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Radiative corrections to hydrogenlike ions and heavy alkali-metal atoms in a magnetic field
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A fully covariant scheme of renormalization is developed for the evaluation of radiative corrections to the
energy levels of atoms and ions in an external magnetic field. Bound-state QED corrections tog factors are
calculated for H-like ions in the ground state with nuclear charge numbers 1<Z<90 and for thens valence
electrons in the atoms Cs, Ba1, and Fr. It is shown that these corrections should be taken into account in the
comparison with experimental data for neutral atoms.
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I. INTRODUCTION

The evaluation of quantum electrodynamical~QED! ef-
fects for highly charged ions~HCI! in an external magnetic
field, i.e., the QED corrections to theg factors of bound
electrons has been the topic of intensive experimental@1–4#
and theoretical@5–8# investigations during the last years.
hydrogenlike HCI the QED corrections play a dominant ro
and their investigation is important for testing bound-st
QED in strong fields. In Ref.@9# it has been pointed out tha
QED corrections could be also nonnegligible forns valence
electrons in heavy alkali atoms.

First calculations of the electron self-energy~SE! correc-
tions to the bound-electrong factors in H-like ions have bee
performed within the framework of the partial-wave reno
malization~PWR! method developed in Ref.@10,11#. How-
ever, later it has been observed that the PWR approach w
being applied to the evaluation of the SE correction fo
bound electron in an additional external field, considered
perturbation, generates the so-called ‘‘spurious’’ terms, a
ing due to the ‘‘noncovariant’’ character of the PWR a
proach@12#. The PWR procedure consists of the partial-wa
expansion of the SE contribution and of the correspond
counterterm. Then both expansions are subtracted term
term leading finally to a finite, renormalized expression
the energy shift. For the lowest-order electron SE~without
additional external fields! this procedure has been shown
converge to the correct limit, but for the SE in the presen
of an additional external field, according to Ref.@12#, finite
‘‘spurious’’ terms arise. An explicit expression for suc
‘‘spurious’’ terms has been provided in Ref.@12#. In the case
of a Coulombic external perturbation these ‘‘spurious’’ term
cancel between the different contributions to t
perturbation-theory~PT! corrections to SE matrix element
the corrections to the wave functions, the vertex, and
reference-state correction. This conclusion has been
firmed later by numerical evaluations@13# for additional per-
turbations to the central Coulomb potential.

In Ref. @12# it has also been stated that in the case of
external magnetic field the ‘‘spurious’’ terms in perturbati
theory do not cancel and that some ‘‘spurious’’ contributi
remains after collecting all the contributions.
1050-2947/2002/66~3!/032115~9!/$20.00 66 0321
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The situation with the ‘‘spurious’’ terms has been clarifie
in Ref. @14#, where it has been proven that these terms re
from an improper treatment of the unphysical high-ene
contribution. Utilizing the nonperturbative method for pe
forming the PWR with theB-spline approximation to the
Dirac spectrum in an external magnetic field, it was sho
that no ‘‘spurious’’ terms are generated in numerical calcu
tions of the SE in the magnetic field within a level of acc
racy of about 0.1%. Still one has to be careful with the hig
energy region when performing PWR calculations.

The ‘‘spurious’’ terms problem does not occur within a
another approach to the evaluation of the electron SE in
external field@6–8#, which is called ‘‘covariant’’ contrary to
the PWR procedure that is performed noncovariantly in
ordinate space. Within the covariant approach all the Fe
man graphs, corresponding to the SE in an external field
expanded in powers of the Coulomb potential of the nucle
The terms of this expansion@zero-potential~ZP! and one-
potential ~OP! terms# containing ultraviolet divergences ar
explicitly isolated. These divergent terms are renormaliz
covariantly in momentum space by standard QED meth
developed for free electrons. All higher-order terms of t
potential expansion~the many-potential term! are convergent
and can be evaluated directly in coordinate space. In R
@6–8#, they were calculated as the difference between
unrenormalized initial expression for the SE and unrenorm
ized zero-potential and one-potential terms.

Contrary to this the many-potential term is evaluated
rectly in the present paper.

The corrections forns valence electrons in alkali-meta
atoms have been estimated earlier in Ref.@9# by defining an
effective nuclear charge numberZeff and comparing the QED
corrections in the magnetic field with values in HCI. In th
present paper these corrections are obtained by direct ca
lations.

The paper is organized as follows: In Sec. II we formula
the problem of the evaluation of radiative corrections to
bound-electrong factor and analyze different types of co
rections. Section III is devoted to the covariant regularizat
of the nondiagonal matrix elements for the ZP and OP te
of the electron SE. In Sec. IV, the evaluation of the man
potential~MP! term for the nondiagonal electron SE is co
©2002 The American Physical Society15-1
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sidered. The results of Sec. III are employed in Sec. V for
evaluation of the SE correction to the wave function in t
magnetic field and partly for the vertex correction in t
magnetic field. The remainder of the vertex correcti
~which is ultraviolet and infrared finite! is calculated with the
help of a nonperturbative approach in Sec. VI. In Sec.
the numerical results for H-like ions are provided in co
parison with results of different existing calculations. In S
VII the radiative corrections to theg factors forns electrons
in alkali-metal atoms are determined and the role of th
corrections in modern bound-electrong-factor calculations
for heavy atoms is analyzed.

II. RADIATIVE CORRECTIONS
TO THE BOUND-ELECTRON g FACTOR

The magnetic dipole momentmW of a bound electron is
connected with its total angular momentumjW by

mW 52gj

e

2m
jW 52gj

mB

\
jW , ~1!

where e is the electron charge (e.0), m is the electron
mass,mB is the Bohr magneton, andgj is the gyromagnetic
ratio. For an electron in anns state,gj coincides with the
bound-electrong factor.

The energy correction for a bound electron in the statA

in an external magnetic fieldBW reads

EA~B!52^AumW •BW uA&. ~2!

The same quantity can be expressed also using the ve
potentialAW for an external field:

EA~B!5^AuaW •eAW uA&, ~3!

whereaW is the Dirac matrix. We use here relativistic uni
m5c5\51. Expression~3! corresponds to the Feynma
graph is shown in Fig. 1.

In the case of a homogeneous magnetic field

FIG. 1. The Feynman graph describing the interaction of
atomic electron in stateA with the external field. The double soli
line denotes the bound electron and wavy line with the cross at
end denotes the external field.
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AW 52
1

2
~rW3BW !, ~4!

whererW is the radius vector for an electron in an atom. Co
sidering a static field aligned in thez direction and using Eqs
~1!–~3!, we obtain the expression for theg factor of a bound
ns electron, first derived by Breit@15#:

gbound5
2

mBBz
^AuaW •eAW uA&. ~5!

This value differs from the free-electron valuegfree52,
which follows from the Dirac equation. The radiative corre
tions change the valuegrad

free @16# as

grad
free52.002 319 304 386~20!, ~6!

where

dgQED
free 52319.3031026 ~7!

is the QED correction to the free-electrong factor. The major
part of dgQED

free is incorporated in the Schwinger term:

dgSch
free5

a

p
52322.8231026. ~8!

The bound-electron corrections to theg factor are defined
asdg5gbound2gfree. In particular, the relativistic correction
dgrel is defined as the difference between the value of Eq.~5!
andgfree52 @15#. The integration over the angles in Eq.~5!
yields

dgrel5
4

3E0

`

dr gns~r !r f ns~r !22, ~9!

wheregns(r ) and f ns(r ) are the upper and the lower radi
Dirac wave functions for thens electron, normalized to

E
0

`

dr @gns
2 ~r !1 f ns

2 ~r !#51. ~10!

The inclusion of bound-state QED corrections requi
the evaluation of the contribution from the Feynman grap
given in Fig. 2. The Figs. 2~a! and 2~b! correspond to the
electron self-energy corrections to the wave function~SE-
WF!, Fig. 2~c! represents the vertex correction~VER!. Fig-
ures 2~d!–2~f! describe the vacuum polarization correctio
~VP!.

For Figs. 2~a! and 2~b!, apart from the renormalization
problem, there is a problem of treating the singularity co
nected to the presence of the reference stateA in the sum-
mations over intermediate electron states. This referen
state problem is usually treated within the framework of t
adiabaticS-matrix approach due to Gell-Mann and Low@17#,
as generalized by Sucher@18#. This approach has been ap
plied first to the bound-state QED problems in Ref.@19#. A
detailed description of this approach can be found in R

e

e

5-2
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@20#. An other QED methods for solving the same proble
are the Green function method@21# and the line profile ap-
proach@22,23#.

It is convenient to divide the contribution of Figs. 2~a!
and 2~b! into two parts, namely irreducible and reducib

FIG. 2. The Feynman graphs corresponding to the lowest-o
QED corrections to the interaction of the bound electron with
external field. The wavy line denotes the virtual photon. The ot
symbols are explained in Fig. 1.
e

t

n
.
.
f

is

03211
ones. The irreducible part contains no reference stateA in the
sums over intermediate electron states. The calculation o
reducible part should be combined with the calculation of
vertex contribution.

The total bound-state QED correction consists of the f
lowing contributions:

dgQED
bound5dgSE-WF,irr

bound 1dgSE-WF,red
bound 1dgVER

bound1dgVP
bound.

~11!

The irreducible SE-WF contribution to theg factor of the
bound electron reads

er
e
r

FIG. 3. Graphical representation of the electron self-ene
regularization. The dashed line with the cross of the end denote
nuclear Coulomb potentialV. The other notations are the same as
Figs. 1 and 2. The indicesA, n correspond to the two differen
atomic states.
dgSE-WF, irr
bound 5

2

mBBz
(
nÞA

„Ŝ ren~EA!…An~aW •eAW !nA1~aW •eAW !An„Ŝ
ren~EA!…nA

EA2En
, ~12!
r-

%

to

he

he

sti-

an
where Ŝ ren(EA) is the renormalized expression for th
lowest-order electron self-energy operator andF̂An denotes a
matrix elementAuF̂un. The evaluation of the matrix elemen

of Ŝ ren(EA) will be considered in Secs. III–V. The evaluatio
of dgSE-WF,red

bound anddgVER
bound will be discussed in Secs. IV–VI

Let us now turn todgVP
bound. The contribution of the Figs

2~d! and 2~e! resembles Eq.~12!, but the matrix elements o

the electron self-energy operatorŜ ren are replaced by the

matrix elements of the vacuum polarization operatorP̂ ren:

dgVP
bound5

2

mBBz

3 (
nÞA

~P̂ ren!An~aW •eAW !nA1~aW •eAW !An~P̂ ren!nA

EA2En
.

~13!

Since the operatorP̂ ren does not depend on energy, there
no reducible VP contribution.
For the evaluation of the correction~13!, we employ the
commonly used Uehling approximation in which the pola
ization operator is replaced by the Uehling potential:

P̂ ren'VUehl52
2aZ

3pr E0

`

e22rxS 11
1

x DAx211

x2
dx.

~14!

Expression~14! is written in atomic units. The Uehling
approximation is valid with an inaccuracy of about 10
when calculating energy levels of H-like ions for allZ values
up to Z592. The same holds true for the VP corrections
the bound-electrong factor @8#.

The Uehling contributions to Fig. 2~f! is exactly zero@5#.
Neglecting again the high-order terms, we omit thus fully t
contribution of Fig. 2~f!.

The purpose of this paper is twofold. First, we check t
MP contribution todgSE-WF,red

bound and dgVER
bound that has not yet

been calculated fully covariantly. Second, we check the e
mates fordgQED

bound given earlier in Ref.@9# for ns valence
electrons in alkali-metal atoms. For both these purposes
accuracy of 10% would be rather sufficient:~1! the nonco-
variantly calculated part of the MP contribution todgQED

bound is
5-3
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relatively small and~2! other thandgQED
bound, corrections to the

bound-electrong factors in alkali-metal atoms are not know
with accuracy higher than 0.1dgQED

bound.
Therefore, we accept the Uehling approximation

dgVP
boundand do not repeat the known results for H-like ions

this approximation. For alkali-metal atoms the numerical
sults fordgVP

bound have been elaborated in Refs.@9,14#.
nd

n
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-
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III. REGULARIZATION OF THE NONDIAGONAL
SE MATRIX ELEMENT

The divergences in the SE operator can be isolated
expanding the electron propagator in powers of the nuc
Coulomb potentialV. The structure of this expansion can b
presented in the form
1

z2ĥbou~12 i0!
5

1

z2ĥfree~12 i0!
1S 1

z2ĥfree~12 i0!
D VS 1

z2ĥfree~12 i0!
D

1S 1

z2ĥfree~12 i0!
D VS 1

z2ĥbou~12 i0!
D VS 1

z2ĥfree~12 i0!
D , ~15!
er-

ll:

rac
whereĥbou andĥfree denote the Dirac operators for the bou
and the free electron, respectively.

This expansion in the Feynman graph representatio
depicted in Fig. 3 for the nondiagonal matrix element of t

electron self-energy operatorŜ. The first term of the expres
sion~15! is called usually the ZP term, the second term is
OP term, and the third term is the MP term. All divergenc
are contained in the ZP and the OP terms, the MP term
finite.

Let us write down explicitly the renormalized expressio

for the matrix elements„ŜZP
ren(EA)…An and„ŜOP

ren(EA)…An , fol-
lowing Refs.@24–26#. Then in the Feynman gauge

„ŜZP
ren~EA!…An52

a

~4p!2E d3p CA
1~pW !g0ŜR~pW ,EA!Cn~pW !,

~16!

where ŜR is the free-electron self-energy operator off t
mass shell:

ŜR~pW ,EA!5~p”2m!F21
r

12r S 11
22r

12r
ln r D G1

rm

12r

3S 12
22r

12r
ln r D1~p”2m!ln

l2

m2
. ~17!
is
e

e
s
is

Here p”5pmgm, r5r(pW ,EA)5(m22EA
21p2)/m2, andl is

the fictitious photon mass that indicates the infrared div

gence. This divergence arises in the expression forŜR(pW ,EA)
after renormalization.

The OP contribution can be expressed as

„ŜOP
ren~EA!…An52

a2Z

~4p!2E d3p d3q CA
1~pW !g0

3LR
0~pW EA ,qW EA!

1

~pW 2qW !2
Cn~qW !, ~18!

whereLR
0 is the free-electron vertex part off the mass she

LR
0~pW EA ,qW EA!5L̃R

0~pW EA ,qW EA!1 ln
l2

m2
. ~19!

The infrared divergences in„ŜZP
ren(EA)…An and „ŜOP

ren(EA)…An

contributions cancel due to the Ward identity and the Di
equation@25,26#.

The expression forL̃R
0(pW Ea ,qW Ea), which is most conve-

nient for numerical evaluations has been taken from@8,26#:
LR
0~pW E,qW E!5g0@4C̃242212me

2C024pp8~C01C111C121C23!22p2~C111C21!22p82~C121C22!#1p” p0@4~C11

1C21!#1p” p08@4~C01C111C121C23!#1p” 8p0@4~C01C111C211C23!#1p” 8p08@4~C121C22!#

2p”g0p” 8@2~C01C111C12!#2p0@4me~C012C11!#2p08@4me~C01C12!#. ~20!

HereC0 , Ci j denote the Feynman parameter integrals:
5-4
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m2C05E
0

1

dy
1

a
lnS a1b

b D , ~21!

m2C1152E
0

1

dy
y

a F12
b

a
lnS a1b

b D G , ~22!

m2C1252E
0

1

dy
12y

a F12
b

a
lnS a1b

b D G , ~23!

m2C215E
0

1

dy
y2

a F1

2
2

b

a
1S b

aD 2

lnS a1b

b D G , ~24!

m2C225E
0

1

dy
~12y!2

a F1

2
2

b

a
1S b

aD 2

lnS a1b

b D G ,
~25!

m2C235E
0

1

dy
y~12y!

a F1

2
2

b

a
1S b

aD 2

lnS a1b

b D G ,
~26!

m2C245
1

4 H 12E
0

1

dy
b

a F12
b

a
lnS a1b

b D G
2E

0

1

dy ln~a1b!J , ~27!

in relativistic units p05q05EA . Here b5yr2(12y)r8

and a1b512y(12y)k2/m2, where k25(pW 2qW )2 and r
was defined in Eq.~17! @r85(m22EA

21q2)/m2#. A differ-
ent ~equivalent! expression forLR

0 was employed in Ref.
@27#.

While the numerical calculation of the integrals in Eq
~16! and ~18! was performed by means of standard integ
tion methods, the wave functions in momentum space h
to be generated at first via Fourier transformation of
B-spline representation of the coordinate-space wave fu
tion. The integrals in Eqs.~21!–~27! were evaluated by
means of the Gaussian method with 32 integration point

IV. THE MP CONTRIBUTION TO THE NONDIAGONAL
SE MATRIX ELEMENT

The expression for the MP contribution to the nondiag
nal SE matrix element is

„ŜOP
ren~EA!…An52

a

p (
m

E
0

`

dw ReH (
n

1

Ea2Em2 iw

3E d3r 1d3r 2 fm
1~2w,rW1!CA~r 2

W !
12aW 1aW 2

r 12

3exp~2wr12!Cn~rW1!fm~w,rW2!J . ~28!

Here the sum overm is extended over the total Dirac spe
trum for the bound electron,r 125ur 1

W2r 2
W u and aW i are the
03211
.
-
ve
e
c-

-

Dirac matrices acting on the different wave functions. T
function fm(w,rW) is defined as

fm~w,rW !5(
n

„V~rW !…nm

Ea2En2 iw
Cn~rW !, ~29!

where the sum overn is the extended over the total Dira
spectrum for the free electron,Cn(rW) and En denote the
eigenfunctions and the eigenvalues for the free-elect
Dirac equation.

The triple summation over the total Dirac spectrum in E
~28! ~two summations over the free-electron spectrum a
one summation over the bound-electron spectrum! were per-
formed with the use of theB-spline approach@28#. The free-
electron spectrum was obtained from the bound-elect
spectrum withZ50. The number of grid points was 150 an
the order of splines was equal to 8.

V. EVALUATION OF dgSE-WF
bound AND d gVER

bound

We begin with the evaluation ofdgSE-WF,irr
bound by the inser-

tion of the expressions„ŜZP
ren(EA)…An , „ŜOP

ren(EA)…An and

„ŜMP
ren(EA)…An , obtained in Secs. III and IV, in Eq.~12!. Most

easily this calculation is performed by introducing the wa
function

C̃A~rW !5 (
n(EaÞEn)

„eaW AW ~rW !…An

EA2En
Cn~rW !. ~30!

Then Eq.~12! reduces to

dgSE-WF
bound 5

2

mBBz
$„Ŝ ren~EA!…ÃA1„Ŝ ren~EA!…AÃ%. ~31!

The evaluation of the matrix elements„ŜZP
ren(EA)…ÃA and

„ŜOP
ren(EA)…ÃA is performed in the momentum space. The

rect Fourier transformation of the potential~4! is not suitable
for the numerical calculations. Therefore, we followed t
procedure employed in Ref.@7#:

AW ~rW !5 lim
z→0

1

2
~rW3BW !exp$2~zr /2!2%. ~32!

Then in momentum space we have

AW ~pW !5 lim
z→0

i

p3/2z5
exp$2~p/z!2%~pW 3BW !. ~33!

For the practical calculation we used the value forz from
1024 to 1026 since the average value forp in the ion with
the nuclear chargeZ is p̄;Z. Practically this means that th
order of the magnitude of exp$2(p/z)2% is comparable with
(p3/2z5)21.

The reducible correctiondgSE-WF,red
bound that corresponds to

the irreducible correction~12! is given by
5-5
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dgSE-WF,red
bound 5H F ]

]E
Ŝ ren~E!G

E5EA

J
AA

„eaW AW ~rW !…AA .

~34!

The evaluation of the matrix element o
@(]/]E)Ŝ ren(E)#E5EA

in Eq. ~34! is again performed with
the use of the potential expansion~15! and the renormalized

expressions forŜZP
ren(E), andŜOP

ren(E), andŜMP
ren(E) @see Eqs.

~16!, ~18!, and ~28!#. Unlike the case of„Ŝ ren(EA)…, the in

frared divergences do not cancel in@(]/]E)Ŝ ren(E)#E5EA
;

the remaining infrared term reads

a

~4p!2
ln

l2

me
2
„eaW AW ~rW !…AA . ~35!

It will be canceled with the similar term in the vertex corre
tion.

The potential expansion for the vertex correction is d
picted in Fig. 4. The three terms of this expansion are
noted as VER1, VER2, and VER3. Only the VER1 part
divergent. It can be treated exactly in the same manne
„ŜOP

ren(EA)…AA where the Coulomb potentialV(pW 2qW )

5aZ/(pW 2qW )2 is replaced byeaW AW (pW ), andAW (pW ) is the vec-
tor potential of the external magnetic field Eq.~33!. The
infrared divergence that is present in Eq.~19! will be can-
celed by the infrared divergent term Eq.~35! in the SE-WF,
red contribution@7,8#.

The term VER2 is analogous to„ŜMP
ren(EA)…AA . The only

difference is that one of the functionsfm(w,rW) in the expres-
sion ~28! should be replaced by the function, depending
„eaW AW (pW )… instead of the Coulomb potentialV. The term
VER2 is finite. Now it remains to consider the finite cont
bution VER3 that will be described separately in the follo
ing section.

VI. EVALUATION OF d gVER3
bound

The correctiondgVER3
bound, although finite, is the most diffi-

cult one to calculate numerically. It contains two boun
electron propagators and two free-electron propagators
avoid computational difficulties, we shall apply the nonp
turbative finite basis set method based on the exact solu
of the Dirac equation for the atomic electron in the exter
magnetic field@29#. Accordingly, the correctiondgVER3

bound re-
sults as

FIG. 4. The potential expansion of the vertex graph. The no
tions are the same as in Figs. 1–3.
03211
-
-

as

n

-
To
-
on
l

dgVER3
bound5

„ŜMP
ren~EA ,Bz!…AA2„ŜMP

ren~EA ,0!…AA

mBBz
. ~36!

It is understood that the magnetic field is included nonp
turbatively only in the bound-electron propagator in Eq.~28!

but not in the wave functionsCA(rW). This situation is de-
picted in Fig. 5.

The Dirac equation for the atomic electron in an exter
magnetic field reads

ĤC5EC, ~37!

with

Ĥ5Ĥ01Ĥm ~38!

and

Ĥ05aW •pW 1bm1V~rW !, ~39!

Ĥm5
1

2
aW •~BW 3rW !, ~40!

whereaW andb denote the Dirac matrices,c is the speed of
light, andBW is the magnetic-field strength. The magnetic fie
is supposed to be directed along thez axis, i.e.,BW 5BeW z . For
highly charged ions the potentialV(rW) is the Coulomb po-
tential of the nucleus~pointlike or extended!. For the valence
electrons in heavy alkali-metal atoms,V(rW) also includes the
electron core potential. In Eqs.~37!–~40! atomic units are
used.

The variational solution of the Dirac equation~37! is ob-
tained according to@29# with the trial functions

Cm~rW !5(
s51

2Ñ

(
k

kmax

as
kCs

km~rW !. ~41!

The electron wave functionsCm(rW) in the magnetic field
possess cylindrical symmetry and can be expanded with
spect to a finite basis set of the functionsCs

km(rW) of spherical
symmetry. The indexk denotes the Dirac angular quantu
number,m corresponds to the total electron angular mom

-

FIG. 5. Graphical representation of the evaluation ofdgVER3
bound.

The triple solid line denotes the atomic electron in an external m
netic field. The other notations are the same as in Figs. 1–3.
5-6
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TABLE I. Self-energy corrections to the electrong factor for the ground state ofH-like ions. In the
brackets we represent the numerical results from Ref.@8#. All numbers have to be multiplied by 131026.

Z dgSE-WF,irr(ZP1OP)
bound dgSE-WF,irr(MP)

bound dgSE-WF,(red1VER1)
bound dgVER21VER3

bound dgVER3
bound dgSE

bound

1 1.39 0.4012 2320.62 0.43 0.04 2322.84
~1.39! ~0.1386! ~2320.78! ~0.53! ~2322.84!

10 66.46 12.51 2229.98 17.01 0.06 2325.96
~66.46! ~12.28! ~2229.83! ~16.97! ~2325.54!

20 193.56 42.40 2076.05 29.14 0.07 2341.15
~193.56! ~41.61! ~2073.50! ~29.20! ~2337.87!

30 356.80 81.90 1900.17 30.23 0.08 2369.10
~356.81! ~80.37! ~1899.43! ~29.98! ~2366.59!

40 550.69 128.23 1730.55 13.73 0.08 2423.20
~550.70! ~125.84! ~1729.58! ~13.27! ~2419.39!

50 774.06 181.98 1570.18 -19.39 0.09 2506.83
~774.06! ~178.60! ~1569.42! ~-17.25! ~2504.83!

60 1027.85 246.31 1423.05 -62.20 0.10 2635.0
~1027.87! ~241.80! ~1422.44! ~-58.20! ~2633.91!

70 1315.04 326.47 1289.79 -108.51 0.11 2822.7
~1315.07! ~320.83! ~1290.52! ~-105.03! ~2821.39!

80 1641.51 430.04 1175.17 -157.67 0.13 3089.0
~1641.52! ~423.97! ~1174.84! ~-151.87! ~3088.46!
e
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tum projection,as
k are the variational coefficients, and 2Ñ

defines the number of the basis-set functions.
The next step is the use of theB-spline approximation of

the functionsCs
km(rW) @29#.

The variational solution of the Dirac equation~37! with
the trial functions~41! reduces to the diagonalization of th
Hamiltonian ~38! within the finite basis set defined by Eq
~41!. As a result one obtains the full set of solutions of t
Dirac equation for the atomic electron in an external m
netic field.

Within the B-spline approach the H-like ion is enclose
inside of a spherical box of radiusRbox;50/Z a.u. The num-
ber of grid points wasNg5150 and the order of splines wa
k58. This corresponds to 2N52(Ng1k22)5312 energy
levels that represent approximately the Dirac spectrum. W
this choice the inaccuracy of the spline approximation for
1s1/2 state compared to the variational solution@29# became
less than 1028 @14#. The comparison between the results
the evaluation of Zeeman splitting by the perturbation the
~PT! and by the nonperturbative approach@29# reveals that
for field strengthsB up to 23102 T the deviation from the
PT is about 1028 while for a field strength of about 2
3104 T the deviation increases up to 1023. The latter is due
to the distortion of the atomic structure by the magnetic fie

In Ref. @14# the nonperturbative approach@29# has been
used for the evaluation of the total correctiondgQED

bound. For
H-like ions with 1<Z<90 the deviation from the accurat
PT results@8# turned out to be less than 0.1%. This calcu
tion accomplished to prove the absence of the spurious te
in the PWR approach~see the Introduction!. However, this
accuracy was not sufficient for obtaining accurate values
dgQED

bound. The reason can be traced back to the fact that
dgQED corrections are obtained via subtracting the fre
03211
-

th
e

f
y

.

-
s

r
e
-

electron QED corrections from the bound-electron QED c
rections:dgQED5dgQED

bound2dgQED
free . Taking into account only

the lowest-order QED corrections indgQED
bound, the Schwinger

value for dgQED
free has to be used. This subtraction leads

severe numerical cancellations that diminish the accurac
the net result. However, this is not the case when the n
perturbative approach is employed only for that part
dgQED

bound, namely, for thedgVER3
bound contribution, which is far

from dominating in the total result~see the sixth column o
Table I!. Thus we can expect that a level of accuracy of ab
10% is still achieved in the present evaluation ofdgQED.

VII. NUMERICAL RESULTS FOR H-LIKE IONS

The results of our calculation for the various contributio
to dgSE

bound in comparison with the corresponding results o
tained in Refs.@7,8# for H-like ions in the ground state ar
presented in Table I for differentZ values. We should also
note that the number presented in Ref.@6# are in close agree
ment with those given in Refs.@7,8#. The mean deviation of
our results from Refs.@7,8# in the total dgSE

bound value
amounts to 0.1%. This deviation originates from the use
the pointlike nucleus, while in Refs.@7,8# an extended
nuclear model was employed. Moreover, in Refs.@7,8# a
larger number of the partial-waves in the evaluation
dgSE-WF,irr (MP)

bound has been employed. However, these dev
tions are well within the limit of about 10% inaccurac
which we have set.

VIII. RADIATIVE CORRECTIONS
TO THE BOUND-ELECTRON g FACTORS

FOR ns ELECTRONS IN ALKALI-METAL ATOMS

The electrong factor for the number ofns heavy atomic
systems and in particular for alkali-metal atoms have b
5-7
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TABLE II. QED corrections to the electrong factor for thens valence electron in alkali metal atoms.

Z Atom State dgns
VP dgns

SE,ver[1]1WF,red dgns
SE dgQED

55 Cs 6s 23.031027 2.2921431023 2.3233331023 2.931027

56 Ba1 6s 25.5531027 2.2917431023 2.3239731023 5.931027

87 Fr 7s 25.7031027 2.29159131023 2.3241131023 7.231027
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accurately measured, showing a clear deviation from
free-electron valuegfree given by Eq.~6!. Note thatdgQED

free

5gfree22 differs from the Schwinger value Eq.~8! since it
includes higher-order QED terms. A large number of theo
ical calculations ofdg5gbound2gfree also exists for alkali-
metal atoms@see Ref.@9##. However, the deviationdg in
light and in heavy atoms has a different origin. In light atom
the main contribution is due to the relativistic correcti
dgrel @see Eq.~9!#. For a recent status of this correction, s
@30#. In heavy atoms the core-valence correlation correct
dgcorr dominates@31–35#. The Breit interaction between th
valence and core electrons also leads to an observable
tribution dgBreit @31–35#.

In most of the theoretical studies for the alkali-metal
oms it has been assumed that the correctiondgQED is negli-
gible, i.e., the QED correction to theg factor is the same a
for the free electron. However, recent calculations for hyd
genlike ions@7#, which are also confirmed in the prese
paper, show that the deviation of the bound-state QED
rectiondgQED

bound from the free-electron valuedgQED
free can be as

large as 50% for high-Z values.
In Ref. @9# it was supposed that the correctiondgQED can

be observable for heavy alkali-metal atoms. In this paper
confirm this conclusion, although the accurate value
dgQED has decreased substantially compared to the estim
provided in Ref.@9#.

The main problem with the estimates in Ref.@9# has been
the comparison of the calculations of QED corrections
the ns electron in the alkali-metal atoms with the same c
rections for the 1s electron in HCI. In this way, part of the
QED corrections (dgSE-WF,red

bound 1dgVER
bound) has been estimated

In this paper all calculations are performed directly follo
ing the lines described in Secs. III–VII. The evaluation of
the contributions is performed in the one-particle approxim
tion. Approximate Dirac-Hartree-Fock~DHF! wave func-
03211
e

t-

s

n

on-
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r-

e
r
tes

r
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l
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tions are employed. These wave functions are obtained
local potential field that is fitted to the DHF potential as
has been described in Ref.@9#.

For the summation over the Dirac spectrum we again u
the B-spline approach with 150 grid points and the order
spline being equal to 8. The number of the partial-waves
the MP term varied around 10. Note that the size of the alk
metal atoms is much larger than the size of HCI. Therefo
we could use a radial box of the sizeRbox;100 a.u. Since
the magnetic field grows rapidly with the size of the box w
had to assume relatively small values for the magnetic fi
(10 T<Bz<100 T) for the evaluation ofdgVER3

bound. This leads
to the strong cancellations in Eq.~36! but does not affect
seriously the accuracy of the total result due to the smalln
of dgVER3

bound contribution.
The results of the calculations are given in Table II. In t

fourth column the values ofdgVP
bound are shown. In the fifth

column we present the sum of the dominant contributio
dgSE-WF,red

bound 1dgVER1
bound. The total value ofdgSE

bound is given in
the sixth column and the value fordgQED5dgQED

bound2dgSch
free is

given in the seventh column of Table II. The last val
should be compared with the experimental data.

In Table III we collect the different contributions t
dgbound and compared them with experimental data
alkali-metal atoms. Heredgtot denotes the sum of thedgrel ,
dgcorr, anddgBreit . The correctiondgQED calculated in this
work appears to be an order of magnitude smaller than
estimates given for Cs, Ba1, and Fr in Ref.@9#. Still dgQED
is not negligible in case of Ba1, where the most accurat
experimental and theoretical data are known. Note that
theoretical error bars in Ref.@35# were introduced mainly to
incorporate the possible QED corrections. Then the inclus
of dgQED leads to a better agreement with the experimen
value.
1
TABLE III. Different contributions for alkali-metal atoms. All numbers have to be multiplied by
31026.

Z Atom dgrel dgcorr dgBreit dgtot dgexp dgQED

55 Cs 250.00@33# 366.00@33# 1.00 @33# 317.00@33#

223.00@32# 284.00@32# 27.00 @32# 254.00@32#

228.10@9# 223.00@36# 0.29

56 Ba1 255.39@35# 27.08 @35# 171.863.0 @35#

259.71@9# 172.6260.03 @4# 0.59

87 Fr 233.00@32# 3370.00@32# 210.00@32# 3327.00@32#

240.01@9# 2650.680.00@37# 0.72
5-8
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