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Experimental and theoretical investigation of the lateral Casimir force
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The lateral Casimir force acting between a sinusoidally corrugated gold plate and sphere was calculated and
measured. The experimental setup was based on the atomic force microscope specially adapted for the mea-
surement of the lateral Casimir force. The measured force oscillates sinusoidally as a function of the phase
difference between the two corrugations. Both systematic and random errors are analyzed and a lateral force
amplitude of 3.X 10" '3 N was measured at a separation distance of 221 nm with a resulting relative error 24%
at a 95% confidence probability. The dependence of the measured lateral force amplitude on separation was
investigated and shown to be consistent with the inverse fourth power distance dependence. The complete
theory of the lateral Casimir force is presented including finite conductivity and roughness corrections. The
obtained theoretical dependence was analyzed as a function of surface separation, corrugation amplitudes,
phase difference, and plasma wavelength of a metal. The theory was compared with the experimental data and
shown to be in good agreement. The constraints on hypothetical Yukawa-type interactions following from the
measurements of the lateral Casimir force are calculated. The possible applications of the lateral vacuum forces
to nanotechnology are discussed.
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[. INTRODUCTION corrections were investigated in the case of real metals which
are significant at separations larger thaprt. Also, the
It is well known that the existence of zero-point electro- combined effect of different corrections was examiiied a
magnetic oscillations leads to the Casimir force acting norrecent review of the subject see REZ5]).
mal to neutral and parallel metal plates placed in vac{iin There is an important need for further research on the
This is a purely quantum effect caused by the alteration ofCasimir effect motivated by the fact that it is finding new
the zero-point oscillation spectrum of a quantized electroapplications in both fundamental science and engineering.
magnetic field by the metallic boundari¢see the mono- Thus, in the framework of modern unified theories, involving
graphs[2—4] and references therginRecently, the normal compact extra dimensions and light elementary particles,
Casimir force acting perpendicular to the two surfaces hagrecision measurements of the Casimir force have been used
attracted much experimental and theoretical attention. It wato set limits on the presence of hypothetical forf26—31.
measured between a flat plate and a spherical lens by meamschnologically, both static and dynamic micromachines ac-
of a torsion penduluni5] and between two parallel plates tuated by the normal Casimir force have recently been dem-
using a tunneling electromechanical transduf@l. The onstrated32,33. It was also shown that the adhesion and
highest precision was achieved in the experimenatal researdahicking of moving parts in micromachines is due to the Ca-
of the normal Casimir force between a sphere and a flat platsimir effect[34].
by means of the atomic force microsco@M) [7—10]. In Similar to the normal Casimir force, the lateral Casimir
the case of the plate with periodic uniaxial sinusoidal corruforce may exist when the bodies are asymmetrically posi-
gations and sphere the nontrivial boundary dependence dibned or their properties are anisotropic. The existence of
the normal Casimir force was demonstraféd]. These ex- the lateral Casimir force opens new opportunities for the ap-
perimental achievements have stimulated an extensive theplication of the Casimir force in micromachines. The lateral
retical study of various corrections to the Casimir force. HereCasimir force also originates from the modification of elec-
the finite conductivity corrections to the normal Casimir tromagnetic zero-point oscillations by material boundaries.
force due to the boundary metal were investigated in detailThe possibility of a lateral Casimir force for anisotropic
[12—-14. The other influential factor that may contribute con- boundaries was investigated theoretically and a harmonic de-
siderably to the normal Casimir force at small separations ipendence on a corresponding angle was predi@e5,34.
surface roughness,15-17. In Refs.[18-24 the thermal For two aligned corrugated plates made of ideal metal the
lateral Casimir force was discussed [i87—-39 and a har-
monic dependence of the result on a phase shift between
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force was reported and the theoretical expression for it was X
obtained in the case of real metals of finite conductivity. This

force acts between an aligned corrugated sphere and a plate 3
in a direction tangential to the corrugated surfaces. The pre- ‘ﬁ’
dicted sinusoidal dependence of the lateral force on the phase A)
shift between corrugations was confirmed.

In this paper we present the detailed experimental and A 9 -
theoretical investigation of the lateral Casimir force acting I
between a corrugated sphere situated near a corrugated plate -
with aligned sinusoidal corrugations. The theoretical depen-
dence for the lateral force is analyzed and the optimum val- i \ K
ues of the parameters leading to the maximum values of the e z »
lateral force are found. It is shown that even a small mis- : :
alignment of the corrugation axes will quench the lateral FiG. 1. Configuration of two parallel plates with uniaxial sinu-
Casimir force to zero. The effect of surface roughness isoidal corrugations of equal periods.
estimated and shown to be insignificant. Experimentally, new
measurement data are presented and the calibration progesults applicable at the separatia¥s\ , with an error of
dures by means of the normal and lateral electric forces arghout 1% to 2%, that are required below, we use the pertur-
discussed. The systematic and random errors are analyzedtion expansion up to the fourth order obtainedlif] (see
and the agreement between theory and experiment is comiso[24,25,47):
firmed with good precision. The lateral hypothetical force
that may originate from extra dimensions or from exchange mhe
of light elementary particles is then calculated and the con- Epp(2)=— 72023{1
straints on its parameters are obtained.

The paper is organized as follows. In Sec. Il the theory iSynere the coefficients are
developed describing the lateral Casimir force for the con-

v

+§ c (ﬂ” 3)
M2 ’

n=1

figuration of a metallized sphere and a plate with the uniaxial 320 2
corrugations taking into account the finite conductivity and C1=—4, c;=72/5, c3=— < 17519
roughness corrections. In Sec. lll the experimental setup is
described. Section IV contains the measurement scheme in- 2

; S i 400 1637
cluding calibration procedures. In Sec. V the obtained data =3 |1~ =355]- (4)

are presented together with the error analyses and compari-
son of the experimental results to the theory. In Sec. VI thq:

new constraints on the parameters of hvpothetical interac-or flat plates at rest, the lateral Casimir force projection is
tions are found. Section \E)II contains concI):Jpsions and discus"—’lbsem' If, however, the rotational symmetry against the axis
' perpendicular to the plates is broken than the lateral projec-

sion. tion of the Casimir force may appeg8,35—39. As the first
example, let us consider plates covered by the longitudinal
IIl. CALCULATION OF THE LATERAL CASIMIR FORCE uniaxial corrugations of equal periods described by the func-
BETWEEN SURFACES WITH UNIAXIAL tions
CORRUGATIONS

It is well known that the regularized zero-point energy per 2= AgSIN2Zmx/A),

unit area for two parallel plates of infinite conductivity a

distancez apart is given byf1-4,25 Zp=2+Agsin(2mx/A+ @), ©)

where z is the mean separation distance between the two

EQ(z)=— 77_2 @ (1) surfacesA is the corrugation periody; , are the corrugation
pp 720 283 amplitudes, andb=2mXq/A is the phase shiftsee Fig. 1L
The normal separation distance between two opposite
This results in the normal Casimir force per unit area points of the corrugated surfaces given by Eg).is
IEQ)(2) 72 he Z,—2,=2+A,siN2mxXIA+ @) —A;sin(2mx/A).  (6)
F(@=-——=— 55 2
9z 240 4

By simple transformations it can be identically represented

which acts perpendicular to the surface of the plates.
As real metals have only a finite conductivity, correspond- Z,—z,=2z+bcog2mX/A — a), )
ing corrections to Eqs(l) and (2) can be incorporated in
terms of the plasma wavelengih, . This was first done in  where the following notations are introduced
[43—-45 up to the first perturbation order and [i46] up to y i
the second order of a small parametgr'(27z). To get the b=b(¢)=(A1+A5—2A1A,C08¢)"",
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tana=(A,cose—A;)/(A,sine). (8) By integrating the normal forc€l2) with respect to the
surface separation, the energy of a corrugated sphere and a
The representation of the separation distance in the form gflate is obtained. Then, differentiating with respect to the
Egs.(7) and(8) is convenient for the calculation of the Ca- phase shift, one finds the lateral Casimir force
simir energy per unit area between the corrugated plates. It
can be found by additive summation of the results obtained
for plane plateg$see Eq(3)]. In doing so we assume that all
separation distances,—z; given by Eq.(7) are equally
probable. This approximation has been successfully applieBubstituting Eqs(10)—(12) into Eq. (13) we finally obtain
in many calculations of the Casimir effect in configurationsafter integration and differentiation
where the variables are not separable and the exact Green'’s
function of the wave equation cannot be found explicitly lat mRAC AjA.sing Ap | "
(see, e.0}2,3,8,11,15,16,2p. As was shown in Ref39] the F¥(z0)= 1207 A 5 2 Caxl 57
- : ; (1-5?) mz
additive summation works well for corrugated plates with a (14)
large corrugation period, e.g., with>z, which is the case

in our experiment(see Sec. Il As a result, the Casimir \where 8 was defined after Eq10) and the expansion coef-

lat :_27T J - nor
Fze)=— % £ dyF™'(y,¢). (13
z

energy density between corrugated plates is given by ficients are given by

1A 2 2

ECOT(Z ()D) Af Epp(ZZ_Zl)Xm (9) Clx:H—IBCL CZX:MCZ, (15)
° Te-p T T 121872
wherez,— z, is defined by Eqs.7) and(8). Substituting Egs. 5 .
(7) and (8) into Eq. (3) and integrating, one obtains c 8+128%+B* c _1(8+20B°+58 )c
33X 31 4X 4 -
e a1 g7 ©241-pY*
aa
Epp (Z.¢)=~ 72073 zfo ¢ (2772) Xa(B), (10 The above Eqs(14) and(15) give us the expression for

the lateral Casimir force for the configuration of a corrugated
where=b(¢)/z, c, are defined in Eq4), and the follow- s_phere and a plate including the finite conductivity correc-
ing notations are used tions. There are also corrections to E(} and(15) due to

nonzero temperature. However, at separations smaller than

+ B2 2+3p2 0.5 um considered in Secs. IlI-V they contribute much less
Xo(B)=————, X4(B)= , than 19[18—-25 and thereby can be neglected. Another fac-
2(1- %)% 2(1-p3)™ tor that could contribute to the lateral Casimir force is sur-
face roughness. It was shown to lead to rather large contri-
8+24p2+3p% 8+40p°+ 158* butions to the normal Casimir force at separations below
Xz(B)ZW, (B)= g gz 1 um [15-17,25. Because of this, the effect of surface
(1=89 (1=5%) roughness on the lateral Casimir force should be considered
5 4 5 in more detalil. _
Xy(B) = 16+1203°+ 905"+ 58 1) There are two kinds of surface roughness on the metal
4 16(1— p2)132 ' surfaces: infrequently distributed tall crystals and short-scale

stochastic distortions. The infrequent tall crystals practically
Experimentally it is hard to maintain two parallel plates uni-do not influence the lateral Casimir force as they are situated
formly separated by distances less than a micron. So one #onperiodically and lead to zero contribution after the aver-
the plates is usually replaced by a metallized sphere or &ging over the corrugation period. The situation here is the
spherical lens of large radiud>z [5,7-11,32,33 In the = same as for two corrugated plates with different corrugation
experiments described beldisee Secs. Ill-Ya sphere im-  periods. In Ref[15] it was shown that if the corrugation
printed with sinusoidal corrugations was used instead of ongeriods are differenfand larger than a separation distaaye
of the corrugated plates. For such a configuration the normdhe Casimir energy does not depend on a lateral shift of one
Casimir force can be calculated approximately by the use oplate relative to the other one. As a result, the derivative of

proximity force theoren{PFT) [48] as the energy with respect to the phase shift is equal to zero and
the lateral force is absent.
F'°(z,¢)=27RE} (Z,¢), (12 To take stochastic roughness into account we can change

F'al(z,¢) for F'3(z ,¢) with
where the energy per unit area for the configuration of two
corrugated plates is given by the right-hand side of &).

For our experimental parameters, the two conditiarsR
and A<R are fulfilled. As a result the error introduced by
the PFT in the configuration under consideration is of ordewherex; describes the random change of the separation dis-
0.2%[49,50, which is acceptable for the goals of this paper.tance due to the stochastic roughness with an amplitude

z=z+x;, (x)=0, (x)-—Ait, (16)
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and the angle brackets denote the averaging over the en- Flat/Flat
. . . . max
semble of all particular realizations of the corresponding sto-

chastic function. It is important to note thatenters Eq(14) 1 L AN
directly as a replacement far and indirectly through the 0.8 S A
. . /
functions of 82 that should now be changed gf=b?/(z / N\
+x;)2. The lateral Casimir force with account of stochastic 0.6 ,/ \
roughness is defined as / \\
0.4 ! N\
F'(z.0)=(F%(z¢)). (17)
/
/, \
Performing the computations up to the second order in pow- 0.2 // \\
ers of Ag/z the following result is obtained:

m*Rhc AjA,Sing
12024 A (1_B2)5/2 FIG. 2. The lateral Casimir force between the corrugated plate
and sphere normalized for its maximum value as a function of a
phase shiffsolid line) is compared to a graph of sittdashed ling

Flat(z )

2_ 24 A2
x[1+ 5(1+982—38% A%
41-p22 2

of corrugations on a sphere is smaller than on the plate
is seen from Fig. 2, the maximum of the lateral Casimir force
(18)  is displaced from the position of the maximum of sine by
approximately 0.21 rad.
The values of the lateral force given by H44) depend
Here the coefficientsy, are only slightly different from o the corrugation amplitudegboth in an explicit form and

those given by Eq(15) (which does not include stochastic through the parametds). In Fig. 3 the graph of 3 as a

max
roughness For example, fon=1, 2 their expressions are function of A, is plotted forA;=59 nm. For each value of

A, the distance z=z3+A;+A, is chosen wherez,

n

1+2 el 5=

27TZ

2]
St=cy, 1+ 1547 A , =154 nm which is in accordance with the experimental
e 2(4+ B%)(1- B> 22 value of the separation on contacee Secs. IlI-Y It is
) seen thaF |2, increases with an increase & and takes the
. 3B2(11+38%) Agt' largest valueF 2 = 1.2¢107** N whenA,=A,.
Cox=Cox| 1+ 5 > o |- (19 The effects of the finite conductivity of the boundary
2(4+p9(1-p%) 27| metal make a significant contribution to the value of the

lateral Casimir force from Eq14). This is illustrated by Fig.
4, where the correction coefficient= F'a/F{2" is plotted as
a function of separation distance, dﬁ@t is computed for an
ideal metal(i.e., with A ,=0). Here the experimental values

If we take into consideration the typical values £f<0.1
andAg~10 nm, Eq.(18) can be approximately rewritten in
a more simple form,

5(1+9482—38%4) A2 of the corrugation amplitudes were chosen, i.é\;
F(z,0)~F'3(z,¢)| 1 (’8—22’8)—? , =59 nm, A,=8 nm, and a phase shit= /2 (see Secs.
4(1-p°) z [11-V). It should be noted that the value of the correction

(200 factor » depends only slightly on the phase shift. The value

From Eqg. (20) one can conclude that at separations
>200 nm used in the experiment the influence of stochastic 101‘9’1*—’,fl§’;,tx (N)
roughness on the lateral force is less than 1% and can be 12
neglected. Thus Eq$14) and(15) give us a reliable theoret-
ical expression for the lateral Casimir force including all nec- 10
essary corrections.

The most interesting characteristic feature of Edf) is
the harmonic dependence of the lateral Casimir force on a
phase shift between the corrugations of both bodies. How-
ever, the actual dependencefdf! on ¢ is not exactly sinu-
soidal becausg also depends orp which leads to some

deviation from the exact sine. To illustrate this, in Fig. 2 the 4
latylat o :
dependenc_e d¥ /F hax ON @ at a separatiog=272 nm is 0 20 33 20 5 0
plotted (solid ling). In the same figure the graph of sins Ay (nm)
shown by a dashed line. To make deviations from a perfect
sine larger, the case of equal amplitudes=A,=59 nm is FIG. 3. The maximum value of the lateral Casimir force as a

consideredin the experiment of Secs. IlI-V the amplitude function of a corrugation amplitude on a sphere.
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FIG. 4. Correction coefficient due to the effects of finite con-
ductivity on the lateral Casimir force between the corrugated plate
and sphere made of ideal metals as a function of surface separation. x and z piezo electric tubes

FIG. 5. Schematic of experimental setup. For clarity, the sizes of
of the plasma wavelength, =136 nm for Au was usefll3].  the corrugations have been exaggerated. Epéezo andz-piezo
It is seen from the figure that in the separation range Ofyre independent.
interest here the correction coefficient changes between 0.6 o
and 0.7. Because of this, it would be incorrect to use a theor{fom the plate are imprinted on the gold coated sphere by
which does not include the effect of the finite conductivity Pressure. This imprinting procedure required special adapta-
corrections for interpretation of the experimental data on thdion of the cantilever which is described next.
lateral Casimir force. A polystyrene sphere was gttached to the tip of a AR
At the end of this section we briefly discuss the demand©ng cantilever with conductive silver epoxy. After this a

that the corrugations be uniaxial. This demand is of crucial~0 #M thick, 100-20Qum wide, and 0.5 mm long piece

importance for the observation of the lateral Casimir force °f freshly cleaved mica was attached to the bottom of the
In fact, let us assume for a moment that there is some nonsiphere with silver epoxy. Then a second polystyrene sphere
’ of 2R=200+4 um diameter was mounted on the tip of

hift o al h is b h odical . ¢ fnica with the same silver epoxy. This second sphere is im-
shiit ¢ along thex axis becomes the periodical functionyot ;a4 with the corrugations and will interact with the cor-

with a periodA = Acotd. In the limit of one periode(y)  rygated plate. The sphere and the plates are mounted as
depends ory linearly, taking on values from 0 to2 To  ghown in Fig. 5. Let us first note that the laser beam for the
obtain the resulting lateral force, the expressidt[z,¢(y)]  detection of the cantilever deflection is reflected off its tip.
should be averaged over the peridg which leads to a zero  The addition of the first sphere and mica plate is needed to
value. For real bodies of finite size the lateral Casimir forceisolate the laser reflection spot on the cantilever tip from the
will exist only for small deviations of the corrugation axes interaction region between the two corrugated surfaces. This
from parallelity such thatAcotd is much larger than the isolation is necessary to reduce the effect of scattered light
smallest body. In our case the smallest body is theut®- from the top and sides of the corrugated plate. Second, the
section of the sphere covered with corrugations. That is whyprocedure developed for the imprinting of the corrugations
in order to observe the lateral Casimir force one must makéequires access to interior regions of the corrugated plate, far

sure that the angle between the corrugation axes is boundéyvay from the edges. Third, the addition of the mica plate
by the conditiond<0.1 rad. leads also to an effective increase in the detection sensitivity

due to the increase in the lever arm. The cantilefveith
mica plate and sphergsorrugated plate, and a smooth flat
lll. EXPERIMENTAL SETUP plate (polished sapphidewere then coated with about 400
nm of gold in a thermal evaporator. A small region close to
A schematic diagram of the experiment is shown in Fig. 5.one edge of the corrugated plate is also coated with 100 nm
These experiments are performed using a standard AFM ataf aluminum. As Al exhibits more hardness than gold, this
pressure below 50 mTorr and at room temperature. The exegion is used to imprint the corrugations from the plate onto
periment requires two sinusoidally corrugated surfaces withhe gold coated sphere.
their respective axes perfectly parallel. Misalignment by 3° The cantilever(with mica plate and sphergscorrugated
of the corrugation axes can lead to loss of any lateral forcglate, and a smooth flat plate are then mounted as shown in
due to the crossover of the axes as is described in Sec. II. Rig. 5. Now, the imprinting of the corrugations on the sphere
plastic diffraction grating with uniaxial sinusoidal corruga- is done. The sphere is moved over to the region of the cor-
tions of periodA=1.2 um and an amplitude of 90 nm was rugated plate coated with Al. The other side of the sphere is
used as the corrugated plate. In order to obtain perfect oriemnechanically supported and the corrugations are imprinted
tation and phase between the two corrugated surfaces a sp the gold coating of the surface by pressure using the pie-
cial in situ procedure was developed, where the corrugationgos shown. A scanning electron micrograph of the imprint
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pendent movement in thedirection is necessary for control
of the surface separation between the corrugated sphere and
plate. The corrugated plate is mounted vertically in order to
increase the sensitivity for detection of lateral forces and
suppress the effect of the normal Casimir force on the canti-
lever. Thus a lateral force tangential to the corrugated sphere
surface would result in the usual bending of the cantilever in
response to the force. Whereas a force acting normal to the
sphere and corrugated pldfeom the normal Casimir forge
would lead to the torsional deflectigrotation of the canti-
lever. The torsional spring constant of this cantilekgy; is
much greater than the bending spring conskagf,, making
it much more sensitive to detecting the lateral Casimir force,
while simultaneously suppressing the effect of the normal
FIG. 6. Scanning electron micrograph of the imprint of the cor- Casimir force.
rugations on the sphere.

Magn WD ——— &m
12088x 105

. . IV. MEASUREMENT SCHEME
on the sphere, taken after the completion of the experiment,

is shown in Fig. 6. An AFM scan of the imprinted corruga-  The calibration of the cantileveik(,, andky., and the
tions is shown in Fig. 7. The amplitude of the imprinted measurement of the residual potentials between the sphere
corrugations is measured from the AFM scan toAe=8 and plate is done by electrostatic mediis 11]. These cali-

=1 nm. The amplitude of the corrugations on the metallizedorations are done after the measurement of the lateral Ca-
plate was also measured, using the AFM,=59+7 nm.  simir forces, but is reported in this section for the benefit of
These AFM measurements were made after completion of affontinuity. Here, in order to measukg,,, the sphere is kept

the lateral force experiments which are reported below. Aftegrounded and various voltages are applied to the corrugated
this imprinting, the mechanical supports are removed and thplate. The normal electrostatic force between the corrugated
sphere is translated over to the gold coated area of the platephere and plate is given by

Extreme care to preserve the parallel orientation of the two

corrugations is necessary during this translation, as any mis- (V1— V)2
allignment leads to the destruction of any lateral Casimir F§'(z,qo)=—7rRso - , (21
force. This is done by tracking the orientation of the cantile- V-8

ver during this translation by reflecting two optical beams
from the edges of the cantilever holder. The reflected beanmheree is the permittivity of free spacé/, are the voltages
positions allow measurement of the cantilever orientation t@pplied on the corrugated plate avig is the residual poten-
an accuracy of X102 rad. tial on the grounded sphere. The approximate expression
The corrugated plate is mounted on two piezoelectriq21) was obtained by exactly the same procedure agE.
tubes that allow independent movement of the plate in thdéor the normal Casimir forc¢instead of Eq.(3), we have
vertical and the horizontal directions with the help of astarted here from the energy per unit area of a capacitor
X-piezo and &-piezo, respectively. Movement in tixedirec-  formed by two large, flat conducting sheets
tion with the x-piezo is necessary to achieve lateral phase If V, is applied to the corrugated plate, the electrostatic
shift ¢ between the corrugated sphere and the plate. Indderce acting normal to the spherical surface leads to the tor-
sional rotation of the cantilever. By applying different we
can solve for the torsional spring constak{, =0.138
+0.005 N/m and the residual voltage between the sphere
and the corrugated plad,= —0.135 V. Next the measure-
ment of k., is done. The sphere is moved away from the
vertical corrugated plate and brought closer to the smooth
plate which is positioned horizontally at the bottom as shown
in Fig. 5. Again different voltage¥, are applied to the bot-
tom plate[here in Eq(21) A;=A,= =0 due to the smooth
surface$ and the electrostatic force leads to the normal
bending of the cantilever. We again solve for the normal
spring constanky.,=0.0052t 0.0001 N/m and the residual
voltage between the sphere and the smooth plate. Note that
Kior>Kpen is required for isolation and detection of the role
of the lateral Casimir force. The piezoextension in xhai-
rection with applied voltage was calibrated by optical inter-
FIG. 7. Atomic force microscope scan of the imprinted corru- ferometry[51]. The horizontal displacement of the piezo in
gations on the sphere. the z direction was calibrated with AFM standards.
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Similar to the lateral Casimir force, there also exists a
lateral electrostatic force which arises from the presence of
an applied or residual electrostatic potential difference be-
tween the two corrugated surfaces. It is given by

AiA;
AZ?

Fel(z,¢)=2m?Reo(V,—Vp)?

Lateral force (10 “°N)

sing

XJ1—3%1+J1—B%'

1 L L 1 " 1 " 1 " 1
(22) -500 0 500 1000 1500 2000
Lateral displacement of corrugated plate (nm)

FIG. 8. The average measured sum of the electric and Casimir

This expression is obtained from E@1) by integration with  |ateral forces as a function of the lateral displacement of the corru-
respect toz (in order to find the electric energy in configu- gated plate is shown as solid squares. The solid line is the best fit
ration of a corrugated plate and a corrugated sphanel  sine curve to the data leading to a lateral force amplitude of 16.2
differentiation with respect txy=¢@A/27. Both Egs.(21) X107 N.
and (22) are valid with an error smaller than 1% for the
experimental parameters under consideration. two corrugated surfaces. This separation distance is used to

In contrast with the lateral Casimir force, the lateral elec-subtract the lateral Casimir force from the measured total
trostatic force is dependent on the inverse second power d@érce to obtain the lateral electrostatic force. The error in the
the separation distance between the corrugated surfaces separation distance corresponds to the error in the ampli-
(the dependence @8 on z is smal). One can measure the tude of the electrostatic force resulting from the 16 nm un-
lateral electrostatic force in order to distinguish its differ- certainty inx. This uncertainty isx was determined experi-
ences from the lateral Casimir force. The measurement of thmentally by measuring the random variations in the phase of
lateral electrostatic force also will help in providing an ap-the peaks of the sinusoidal oscillations from 30 scans. Note
proximate measure of the separation distance between thkat this random uncertainty in the phase corresponding to 16
two corrugated surfaces on contact. Note that because of then is much smaller than the period of corrugations (
roughness of the metal surfaces and the imprinting procedure 1.2 um). The separation between the sphere and corru-
used, the contact separation is much greater than the digated plate is changed in steps of 24 nm and the measure-
tances between the means of the corrugations. ment is repeated. This was repeated until the sphere and the

Two different voltage differences between the corrugatectorrugated plate come in contact. The surface separation on
plate and sphere were used in the measurements of the latetaintact of the two corrugated surfaces is 2@8 nm (the
electrostatic force. In the first case, we utilized the residualarge uncertainty is the total of the uncertainty of 24 nm
voltage differenceV,=0.135 V withV,;=0 V. The sphere resulting from the step size, the 5 nm systematic uncertainty
was moved next to the corrugated plate and the separatidrom the measurement of the force amplitude, and the 9 nm
distance between the two surfaces was kept fixed. To meaandom error from the force measurement at different sepa-
sure the lateral electrostatic foré€' as a function of the ration distances
phasep, the corrugated plate is moved in tkelirection by In the second case a different voltage=—0.055V is
x-piezo in average steps of 0.46 niadue to the small non- applied to the corrugated plat¥{= —0.135 V) and the lat-
linear response of the piezo, the exact step size will differ byeral electrostatic force measurement is repeated. Again the
a few percent depending on the applied voltfsH) and the  distance between the corrugated surfaces is changed in steps
lateral electrostatic force is measured at each step. The coof 24 nm, starting at some separation, until the two surfaces
rugated plate could have been mounted with a small butome into contact. The separation between the two corru-
nonzero tilt away from the verticak(axis). Such tilts would  gated surfaces on contact was 368 nm (in this case a 4
lead to changes in surface separations during the above trangm random error from the force measurement at different
lations of the plate in the& direction. In order to rectify this, separations was presgnfThus the average separation on
a small correction voltage is applied to thpiezo, synchro- contact from the two applied voltages was 888 nm.
nous with the lateral translation in thxalirection, to keep the Note that the lateral electrostatic force measurement was
surface separation distance between the corrugated sphetene a few hours after the measurement of the lateral Ca-
and plate constant. The lateral force measurement is repeateiir force (described beloyvand thus this separation dis-
60 times and the average lateral force at each step is réance on contact obtained from the lateral electrostatic force
corded. The measured force in this case is actually the suserves as only a constraint on the separation distances
of the lateral Casimir force and the lateral electrostatic forcebetween the corrugated surfaces to be expected for the
The observed lateral force is shown in Fig. 8. A sine curve isneasurement of the lateral Casimir force. In Fig. 9, a
best fit to the observed data and an amplitude of 16.20g,4l0g;, plot of the measured lateral electrostatic force
X 10 ¥ N is obtained for the total force. This amplitude amplitude as a function of the separation distance is done for
when fit to the sum of the two lateral force€asimir the two applied voltages as solid squares and triangles, re-
+electrostati¢ resulting from Eq.(14) and from Eq.(22) spectively. The slopes of the best straight fit lifesing the
leads to a separation distancezsf 2254 nm between the least-squares procedur® the two sets of measured lateral
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FIG. 9. The logglog;q plot of the measured lateral electrostatic
force amplitude as a function of the surface separation distance is
shown as solid squares.
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electrostatic forces are 280.4 and 2.6:0.3, respectively, P 9 P (hm)

leading to an average slope of 2.8.4. Thus the measured  FIG. 10. The average measured lateral Casimir force as a func-

slope is consistent with the second power distance depetion of the lateral displacement of the corrugated plate is shown as

dence expected from E¢(R2). solid squares. The solid line is the best fit sine curve to the data
leading to a lateral force amplitude of X240 ** N.

V. OBTAINED DATA, ERROR ANALYSES, A/D board used in the data acquisition. This systematic error
AND COMPARISON WITH THEORY is A®=0.33x10 '3 N. Using the value of Student coeffi-

cientty g5 65—=2 One obtains for the half-width of the confi-

In this section we discuss the results obtained with theélence interval, or for the total absolute errdra=A%
measurement of the lateral Casimir force. The measurement20a=0.77x10 3N with a 95% confidence probability.
procedures described above with the measurement of the lathe resulting precision of the amplitude measurement at the
eral electrostatic force are used. The important difference i§l0sest point is around 24%. .
that for the measurement of the lateral Casimir force, the 1he above lateral Casimir force measurement is repeated
residual potential difference between the corrugated spher‘(ﬁr other surface separations. First, the separation between
and plate is compensated by application of voltegeo the e Sphere and corrugated plate is increased by 12 nm with
corrugated plate. As before the sphere is brought close to thtge ZpIezo and.the measurement is fepea}fgd- The average
corrugated plate and the separation distance is kept fixed. .Izgeasured amplltude of lateral fori:e IS 260 N Bgsed
measure the lateral Casimir foré€2 as a function of the O Eq. (14) this corresponds t@=233"2 nm consistent

h f . here-plat tion. th ¢ ﬁgith the 12 nm increqse_ in the _se_paration distan(_:e. Thus the
pnasegp, fora given spnere-piate separation, the Corugateq, o q . req |ateral Casimir force is in agreement with the com-
plate is moved in the direction in average steps of 0.46 "M 10 theory taking into account the conductivity corrections.
using thex-piezo and the lateral Casimir force is measured atr,g separation distance is increased in 12 nm steps and the

each step. As discussed above, correction voltages are agera| Casimir force is measured for two more surface sepa-
plied to thez-piezo synchronous with the movement in the  rations, The amplitudes of the measured forces<aa 13

direction to correct for any tilts from the mounting of the gnd 1.7 10~ 23 N were found to be consistent with the cor-
corrugated plate away from the verticad &xis). This is re-  responding separation distances. In Fig. 11 agtag;, plot
peated 60 times and the average lateral Casimir force at eael the amplitudes of the measured lateral force as a function
step is recorded. The average lateral Casimir force measured the various separation distances is shown as solid squares.
is shown as the solid squares in Fig. 10. The scattered lasétere the separation distance of 221 nm determined from Fig.
light leads to a small linear drift. Thus a correspondingl10 is used for the closest point. The remainder of the points
straight line has been subtracted from the acquired data. Thae fixed by the 12 nm step increase in the separation
sinusoidal oscillations in the lateral Casimir force expectedlistance. A linear fit to the data yields a slope of 402

from Eg.(14) as a function of the phase difference betweenconsistent with the inverse fourth powedependence of the
the two corrugations are clearly observed. The periodicity ofateral force expected from Eq14). Note that the correc-

the lateral Casimir force oscillation is also in agreement withtions to this fourth power dependence are rather small given
the corrugation period of the plate. A sine curve fit to thethat the valugd<<0.3. Thus the lateral Casimir force demon-
observed data is shown as the solid line and corresponds &jrates a very different dependence on separation distance
an amplitude of 3.X10 %3 N. From Eq.(14) this corre- than the lateral electrostatic force which leads to an inverse
sponds to a separation distancezof221+2 nm between Second powee dependence.

the two corrugated surfaces.

Here a more detailed error analysis is performed in com-
parison to Ref[42]. The mean quadratic error of the average
lateral force amplitude isra=0.22<10 3 N. The largest The measurement of the lateral Casimir force presented in
source of the systematic error is due to the resolution of thene above section gives the possibility of constraining the

VI. LATERAL HYPOTHETICAL FORCES AND
CONSTRAINTS ON THEIR PARAMETERS
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Epp(2)=—27Gag\e

X[pauv—(pau—p)e *Mlpau—(pav—p)e M.

. (24)

(=]
o
T

Note that in Sec. I, where the Casimir force was calculated,
only the top metallic Au covering layers were essential and
the underlying substances did not influence the force value.

The corrugations on both plates can be included by
changingz in Eq. (24) for z,—z, defined in Eq(7) and by
averaging the obtained quantity over the corrugation period
in accordance with Eq9). The result is given by

o
»
T

o
Y]
T

log [ Lateral force amplitude (10"°N) ]

1 L 1 1 1 1 1 1 1
234 236 2.38 2.40 2.42 Epo YUz 0)=Eps(2)1 (), (25)
log [ Separation between corrugated surfaces (nm) ] . o
where the notation is introduced
FIG. 11. The logylog;q plot of the measured lateral Casimir
force amplitude as a function of the surface separation distance is
shown as solid squares. The slope of the straight line fit is 4.1
+0.2.

1 27
I((P)Eﬁfo dte*[b(sﬂ)/k]COS(t*a), (26)

b(¢) and«a are defined in Eq(8).
parameters of the hypothetical long-range interactions which Using PFT from Eq.(12) and integrating the obtained
may act between the test bodies. The problem of hypotheticdbrce with respect to the separation distance, one finds the
long-range interactions has a long history. It is well knownenergy in the configuration of a corrugated plate and a sphere
that such interactions complementary to the gravitational ands
electromagnetic forces are predicted by many extensions to
the standard moddl52]. They may be caused by the ex- EYU(Z,(p):ZWR)\Egg(Z)l(@):ZWR)\Eggr‘YU(Z,(p).
change of light elementary particld8,25] or by extra- (27
dimensional physics with a low compactification scggé].
In both cases, additional Yukawa-type interactions are preDifferentiating Eq.(27) with respect to a phase shift as it was

dicted that can be described by the potential done in Eq.(13) we come to the expression for the lateral
hypothetical force for the configuration of a plate and a

sphere covered with uniaxial corrugations
Gmym,

VYY) =— (1+age™™), 23 472R\ di(e)

Flat’Yu(Z,QD):_TEgg(Z)W' (28)

whereG is the Newtonian gravitational constam; , are the  The derivative with respect t¢ can be calculated most eas-
masses of the atoms,is the separation distance betweenily if one uses the representation of the quantityom Eq.
them, ag is the dimensionless constant of hypothetical inter-(26) in the form of an infinite series
action, and\ is the interaction range.

It is common knowledge that at>10"% m the gravita- “a,
tional experiments of Hwos- and Cavendish-type lead to the (@)=1+ > 2

. n=1 !

strongest constraints ang [52]. However, for smallei the
best constraints oa were obtained from the measurements,,
of the normal Casimir forc¢26—31]. The above measure-
ments of the lateral Casimir force deal with smaller forces 1 (2=
than the previous experiments on the normal force. Thus they an=5_ dt(cog)?". (30
may lead to the competitive constraints on hypothetical in- mJo

teraction. . . . .
We start with the calculation of the lateral hypothetical Pifferentiating Eq.(29) with respect top along with the use

Yukawa-type interaction for the configuration of a plate and®’ Ed- (30) and substituting into E28) one finally obtains

a sphere with uniaxial corrugations. The same procedure d8€ lateral hypothetical force in the form
was used above for the Casimir force is applicable. The hy-

b(¢)]*"
T} ’ 29

here

pothe.t.ical intera’ction between twq flat parallel plates' of mass FlatYu(z, o)= —4772RE;F‘,‘(Z) A1z sing
densitiesp andp’ covered by a thin Au layer of densipp, Ab(¢p)

and thickness\ can be obtained by an additive summation % on—1

of the Yukawa parts of interatomic potenti@s3). The result x> &n [M} (31)
is [3,25—-27,29,31 aic1 (2n=1)!' N '
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108|04G| VII. CONCLUSIONS AND DISCUSSION
15.5 In the above, the experimental and theoretical investiga-
' tion of the lateral Casimir force is presented. The lateral
15 Casimir force was first demonstrated in Ref2]. Here the
14.5 measurements were performed with the use of an AFM spe-
14 cially adapted to increase the sensitivity for detection of the
lateral Casimir forces. The measured lateral force has the
13.5 periodic dependence on the phase shift between the corruga-
13 tions on both test bodies. The period of the lateral force
12.5 coincides with the period of corrugations. The amplitude of
12 the lateral force was found to be equal to:820 13 N at the
separation distance 221 nm. The resulting experimental rela-
7.1 -7 6.9 6.8 -6.7 -6.6 -6.5 tive error of the amplitude measurement is 24% with a 95%
confidence probability.
log [)\ (m)] The normal electrostatic force between a sphere and a

plate was used for both calibration of the cantilever and for
FIG. 12. Constraints on the Yukawa-type hypothetical interacthe measurement of the residual potentials between the test
tions following from the measurement of the lateral Casimir forcepndies. The lateral electrostatic force leading to the inverse
between corrugated surfaceésolid curveg, normal Casimir force  gacongd power distance dependence is applied for the inde-
between a gold plate and a sphéang-dashed curyeand normal o jent measurement of surface separation for the first time.
Casimir force between dielectrieshort-dashed curyeThe loga- T4 inyerse fourth power dependence of the lateral Casimir
fithm is to the base 10. force on separation distance was confirmed with high preci-
sion.
V\{hereEgg(z) is defined in Eq(24). Notice that the coeffi- The experimental data were compared with a complete
cients a, from Eq. (30) are simply calculatede.g., a1  theory taking into account both finite conductivity and
=0.5, 2,=0.375,83=0.3125, etqg.and the sum converges qyghness corrections to the lateral Casimir foftte tem-
rapidly due to the factorial terms. _ perature corrections are not important at separations smaller
Now we are in a position to find the constraints on thethan 0.5,m). The finite conductivity corrections to the lat-
hypothetical interactions following from the measurementssrg| Casimir force decrease the result computed for ideal
pf the Igteral Casimir force. They can be obtained from thgyetgls by 30%—40% in the separation range under consider-
inequality ation. Thus the inclusion of these corrections is necessary for
the comparison of theory and experiment.
|FL‘2‘;:“|<AA, (32 The obtained experimental data on the lateral Casimir
force were used to set constraints on the constants of

whereA ,=0.77x 10 3 N is the total absolute error of the Yukawa-type hypothetical interactions. In the interaction

lateral Casimir force measurements with a 95% confidencéange 80 nmtA <150 nm the obtained constraints are
probability (see Sec. Y. The quantityF'2,Y" is the maximal shown to be quite competitiv@lthough a bit weakemwith

max .
value of the lateral hypothetical force from EB1) with the previously known ones from the measurement of the nor-

respect to a phase shift computed at a smallest separation mal Casimir force. In the future with t_he increased precision
distancez= 221 nm(note that the lateral Newtonian force is ON€ May expect that stronger constraints on the parameters of
many orders less thah,). The obtained constraints are plot- hypothetical long-range interactions _Wl_II be obtained from
ted in Fig. 12 by the solid curve. The region of the the measurements of the lateral Casimir force.

(\,ac)-plane above the curve is prohibited, and below the Another prospective application where the above results

curve is permitted by the results of the measurement of th§an P& used is in nanotechnology. With device dimensions
lateral Casimir force) is measured in meters and the loga- SfiNking to hundreds and even to tens of nanometers the
rithm to the base 10 is used. The short-dashed curve in Fifa&mlr force becomes the leading force which determines

12 was obtained from the old Casimir force measurementis functioning. The existence of the lateral Casimir force in
between dielectricésee[3,25)). The long-dashed curve fol- the case of corrugated surfaces gives the possibility to actu-
ate both normal and lateral translations by means of the elec-

lows [31] from the measurements of the normal Casimir X , ; . )
force between gold surfaces by means of atomic force mitromagnetic zero-point fluctuations. This opens new promis-

croscope[10]. It is seen that in the interaction range 80 nming opportunities for_the application of the Casimir effect in
<\<150 nm the constraints obtained by means of the latMicroelectromechanical systems.

eral Casimir force measurements are of almost the same
strength as the previous results. They, however, can be con-
sidered as more reliable as in the Casimir force measure- This work was supported by a National Science Founda-
ments between dielectrics the measurement error was estion Nanoscale Exploratory Research Grant and the National
mated rather approximately, whereas in Réf0,31 the Institute for Standards and Technology through a Precision
confidence level and confidence probability were notMeasurement Grant. G.L.K. and V.M.M. were also supported
indicated. by CNPq.
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