771 88.
We have also evaluated Eq.~8! numerically in order to

investigate correlated noise~see Fig. 2!. Like in the case of
uncorrelated noise, we found that the coefficientsA0 andB1
reach, during the distillation process, some finite value, wh
the coefficientsA1 andB0 decrease exponentially fast, whe
ever the noise level is moderate.

In other words, both subensembles, characterized by
value of the respective error flags, approach a pure s
asymptotically. The pairs in the ensemble with error flag ‘‘
are in the stateuF1&, while those in the ensemble with erro
flag ‘‘1’’ are in the stateuC1&.
2-5



ep
er
he

a

p
d
i

th

ith

ime
irs,

dent

full
ec-

awn
to
a

x-

%

e
en
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1. A map of the fixpoints

In Fig. 3, the values ofA0
` , A1

` , B0
` , B1

` , and Fcond,̀

have been plotted as a function of the noise parameterf 0.
Most interesting in this graph is the shape of the curve r
resenting the conditional fidelity. For all noise paramet
f 0<0.75, the conditional fidelity reaches at the fixpoint t
value 0.5, while for noise parametersf 0>0.771 844 51, the
conditional fidelity reaches unity. In the intermediate regim
(0.75, f 0,0.771 844 51), the curve can be fitted by
square-root functionFcond( f 0)50.513.4Af 020.75.

The emergence of the intermediate regime of noise
rameters, where the 2-EPP is able to purify and the lab
mon does not gain full information on the state of the pairs
somewhat surprising and shows that the factorization of
eavesdropper is by no means a trivial consequence of~noisy!
EPP. From a mathematical point of view, it is consistent w
the finding after Eq.~10!.

FIG. 2. The evolution of the four parametersA0 , A1 , B0, and
B1 in the security regime. Note that bothA1 and B0 decrease ex-
ponentially fast in the number of steps. The initial fidelity was 80
and the values of the noise parameters weref 0050.8575,f 015 f 10

5 f 1150.0475.

FIG. 3. The values ofA0 , A1 , B0 , B1 , andFcond at the fixpoint
as a function of the noise parameterf 0.
03230
-
s

e

a-
e-
s
e

2. The purification curve

To understand the emergence of the intermediate reg
better, we have plotted the purification curve for binary pa
i.e., theFn

cond2Fn11
cond diagram. A problem with this diagram

is that the state of the pairs is specified by three indepen
parameters (A0 ,A1 ,B0 ,B1 minus normalization!, so that
such plots can only show a specific section through the
parameter space. Below we explain in detail how these s
tions have been constructed. Figure 4 shows an overdr
illustration of what we found: for noise parameters close
the purification threshold, the purification curves have
point of inflection. If the noise level increases~i.e., f 0 de-
creases!, the curves are quasi ‘‘pulled-down.’’ Forf 0
50.771 844 51, the slope of the purification curve at the fi
point Fcond51 equals unity. If we further decreasef 0, the

,

FIG. 4. Illustration of the purification curve for various nois
levels f 0. In order to make the point clear, the effect has be
strongly overdrawn. See text.

FIG. 5. Actual data from which Fig. 4 has been inferred.
2-6
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fixpoint is no longer an attractor, but due to the existence
the point of inflection, a new attractive fixpoint appears.

To obtain the one-parametric curves shown in Fig.
we used the following technique. Starting with th
point (A0 ,A1 ,B0 ,B1)n505(0.6,0,0.4,0), we calculate
(A0 ,A1 ,B0 ,B1)n51 by applying the recursion relations~8!
once. The points on the straight line in parameter space
necting these two points have then been used as input va
for the map given by thenth power of Eq.~8!. For the plot,
the resulting curve segments have been concatenated.
procedure has been repeated for all noise parametersf 0 that
are specified in Fig. 5. Note that at the critical valuef 0

crit

50.771 844 51, the number of iterations required to re
any e environment of the fixpointdiverges. This fact will
later be discussed in a more general case, see Fig. 9.

To conclude this section, we summarize. For all valu
0.771 844 51[ f 0

crit< f 0<1 the 2-EPP purifies and at th
same time any eavesdropper is factored out. In a small in
val, 0.75, f 0, f 0

crit[0.771 844 51, just above the thresho
of the purification protocol, the conditional fidelity does n
reach unity, while the protocol is in the purification regim
Even though this interval is small and of little practical re
evance~for these values off 0 we are already out of the
repeater regime@18# and purification is very inefficient!, its
existence shows that the process of factorization is not tr
ally connected to the process of purification.

C. Bell-diagonal initial states

Now we want to show that the same result is true
arbitrary Bell-diagonal states@Eq. ~1!# and for noise of the
form ~4!. The procedure is the same as in the case of bin
pairs; however, a few modifications are required.

In order to keep track of the four different error operato
sm in Eq. ~4!, the lab demon has to attach two classical b
to each pair; let us call them the phase error bit and am
tude error bit. Whenever asx(sz ,sy) error occurs, the lab
demon inverts the error amplitude bit~error phase bit, both
error bits!. To update these error flags, he uses the upd
function given in Table I. The physical reason for the cho
of the flag update function will be given in the followin
section.

Here, the lab demon divides all pairs into four sube
sembles, according to the value of their error flag. In each
the subensembles the pairs are described by a Bell diag
density operator, like in Eq.~1!, which now depends on th
subensemble. That means, in order to completely specify
state of all four subensembles, there are 16 real num
Ai j ,Bi j ,Ci j ,Di j with i , j P$0,1% required, for which one ob-
taines recurrence relations of the form

An
(00)→An11

(00) ~An
(00),An

(01) , . . . ,Dn
(11)!,

An
(01)→An11

(01) ~An
(00),An

(01) , . . . ,Dn
(11)!,

~11!

A

Dn
(11)→Dn11

(11) ~An
(00),An

(01) , . . . ,Dn
(11)!.
03230
f

,

n-
es

his

h

s

r-

.

i-

r

ry

s
li-

te
e

-
f

nal

he
rs

These generalize the recurrence relations~8! for the case of
binary pairs, and the relations~2! for the case of noiseles
apparatus.

Like the recurrence relations~2! and ~8!, respectively,
these relations are~modulo normalization! quadratic forms in
the 16 state variablesaW 5(A(00),A(00), . . . ,D (11))T, with co-
efficients that depend on the error parametersf mn only. In
other words, Eq.~11! can be written in the more compac
form

aW j85aW M jaW
T, ~12!

where, for eachj P$1, . . . ,16%, M j is a real 16316 matrix
whose coefficients are polynomials in the noise parame
f mn .

D. Numerical results

The 16 recurrence relations~11! imply a reduced set of
four recurrence relations for the quantitiesAn

5( i j An
( i j ) , . . . ,Dn5( i j Dn

( i j ) that describe the evolution o
the total ensemble~that is, theblend @40# of the four suben-
sembles! under the purification protocol. Note that these v
ues are the only ones that are known and accessible to A
and Bob, as they have no knowledge of the values of
error flags. It has been shown in Ref.@18# that under the
action of the noisy entanglement distillation process, th
quantities converge towards a fixpoint (A` ,B` ,C` ,D`),
whereA`5Fmax is the maximal attainable fidelity@19#.

Figure 6 shows for typical initial conditions the evolutio
of the 16 coefficientsAn

(00)
•••Dn

(11) . They are organized in a
434 matrix, where one direction represents the Bell state
the pair, and the other indicates the value of the error fl
The figure shows the state~a! at the beginning of the en
tanglement purification procedure,~b! after few purification
steps, and~c! at the fixpoint. As one can see, initially all erro
flags are set to zero and the pairs are in a Werner state
a fidelity of 70%. After a few steps, the population of th
diagonal elements starts to grow; however, none of the
ments vanishes. At the fixpoint, all off-diagonal elemen
vanish, which means that there arestrict correlations be-
tween the states of the pairs and their error flags.

In order to determine how fast the state converges,
investigate two important quantities: the first is the fidel
Fn[An , and the second is theconditional fidelity Fn

cond

[An
(00)1Bn

(11)1Cn
(01)1Dn

(10) . Note that the first quantity is

TABLE I. The value~phase error, amplitude error! of the up-
dated error flag of a pair that is kept after a 2-EPP step, given
function of the error flags ofP1 and P2 ~left to right and top to
bottom, respectively!.

~00! ~01! ~10! ~11!

~00! ~00! ~00! ~00! ~10!

~01! ~00! ~01! ~11! ~00!

~10! ~00! ~11! ~01! ~00!

~11! ~10! ~00! ~00! ~00!
2-7
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FIG. 6. Typical evolution of the extended state under the purification protocol for the noise parametersf 0050.839 81,f 0 j5 f i0

50.021 131, andf i j 50.003 712 fori , j P$1,2,3%. This corresponds to a combination of one- and two-qubit white noise, as studied in
@18,19#, with noise parametersp150.92 andp250.9466, considering noise in Alice’s lab only, orp150.9592 andp250.973, considering
noise in Alice’s and Bob’s laboratory. We have chosen these values for didactical reasons, in order to make the effect more visib
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the sum over the fouruF1& components in Fig. 6, while the
latter is the sum over the four diagonal elements. The co
tional fidelity is the fidelity that Alice and Bob would assig
to the pairs if they knew the values of the error flags, i.e

Fn
cond5(

i , j
^F1us i , jr i , js i , j uF1&, ~13!

wherer i , j is the non-normalized state of the subensemble
the pairs with the error flag (i , j ). For convenience, we us
the phase- and spin-flip bitsi and j as indices for the Paul
matrices, i.e.,s005 id,s015sx ,s115sy ,s105sz . We will
utilize the advantages of this notation in Sec. IV.

The results that we obtain are similar to those for
binary pairs. We can again distinguish three regimes of no
parametersf mn . In the high-noise regime~i.e., small values
of f 00!, the noise level is above the threshold of the 2-E
and both the fidelityF and the conditional fidelityFcond con-
verges to the value 0.25. In the low-noise regime~i.e., large
values of f 00), F converges to the maximum fidelityFmax
03230
i-

f

e
e

P

and Fcond converges to unity~see Fig. 7!. This regime is the
security regime, where we know that secure quantum com
munication is possible. Like for binary pairs, there exists a
an intermediate regime, where the 2-EPP purifies butFcond

does not converge to unity. For an illustration, see Fig.
Note that the size of the intermediate regime is very sm
compared to the security regime. Whether or not sec
quantum communication is possible in this regime is u
known. However, the answer to this question is irrelevant
all practical purposes, because in the intermediate regime
distillation process converges very slowly, as shown in F
9. In fact, the divergent behavior of the process near
critical points has features remnant of a phase transition
statistical mechanics.

To estimate the size of the intermediate regime and
compare it to the case of binary pairs~Fig. 3!, we consider
the case of one-qubit white noise, i.e.,f mn5 f m f n and f 1
5 f 25 f 35(12 f 0)/3. Here, this regime is known to b
bounded by

0.8983, f crit,lower, f 0, f crit,upper,0.8988.
rocess

p of the
FIG. 7. The fidelitiesF andFcond as a function of the number of steps in the security regime of the entanglement distillation p
@analytical results~lines! and Monte Carlo simulation~circles!#. The noise parameters for this plot weref 0050.912 791 20,f 0 j5 f i0

50.011 389 6, andf i j 50.002 096 8 fori , j P$1,2,3%, corresponding to white noise with noise parametersp150.96 andp250.968~see Fig.
6!. The Monte Carlo simulation was started with 100 000 00 pairs; the numbers indicate how many pairs are left after each ste
distillation process. This decreasing number is the reason for the increasing fluctuations around the analytical curves.
2-8



ll

an
re

l
en
c

ur
t
te
es

le of
or
ific
the

ll

um
of

l-
nd
n-

ti

tiv
r

r

th
e

ters
3),
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Note that the size of the intermediate regime is much sma
than in the case of binary pairs.

Regarding the efficiency of the distillation process, it is
important question how many initial pairs are needed to c
ate one pair with fidelityFcond, corresponding to thesecurity
parametere[12Fcond. Both the number of required initia
pairs ~resources! and the security parameter scale expon
tially with the number of distillation steps, so that we expe
a polynomial relation between the resources and the sec
parametere. Figure 10 confirms this relation in a log-log plo
for different noise parameters. The straight lines are fit
polynomial relations; the fit region is indicated by the lin
themselves.

FIG. 8. The size and location of the three regimes of the dis
lation process. For fixed values off 00, the remaining 15 noise
parametersf mn have been chosen at random. Plotted is the rela
frequency of finding the noise parameters in any of the three
gimes as a function off 00.

FIG. 9. The effect of one-qubit white noise on the fidelityF, the
conditional fidelityFcond, and the number of iterations required fo
the convergence up to an uncertaintye510212.
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E. Non-Bell-diagonal pairs

In the worst-case scenario, Eve generates an ensemb
N qubit pairs, which she distributes to Alice and Bob. F
that reason, Alice and Bob are not allowed to make spec
assumptions on the state of the pairs. Most generally,
state of the 2N qubits, of which Alice and Bob obtainN
qubits each, can be written in the form

rAB 5 (
m1 , . . . ,mN

m18 , . . . ,mN8

a
m1 . . . mN

m
18 . . . m

N8
uB m1

(a1b1)
•••B mN

(aNbN)
&

3^B
m

18

(a1b1)
•••B

m
N8

(aNbN)
u. ~14!

Here, uBm j

(ajbj )&, m j500,01,10,11 denote the four Be

states associated with the two particlesaj and bj and
j 51, . . . ,N. Specifically, uB00&[uF1&5(u00&
1u11&)/A2, uB 01&[uC1&5(u01&1u01&)/A2, uB10&[uF2&
5(u00&2u11&)/A2, uB 11&[uC2&5(u01&2u10&)/A2. In
general, Eq.~14! will be an entangled state of 2N particles,
which might moreover be entangled with additional quant
systems in Eve’s hands; this allows for the possibility
so-called coherent attacks@41#.

Upon reception of all pairs, Alice and Bob apply the fo
lowing protocol to them. It consists of two steps, pre-1 a
pre-2 of ‘‘preprocessing,’’ which are followed by the sta
dard purification process described in Sec. II A.

Step Pre-1. On each pair of particles (aj ,bj ), they apply

randomly one of the four bilateral Pauli rotationssk
(aj )

^ sk
(bj ) , wherek50,1,2,3.

l-

e
e-

FIG. 10. NumberN of pairs needed to create one pair wi
conditional fidelityFcond. The initial state of the pairs was of th
Werner type with fidelityF0585%. One- and two-qubit white
noises~see Fig. 6! have been assumed with the noise parame
(p1 , p2) 5 (0.9333,0.9466), (0.9733,0.9786), (0.9866,0.983
and ~0.9933,0.9946! ~from top to bottom!.
2-9
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Step Pre-2. Alice and Bob randomly renumber the pair
(aj ,bj )→(ap( j ) ,bp( j )) wherep( j ), j 51, . . . ,N is a ran-
dom permutation.

Steps 1 and 2 are required in order to treat correlated p
correctly. Note that steps 1 and 2 would also be required—
‘‘preprocessing’’ steps—for the ideal distillation process@6#,
if one requires that the process converges for arbitrary st
of the form~14! to an ensemble of pure EPR states. While
Ref. @6# it is possible to check whether or not the proce
converges to the desired pure state, by measuring the fid
of some of the remaining pairs, this is not possible wh
imperfect apparatus is used. Since the maximum attain
fidelity Fmax is smaller than unity, there is no known way
exclude the possibility that the nonideal fidelity is due
correlations between the initial pairs. In both steps Alice a
Bob discard the information which of the rotations and p
mutations, respectively, were chosen by their random n
ber generator. Thus they deliberately lose some of the in
mation about the ensemble, which is still available to Eve~as
she can eavesdrop the classical information that Alice
Bob exchange to implement step 1!. After step 1, their
knowledge about the state is summarized by the density
erator

r̃AB 5 (
m1•••mN

pm1•••mN
uB m1

(a1b1)
•••B mN

(aNbN)
&

3^B m1

(a1b1)
•••B mN

(aNbN)u, ~15!

which corresponds to aclassically correlated ensembleof
pure Bell states. Since the purification protocol that they
applying in the following steps maps Bell states onto B
states, it is statistically consistent for Alice and Bob to a
sume after step 1 that they are dealing with a~numbered!
ensemble of pure Bell states, where they have only limi
knowledge about which Bell state a specific pair is in. T
fact that the pairs are correlated means that the orde
which they appear in the numbered ensemble may have s
pattern, which may have been imposed by Eve or by
channel itself. By applying step 2, Alice and Bob~i! delib-
erately ignore this pattern and~ii ! randomize the order in
which the pairs are used in the subsequent purification s
@42#. For all statistical predictions made by Alice and Bo
they may consistently describe the ensemble by the den
operator@43#

r5 AB 5S (
m

pmuBm&^Bmu D ^ N

[(rab)
^ N ~16!

in which the pm describe the probability with which eac
pair is found in the Bell stateuBm&. At this point, Alice and
Bob have to make sure thatp00[F.Fmin for some mini-
mum fidelity Fmin.1/2, which depends on the noise lev
introduced by their local apparatus. This test can be p
formed locally by statistical tests on a certain fraction of t
pairs.

As Alice and Bob now own an ensemble of Bell diagon
pairs, they may proceed as described in the preceding
II A @recursive application of the steps~1!–~3! described af-
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ter Eq. ~1!#. However, it is a reasonable question why E
cannot take advantage of the additional information that
has about the state of the pairs: as she is allowed to keep
information about the twirl operations in steps 1 and 2, fro
her point of view all the pairs remain in an highly entangl
2N-qubit state. Nevertheless, all predicions made by E
must be statistically consistent with the predictions made
Alice and Bob~or, for that matter, their lab demon!, which
means that the state calculated by Eve must be the sam
the state calculated by the lab demon, tracing out Eve’s
ditional information. As the lab demon gets a pure state
the end of the entanglement distillation process, this m
also be the result that Eve obtains using her additional in
mation, simply due to the fact that no pure state can
written as a nontrivial convex combination of other states

IV. HOW TO CALCULATE THE FLAG UPDATE
FUNCTION

In this section, we analyze how errors are propagated
the distillation process. As was mentioned earlier, the stat
a given pair that survives a given purification step in t
distillation process depends on all errors that occured
pairs in earlier steps, which belong to the ‘‘family tree’’ o
this pair. We will show that it is possible to summarize t
effect of all errors in the family tree of each pair in an err
flag, which consists of two classical bits. The values of
error flags can be calculated in a recursive scheme, and
call the recurrence relation theflag update function.

Each step of the distillation process consist of a numbe
unitary operations followed by a measurement, which
treat separately in the following two subsections.

A. Unitary transformations and errors

Consider an errorUerr ~i.e., a random unitary transforma
tion! that is introduced before a unitary transformationU is
performed on a stateuc&. Note that, without loss of genera
ity, it is always possible to split up a noisy quantum ope
tion close to a unitary operationU in two parts: first, a noisy
operation close to identity, and afterwards the noiseless
tary operationU. For that reason, it only a matter of inte
pretation whether we think of a quantum operation that
accompanied by noise, e.g., as described by a master e
tion of the Lindblad form, or of the combination of som
noise channel first and the noiseless quantum operation
terwards.

We call a transformationUcorr an error corrector, if the
equation

Uuc&5UcorrUUerruc& ~17!

holds for all statesuc&. Equation~17! is obviously solved by
Ucorr5UUerr

21U21.
We want to calculate the error corrector for the Pauli o

erators and the unitary operationU2-EPP, which consists of
the bilateralx rotations and the BC-NOT operation, as de-
scribed in Sec. II.

In what follows, it is important to note that Pauli rotation
and all the unitary operations used in the entanglement p
2-10
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fication protocol map Bell states onto Bell states; it is th
expedient to write the four Bell states as

uBi j &5
1

A2
~ u0 j &1~21! i u1 j̄ &), ~18!

using thephase bit iand theamplitude bit jwith i , j P$0,1%
@5#, which we have implicitly employed in Eq.~14!. In this
notation, we get ~ignoring global phases!: sxuBi , j&
5uBi , j % 1&, syuBi , j&5uBi % 1,j % 1&, and szuBi , j&5uBi % 1,j&,
wheres may act on either side of the pair. The% symbol
indicates addition modulo 2. Consistent with this notatio
sx is referred to as the amplitude flip operator,sz as the
phase flip operator, andsy as the phase and amplitude fl
operator.

The effect of the bilateral one-qubit rotation in the 2-EP
can be easily expressed in terms of the phase and ampl
bit,

Ux
A

^ Ux
B21uBi , j&5uBi , j % i&, ~19!

and the same holds for the BC-NOT operation,

BCNOTuBi , j&uBi 8, j 8&5uBi % i 8, j&uBi 8, j % j 8&. ~20!

The effect of the unitary part of the 2-EPP onto two pa
in the statesuBi , j& and uBi 8, j 8& can be written in the form

U2-EPPuBi , j&uBi 8, j 8&5uBi % i 8,i % j&uBi 8,i 8% j 8% i % j&, ~21!

where the first and second pair plays the role of the ‘‘sour
and the ‘‘target’’ pair. Instead of Eq.~21!, we will use an
even more economic notation of the form (i , j )[uBi , j&.
Equation~21! can then be written as

~ i , j !~ i 8, j 8! →
22EPP

~ i % i 8,i % j !~ i 8,i 8% j 8% i % j !. ~22!

It is now straightforward to include the effect of the la
demon, Eq.~4!. Applying Pauli rotationsspa and sp8a8 to
the pairs before the unitary 2-EPP step (s005 id,s01
5sx ,s115sy ,s105sz), we obtain

~ i , j !~ i 8, j 8!→
s

~ i % p, j % a!~ i 8% p8, j 8% a8!

→
22EPP

~ i % i 8% p% p8,i % j % p% a!

3~ i 8% p8,i 8% j 8% i % j % p8% a8% p% a!.

~23!

Comparing Eq.~22! and Eq. ~23!, we find that the error
corrector for the error operationsp,a^ sp8,a8 is given by

Ucorr5sp% p8,p% a^ sp8,p8% a8% p% a , ~24!

independent of the initial state of the pairs. This is the
sired result.
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B. Measurements and measurement errors

As the 2-EPP does not only consist of unitary transform
tions but also of measurements, it is an important ques
whether or not errors can be corrected after parts of the
tem have been measured, and how we can deal with m
surement errors. It is important to note that whether a pa
kept or discarded in the 2-EPP depends on the measure
outcomes. This means that, depending on the level of n
in the distillation process, different pairs may be distille
each with a different ‘‘family tree’’ of pairs. This procedur
is conceptually very different from quantum error correctio
in the following sense. In quantum error correction, it is ne
essary to correct for errors before performing a readout m
surement on a logical qubit. Here, the situation is quite d
ferent: the lab demon performs all calculations only f
bookkeeping purposes.No action is taken, and thusno error
correction is performed, neither by the lab demon, nor
Alice and Bob.

In the analysis of the noisy entanglement distillation p
cess@18,19#, not only noisy unitary operations have bee
taken into account, but also noisy measurement appara
which is assumed to yield the correct result with the pro
ability h, and the wrong result with the probalility 12h.
Surprisingly, if only the measurements are noisy~i.e., all
unitary operations are perfect!, the 2-EPP producesperfect
EPR pairs, as long as the noise is moderate (h.63.5%). The
reason for this property lies in the fact thatF51 is a fixpoint
of the 2-EPP even with noisy measurements. For a phys
understanding of this fact, it is useful to note that in t
distillation process, while the fidelity of the pairs increases
becomes more and more unlikely that a pair that should h
been discarded is kept due to a measurement error.
means that the increasingly dominant effect of measurem
errors is that pairs that should have been kept are discar
However, this does not decrease the fidelity of remain
pairs, only the efficiency of the protocols is affected.

This fact is essential for our goal to extend the concep
error correctors to the entire 2-EPP, which actually includ
measurements. As was shown in Sec. IV A, noise in the u
tary operations can be accounted for with the help of er
correctors, which can be used to keep track of errors thro
the entire distillation process; on the other hand, the m
surement in the 2-EPP may yield wrong results due to no
that occured in an earlier~unitary! operation. This has, how
ever, the same effect as a measurement error, of which
have seen that it does not jeopardize the entanglement d
lation process.

C. The reset rule

From the preceding two sections, one can identify a fi
candidate for the flag update function. The idea is the follo
ing. The error correctorUcorr calculated in Sec. IV A de-
scribes how errors on the phase bit and amplitude bit
propagated by the 2–EPP. For the lab demon, this means
instead of introducing an error operatonUerr5sp,a^ sp8,a8
beforethe unitary part of the 2-EPP, he could, with the sa
result, introduce the operationUcorr

215Ucorr5sp% p8,p% a

^ sp8,p8% a8% p% a as an error operationafterwards.
2-11
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Let us assume, motivated by the preceding section,
the measurement that follows the unitary operationU2-EPP
does not compromise the concept of error correctors~this
assumption will have to be modified later!. The lab demon
can then consider the error corrector as an recursive up
rule for errors on the phase bit and amplitude bit, i.e., for
phase and amplitude error bits that constitute the error fl
in the following way.

At the beginning of the destillation process, the lab dem
assigns two classical bits to each of the pairs, both set to
value zero~‘‘0’’ !. Whenever he applies a phase flip or a
plitude flip to a given pair, he inverts the first or the seco
bit of its error flag, respectively. For that reason, we call
two bits theerror phase bit pe and theerror amplitude bit ae.

If, for a given pair of pairs, the purification is successf
the source pair is kept. The error flag of the source pai
now calculated as a function of the previous error flag
both pairs, using the source-pair part of the error correc
(pe ,ae)(pe8 ,ae8)→(pe% pe8 ,pe% ae).

In any case, the lab demon has to discard the target-
part of the error corrector, as the target pair is measured
does no longer take part in the distillation process. T
knowledge of the error flag of a specific pair implies that t
lab demon could undo all errors introduced in the family tr
of this pair. For example, if the error flag has the value (i , j ),
the lab demon could apply the Pauli operators i , j in order to
undo the effect of all errors he introduced up to that poin

It is well known that the noiseless protocol asymptotica
produces perfect EPR pairs in the stateB0,0. It follows
that—in the asymptotic limit—a pair with the error flag (i , j )
must be in the stateBi , j , i.e., the error flags and the states
the pairs are strictly correlated. This means, if the ab
assumption was true, then the flag update function would
given by (pe ,ae)(pe8 ,ae8)→(pe% pe8 ,pe% ae). However, as
we will see, the assumption does not hold; for that reason
call this update function acandidatefor the flag update func-
tion.

The candidate has already the important property
states with perfect correlations between the error flags~i.e.,
only the coefficientsA00, B11, C01, andD10 are nonvanish-
ing! are mapped onto states with perfect correlations.

A serious deficiency of the candidate function as speci
above is that perfect correlations between flags and pairs
not built up unless they exist from the beginning. By follow
ing the distillation process in a Monte Carlo simulation th
takes the error flags into account, the reason for this is e
to identify. The population of pairs that carry an amplitu
error becomes too large. Now, the amplitude bit~not the
amplitudeerror bit! of a target pair is responsible for th
coincidence of Alice’s and Bob’s measurement results; if
amplitude bit has the value zero, the measurement res
coincide and the source pair will be kept, otherwise it will
discarded. If the target pair carries an amplitude error, a m
surement error will occur, and there are two possibiliti
either the source pair will be kept even though it should h
been discarded, orvice versa, then the source pair will be
discarded although it should have been kept. Obviously,
latter case does not destroy the convergence of the enta
ment distillation process~but it does have an impact on it
03230
at

te
e
g,

n
he
-
d
e

,
is
f
r:

air
nd
e

e

e
e

e

at

d
re

t
sy

e
lts

a-
:
e

e
le-

efficiency!; as Alice and Bob do not have any knowledge
the error flags, there is nothing that can be done in this c
and both pairs are discarded. The first case is more inte
ing. It is clear that for pairs with perfectly correlated err
flags this case will not occur~due to the perfect correlation
the amplitude error bit can only have the value one if t
amplitude bit has the value one, which is just the seco
case!. This means that we have the freedom to modify t
error flags of the remaining pairwithout losing the property
that perfectly correlated states get mapped onto perfectly
related states. It turns out thatsetting both the error ampli-
tude bit and the error phase bit of the remaining pairto zero
~reset rule! yields the desired behavior of the flag upda
function, so that perfect correlations are being built up.

The amplitude error bit of the target pair is given byp8
% a8% p% a. The flag update function can thus be written

~p,a!~p8,a8!→H ~p% p8,p% a! if p8% a8% p% a50

~0,0! otherwise
.

~25!

For convenience, the values of the flag update function
given in Table I.

Note that the reset rule is anad hocsolution: even though
the above arguments do not prove that the desired corr
tions are built up, we could calculate the recurrence relati
~11! using the flag update function~25!. Analytical consider-
ations in the case of binary pairs with one-qubit noise~see
Sec. III B! and numerical iterations of Eq.~11! for all other
cases show the desired result, i.e., that strict correlations
in fact built up.

V. DISCUSSION

We have shown in Sec. III, that the two-way entanglem
distillation process is able to disentangle any eavesdrop
from an ensemble of imperfect EPR pairs distributed
tween Alice and Bob, even in the presence of noise, i
when the pairs can only be purified up to a specific ma
mum fidelity Fmax,1. Alice and Bob may use these impe
fectly purified pairs as asecurequantum communication
channel. They are thus able to perform secure quantum c
munication, and, as a special case, secure classical com
nication~which is in this case equivalent to a key distributio
scheme!.

In order to keep the argument transparent, we have c
sidered the case where noise of the form~4! is explicitly
introduced by a fictious lab demon, who keeps track of
error operations and performs calculations. However, usin
simple indistinguishability argument~see Sec. III A!, we
could show that any apparatus with the noise characteris
~4! is equivalent to a situation where noise is introduced
the lab demon. This means that the security of the proto
does not depend on the fact whether or not anybody actu
calculates the flag update function. It is sufficient to just u
a noisy 2-EPP, in order to get a secure quantum channe

For the proof, we had to make several assumptions on
2-12
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noise that acts in Alice’s and Bob’s entanglement purificat
device. One restriction is that we only considered noise
is of the form ~4!. However, this restriction is only due t
technical reasons; we conjecture that our results are also
for most general noise models of the form~3!. More gener-
ally, a regularization procedure~cf. Sec. III A! can be used to
activelymake any noise Bell-diagonal. We have also impl
itly introduced the assumption that the eavesdropper ha
additional knowledge about the noise process, i.e., Eve o
knows the publicly known noise characteristics~4! of the
apparatus. This assumption would not be justified, for
ample, if the lab demon was bribed by Eve, or if Eve w
able to manipulate the apparatus in Alice’s and Bob’s la
ratories, for example, by shining in light from an optic
J.
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fiber. This concern is not important from a principial point
view, as the laboratories of Alice and Bob are conside
secure by assumption. On the other hand, this concern h
be taken into account in a practical implementation.

ACKNOWLEDGMENTS

We thank C. H. Bennett, A. Ekert, G. Giedke, N. Lu¨tken-
haus, J. Mu¨ller-Quade, R. Raußendorf, A. Schenzle, Ch.
mon, and H. Weinfurter for valuable discussions. This wo
has been supported by the Deutsche Forschungsgemeins
through the Schwerpunktsprogramm ‘‘Quanteninformatio
verarbeitung.’’
e
,
ols.

hat

t

d

,

er,

il-

r-
t to

ore
@1# B. Schumacher, Phys. Rev. A54, 2614~1996!.
@2# A. R. Calderbank and P. Shor, Phys. Rev. A54, 1098~1996!.
@3# A. M. Steane, Phys. Rev. Lett.77, 793 ~1996!.
@4# C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,

Smolin, and W. K. Wootters, Phys. Rev. Lett.76, 722 ~1996!.
@5# C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K

Wootters, Phys. Rev. A54, 3824~1996!.
@6# D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popes

and A. Sanpera, Phys. Rev. Lett.77, 2818~1996!.
@7# C. H. Bennett and G. Brassard, inProceedings of IEEE Inter-

national Conference on Computers, Systems and Signal
cessing, Bangalore, India~IEEE, New York, 1985!, pp. 175–
179.

@8# A. Ekert, Phys. Rev. Lett.67, 661 ~1991!.
@9# A. K. Ekert, B. Huttner, G. M. Palma, and A. Peres, Phys. R

A 50, 1047~1994!.
@10# C. A. Fuchs and A. Peres, Phys. Rev. A53, 2038~1996!.
@11# N. Lütkenhaus, Phys. Rev. A54, 97 ~1996!.
@12# C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Pere

Phys. Rev. A56, 1163~1997!.
@13# D. Mayers, inAdvances in Cryptology, Proceedings of Crypto

’96, edited by Neal Koblitz~Springer-Verlag, New York,
1996!, pp. 343–357; see also e-print quant-ph/9802025.

@14# E. Biham, M. Boyer, P. O. Boykin, T. Mor, and V. Roy
chowdhurny, inProceedings of the Thirty-Second Annual AC
Symposium on Theory of Computing~ACM Press, New York,
2000!, pp. 715–724; e-print quant-ph/9912053.

@15# H. Inamori, e-print quant-ph/0008064.
@16# P. W. Shor and J. Preskill, Phys. Rev. Lett.85, 441 ~2000!.
@17# C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. R

Lett. 68, 557 ~1992!.
@18# H.-J. Briegel, W. Du¨r, J. I. Cirac, and P. Zoller, Phys. Rev. Let

81, 5932~1998!.
@19# W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev.

59, 169 ~1999!.
@20# G. Giedke, H.-J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev

59, 2641~1999!.
@21# H.-K. Lo and H. F. Chau, Science283, 2050~1999!.
@22# While it would be interesting to extend our proof to the has

ing protocol, we note that for noisy local operations the ha
A.

u,

o-

.

.

-
-

ing protocol, which requires Alice and Bob to apply a larg
number of controlled-NOT operations in every distillation step
usually performs much worse that the recurrence protoc
The reason for this lies in the fact that the noise~i.e., informa-
tion loss! introduced with every controlled-NOT operation ac-
cumulates and rapidly shatters the potential information t
could ideally be gained from the parity measurement.

@23# C. Macchiavello, Phys. Lett. A246, 385 ~1998!.
@24# E. Knill, R. Laflamme, and W. Zurek, e-prin

quant-ph/9610011.
@25# J. Preskill, Proc. R. Soc. London, Ser. A454, 365 ~1998!.
@26# E. Knill and R. Laflamme, e-print quant-ph/9608012.
@27# A. Y. Kitaev, Russ. Math. Surveys52, 1191~1997!.
@28# E. Knill, R. Laflamme, and W. Zurek, Science279, 342~1998!.
@29# D. Aharonov and M. Ben-Or, e-print quant-ph/9611025.
@30# C. H. Bennett, G. Brassard, C. Cre´peau, R. Jozsa, A. Peres, an

W. K. Wootters, Phys. Rev. Lett.70, 1895~1993!.
@31# M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert

Phys. Rev. Lett.71, 4287~1993!.
@32# J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeiling

Phys. Rev. Lett.80, 3891~1998!.
@33# S. J. van Enk, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.78,

4293 ~1997!.
@34# S. J. van Enk, J. I. Cirac, and P. Zoller, Science279, 205

~1998!.
@35# H.-J. Briegel, W. Du¨r, J. Cirac, and P. Zoller,The Physics of

Quantum Information~Springer, New York, 2000!.
@36# We owe the termprivate entanglementto Charles Bennett.
@37# K. Kraus, Lect. Notes Phys.190 ~1983!.
@38# We are grateful to C. H. Bennett for pointing out this possib

ity.
@39# R. Raussendorf and H. J. Briegel, Phys. Rev. Lett.86, 5188

~2001!.
@40# B.-G. Englert, Z. Naturforsch., A: Phys. Sci.54, 11 ~1999!.
@41# J. I. Cirac and N. Gisin, Phys. Lett. A229, 1 ~1997!.
@42# This will prevent Eve from making use of any possibly prea

ranged order of the pairs, which Alice and Bob are mean
follow when performing the distillation process.

@43# While, strictly speaking, this equality holds only forN→`,
the subsequent arguments also hold for the exact but m
complicated form of Eq.~16! for finite N.
2-13


