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We give a proof that entanglement purification, even with noisy apparatus, is sufficient to disentangle an
eavesdroppeiEve) from the communication channel. In the security regime, the purification process factorizes
the overall initial state into a tensor-product state of Alice and Bob, on one side, and Eve on the other side, thus
establishing a completely private, albeit noisy, quantum communication channel between Alice and Bob. The
security regime is found to coincide for all practical purposes with the purification regime of a two-way
recurrence protocol. This makes two-way entanglement purification protocols, which constitute an important
element in the quantum repeater, an efficient tool for secure long-distance quantum cryptography.
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[. INTRODUCTION by the laws of quantum mechanics have been shown to be
technically involved[13—15. Recently, Shor and Preskill
A central problem of quantum communication is how to[16] have given a simpler physical proof relating the ideas in
faithfully transmit unknown quantum states through a noisyRefs. [13,14] to quantum error correcting cod¢g] and,
guantum channélL]. While information is sent through such equivalently, to one-way entanglement purification protocols
a channelfor example, an optical fibgrthe carriers of the [5]. Quantum privacy amplificatiofQPA) [6], on the other
information interact with the channel, which gives rise to thehand, employs a two-way entanglement purification recur-
phenomenon of decoherence and absorption; an initially pureence protoco[5] that eliminates any entanglement with an
guantum state becomes a mixed state when it leaves threavesdropper by creating a few perfect Einstein-Podolsky-
channel. For quantum communication purposes, it is necefRosen(EPR pairs out of many imperfedior impure EPR
sary that the transmitted qubits retain their genuine quanturpairs. The perfect EPR pairs can then be used for secure key
properties, for example, in form of an entanglement withdistribution in entanglement-based quantum cryptography
qubits on the other side of the channel. [6,8,17. In principle, this method guarantees security against
There are two well-established methods to deal with theany eavesdropping attack. However, the problem is that the
problem of noisy channels. The theory of quantum error corQPA protocol assumes ideal quantum operations. In reality,
rection [2,3] has mainly been developed to make quantunthese operations are themselves subject to noise. As shown in
computation possible despite the effects of decoherence amRefs.[18—20, there is an upper bourfel,,, for the achiev-
imperfect apparatus. Since data transmission—like datable fidelity of EPR pairs, which can be distilled using noisy
storage—can be regarded as a special case of a computpparatusA priori, there is no way to be sure that there is no
tional process, clearly quantum error correction can also beesidual entanglement with an eavesdropper. This problem
used for quantum communication through noisy channelscould be solved if Alice and Bob had fault tolerant quantum
An alternative approach, which has been developed roughlgomputers at their disposal, which could then be used to
in parallel with the theory of quantum error correction, is thereduce the noise of the apparatus to any desired level. This
purification of mixed entangled statp$—6]. was an essential assumption in the security proof given by
In quantum cryptographi7,8], noise in the communica- Lo and Chay21].
tion channel plays a crucial role. In the worst-case scenario, In this paper, we show that the standard two-way en-
all noise in the channel is attributed to an eavesdropper, whtanglement purification protocol alone, with some minor
manipulates the qubits in order to gain as much informatiormodifications to accomodate certain security aspects as dis-
on their state as possible, while introducing only a moderateussed below, can be used to efficiently establiperdectly
level of noise[9-12). private quantum channgéven when both the physical chan-
To deal with this situation, two different techniques havenel connecting the parties and the local apparatus used by
been developedClassical privacy amplificatiorallows the  Alice and Bob are noisy22].
eavesdropper to have partial knowledge about the raw key In Sec. Il we will briefly review the concepts of entangle-
built up between the communicating parties Alice and Bob.ment purification and of the quantum repeater, and discuss
From the raw key, a shorter key is “distilled” about which why it is interesting to combine the security features of en-
Eve has vanishingi.e., exponentially small in some chosen tanglement purification with the long-distance feature of the
security parametgrknowledge. Despite the simple idea, quantum repeater. Section Il will give the main result of our
proofs taking into account all eavesdropping attacks allowedvork: we prove that it is possible factor outan eavesdrop-
per using entanglement purification, even when the apparatus
used by Alice and Bob is noisy. One important detail in the
*Electronic address: Hans.Aschauer@Physik.uni-muenchen.de proof is theflag update functionwhich we will derive in
"Electronic address: Hans.Briegel@Physik.uni-muenchen.de  Sec. IV. We conclude the paper with a discussion in Sec. V.
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we ? ———— results in step 3 coincide. Note that, up to the normalization,
:: these recurrence relations are a quadratic form in the coeffi-
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cientsA, B, C, andD. These relations allow for the following
FIG. 1. The entanglement purification protoe) and the en-  in the first placé As all pairs are in the Bell-diagonal state

interpretationwhich can be used to obtain the relatiq2%

tanglement distillation procegs). (1), one can interpred, B, C, andD as the relative frequen-
cies with which the statelsb*),|W ~),|W "), and|® ), re-
[l. ENTANGLEMENT PURIFICATION AND THE spectively, appear in the ensemble. By looking at jone
QUANTUM REPEATER finds that the result of combining twgb*) or two |¥ ™)

pairs is @ ® ") pair, combining §¥*) and a|/® ") (or vice
versa yields a|¥ ~) pair, and so on. Combinations &f B,

As two-way entanglement purification protocdBEPB C, andD that do not occur in Eq2), namely,AC, AD, BC,
play an important role in this paper, we will briefly review andBD, are “filtered out,” i.e., they give different measure-
one example foa a recurrence protocol that was described inment results for the bilateral measurement in step 3 of the
Ref. [6], and called QPA by the authors. It is important to protocol. We will use this way of calculating recurrence re-
note that we distinguish the entanglement purificapesto-  lations for more complicated situations later.
col from the distillationprocess The first consists of proba- Numerical calculation$6] and, later, an analytical inves-
bilistic local operations(unitary rotations and measure- tigation [23] have shown that for all initial stated) with
ments, where two pairs of qubits are combined, and eitherA>1/2, the recurrence relatiori8) approach the fixpoin
one or zero pairs are kept, depending on the measurement] B=C=D=0; this means that given a sufficiently large
outcomes. The latter, on the other hand, is the procedurgumber of initial pairs, Alice and Bob can distill asymptoti-
where the purification protocol is applied to large ensemblesally pure EPR pairs.
of pairs recursivelysee Fig. 1

In the quantum privacy amplification 2-EPP, two pairs of
qubits, shared by Alice and Bob, are considered to be in the
statepa g, ® pa,p,- Without loss of generalitysee latex, we

may assume that the state of the pairs is of the Bell-diagon

A. Entanglement purification

B. Entanglement purification with noisy apparatus
and the quantum repeater

al Under realistic conditions, the local operatioiggiantum
gates, measurementhhemselves, which constitute a purifi-

form, . ; )
cation protocol, will never be perfect and thus introduce a
pag=Al® WD |+ B| W WV |+ C|¥ (P certain amount of noise to the ensemble when they are ap-
- - plied by Alice and Bob. The following questions then arise.
+D[® " D] (1) How does a protocol perform under the influence of local

) . noise? How robust is it and what is the threshold for purifi-
Following Ref.[6], the protocol consists of three steps. cation? These questions have been dealt with in R&&-
(1) Alice applies to her qubits a/2 rotation,U,, Bob a  5q] The main results are, in brief, that for a finite level of

; -1
— m/2 rotation about the axis, U, ~. - local noise, there is a maximum achievable fidelRy,q,
(2) Alice and Bob perform the bilateral controlle®T 1 peyond which purification is not possible. Similarly, the
(BCNOT) operation minimum required fidelityF ;> 1/2 for purification has in-

creased with respect to the ideal protof#). The purifica-
tion regime [F yin,Fmaxd[1/2,1] has thus become smaller
) compared to the noiseless case. With an increasing noise
on the four qubits. . _level, the size of the purification regime shrinks until, at the
(3) Alice and Bob measure both qubits of the target pairpyrification thresholdE , andF sy coincide and the proto-
A;B, of the BONOT operation in thez direction. If the mea- ol breaks down. At this point, the noise of the local opera-
surement results coincide, the source paiB; is kept, oth-  tions corresponds to a loss of information that is larger than
erwise it is discarded. The target pair is always discarded, age gain of information by a distillation step in the ideal case.
it is projected onto a product state by the bilateral measure- For a moderate noise levédf the order of a few percent
ment. for the recurrence protocols of Refg4,6]), entanglement
By a straigtforward calculation, one gets the result that thgyyrification remains an efficient tool for establishing high-
state of the remaining pair is still a Bell-diagonal state, withfidelity (although not perfegtEPR pairs, and thus for quan-
the diagonal coefficientss] tum communication over distances of the order of the coher-
A2 B2 2¢D ence length of a noisy channel. The restriction to the
_ B ="~ coherence length is due to the fact that the fidelity of the
N N’ initial ensemble needs to be above the vafg,(>1/2).
2
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Long-distance quantum communicatidescribes a situa- lowed to make assumptions on the method how the pairs
tion where the length of the channel connecting the parties ibave been distributed.
typically much longer than its coherence length and absorp- The role of the quantum repeater in thecurity proof is
tion length. As the depolarization errors and the absorptiothus the following. It tells us that it is possible to distribute
losses scale exponentially with the length of the channel, onEPR pairs of high fidelity over arbitrary distanqegth poly-
cannot send qubits directly through the channel. nomial overheaq given that the noise level of the apparatus

To solve this problem, there are two solutions known. The(or operations used in the entanglement purification is be-
first is to treat quantum communicatiéQC) as a(very sim-  low a certain(subpercentlevel. The noise in the apparatus
plistic) special case of quantum computation. The methodsvill reflect itself in the fact that the final distributed pairs
of fault tolerant quantum computatid@4,25 and quantum between Alice and Bob are also imperféict., not pure Bell
error correction could then be used for the communicatiorstate$, and so the question arises whether these imperfect
task. An explicit scheme for data transmission and storagpairs can be used for, e.ggecurekey distribution. The an-
has been discussed by Knill and Laflamf@6], using the swer is yes. Since the security regime practically coincides
method of concatenated quantum coding. While this ideavith the purification regimésee Sec. 11l ), quantum com-
shows that it isin principle possible to get polynomial or munication is guaranteed to be secure whenever the noise
even polylogarithmi¢27—29 scaling in quantum communi- level of the local operations is in the operation regime of the
cation, it has an important drawback: long-distance quantunquantum repeater.
communication using this idea is as difficult as fault tolerant
guantum computation, despite the fact tbladrtdistance QC
is (from a technological point of viewalready ready for
practical use.

The other solution for the long-distance problem is the In this section we will show that 2-EPP with noisy appa-
entanglement based quantum repept& 19 with two-way  ratus is sufficient to factor out Eve in the Hilbert space
classical communication. It employs both entanglement puof Alice, Bob, their laboratories, and Eve. For the proof,
rification [4—6] and entanglement swappiri§0—32 in a  we will first introduce the concept of the lab demon as a
metaprotocol, the nested two-way entanglement purificatiosimple model of noise. Then we will consider the special
protocol(NEPP. The apparatus used for quantum operationcase of binary pairs, where we have obtained analytical re-
in the NEPP tolerates noise on ttgib percent level. As this  sults. Using the same techniques, we generalize the result to
tolerance is two orders of magnitude less restrictive than fothe case of Bell-diagonal ensembles. To conclude the proof,
fault tolerant quantum computation, it seems to make th&ve show how the most general case of ensembles, described
quantum repeater a promising concept also for practical repy an arbitray entangled state of all the qubits on Alice’s and

alization in the future. Please note that the quantum repeat@fop's side, can be reduced to the case of Bell-diagonal en-
has been designed not only to solve the problememfoher-  gamples.

ence but also ofabsorption For the latter, the possiblity of
guantum storage is required at the repeater stations. An ex-

Ill. FACTORIZATION OF EVE

plicit implementation that takes into account absorption is A. The effect of noise
given by the photonic channel of Ref83,34 (see also Ref.
[35)). In this section we will answer the following question.

_ o What is the effect of an error, introduced by some noisy
C. The quantum repeater and quantum privacy amplification operation at a given point of the distillation process? We

The aim of this paper, as mentioned in the Introduction, igestrict our attention to the following type of noise.
to show that entanglement distillation using realistic appara- (1) It acts locally, i.e., the noise does not introduce corre-
tus is sufficient to creatprivate entanglemerjB6] between lations between remote quantum systems.
Alice and Bob, i.e., pairs of entangled qubits of which Eve is  (2) It may introduce correlations between quantum sys-
guaranteed to be disentangled even though they are not putegms on which a joint unitary operation is performed, e.g., a
EPR pairs. If these pairs are used to teleport quantum inforeontrolledNOT operation may be accompanied by correlated
mation from Alice to Bob, they can be regarded asaisy  two-qubit noise.
but private quantum channel (3) It is memoryless, i.e., on a time scale imposed by the
This will also prove the security of quantum communica-sequence of steps in a given protocol, there are no correla-
tion using the entanglement-based quantum repeater, sincetjéns between the “errors” that occur at different times.
is only necessary to consider the outermost entanglement The action of noisy apparatus on a quantum system in
purification step in the NEPP, which is performed by Alice statep e B(H) can be formally described by some trace con-

and_Bob excl'usively, ie., Withc_)ut the support of the_ parties atserving, completely positive map. Any such map can be writ-
the intermediate repeater stations. In particular, it is not neceop, in the operator-sum representatj6, 1]

essary to analyze the effect of noisy Bell measurements on

the security. In the worst-case scenario, Alice and Bob as-

sume that all repeater.statlons are_completely under Eve’s p_)z AiPAiTa 3)
control, anyway. For this reason, Alice and Bob are not al- i
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with linear operator4\; , that fulfill the normalization condi- to keep the evolution Bell diagonal. This is, however, not a
tion 3;AAT=1. The operatorsA; are the so-calleckraus  problem, since Alice and Bob are able to propagate the Pauli
operators[37]. rotations through the unitary operations of the EPP, which
As we have seen above, in the purification protocol theallows them to perform the rotations just before a measure-
controlledNOT operation, which acts on two qubits and  ment, or, equivalently, to rotate the measurement basis. This
a,, plays an important role. For that reason, it is necessary tts similar to the concept of error correctdrshere the error
consider noise that acts on a two-qubit Hilbert spa¢e consists inomittinga required Pauli-operatignas described
:(jgl@@gz_ Equation (3) describes the most general non- in Sec. IVA, and to the by-product matrix formalism devel-
selective operation that can, in principle, be implemented®Ped in Ref[39]. _ _
For technical reasons, however, we restrict our attention to 1 ne coefficientsf,, in Eq. (4) can be interpreted as the
the case that the Kraus operators are proportional to produci@int probability that the Pauli rotations,, and, occur on
of Pauli matrices. The reason for this choice is that Paulubitsa; anday, respectively. For pedagogical purposes we
operators map Bell states onto Bell states, which will allow€MPl0y the following interpretation of Efﬂ'A')' Imagine that
us to introduce the very useful conceptesfor flagslater. there is a(ficticious) little demon in Alice’s laboratory—the

In the case of entanglement purification, the quaitend @b demon”—which applies in each step of the distillation
a, belong to Alice. On the other hand, we can only describd’r0Cess randqmly, gccordlng to the probapll|ty distribution
the state of the pairs if we take Bob's degrees of freedom intd«»» the Pauli rotationr, and o, to the qubitsa, and ay,

account. For that reason, we denote these degrees of freeddfFPectively. The lab demon summarizes all relevant aspects
by an ellipsis ( - -). Thus, for noise in Alice’s apparatus, Eq. of the lab degrees of freedom involved in the noise process.
(3) can then be written a’ls ’ Noise in Bob’s laboratory, can, as long as we restrict our-

selves to Bell-diagonal ensembles, be attributed to noise in-
troduced by Alice’s lab demon, without loss of generality;
this is, however, not a crucial restriction, as we will show in
(al)(r(az)pa . gl (@) L@ Sec. lIE. It is also poss.ibl_e to think pf a second lab demon
w 1827 T T in Bob’s lab who acts similarly to Alice’s lab demon. This
would not affect the arguments employed in this paper.
with the normalization conditiox® ,_of,,=1. oo=id de- The lab demon does not only apply rotations randomly, he
notes the identity, andr,,a,, and o5 are the usual Pauli— @ISO maintains a list in which he keeps track of which rota-
operators. A similar expresion exist for noise in Bob's labo-tion he has applied to which qubit pair in which step of the
ratory. Note that Eq(4) includes, for an appropriate choice distillation process. What we will show in the following sec-
of the coefficientsf,,, the one- and two-qubit depolarizing tion is that, from the mere content of this list, the lab demon

channel and combinations thereof, as studied in RefdVill be able to extract—in the asymptotic limit—full infor-
[18,19; but it is more general. Below, we will refer to these mation about the state of each residual pair of the ensemble.

special Kraus operators asror operators This will then imply. that, given thel lab demons knowledge,
The proof can be extended to more general noise model&e state of the distilled ensemble is a tensor produ_ct of pure

if a slightly modified protocol is used, where the twirl opera- Bell s_t_ates. Furthermore, Eve car_mot have mfor_matlon on the

tion of step 1 is repeated after every distillation rojgg].  SPecific sequence of Bell pairsbeyond their relative

The concatenated operation, which consists of a generfieduencies—otherwise she would also be able to learn, to

noisy operation followed by thieegularizationoperation, is  SOMe extent, at which stage the lab demon has applied which

Bell diagonal, i.e., it maps Bell-diagonal states onto Bell-rotation. _ _ _

diagonal states, but since it magié states to a Bell-diagonal ~ From that it follows that Eve idactored ouf i.e., the

state, it clearly cannot be written in the fori#). However, OVverall state of Alice’s, Bob's and Eve’s particles is de-

for the purpose of the proof, it is in fact only necessary thaScribed a density operator of the form

the concatenated map restricted to the space of all Bell-

diagonal ensembles can be written in the foyr we call 1

such a map aestricted Bell-diagonal mapClearly, not all _ i

restricted Bell-diagonal maps are of the fot#), which can PABE™ iéo FOD1B, as(Bil | ©pe. ®)

be seen by considering a map that maps any Bell-diagonal N

state to a pure Bell state. Such a map could, however, not bshereEi,jf('J): 1, andB; ; describe the four Bell states as

implemented locally. Thus the question remains whether aefined in Sec. Il E.

restricted Bell-diagonal map that can be implemented locally Note that the lab demon was only introduced for peda-

can be written in the forn4). Though we are not aware of a gogical reasons. In reality, there will be other mechanisms of

formal proof of such a theorem, we conjecture that it holdsnoise. However, all physical processes that result in the same

true: the reduced density operator of each qubit must remaicompletely positive mag4) are equivalent, i.e., cannot be

in the maximally mixed state, which is indeed guaranteed bylistinguished from each other if we only know how they

a mixture of unitary rotations. We also have numerical evi-map an input statg; onto an output statps . In particular,

dence that supports this conjecture. Note that in the case difie processes must lead to the same level of sedueiyard-

such an active regularization procedure, it is important thatess of whether or not error flags are measured or calculated

the Pauli rotations in step 1 can be performend well enougly anybody: otherwise they would be distinguishable.

3
Paja, - 2 f,uvo'
wm,v=0
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In order to separate conceptual considerations from the 1
technical ones and to obtain analytical results, we will first Aézﬁ[foo(A§+ 2A0A1) +f11(Bi+2BoBy) + f(AgB;
concentrate on the special case of binary pairs and a simpli-
fied error model. After that, we generalize the resultang +A1B1+AgBo) ],
initial state.

1
Ar= (FooAT+ f1B3+ FA1Bo),
B. Binary pairs )

In this section we restrict our attention to pairs in the state ;1
P Bozﬁ[foo(5f2>+25081)+f11(A§+2A0A1)+fs(BoA1
pas=A|P ) ap(P |+ B[V ) og(V T, (6)

+B1A;+BoAo) I,

and to errors of the form ;1
Bi= (fooBi+f1:AG+fB1AY),

with N=(foot F1)[(Ag+A1)%+ (Bo+B1)?]+2f(Ag
plaopid— 2 1, UUPpHep@BUiTuR)T, +A1)(Bo+By) andfe=fo+fio.
woveldd - For the case of uncorrelated noige,=f,f,, we obtain
@ the following analytical expression for the fixpoints of the
map (8):
with U =id@®) and U{’=0* . Equation(7) describes a 1 fo_3/4
two-bit correlated spin-flip channeThe indices 1 and 2 in- Agziiﬁ or A§=§,
dicate the source and target bit of the & operation, re- 0 9)
spectively. It is straightforward to show that, using this error A*=0. B*=0 B*=1-A% (
model in the 2-EPP, binary pairs will be mapped onto binary e T 0
pairs. In the following, we will concentrate on the nontrivial fix-

At the beginning of the distillation process, Alice and Bob point defined by the plus sign in the expressionA§rabove,
share an ensemble of pairs described by(Bg.Let usimag-  which is the relevant fixpoint for our discussion. Note that,
ine that the lab demon attaches one classical bit to each paighile Eq. (9) gives a nontrivial fixpoint of Eq(8) for f,
which he will use for bookkeeping purposes. At this stage=3/4, this does not imply that this fixpoint is an attractor. In
all of these bits, which we call “error flags,” are set to zero. order to investigate the attractor properties, we calculate the
This reflects the fact that the lab demon has the sapori eigenvalues of the matrix of first derivatives,
knowledge about the state of the ensemble as Alice and Bob.

In each purification step, two of the pairs are combined. A 9B
The lab demon first simulates the noise chariiglon each ErS ErS
pair of pairs by the process described. Whenever he applies a

o, operation to a qubit, he inverts the error flag of the cor- Mo= : ) E : , ' (10
responding pair. Alice and Bob then apply the 2-EPP to each Ao 9By
pair of pairs; if the measurement results in the last step of the B4 B4 fixpoint

protocol coincide, the source pair will be kept. Obviously,

the error flag of that remaining pair will also depend on the We find that the modulus of the eigenvalues of this matrix

error flag of the the target pair, i.e., the error flag of theis smaller than unity forfS"=0.7718445% o<1, which

remaining pair is a function of the error flags of both “par- means that in this interval, the fixpoi(8) is also an attractor.

ent” pairs, which we call thélag update functionin the case  This is in excellent agreement with a numerical evaluation of

of binary pairs, the flag update function maps two liite  Eq. (8), where we found that 0.771 82 §"<0.771 88.

error flags ofboth parent$ onto one bit. In total, there exist We have also evaluated E) numerically in order to

16 different functionsf:{0,1}2—{0,1}. From these, the lab investigate correlated noigsee Fig. 2 Like in the case of

demon chooses the logicaND function as the flag update uncorrelated noise, we found that the coefficieigsand B,

function, i.e., the error flag of the remaining pair is set to “1” reach, during the distillation process, some finite value, while

if and only if both parent’s error flags had the value “1.”  the coefficients\; andB, decrease exponentially fast, when-
After each purification step, the lab demon divides allever the noise level is moderate.

pairs into two subensembles, according to the value of their In other words, both subensembles, characterized by the

error flags. By a straightforward calculation, we obtain forvalue of the respective error flags, approach a pure state

the coefficientsA; and B;, which completely describe the asymptotically. The pairs in the ensemble with error flag “0”

state of the pairs in the subensemble with error flathe  are in the stat¢d ™), while those in the ensemble with error

following recurrence relations: flag “1” are in the state V™).
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B, in the security regime. Note that bofk, and B, decrease ex- /A e }f 0>0.
ponentially fast in the number of steps. The initial fidelity was 80%, Yy —— } 0.75 0.77184451
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FIG. 4. lllustration of the purification curve for various noise
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h n Elg' 3 ltrf (\j/alues ]?ﬂot’. Al’th%’ By ' and F ; levels fy. In order to make the point clear, the effect has been
ave been plotted as a function of the noise parantgter strongly overdrawn. See text.

Most interesting in this graph is the shape of the curve rep-
resenting the conditional fidelity. For all noise parameters
fy=0.75, the conditional fidelity reaches at the fixpoint the

value 0.5, while for noise parametefg=0.771844 51, the To understand the emergence of the intermediate regime
conditional fidelity reaches unity. In the intermediate regimePetter, we have plotted the purification curve for binary pairs,

(0.75<f,<0.771844 51), the curve can be fitted by al-€- theF°"*—~F%" diagram. A problem with this diagram

square-root functiof " f ) = 0.5+ 3.4fg—0.75. is that the state of the pairs is specified by three independent
The emergence of the intermediate regime of noise paParameters Ag,A;,Bo,B, minus normalizatioh so that

rameters, where the 2-EPP is able to purify and the lab des-UCh plots can only show a specif_ic _section_ through the full
' : .Sparameter space. Below we explain in detail how these sec-

tions have been constructed. Figure 4 shows an overdrawn
eavesdropper is by no means a trivial consequenéaaisy) ﬁlustrati_op of what we found: for no_ige parameters close to

. . R . .. the purification threshold, the purification curves have a
EPP._ Frpm a mathematical point of view, it is consistent W|thpoint of inflection. If the noise level increasése., f, de-
the finding after Eq(10). creases the curves are quasi “pulled-down.” Fof
=0.77184451, the slope of the purification curve at the fix-
point F®"“=1 equals unity. If we further decreagg, the

2. The purification curve

somewhat surprising and shows that the factorization of th

1
1 I T | T
0.8 Z
b= I A
g W4
& 0.6 p /:”//
2 = 0.9 v7 :’ —
w 0.4 &4: /,"/_,/"
D 2
= L i ]
< LY
< 7 - fo=0.76
9 s - fo=0.772
0. (,'" -- Jo= 078
0.8— .~ — Fixpoints | -
0.7 Y 0.9 1 7 - ! -
fo 0.8 0.9
F'?ond
FIG. 3. The values oAy, A;, By, By, andF®"at the fixpoint
as a function of the noise paramefgr FIG. 5. Actual data from which Fig. 4 has been inferred.
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fixpoint is no longer an attractor, but due to the existence of TABLE I. The value(phase error, amplitude erjoof the up-

the point of inflection, a new attractive fixpoint appears.  dated error flag of a pair that is kept after a 2-EPP step, given as a
To obtain the one-parametric curves shown in Fig. 5/function of the error flags oP; and P, (left to right and top to

we used the following technique. Starting with the bottom, respectively

point  (Ag,A;,B,B;)""°=(0.6,0,0.4,0), we calculated

(Ag,A;,Bg,B,)"=1 by applying the recursion relation®) (00 (01) (10 1D
once. The points on the straight line in parameter space con- (00) (00) (00) (00) (10
necting these two points have then been used as input values(01) (00) 01) (11) (00)
for the map given by thath power of Eq.(8). For the plot, 10) (00) (11) 01) (00)

the resulting curve segments have been concatenated. This(ll)
procedure has been repeated for all noise paramgjetsat
are specified in Fig. 5. Note that at the critical valtf'

=0.77184451, the number of iterations required to reachrhese generalize the recurrence relatit8)sfor the case of
any e environment of the fixpointiverges This fact will  pinary pairs, and the relation®) for the case of noiseless
later be discussed in a more general case, see Fig. 9. apparatus.

To concludecriﬁhls section, we summarize. For all values [ ke the recurrence relation€2) and (8), respectively,
0.7718445&f; <fo<1 the 2-EPP purifies and at the these relations ar@nodulo normalizationquadratic forms in
same time any eavesdropper is factored out. In a small intefe 16 state variableg= (A0 A0 HAT with co-
val, 0.75<fo<fg"=0.77184451, just above the threshold efficients that depend on the error parametss only. In

reach unity, while the protocol is in the purification regime. form

Even though this interval is small and of little practical rel-
evance(for these values of, we are already out of the

(10 (00) (00) (00)

S a o7
repeater regim@l8] and purification is very inefficient its aj=aMja’, (12
existence shows that the process of factorization is not trivi- ) _ )
ally connected to the process of purification. where, foreache{1,...,1¢, M, is areal 16<16 matrix
whose coefficients are polynomials in the noise parameters
fo-
C. Bell-diagonal initial states wy

Now we want to show that the same result is true for
arbitrary Bell-diagonal statel€q. (1)] and for noise of the
form (4). The procedure is the same as in the case of binary The 16 recurrence relatior{41) imply a reduced set of
pairs; however, a few modifications are required. our recurrence relations for the quantitiesA,

In order to keep track of the four different error operators=2i;A%, ... .D,==;D{" that describe the evolution of
o, in Eq. (4), the lab demon has to attach two classical bitsthe total ensembléhat is, theblend[40] of the four suben-
to each pair; let us call them the phase error bit and amplisemblegunder the purification protocol. Note that these val-
tude error bit. Whenever a,(o,,0,) error occurs, the lab ues are the only ones that are known and accessible to Alice
demon inverts the error amplitude lirror phase bit, both and Bob, as they have no knowledge of the values of the
error hit9. To update these error flags, he uses the updaterror flags. It has been shown in R¢L8] that under the
function given in Table I. The physical reason for the choiceaction of the noisy entanglement distillation process, these
of the flag update function will be given in the following quantities converge towards a fixpoin&.(,B..,C..,D..),
section. whereA.,=F .« is the maximal attainable fidelity19].

Here, the lab demon divides all pairs into four suben- Figure 6 shows for typical initial conditions the evolution
sembles, according to the value of their error flag. In each oéf the 16 coefficient&(??. . .DY  They are organized in a
the subensembles the pairs are described by a Bell diagonéak 4 matrix, where one direction represents the Bell state of
density operator, like in Eq1), which now depends on the the pair, and the other indicates the value of the error flag.
subensemble. That means, in order to completely specify th€he figure shows the stai@) at the beginning of the en-
state of all four subensembles, there are 16 real numbetanglement purification proceduréy) after few purification
Al B, .CI, D' with i,j €{0,1} required, for which one ob- steps, andc) at the fixpoint. As one can see, initially all error

D. Numerical results

taines recurrence relations of the form flags are set to zero and the pairs are in a Werner state with
a fidelity of 70%. After a few steps, the population of the
00 00 00 01 11 .
AP AR (ALY, ALY, DY), diagonal elements starts to grow; however, none of the ele-
ments vanishes. At the fixpoint, all off-diagonal elements
Aﬁm)—»Af]Of)l(AﬁOO),AﬁOl), o ,Dﬁ,“)), vanish, which means that there astict correlations be-

(11) tween the states of th.e pairs and their error flags.
In order to determine how fast the state converges, we
investigate two important quantities: the first is the fidelity
F,=A,, and the second is theonditional fidelity F°"
D{H—DIH AT, ALY, .. D). =A04 gDy c0D 1 p(10 Note that the first quantity is
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Phi—

FIG. 6. Typical evolution of the extended state under the purification protocol for the noise pararfigte@s839 81,fy;="fg
=0.021131, and;;=0.003 712 fori, | €{1,2,3. This corresponds to a combination of one- and two-qubit white noise, as studied in Refs.
[18,19, with noise parameteng; =0.92 andp,=0.9466, considering noise in Alice’s lab only, p{=0.9592 andy,=0.973, considering
noise in Alice’s and Bob’s laboratory. We have chosen these values for didactical reasons, in order to make the effect more visible.

the sum over the fouid *) components in Fig. 6, while the and F°"converges to unitysee Fig. J. This regime is the
latter is the sum over the four diagonal elements. The condisecurity regimewhere we know that secure quantum com-
tional fidelity is the fidelity that Alice and Bob would assign munication is possible. Like for binary pairs, there exists also
to the pairs if they knew the values of the error flags, i.e., an intermediate regime, where the 2-EPP purifies FSit
does not converge to unity. For an illustration, see Fig. 8.
cond N . Note that the size of the intermediate regime is very small,
Fi =Z (@i jpi,joi | PT), (13 compared to the security regime. Whether or not secure
! quantum communication is possible in this regime is un-
Fnown. However, the answer to this question is irrelevant for
all practical purposes, because in the intermediate regime the
distillation process converges very slowly, as shown in Fig.
Matrices. i.6.om—id ow=o. om0 oo We wil 9._ !n fact,_ the divergent behavior of the process near the
utilize the ;ad.\'/aorg)tagés %1f thi;'nétlatio%,inmSeczl.V critical points has features remnant of a phase transition in
e statistical mechanics.

The results that we obtain are similar to those for the To estimate the size of the intermediate regime and to
binary pairs. We can again distinguish three regimes of no'sgompare it to the case of binary paifig. 3, we consider

parameters ,, . In the high-noise regimé.e., small values he case of one . . . ; 7
. X -qubit white noise, i.¢,,=f,f, and f;
of fyo), the noise level is above the threshold of the 2-EPF;:f2:f3:(l_f0)/3_ Here, this regime is known to be

and both the fidelityF and the conditional fidelitf " con- bounded by
verges to the value 0.25. In the low-noise regitne., large

wherep,; ; is the non-normalized state of the subensemble o
the pairs with the error flagi(j). For convenience, we use
the phase- and spin-flip biisandj as indices for the Pauli

values offy), F converges to the maximum fidelity,,,y 0.8983< feritlower— f / ferituppei ) 8ogs,
1 . o @ . " T . r
o..o —
0.95 -0y o 4 7
£2qo00R 3
By © N —~ g 3 ~
= oY T o
< 0.9 =
£ 0 )
o
/ o1
0.85 ¢&-¢ - =
g [ —— F,§°“d=A$,0°)+B,(;u)+C,(,m) + Dy
A F, = ADY + A0Y 4+ AP 4 409
08 —— A - : . . . . .
0 5 10 15 0 5 10 15

QPA steps QPA steps

FIG. 7. The fidelitiesF and F*°™® as a function of the number of steps in the security regime of the entanglement distillation process
[analytical results(lines) and Monte Carlo simulatiorfcircles]. The noise parameters for this plot wefg,=0.912791 20,fq;=fjo
=0.0113896, and;;=0.002 096 8 foii,j €{1,2,3}, corresponding to white noise with noise paramefgrs 0.96 andp,=0.968(see Fig.

6). The Monte Carlo simulation was started with 100 000 00 pairs; the numbers indicate how many pairs are left after each step of the
distillation process. This decreasing number is the reason for the increasing fluctuations around the analytical curves.
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1 ' R . e RN 1
0.8 - R |
ORI 1074 _
0.6 = T
|intermediateregime’l \ - ~
04 O 5
SETRLE -
............. |
0.2 pE—————N\ .. ... - —
§ |below purification thresholdl
0 . I . I . I . I [ S 10-12 L ; |
0.76 0.78 0.8 0.82 0.84 0.86 0.88
00

FIG. 8. The size and location of the three regimes of the distil- T = s
lation process. For fixed values df,, the remaining 15 noise 1 10 10 10
parameterd ,, have been chosen at random. Plotted is the relative
frequency of finding the noise parameters in any of the three re-

gimes as a function ofy,. FIG. 10. NumberN of pairs needed to create one pair with
conditional fidelity F<°" The initial state of the pairs was of the

Note that the size of the intermediate regime is much smalleyverner type with fidelityF,=85%. One- and two-qubit white

than in the case of binary pairs. noises(see Fig. 6 have been assumed with the noise parameters
Regarding the efficiency of the distillation process, it is an(P1,P2) = (0.9333,0.9466), (0.9733,0.9786), (0.9866,0.9833),

important question how many initial pairs are needed to crend(0.9933,0.9945(from top to bottom.

ate one pair with fidelityr " corresponding to theecurity

parametere=1—F"4 Both the number of required initial E. Non-Bell-diagonal pairs

pairs (resourcepand the security parameter scale exponen- | the worst-case scenario, Eve generates an ensemble of
tially with the number of distillation steps, so that we expecty qubit pairs, which she distributes to Alice and Bob. For

a polynomial relation between the resources and the security, 5 reason, Alice and Bob are not allowed to make specific

parametek. Figure 10 confirms this relation in a log-log plot assumptions on the state of the pairs. Most generally, the
for different noise parameters. The straight lines are fittediate of the M qubits, of which Alice and Bob obtail
polynomial relations; the fit region is indicated by the “”esqubits each. can be vx;ritten in the form

themselves. '

Number N of pairs

_ Ky .- BN| g2 (B1D7) (anbn)
PaB — 2 a r|B e B >
5000 0.|89 . 0.?95 . 0|.9 . 0.?05 . PR R Y N
- 2R M
4000l |— number of iterations| _ X )
2 ] ><<B(51’1 1)._.8(3,N N)|' (14)
£ 3000 - my By
S -
= 2000 . (@b
_ Here, |IS’M‘l 7)., 1;=00,01,10,11 denote the four Bell
J
1000 7] states associated with the two particles and b; and
B p— . _J | — I ji=1,... N Specifically, | Booy=|P )= (]|00)
' I ' ] e ' I ' -
| oo +HAD)/2, [Bo)=|¥")=(|01)+|01)/2, [Bi)=|P")
08-|-- F -7 TT =(100—|11))/V2, |Bi)=[¥")=(|0)~[10)/\2. In
s | general, Eq(14) will be an entangled state of\2 particles,
i 0.6 which might moreover be entangled with additional quantum
o ' systems in Eve’s hands; this allows for the possibility of
i so-called coherent attack41].
0.4- Upon reception of all pairs, Alice and Bob apply the fol-
i lowing protocol to them. It consists of two steps, pre-1 and
02— 50— pre-2 of “preprocessing,” which are followed by the stan-

fo dard purification process described in Sec. Il A.
o _ _ Step Pre-10n each pair of particlesa,b;), they apply
FIG. 9. The effect of one-qubit white noise on the fidefythe . . . a;)
conditional fidelityF™ and the number of iterations required for "andomly one of the four bilateral Pauli rOtat'omﬁi

the convergence up to an uncertairety 10~ 2 ®a(kbj) , wherek=0,1,2,3.
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Step Pre-2Alice and Bob randomly renumber the pairs, ter Eq.(1)]. However, it is a reasonable question why Eve
(aj,b)) = (as) b)) wherem(j), j=1,...Nisaran- cannottake advantage of the additional information that she
dom permutation. has about the state of the pairs: as she is allowed to keep the

Steps 1 and 2 are required in order to treat correlated paiisformation about the twirl operations in steps 1 and 2, from
correctly. Note that steps 1 and 2 would also be required—aBer point of view all the pairs remain in an highly entangled
“preprocessing” steps—for the ideal distillation procés, 2N-qubit state. Nevertheless, all predicions made by Eve
if one requires that the process converges for arbitrary stateaust be statistically consistent with the predictions made by
of the form(14) to an ensemble of pure EPR states. While inAlice and Bob(or, for that matter, their lab demgnwhich
Ref. [6] it is possible to check whether or not the processmeans that the state calculated by Eve must be the same as
converges to the desired pure state, by measuring the fidelithe state calculated by the lab demon, tracing out Eve’s ad-
of some of the remaining pairs, this is not possible wherditional information. As the lab demon gets a pure state at
imperfect apparatus is used. Since the maximum attainabliae end of the entanglement distillation process, this must
fidelity F IS smaller than unity, there is no known way to also be the result that Eve obtains using her additional infor-
exclude the possibility that the nonideal fidelity is due tomation, simply due to the fact that no pure state can be
correlations between the initial pairs. In both steps Alice andvritten as a nontrivial convex combination of other states.
Bob discard the information which of the rotations and per-
mutations, respectively, were chosen by their random num- IV. HOW TO CALCULATE THE FLAG UPDATE
ber generator. Thus they deliberately lose some of the infor- FUNCTION
mation about the ensemble, which is still available to Ease
she can eavesdrop the classical information that Alice and In this section, we analyze how errors are propagated in
Bob exchange to implement step. After step 1, their the distillation process. As was mentioned earlier, the state of
knowledge about the state is summarized by the density of2 given pair that survives a given purification step in the
erator distillation process depends on all errors that occured on

pairs in earlier steps, which belong to the “family tree” of
this pair. We will show that it is possible to summarize the

-~ _ (azhy) (anbn) . . .

PaB iy 2# pﬂ1-~-#N| ,Lll v ‘BMT ") effect of all errors in the family tree of each pair in an error
LN flag, which consists of two classical bits. The values of the
x(zgif‘llbl). : ‘mew' (15)  error flags can be calculated in a recursive scheme, and we

call the recurrence relation thkg update function

which corresponds to alassically correlated ensembief .Each step o_f the distillation process consist of a number of
pure Bell states. Since the purification protocol that they ar&Nitary operations followed by a measurement, which we
applying in the following steps maps Bell states onto Bellréat separately in the following two subsections.

states, it is statistically consistent for Alice and Bob to as-

sume after step 1 that they are dealing witlinamberedl A. Unitary transformations and errors

ensemble of pure Bell states, where they have only limited  consider an errot, (i.e., a random unitary transforma-
knowledge about which Bell state a specific pair is in. Thegjop) that is introduced before a unitary transformatldris

fac.t that the pairs are correlated means that the order iBerformed on a statey). Note that, without loss of general-
which they appearin the numbergd ensemble may have SOM it is always possible to split up a noisy quantum opera-
pattern, which may have been imposed by Eve or by thgion close to a unitary operatidd in two parts: first, a noisy
channel itself. By applying step 2, Alice and B@b delib-  oheration close to identity, and afterwards the noiseless uni-
erately ignore this pattern an@) randomize the order in a1y gperationU. For that reason, it only a matter of inter-
which the pairs are used in the subsequent purification SteRstetation whether we think of a quantum operation that is
[42]. For all statistical predictions made by Alice and Bob, accompanied by noise, e.g., as described by a master equa-
they may consistently describe the ensemble by the densifyy of the Lindblad form, or of the combination of some

operator{43] noise channel first and the noiseless quantum operation af-
N terwards.
PAB :(E p,.|B (B |) =(pap) N (16) We call a transformatiot ., an error corrector, if the
A equation
in which the p, describe the probability with which each U|)=UonUUenl ¢) (17)

pair is found in the Bell statg3,). At this point, Alice and

Bob have to make sure th@ps=F>F, for some mini- holds for all state$y;). Equation(17) is obviously solved by

mum fidelity F ;> 1/2, which depends on the noise level Ugy=UU UL

introduced by their local apparatus. This test can be per- We want to calculate the error corrector for the Pauli op-

formed locally by statistical tests on a certain fraction of theerators and the unitary operatidh,_gpp, Which consists of

pairs. the bilateralx rotations and the BGwOT operation, as de-
As Alice and Bob now own an ensemble of Bell diagonalscribed in Sec. II.

pairs, they may proceed as described in the preceding Sec. In what follows, it is important to note that Pauli rotations

Il A [recursive application of the stef$)—(3) described af- and all the unitary operations used in the entanglement puri-
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fication protocol map Bell states onto Bell states; it is thus B. Measurements and measurement errors

expedient to write the four Bell states as As the 2-EPP does not only consist of unitary transforma-

tions but also of measurements, it is an important question
1 - whether or not errors can be corrected after parts of the sys-
|Bij)= E(|OJ>+(_1)'|1J ) (18  tem have been measured, and how we can deal with mea-
surement errors. It is important to note that whether a pair is
using thephase bit iand theamplitude bit jwith i,j {0,1} ~ keptor discarded in the 2-EPP depends on the measurement
[5], which we have implicitly employed in Eq14). In this 'OUttzomc?Si'l-I”:!S means thata_?fepentdlng on the Itt)aveé_otf.”nc()jlse
. : . in the distillation process, different pairs may be distilled,
notation, we get (ignoring global phasgs o5 ) each with a different “family tree” of pairs. This procedure
=[Bije1), oylBij)= |l_3i@l,1'@_l>' and ‘Tz|_8i,i>: 1Biot) s conceptually very different from quantum error correction,
where o may act on either side of the pair. ThHe symbol i, the following sense. In quantum error correction, it is nec-
|nd|_cates addition modulo 2. Qonsstgnt with this notatlon,(_:.Ssary to correct for errors before performing a readout mea-
oy is referred to as the amplitude flip operater, as the  gyrement on a logical qubit. Here, the situation is quite dif-
phase flip operator, andy as the phase and amplitude flip ferent: the lab demon performs all calculations only for

operator. _ _ o bookkeeping purposeslo action is taken, and thuso error
The effect of the bilateral one-qubit rotation in the 2-EPPcqrection is performed, neither by the lab demon, nor by
can be easily expressed in terms of the phase and amplitug€ice and Bob.

bit, In the analysis of the noisy entanglement distillation pro-
cess[18,19, not only noisy unitary operations have been
U’Q@ U§—1|Bi'j>=|3i’j®i>, (19 taken into account, but also noisy measurement apparatus,
which is assumed to yield the correct result with the prob-
and the same holds for the B@T operation, ability », and the wrong result with the probalility-17.
Surprisingly, if only the measurements are noigg., all
_ unitary operations are perfecthe 2-EPP producegerfect
BONOTIB B 1) =[Bioir )| Bir joj)- 20 EpR pairs, as long as the noise is moderate 63.5%). The
The effect of the unitary part of the 2-EPP onto two pairs'2S0N for this property lies in the fact tha& 1 is a fixpoint

in the state$5, ;) and|B,. ;) can be written in the form  ©f the 2-EPP even with noisy measurements. For a physical
& . understanding of this fact, it is useful to note that in the

distillation process, while the fidelity of the pairs increases, it
UoepdBi PIBir i) =Bisiriep)|Birirejrsiei), (21D pecomes more and more unlikely that a pair that should have
_ , . been discarded is kept due to a measurement error. This
where the first and second pair plays the role of the *Source’means that the increasingly dominant effect of measurement
and the “target” pair. Instead of Eq21), we will use an  gpqrs s that pairs that should have been kept are discarded.
even more economic notation of the form,j0=[B; ;).  However, this does not decrease the fidelity of remaining
Equation(21) can then be written as pairs, only the efficiency of the protocols is affected.

This fact is essential for our goal to extend the concept of
error correctors to the entire 2-EPP, which actually includes
measurements. As was shown in Sec. IV A, noise in the uni-
tary operations can be accounted for with the help of error
correctors, which can be used to keep track of errors through
the entire distillation process; on the other hand, the mea-
surement in the 2-EPP may yield wrong results due to noise
that occured in an earli€unitary) operation. This has, how-
ever, the same effect as a measurement error, of which we

N LT ; N A P have seen that it does not jeopardize the entanglement distil-
(i,)a"j")—>epjoa)i'ep’,j'®a’) lation process.

2—-EPP
(i, — (iei’jiepi' e @iej). (22

It is now straightforward to include the effect of the lab
demon, Eq.(4). Applying Pauli rotationso,, and o4 t0
the pairs before the unitary 2-EPP stepd=id,oq;
=0y,011=0y,019= 0;), We obtain

2-EPP
— (i®i'epep’iojopda) C. The reset rule

X(i'ep',i'®j'dicjeop' ®a’apsa). From the preceding two sections, one can identify a first
(23 candidate for the flag update function. The idea is the follow-

_ _ ing. The error correctotd ., calculated in Sec. IVA de-
Comparing Eq.(22) and Eq.(23), we find that the error scribes how errors on the phase bit and amplitude bit are

corrector for the error operatiom, ,® o,/ 5/ is given by propagated by the 2—EPP. For the lab demon, this means that
instead of introducing an error operatth,= o ,® opr o
beforethe unitary part of the 2-EPP, he could, with the same
independent of the initial state of the pairs. This is the detesult, introduce the operatior _="U n= Tpap’ poa

sired result. ® 0y prea’spea @S aN error operatioafterwards

Ucon= Opap’,pea®0p proa’epea: (24
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Let us assume, motivated by the preceding section, thafficiency); as Alice and Bob do not have any knowledge of
the measurement that follows the unitary operatibnzpp  the error flags, there is nothing that can be done in this case,
does not compromise the concept of error correctthis  and both pairs are discarded. The first case is more interest-
assumption will have to be modified lateiThe lab demon ing. It is clear that for pairs with perfectly correlated error
can then consider the error corrector as an recursive updags this case will not occudue to the perfect correlations
rule for errors on the phase bit and amplitude bit, i.e., for thehe amplitude error bit can only have the value one if the
phase and amplitude error bits that constitute the error flaggmplitude bit has the value one, which is just the second
in the following way. o cas¢. This means that we have the freedom to modify the

At the begmnm_g of the destillation process, the lab demonyyor flags of the remaining paivithoutlosing the property
assigns two classical bits to each of the pairs, both set 1o thgat perfectly correlated states get mapped onto perfectly cor-
value zero(*0" ). Whenever he applies a phase flip or am-yg|ateqd states. It turns out thsetting both the error ampli-
plitude flip to a given pair, he inverts the first or the secondy e pit and the error phase bit of the remaining pairzero
bit of_its error flag, respe_ctively. For that reason, we_caII the(reset ruld yields the desired behavior of the flag update
two bits theerror phase bit g and theerror amplitude bita.  fynction, so that perfect correlations are being built up.

If, for a given pair of pairs, the purification is successful, e amplitude error bit of the target pair is given py

the source pair is kept. Th_e error flag of the source pair i%aa’eapeaa. The flag update function can thus be written as
now calculated as a function of the previous error flag of

both pairs, using the source-pair part of the error corrector: (p@p’,pea) if p'ea’epsa=0
(pe:ae)(pé’aé)_)(pe@pévpe@ae)- (p’a)(p a )_) i '
. . (0,0) otherwise
In any case, the lab demon has to discard the target-pair (25)

part of the error corrector, as the target pair is measured and

does no longer take part in the distillation process. The

knowledge of the error flag of a specific pair implies that theg, ¢onyenience, the values of the flag update function are

lab demon could undo all errors introduced in the family treegiven in Table 1. '

of this pair. For example, if the error flag has the valug)( Note that the reset rule is aul hocsolution: even though

the lab demon could apply the Pauli operaigy in order o the ahove arguments do not prove that the desired correla-

undo the effect of all errors he introduced up to that point. tins are built up, we could calculate the recurrence relations
It is well known that the |j0|s§aless protocol asymptotlcally(ll) using the flag update functid@5). Analytical consider-

produces perfect EPR pairs in the stdgo. It follows  5ions in the case of binary pairs with one-qubit ndisee

that—in the asymptotic limit—a pair with the error flag)  sec. 111 B) and numerical iterations of EqL1) for all other

must be in the stat8; ;, i.e., the error flags and the states of ;3565 show the desired result, i.e., that strict correlations are
the pairs are strictly correlated. This means, if the above, tact puilt up.

assumption was true, then the flag update function would be
given by (e,ae)(Peae) — (Pe® Pe,Pe®ac). However, as

we wiI.I see, the assu_mption d_oes not hold; for that reason we V. DISCUSSION
call this update function eandidatefor the flag update func-
tion. We have shown in Sec. lll, that the two-way entanglement

The candidate has already the important property thatlistillation process is able to disentangle any eavesdropper
states with perfect correlations between the error flags, ~ from an ensemble of imperfect EPR pairs distributed be-
only the coefficient®\yy, B1;1, Co1, andD;pare nonvanish- tween Alice and Bob, even in the presence of noise, i.e.,
ing) are mapped onto states with perfect correlations. when the pairs can only be purified up to a specific maxi-

A serious deficiency of the candidate function as specifieadnum fidelity F,,,,<1. Alice and Bob may use these imper-
above is that perfect correlations between flags and pairs afectly purified pairs as aecurequantum communication
not built up unless they exist from the beginning. By follow- channel. They are thus able to perform secure quantum com-
ing the distillation process in a Monte Carlo simulation thatmunication, and, as a special case, secure classical commu-
takes the error flags into account, the reason for this is eagyication(which is in this case equivalent to a key distribution
to identify. The population of pairs that carry an amplitude schemg
error becomes too large. Now, the amplitude @bt the In order to keep the argument transparent, we have con-
amplitudeerror bit) of a target pair is responsible for the sidered the case where noise of the fof is explicitly
coincidence of Alice’s and Bob’s measurement results; if thentroduced by a fictious lab demon, who keeps track of all
amplitude bit has the value zero, the measurement resulesror operations and performs calculations. However, using a
coincide and the source pair will be kept, otherwise it will besimple indistinguishability argumentsee Sec. Il 4, we
discarded. If the target pair carries an amplitude error, a meaould show that any apparatus with the noise characteristics
surement error will occur, and there are two possibilities:(4) is equivalent to a situation where noise is introduced by
either the source pair will be kept even though it should havehe lab demon. This means that the security of the protocol
been discarded, orice versa then the source pair will be does not depend on the fact whether or not anybody actually
discarded although it should have been kept. Obviously, thealculates the flag update function. It is sufficient to just use
latter case does not destroy the convergence of the entangle-noisy 2-EPP, in order to get a secure quantum channel.
ment distillation procesg¢but it does have an impact on its For the proof, we had to make several assumptions on the
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noise that acts in Alice’s and Bob’s entanglement purificatiorfiber. This concern is not important from a principial point of
device. One restriction is that we only considered noise thatiew, as the laboratories of Alice and Bob are considered
is of the form(4). However, this restriction is only due to secure by assumption. On the other hand, this concern has to
technical reasons; we conjecture that our results are also tryg taken into account in a practical implementation.

for most general noise models of the fofB). More gener-

ally, a regularization procedufef. Sec. Il A) can be used to
activelymake any noise Bell-diagonal. We have also implic-
itly introduced the assumption that the eavesdropper has no
additional knowledge about the noise process, i.e., Eve only We thank C. H. Bennett, A. Ekert, G. Giedke, N.tken-
knows the publicly known noise characteristigh of the  haus, J. Miler-Quade, R. RauBendorf, A. Schenzle, Ch. Si-
apparatus. This assumption would not be justified, for eximon, and H. Weinfurter for valuable discussions. This work
ample, if the lab demon was bribed by Eve, or if Eve washas been supported by the Deutsche Forschungsgemeinschaft
able to manipulate the apparatus in Alice’s and Bob’s labothrough the Schwerpunktsprogramm “Quanteninformations-
ratories, for example, by shining in light from an optical verarbeitung.”
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