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Radiative corrections to hydrogenlike ions and heavy alkali-metal atoms in a magnetic field
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A fully covariant scheme of renormalization is developed for the evaluation of radiative corrections to the
energy levels of atoms and ions in an external magnetic field. Bound-state QED correctgpfectors are
calculated for H-like ions in the ground state with nuclear charge numbes<190 and for thens valence
electrons in the atoms Cs, Baand Fr. It is shown that these corrections should be taken into account in the
comparison with experimental data for neutral atoms.
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[. INTRODUCTION The situation with the “spurious” terms has been clarified
in Ref.[14], where it has been proven that these terms result
The evaluation of quantum electrodynami¢@IED) ef-  from an improper treatment of the unphysical high-energy
fects for highly charged ion€HCI) in an external magnetic contribution. Utilizing the nonperturbative method for per-
field, i.e., the QED corrections to thg factors of bound forming the PWR with theB-spline approximation to the
electrons has been the topic of intensive experimddtafl  Dirac spectrum in an external magnetic field, it was shown
and theoretica]5— 8] investigations during the last years. In that no “spurious” terms are generated in numerical calcula-
hydrogenlike HCI the QED corrections play a dominant roletions of the SE in the magnetic field within a level of accu-
and their investigation is important for testing bound-stateracy of about 0.1%. Still one has to be careful with the high-
QED in strong fields. In Ref9] it has been pointed out that energy region when performing PWR calculations.

QED corrections could be also nonnegligible fos valence The “spurious” terms problem does not occur within an
electrons in heavy alkali atoms. another approach to the evaluation of the electron SE in an
First calculations of the electron self-ener@E) correc-  external field 6—8], which is called “covariant” contrary to
tions to the bound-electragpfactors in H-like ions have been the PWR procedure that is performed noncovariantly in co-
performed within the framework of the partial-wave renor-ordinate space. Within the covariant approach all the Feyn-
malization(PWR) method developed in Ref10,11. How-  man graphs, corresponding to the SE in an external field are
ever, later it has been observed that the PWR approach whexxpanded in powers of the Coulomb potential of the nucleus.

being applied to the evaluation of the SE correction for aThe terms of this expansiofzero-potential(ZP) and one-
bound electron in an additional external field, considered as potential (OP) termg containing ultraviolet divergences are
perturbation, generates the so-called “spurious” terms, arisexplicitly isolated. These divergent terms are renormalized
ing due to the “noncovariant” character of the PWR ap- covariantly in momentum space by standard QED methods
proach[12]. The PWR procedure consists of the partial-wavedeveloped for free electrons. All higher-order terms of the
expansion of the SE contribution and of the correspondingpotential expansiofthe many-potential terjrare convergent
counterterm. Then both expansions are subtracted term tgnd can be evaluated directly in coordinate space. In Refs.
term leading finally to a finite, renormalized expression for[6—8], they were calculated as the difference between the
the energy shift. For the lowest-order electron @&Ehout  unrenormalized initial expression for the SE and unrenormal-
additional external fielgsthis procedure has been shown to ized zero-potential and one-potential terms.
converge to the correct limit, but for the SE in the presence Contrary to this the many-potential term is evaluated di-
of an additional external field, according to REI2], finite  rectly in the present paper.
“spurious” terms arise. An explicit expression for such  The corrections fons valence electrons in alkali-metal
“spurious” terms has been provided in R¢1L2]. In the case atoms have been estimated earlier in R8f.by defining an
of a Coulombic external perturbation these “spurious” termseffective nuclear charge numhb&g; and comparing the QED
cancel between the different contributions to thecorrections in the magnetic field with values in HCI. In the
perturbation-theoryPT) corrections to SE matrix elements: present paper these corrections are obtained by direct calcu-
the corrections to the wave functions, the vertex, and thdations.
reference-state correction. This conclusion has been con- The paper is organized as follows: In Sec. Il we formulate
firmed later by numerical evaluatioh%3] for additional per-  the problem of the evaluation of radiative corrections to the
turbations to the central Coulomb potential. bound-electrorg factor and analyze different types of cor-
In Ref.[12] it has also been stated that in the case of amections. Section Ill is devoted to the covariant regularization
external magnetic field the “spurious” terms in perturbation of the nondiagonal matrix elements for the ZP and OP terms
theory do not cancel and that some “spurious” contributionof the electron SE. In Sec. IV, the evaluation of the many-
remains after collecting all the contributions. potential(MP) term for the nondiagonal electron SE is con-
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FIG. 1. The Feynman graph describing the interaction of th

atomic electron in staté with the external field. The double solid
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- 1. .
A=—§(r><B), (4)
wherer is the radius vector for an electron in an atom. Con-
sidering a static field aligned in ttedirection and using Egs.
(1)—(3), we obtain the expression for tlgefactor of a bound
ns electron, first derived by Bre[tl5]:

2 -
bound= ———(A|ar- e A/A). 5
g g, (Ala-eAA) (5)

oThis value differs from the free-electron valug™e=2,

which follows from the Dirac equation. The radiative correc-

; fi
line denotes the bound electron and wavy line with the cross at th0ns change the valug,q [16] as

end denotes the external field.

gee=2.002 319 304 38R0), (6)

sidered. The results of Sec. Il are employed in Sec. V for the
evaluation of the SE correction to the wave function in theWhere

magnetic field and partly for the vertex correction in the
magnetic field. The remainder of the vertex correction

(which is ultraviolet and infrared finijas calculated with the

help of a nonperturbative approach in Sec. VI. In Sec. VI
the numerical results for H-like ions are provided in com-Part of 89gep

89,=2319.30<10 ¢ @)

Iis the QED correction to the free-electrgriactor. The major

free s incorporated in the Schwinger term:

parison with results of different existing calculations. In Sec.

VIl the radiative corrections to thg factors forns electrons

in alkali-metal atoms are determined and the role of these

corrections in modern bound-electrgpfactor calculations
for heavy atoms is analyzed.

Il. RADIATIVE CORRECTIONS
TO THE BOUND-ELECTRON g FACTOR

The magnetic dipole moment of a bound electron is
connected with its total angular momentlfnh)y

D

where e is the electron chargeet=0), m is the electron
mass,ug is the Bohr magneton, arg} is the gyromagnetic
ratio. For an electron in ans state,g; coincides with the
bound-electrory factor.

The energy correction for a bound electron in the state

in an external magnetic fielB reads

Ea(B)=—(A|u-B|A). (2)

o
5gfg‘;ﬁ:; =2322.810°°. )

The bound-electron corrections to thdactor are defined
as 6g=gP°"d-gf™e |n particular, the relativistic correction
89,q 1s defined as the difference between the value of(Q.
andg™®=2 [15]. The integration over the angles in E&)
yields

4 ©
5greI:§J0 dr gng(r)rfngr)—2, 9

whereg,(r) andf,s(r) are the upper and the lower radial
Dirac wave functions for thes electron, normalized to

[Car g +g2am-1 (10
0

The inclusion of bound-state QED corrections requires
the evaluation of the contribution from the Feynman graphs
given in Fig. 2. The Figs. @ and 2Zb) correspond to the
electron self-energy corrections to the wave functi®f-
WF), Fig. 2c) represents the vertex correctiOiER). Fig-
ures 2d)—2(f) describe the vacuum polarization corrections

The same quantity can be expressed also using the vectoYP).

potentialﬂ for an external field:

Ea(B)=(Ala-eAlA), &)

For Figs. Za) and 2b), apart from the renormalization
problem, there is a problem of treating the singularity con-
nected to the presence of the reference state the sum-
mations over intermediate electron states. This reference-
state problem is usually treated within the framework of the

where a is the Dirac matrix. We use here relativistic units adiabaticS-matrix approach due to Gell-Mann and L§&7],
m=c=A=1. Expression(3) corresponds to the Feynman as generalized by Suchgt8]. This approach has been ap-

graph is shown in Fig. 1.
In the case of a homogeneous magnetic field

plied first to the bound-state QED problems in Rdf9]. A
detailed description of this approach can be found in Ref.
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FIG. 3. Graphical representation of the electron self-energy
regularization. The dashed line with the cross of the end denotes the
nuclear Coulomb potential. The other notations are the same as in
Figs. 1 and 2. The indices, n correspond to the two different
atomic states.

ones. The irreducible part contains no reference gtatethe
sums over intermediate electron states. The calculation of the

QED corrections to the interaction of the bound electron with theVertex contribution.

external field. The wavy line denotes the virtual photon. The other

symbols are explained in Fig. 1.

[20]. An other QED methods for solving the same problem

are the Green function meth¢@1l] and the line profile ap-
proach[22,23|.
It is convenient to divide the contribution of Figs(aR

The total bound-state QED correction consists of the fol-
lowing contributions:

59 bound_

bound
QED .

bound bound bound
59se-wrirnt O9SEWFred” OGVER T OQvp a1
11

The irreducible SE-WF contribution to thiefactor of the

and 2Zb) into two parts, namely irreducible and reducible bound electron reads

2

bound
SE-WF, irr
T ugB, AZA

where X®(E,) is the renormalized expression for the
lowest-order electron self-energy operator &ng denotes a
matrix elementA|F|n. The evaluation of the matrix element
of X"*(E,) will be considered in Secs. llI-V. The evaluation
of 8922k eqand Sgy2n?will be discussed in Secs. IV-VI.
Let us now turn todgoa™. The contribution of the Figs.
2(d) and Ze) resembles Eq.12), but the matrix elements of

the electron self-energy operatérren are replaced by the
matrix elements of the vacuum polarization operdidt™

2
S bound:
Gve MBBZ
(I pn(@- €A pat (a- €A An(TTM 1o
X > .
n+A EA_EI’]

13

G Ep))an(@-€A)nat+ (@ eA) A Ep))na

EA_ En

For the evaluation of the correctiqi3), we employ the
commonly used Uehling approximation in which the polar-
ization operator is replaced by the Uehling potential:

- 2aZ (= 1\ Vx?+1
ren__ - _ —2ry _
II VUehI 3T o e (l+ X) X2 dX

(14)

Expression(14) is written in atomic units. The Uehling
approximation is valid with an inaccuracy of about 10%
when calculating energy levels of H-like ions for Zlvalues
up toZ=92. The same holds true for the VP corrections to
the bound-electrog factor[8].

The Uehling contributions to Fig.(® is exactly zerd5].
Neglecting again the high-order terms, we omit thus fully the
contribution of Fig. Zf).

The purpose of this paper is twofold. First, we check the
MP contribution 08922\ .qand Sgo2n that has not yet
been calculated fully covariantly. Second, we check the esti-
mates forsgexp® given earlier in Ref[9] for ns valence

electrons in alkali-metal atoms. For both these purposes an

Since the operato’r:Iren does not depend on energy, there isaccuracy of 10% would be rather sufficieft) the nonco-

no reducible VP contribution.

variantly calculated part of the MP contribution #ggxs” is
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relatively small and2) other thansgep®, corrections to the IIl. REGULARIZATION OF THE NONDIAGONAL

bound-electromy factors in alkali-metal atoms are not known SE MATRIX ELEMENT
bound

with accuracy higher than 0dggep -

Therefore, we accept the Uehling approximation for The divergences in the SE operator can be isolated by

8gon™and do not repeat the known results for H-like ions inexpanding the electron propagator in powers of the nuclear

this approximation. For alkali-metal atoms the numerical re-Coulomb potentiaV. The structure of this expansion can be

sults for 5g°2"“have been elaborated in Ref8,14]. presented in the form

AR S N S W
Z—Ppo1—10) z—Pged1—i0) | z—Aged 1—10)) | z—Pged 1—i0)
1

VI—= ,
Z—hpo(1—10)

\Y,

1
) , (15

1
+ =~ =
(Z_ hfree(l_io) Z_hfree(l_io)

wherehp,, andhy.. denote the Dirac operators for the bound Here p=p,,v*, p=p(p,Ea) =(m?—E4+p?)/m?, andX\ is
and the free electron, respectively. the fictitious photon mass that indicates the infrared diver-

This expansion in the Feynman graph_representation igence. This divergence arises in the expressioﬁlmﬁ,EA)
depicted in Fig. 3 for the nondiagonal matrix element of theafter renormalization.
electron self-energy operatr. The first term of the expres- The OP contribution can be expressed as
sion(15) is called usually the ZP term, the second term is the
OP term, and the third term is the MP term. All divergences

are contained in the ZP and the OP terms, the MP term is R @?Z R
finte. CEIEN =~ | P PaVL ()7
Let us write down explicitly the renorrgalized expressions (4m)
for the matrix element§S S5(Ex))an and (S SXEA))an, fol- o 1 )
lowing Refs.[24—-2§. Then in the Feynman gauge xAg(pEA,qEA)ﬁ‘lfﬂ(q), (18)
—q
~ o > ~ > >
(ZR(Ea)an=— (477)2f d*p WA (P) ¥o2r(P.EAYn(P),  whereAl is the free-electron vertex part off the mass shell:
(16)
. . — e - A2
where X i is the free-electron self-energy operator off the A%(pEA,qEA)zAg(pEA,qEA)Hn—Z. (19
mass shell: m
Sz P 2-p pm The infrared divergences itS€YE,))a, and (ﬁreS(E ))
=(H— + — 14+ —] + — ZP\=AJJAn =0 AJJAN
*R(P.EA)=(p—m) 2 1-p 1-p ne 1-p contributions cancel due to the Ward identity and the Dirac
5 equation[25,26].
x| 1- 2—_p|np +(¢)—m)|n)\—. 17) The expression foR X(PE,,qE,), which is most conve-
1-p m? nient for numerical evaluations has been taken f{@r26|:

AX(PE,GE) = yo[4Cp4—2+2M2Co—4pp’ (Co+ Cyyt Cipt Cpg) = 2p*(Cyyt Cpp) = 2P %(Cypt Cpp) 1+ PPo[ 4(Cyy
+Ca1) ]+ PP[4(Co+ Cyy+ Crot Crg) ]+ P Po[4(Co+ Cryt+ Coyt+Coa) ]+ P po[4(Cr2t+ Coo) ]
—pPyob'[2(Co+ Cy3+C1a)]—Po[4Me(Co+2C11) ]—po[4me(Co+ C1o) 1. (20
HereCy, Cj; denote the Feynman parameter integrals:
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2c—flol l| arb 21
mCo= Jyal B &
5 1y b [a+b
an:—fodya 1—5|HT , (22
) 1 -y a+b
mClz—— dyT 1-=In T ) (23)
20 _fld y2[1 b [b 2| a+b ”
mCa= | Walzmat e M) @
1 (1-y)?[1 b [b\? [a+b
2 — — — [
msz—fody a |2 a+a In b ,
(25)
1 y(l-y)[1 b [b\? [a+b
2 — —— — [
mCzs—fody a |2 a+ a | b ,
(26)
2c 1 1 fld b 1 bI a+b
mCamg 1 L Yalt A
1
—f dyln(a+b)¢, (27)
0

in relativistic units po=qo=EA. Here b=yp—(1-y)p’
and a+b=1-y(1—y)k¥m?, where k?®=(p—q)? and p
was defined in Eq(17) [p’ =(m?—E4+q?)/m?]. A differ-
ent (equivalent expression forAg was employed in Ref.
[27].

While the numerical calculation of the integrals in Egs.
(16) and (18) was performed by means of standard integra-

PHYSICAL REVIEW A 66, 032115(2002

Dirac matrices acting on the different wave functions. The
function ¢,(w,r) is defined as

V(1)) m

S(W.1) =2 — A0 (29

v Ea_ Eu

where the sum over is the extended over the total Dirac
spectrum for the free eIectronIfV(F) and E, denote the
eigenfunctions and the eigenvalues for the free-electron
Dirac equation.

The triple summation over the total Dirac spectrum in Eq.
(28) (two summations over the free-electron spectrum and
one summation over the bound-electron specirwere per-
formed with the use of thB-spline approach28]. The free-
electron spectrum was obtained from the bound-electron
spectrum withiZ=0. The number of grid points was 150 and
the order of splines was equal to 8.

V. EVALUATION OF 6g220d AND & gh2md

We begin with the evaluation czﬁggoELf{,‘\‘,jF,ir, by the inser-

tion of the expressions(irzeQ(EA))An, (irc?S(EA))An and

(SIe(Ep))an, Obtained in Secs. Il and IV, in E412). Most
easily this calculation is performed by introducing the wave
function

(eaA(r))an

e V(D

WA(r)=
n(Easﬁ En)

(30
Then Eq.(12) reduces to

2 ~ “
692%%G€r—m{(zfe”<EA>)z\A+(zfe“(EA»Az\}. (3D

tion methods, the wave functions in momentum space have R
to be generated at first via Fourier transformation of the The evaluation of the matrix elemen& 5 (EA))aa and

B-spline representation of the coordinate-space wave funcd

tion. The integrals in Eqs(21)—(27) were evaluated by
means of the Gaussian method with 32 integration points.

IV. THE MP CONTRIBUTION TO THE NONDIAGONAL
SE MATRIX ELEMENT

The expression for the MP contribution to the nondiago-

nal SE matrix element is

“ a ® 1
oA Ea))an=— p % fo dWR€‘| ; E.—E.—iw

—a1ap

. 1
XJ d®r,d%r, ¢>,;(—W,r1)\lfA(r2)r—12
XeXF(—Wflz)‘I’n(Fl)¢m(W,Fz)} : (28

Here the sum ovem is extended over the total Dirac spec-
trum for the bound electrom,;,=|r;—r,| and «; are the

o En))ia is performed in the momentum space. The di-

rect Fourier transformation of the potent{d) is not suitable
for the numerical calculations. Therefore, we followed the
procedure employed in Reff7]:

A(r)=lim %(Fx B)exp{— ({r/2)%). (32)

{—0

Then in momentum space we have
oo i r
A(p) = lim ———exp{—(p/{)}(pxB). (33
o mYd

For the practical calculation we used the value fofrom
10" to 10 ° since the average value forin the ion with
the nuclear chargg is p~Z. Practically this means that the
order of the magnitude of exp(p/0)? is comparable with
(77_3/2§5) 71.

The reducible correctiodg22int .4that corresponds to
the irreducible correctiof12) is given by
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= +2 +
A A A

FIG. 4. The potential expansion of the vertex graph. The nota-
tions are the same as in Figs. 1-3. A A A

A A A A

FIG. 5. Graphical representation of the evaluationsgfums.

ey E)} (eaA(r ))an. The triple solid line denotes the atomic electron in an external mag-
E=E, netic field. The other notations are the same as in Figs. 1-3.

362 || 28
AA
(34

ren ren
The evaluation of the matrix element of 593%?3(‘:( Wb(En BDas— G (EA'O))AA_

[(o’*/&E)ire"(E)]E:EA in Eq. (34) is again performed with #sB;

the use of the potential expansielb) and the renormalized |t js understood that the magnetic field is included nonper-
expressions foE S(E), andEreB(E) andEre“(E) [see Egs. turbatively only in the bound-electron propagator in E28)
(16), (18), and(28)]. Unlike the case O(ETQA”(EA)), the in  but not in the wave function® A(r). This situation is de-

frared divergences do not cancel [/ JE)X*\E) Je—¢,; picted in Fig. 5. _ _
the remaining infrared term reads The Dirac equation for the atomic electron in an external

magnetic field reads

(36)

2

Iny\— (eaA(N))an. (35) HY=EV, (37)
(4m)? m;
with
It will be canceled with the similar term in the vertex correc-
tion. H=Hq+H, (38)

The potential expansion for the vertex correction is de-
picted in Fig. 4. The three terms of this expansion are deand
noted as VER1, VER2, and VERS3. Only the VERL1 part is

divergent. It can be treated exactly in the same manner as Ho=a-p+Bm+V(r), (39)
(SEYEA))an Where the Coulomb potentialV(p—q)

=aZ/(p—0q)? is replaced byeaA(p), andA(p) is the vec- qo_le ser 4o
tor potential of the external magnetic field E@®3). The m=oa (BXT), (40)

infrared divergence that is present in Eq9) will be can- )
celed by the infrared divergent term E®5) in the SE-WF, wherea and 8 denote the Dirac matrices,is the speed of

red contribution(7,8]. light, andB is the magnetic-field strength. The magnetic field
The term VER2 is analogous (& g8(Ea))aa- The only s supposed to be directed along thaxis, i.e.,5=B8,. For

difference is that one of the functiondz%(w,r) in the expres-  highly charged ions the potentiM(F) is the Coulomb po-
sion (28) should be replaced by the function, depending ontential of the nucleugpointlike or extended For the valence

(eaA(p)) instead of the Coulomb potentidl. The term electrons in heavy alkali-metal atom&(r) also includes the

VER2 is finite. Now it remains to consider the finite contri- electron core potential. In Eq$37)—(40) atomic units are

bution VER3 that will be described separately in the follow- ysed.

ing section. The variational solution of the Dirac equati¢®7) is ob-
tained according t¢29] with the trial functions

VI. EVALUATION OF & gbound

2N Kkmax

The correctionsgi2d, although finite, is the most diffi- WA= > alwrs(r). (41)
cult one to calculate numerically. It contains two bound- s=1 «
electron propagators and two free-electron propagators. To
avoid computational difficulties, we shall apply the nonper-The electron wave functiond#(r) in the magnetic field
turbative finite basis set method based on the exact solutiopossess cylindrical symmetry and can be expanded with re-
of the Dirac equation for the atomic electron in the externalspect to a finite basis set of the funcnoﬁé“(r) of spherical
magnetic field[29]. Accordingly, the correctlonSg{’,oE“F?;j re-  symmetry. The index denotes the Dirac angular quantum

sults as number,u corresponds to the total electron angular momen-
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TABLE |. Self-energy corrections to the electrgnfactor for the ground state dfl-like ions. In the
brackets we represent the numerical results from F8fAll numbers have to be multiplied byx10 ©.

z o9 g(ljilﬂ\r;\?F,irr(ZHOP) 49 gOELf\r}\?F,irr(MP) 59%%HWF,(redeER1) SOURS. vers  OQUZRS  Sgex

1 1.39 0.4012 2320.62 0.43 0.04 2322.84
(1.39 (0.1386 (2320.78 (0.53 (2322.84

10 66.46 12.51 2229.98 17.01 0.06 2325.96
(66.46 (12.28 (2229.83 (16.97 (2325.54

20 193.56 42.40 2076.05 29.14 0.07 2341.15
(193.56 (41.61 (2073.50 (29.20 (2337.87

30 356.80 81.90 1900.17 30.23 0.08 2369.10
(356.81 (80.39 (1899.43 (29.98 (2366.59

40 550.69 128.23 1730.55 13.73 0.08 2423.20
(550.70 (125.89 (1729.58 (13.29 (2419.39

50 774.06 181.98 1570.18 -19.39 0.09 2506.83
(774.06 (178.60 (1569.42 (-17.25 (2504.83

60 1027.85 246.31 1423.05 -62.20 0.10 2635.01
(1027.87 (241.80 (1422.42 (-58.20 (2633.91

70 1315.04 326.47 1289.79 -108.51 0.11 2822.79
(1315.07% (320.83 (1290.52 (-105.03 (2821.39

80 1641.51 430.04 1175.17 -157.67 0.13 3089.05
(1641.52 (423.97 (1174.84 (-151.8% (3088.46

tum projection,a’ are the variational coefficients, andi2 ~ €lectron QED corrections from the bound-electron QED cor-

e bound_ o f N
defines the number of the basis-set functions. rections: 89qep= 09qep — 99geD- Taking into account only
The next step is the use of tiespline approximation of the Iowest—ofrder QED corrections #gqep > the Schwinger
the functions¥=*(r) [29] value for 6ggep has to be used. This subtraction leads to
“ :

severe numerical cancellations that diminish the accuracy of
the net result. However, this is not the case when the non-
perturbative approach is employed only for that part of
S9oEn?, namely, for thesgygns contribution, which is far
from dominating in the total resulsee the sixth column of
Table |). Thus we can expect that a level of accuracy of about

The variational solution of the Dirac equatid®7) with
the trial functions(41) reduces to the diagonalization of the
Hamiltonian (38) within the finite basis set defined by Eq.
(41). As a result one obtains the full set of solutions of the
Dirac equation for the atomic electron in an external mag

netic field. e ot ; ; :
e i L 10% is still achieved in the present evaluationdgfyep -
Within the B-spline approach the H-like ion is enclosed ° P ED
inside of a spherical box of radilg,,,~50/Z a.u. The num- VII. NUMERICAL RESULTS FOR H-LIKE IONS
ber of grid points wadNy=150 and the order of splines was ) ) o
k=8. This corresponds toN=2(N,+k—2)=312 energy Thbe redsults of our calculation for the various contributions
) ound ;

levels that represent approximately the Dirac spectrum. Witli® 9se  in comparison with the corresponding results ob-

this choice the inaccuracy of the spline approximation for thd@ined in Refs[7,8] for H-like ions in the ground state are

1s,,, state compared to the variational soluti@8] became presented in Table | for dlﬁererz values. We should also

less than 108 [14]. The comparison between the results of NOte that the number presented in Réf.are in close agree-

the evaluation of Zeeman splitting by the perturbation theoryMent with those given in Ref§7,8]. The mean bder}/dlatlon of

(PT) and by the nonperturbative approd@®] reveals that our results from Refs[7,8] in the total sggg™ value

for field strengthsB up to 2x 107 T the deviation from the ~amounts to 0.1%. This de\{iati(_)n originates from the use of

PT is about 108 while for a field strength of about 2 the pointlike nucleus, while in Refq7,8] an extended

X 10* T the deviation increases up to 10 The latter is due huclear model was employed. Moreover, in Rdf£8] a

to the distortion of the atomic structure by the magnetic ﬁe|d_lar%erdnumber of the partial-waves in the evaluation of
In Ref. [14] the nonperturbative approa¢9] has been 993 wrir (vp) Nas been employed. However, these devia-

used for the evaluation of the total Correctiﬁggoggd_ For tions are well within the limit of about 10% inaccuracy,

H-like ions with 1<Z<90 the deviation from the accurate Which we have set.

PT resultd 8] turned out to be less than 0.1%. This calcula-

tion accomplished to prove the absence of the spurious terms

in the PWR approaclisee the Introduction However, this

accuracy was not sufficient for obtaining accurate values for

5gg°E“,§d. The reason can be traced back to the fact that the The electrorg factor for the number ofs heavy atomic
dgoep Ccorrections are obtained via subtracting the free-systems and in particular for alkali-metal atoms have been

VIIl. RADIATIVE CORRECTIONS
TO THE BOUND-ELECTRON g FACTORS
FOR ns ELECTRONS IN ALKALI-METAL ATOMS
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TABLE 1l. QED corrections to the electrog factor for thens valence electron in alkali metal atoms.

z Atom State sgvP SR verl i Wred 595E 890eD
55 Cs & —-3.0x10° 7 2.29214x 1073 2.32333x 1073 2.9x10°7
56 Ba 6s —5.55x 1077 2.29174x 1073 2.3239% 1073 5.9x10° 7
87 Fr 7s —5.70x10°7 2.291591< 1073 2.32411x 108 7.2x10°7

accurately measured, showing a clear deviation from théions are employed. These wave functions are obtained in a
free-electron valug™® given by Eq.(6). Note that&gg%eD local potential field that is fitted to the DHF potential as it
=gf®®—2 differs from the Schwinger value E¢B) since it has been described in R¢€].

includes higher-order QED terms. A large number of theoret- For the summation over the Dirac spectrum we again used
ical calculations ofsg=gP*"d- g also exists for alkali- the B-spline approach with 150 grid points and the order of
metal atomg[see Ref.[9]]. However, the deviationsg in  spline being equal to 8. The number of the partial-waves in
light and in heavy atoms has a different origin. In light atomsthe MP term varied around 10. Note that the size of the alkali
the main contribution is due to the relativistic correction metal atoms is much larger than the size of HCI. Therefore,
99rel [se€ Eq(9)]. For a recent status of this correction, seewe could use a radial box of the iR~ 100 a.u. Since
[30]. In heavy atoms the core-valence correlation correctiofhe magnetic field grows rapidly with the size of the box we
89cor dominateg 31-39. The Breit interaction between the naq 1o assume relatively small values for the magnetic field
valence and core electrons also leads to an observable o0 T<B,=<100 T) for the evaluation 06g?%". This leads

tribution 89g,eit [31—39. . ) VERS:
In most of the theoretical studies for the alkali-metal at-to the strong cancellations in E¢36) but does not affect

oms it has been assumed that the correcfiggep is negli- serlogilj)n/dthe accuracy of the total result due to the smallness

gible, i.e., the QED correction to thgefactor is the same as of 89vers contribution. . . .

for the free electron. However, recent calculations for hydro- 1 ne results of the calculat|obns are givenn Table Il In the
genlike ions[7], which are also confirmed in the present fourth column the values ofgyp"""are shown. In the fifth
paper, show that the deviation of the bound-state QED corcolumn we present the sum of the dominant contributions
rection 5g2209from the free-electron valugglies, can be as 6982 Wrrea™ 99veR:- The total value ofsggz™ is given in
large as 50% for higiZ values. the sixth column and the value fégoep= 593D d9&eris

In Ref.[9] it was supposed that the correctiégoep can  given in the seventh column of Table Il. The last value
be observable for heavy alkali-metal atoms. In this paper wghould be compared with the experimental data.
confirm this conclusion, although the accurate value for In Table 1l we collect the different contributions to
59oep has decreased substantially compared to the estimately®"@ and compared them with experimental data for
provided in Ref[9]. alkali-metal atoms. Herég,,; denotes the sum of thég,,

The main problem with the estimates in Rd] has been  5g,,,,, and 8gg,et. The correctiondgoep calculated in this
the comparison of the calculations of QED corrections forwork appears to be an order of magnitude smaller than the
the ns electron in the alkali-metal atoms with the same cor-estimates given for Cs, Ba and Fr in Ref[9]. Still 5goep
rections for the % electron in HCI. In this way, part of the is not negligible in case of Bg where the most accurate
QED corrections §g22k oq+ 99929 has been estimated. experimental and theoretical data are known. Note that the
In this paper all calculations are performed directly follow- theoretical error bars in Reff35] were introduced mainly to
ing the lines described in Secs. IlI-VII. The evaluation of all incorporate the possible QED corrections. Then the inclusion
the contributions is performed in the one-particle approximaof 5gqep leads to a better agreement with the experimental
tion. Approximate Dirac-Hartree-FockDHF) wave func-  value.

TABLE llII. Different contributions for alkali-metal atoms. All numbers have to be multiplied by 1
X107,
z Atom 5grel 5gc0rr 5gBreit 5gtot 5gexp 5gQED

55 Cs —50.00[33] 366.00[33] 1.00[33] 317.00[33]
—23.00[32] 284.00[32] —7.00[32]  254.00[32]

—28.10[9] 223.00[36] 0.29
56 Ba® —55.39[35] —7.08[35] 171.8-3.0[35]
—59.71[9] 172.62-0.03[4]  0.59

87  Fr —33.00[32] 3370.00[32] —10.00[32] 3327.00[32]
—40.01[9] 2650+80.00[37] 0.72
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