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Experimental and theoretical investigation of the lateral Casimir force
between corrugated surfaces
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The lateral Casimir force acting between a sinusoidally corrugated gold plate and sphere was calculated and
measured. The experimental setup was based on the atomic force microscope specially adapted for the mea-
surement of the lateral Casimir force. The measured force oscillates sinusoidally as a function of the phase
difference between the two corrugations. Both systematic and random errors are analyzed and a lateral force
amplitude of 3.2310213 N was measured at a separation distance of 221 nm with a resulting relative error 24%
at a 95% confidence probability. The dependence of the measured lateral force amplitude on separation was
investigated and shown to be consistent with the inverse fourth power distance dependence. The complete
theory of the lateral Casimir force is presented including finite conductivity and roughness corrections. The
obtained theoretical dependence was analyzed as a function of surface separation, corrugation amplitudes,
phase difference, and plasma wavelength of a metal. The theory was compared with the experimental data and
shown to be in good agreement. The constraints on hypothetical Yukawa-type interactions following from the
measurements of the lateral Casimir force are calculated. The possible applications of the lateral vacuum forces
to nanotechnology are discussed.
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I. INTRODUCTION

It is well known that the existence of zero-point electr
magnetic oscillations leads to the Casimir force acting n
mal to neutral and parallel metal plates placed in vacuum@1#.
This is a purely quantum effect caused by the alteration
the zero-point oscillation spectrum of a quantized elec
magnetic field by the metallic boundaries~see the mono-
graphs@2–4# and references therein!. Recently, the norma
Casimir force acting perpendicular to the two surfaces
attracted much experimental and theoretical attention. It
measured between a flat plate and a spherical lens by m
of a torsion pendulum@5# and between two parallel plate
using a tunneling electromechanical transducer@6#. The
highest precision was achieved in the experimenatal rese
of the normal Casimir force between a sphere and a flat p
by means of the atomic force microscope~AFM! @7–10#. In
the case of the plate with periodic uniaxial sinusoidal cor
gations and sphere the nontrivial boundary dependenc
the normal Casimir force was demonstrated@11#. These ex-
perimental achievements have stimulated an extensive t
retical study of various corrections to the Casimir force. H
the finite conductivity corrections to the normal Casim
force due to the boundary metal were investigated in de
@12–14#. The other influential factor that may contribute co
siderably to the normal Casimir force at small separation
surface roughness@8,15–17#. In Refs. @18–24# the thermal

*Email address: umar.mohideen@ucr.edu
†On leave from North-West Polytechnical University, St. Pete

burg, Russia. Email address: galina@fisica.ufpb.br
‡On leave from Research and Innovation Enterprise ‘‘Modu

Moscow, Russia. Email address: mostep@fisica.ufpb.br
1050-2947/2002/66~3!/032113~11!/$20.00 66 0321
r-

f
-

s
s
ns

rch
te

-
of

o-
e

il

is

corrections were investigated in the case of real metals wh
are significant at separations larger than 1mm. Also, the
combined effect of different corrections was examined~for a
recent review of the subject see Ref.@25#!.

There is an important need for further research on
Casimir effect motivated by the fact that it is finding ne
applications in both fundamental science and engineer
Thus, in the framework of modern unified theories, involvi
compact extra dimensions and light elementary partic
precision measurements of the Casimir force have been
to set limits on the presence of hypothetical forces@26–31#.
Technologically, both static and dynamic micromachines
tuated by the normal Casimir force have recently been d
onstrated@32,33#. It was also shown that the adhesion a
sticking of moving parts in micromachines is due to the C
simir effect @34#.

Similar to the normal Casimir force, the lateral Casim
force may exist when the bodies are asymmetrically po
tioned or their properties are anisotropic. The existence
the lateral Casimir force opens new opportunities for the
plication of the Casimir force in micromachines. The late
Casimir force also originates from the modification of ele
tromagnetic zero-point oscillations by material boundari
The possibility of a lateral Casimir force for anisotrop
boundaries was investigated theoretically and a harmonic
pendence on a corresponding angle was predicted@3,35,36#.
For two aligned corrugated plates made of ideal metal
lateral Casimir force was discussed in@37–39# and a har-
monic dependence of the result on a phase shift betw
corrugations was found. Note that other motional friction
forces between two flat parallel surfaces have been sugge
but they would be several orders of magnitude sma
@40,41#.

In Ref. @42# the first measurement of the lateral Casim

-
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force was reported and the theoretical expression for it
obtained in the case of real metals of finite conductivity. T
force acts between an aligned corrugated sphere and a
in a direction tangential to the corrugated surfaces. The
dicted sinusoidal dependence of the lateral force on the p
shift between corrugations was confirmed.

In this paper we present the detailed experimental
theoretical investigation of the lateral Casimir force acti
between a corrugated sphere situated near a corrugated
with aligned sinusoidal corrugations. The theoretical dep
dence for the lateral force is analyzed and the optimum
ues of the parameters leading to the maximum values of
lateral force are found. It is shown that even a small m
alignment of the corrugation axes will quench the late
Casimir force to zero. The effect of surface roughness
estimated and shown to be insignificant. Experimentally, n
measurement data are presented and the calibration p
dures by means of the normal and lateral electric forces
discussed. The systematic and random errors are anal
and the agreement between theory and experiment is
firmed with good precision. The lateral hypothetical for
that may originate from extra dimensions or from exchan
of light elementary particles is then calculated and the c
straints on its parameters are obtained.

The paper is organized as follows. In Sec. II the theory
developed describing the lateral Casimir force for the c
figuration of a metallized sphere and a plate with the unia
corrugations taking into account the finite conductivity a
roughness corrections. In Sec. III the experimental setu
described. Section IV contains the measurement schem
cluding calibration procedures. In Sec. V the obtained d
are presented together with the error analyses and com
son of the experimental results to the theory. In Sec. VI
new constraints on the parameters of hypothetical inte
tions are found. Section VII contains conclusions and disc
sion.

II. CALCULATION OF THE LATERAL CASIMIR FORCE
BETWEEN SURFACES WITH UNIAXIAL

CORRUGATIONS

It is well known that the regularized zero-point energy p
unit area for two parallel plates of infinite conductivity
distancez apart is given by@1–4,25#

Epp
(0)~z!52

p2

720

\c

z3
. ~1!

This results in the normal Casimir force per unit area

Fpp
(0)~z!52

]Epp
(0)~z!

]z
52

p2

240

\c

z4
, ~2!

which acts perpendicular to the surface of the plates.
As real metals have only a finite conductivity, correspon

ing corrections to Eqs.~1! and ~2! can be incorporated in
terms of the plasma wavelengthlp . This was first done in
@43–45# up to the first perturbation order and in@46# up to
the second order of a small parameterlp /(2pz). To get the
03211
s
s
ate
e-
se

d

late
-
l-
e
-
l
is
w
ce-
re
ed
n-

e
-

s
-
l

is
in-
ta
ri-
e
c-
s-

r

-

results applicable at the separationsz>lp with an error of
about 1% to 2%, that are required below, we use the per
bation expansion up to the fourth order obtained in@12# ~see
also @24,25,47#!:

Epp~z!52
p2\c

720z3 F11 (
n51

4

cnS lp

2pzD
nG , ~3!

where the coefficients are

c1524, c2572/5, c352
320

7 S 12
p2

210D ,

c45
400

3 S 12
163p2

7350 D . ~4!

For flat plates at rest, the lateral Casimir force projection
absent. If, however, the rotational symmetry against the a
perpendicular to the plates is broken than the lateral pro
tion of the Casimir force may appear@3,35–39#. As the first
example, let us consider plates covered by the longitud
uniaxial corrugations of equal periods described by the fu
tions

z15A1sin~2px/L!,

z25z1A2sin~2px/L1w!, ~5!

where z is the mean separation distance between the
surfaces,L is the corrugation period,A1,2 are the corrugation
amplitudes, andw[2px0 /L is the phase shift~see Fig. 1!.

The normal separation distance between two oppo
points of the corrugated surfaces given by Eq.~5! is

z22z15z1A2sin~2px/L1w!2A1sin~2px/L!. ~6!

By simple transformations it can be identically represen
as

z22z15z1bcos~2px/L2a!, ~7!

where the following notations are introduced

b5b~w!5~A1
21A2

222A1A2cosw!1/2,

FIG. 1. Configuration of two parallel plates with uniaxial sin
soidal corrugations of equal periods.
3-2
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EXPERIMENTAL AND THEORETICAL INVESTIGATION . . . PHYSICAL REVIEW A66, 032113 ~2002!
tana5~A2cosw2A1!/~A2sinw!. ~8!

The representation of the separation distance in the form
Eqs.~7! and ~8! is convenient for the calculation of the Ca
simir energy per unit area between the corrugated plate
can be found by additive summation of the results obtai
for plane plates@see Eq.~3!#. In doing so we assume that a
separation distancesz22z1 given by Eq. ~7! are equally
probable. This approximation has been successfully app
in many calculations of the Casimir effect in configuratio
where the variables are not separable and the exact Gre
function of the wave equation cannot be found explici
~see, e.g.,@2,3,8,11,15,16,25#!. As was shown in Ref.@39# the
additive summation works well for corrugated plates with
large corrugation period, e.g., withL.z, which is the case
in our experiment~see Sec. III!. As a result, the Casimi
energy density between corrugated plates is given by

Epp
cor~z,w!5

1

LE
0

L

Epp~z22z1!dx, ~9!

wherez22z1 is defined by Eqs.~7! and~8!. Substituting Eqs.
~7! and ~8! into Eq. ~3! and integrating, one obtains

Epp
cor~z,w!52

p2\c

720z3 (
n50

4

cnS lp

2pzD
n

Xn~b!, ~10!

whereb[b(w)/z, cn are defined in Eq.~4!, and the follow-
ing notations are used

X0~b!5
21b2

2~12b2!5/2
, X1~b!5

213b2

2~12b2!7/2
,

X2~b!5
8124b213b4

8~12b2!9/2
, X3~b!5

8140b2115b4

8~12b2!11/2
,

X4~b!5
161120b2190b415b6

16~12b2!13/2
. ~11!

Experimentally it is hard to maintain two parallel plates u
formly separated by distances less than a micron. So on
the plates is usually replaced by a metallized sphere o
spherical lens of large radiusR@z @5,7–11,32,33#. In the
experiments described below~see Secs. III–V! a sphere im-
printed with sinusoidal corrugations was used instead of
of the corrugated plates. For such a configuration the nor
Casimir force can be calculated approximately by the use
proximity force theorem~PFT! @48# as

Fnor~z,w!52pREpp
cor~z,w!, ~12!

where the energy per unit area for the configuration of t
corrugated plates is given by the right-hand side of Eq.~10!.
For our experimental parameters, the two conditionsz!R
and L!R are fulfilled. As a result the error introduced b
the PFT in the configuration under consideration is of or
0.2%@49,50#, which is acceptable for the goals of this pap
03211
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By integrating the normal force~12! with respect to the
surface separation, the energy of a corrugated sphere a
plate is obtained. Then, differentiating with respect to t
phase shift, one finds the lateral Casimir force

Flat~z,w!52
2p

L

]

]wEz

`

dyFnor~y,w!. ~13!

Substituting Eqs.~10!–~12! into Eq. ~13! we finally obtain
after integration and differentiation

Flat~z,w!5
p4R\c

120z4

A1A2sinw

L~12b2!5/2F11 (
n51

4

cn,xS lp

2pzD
nG ,

~14!

whereb was defined after Eq.~10! and the expansion coef
ficients are given by

c1,x5
41b2

3~12b2!
c1 , c2,x5

5~413b2!

12~12b2!2
c2 , ~15!

c3,x5
8112b21b4

4~12b2!3
c3 , c4,x5

7~8120b215b4!

24~12b2!4
c4 .

The above Eqs.~14! and ~15! give us the expression fo
the lateral Casimir force for the configuration of a corruga
sphere and a plate including the finite conductivity corre
tions. There are also corrections to Eqs.~14! and~15! due to
nonzero temperature. However, at separations smaller
0.5 mm considered in Secs. III–V they contribute much le
than 1%@18–25# and thereby can be neglected. Another fa
tor that could contribute to the lateral Casimir force is s
face roughness. It was shown to lead to rather large con
butions to the normal Casimir force at separations be
1 mm @15–17,25#. Because of this, the effect of surfac
roughness on the lateral Casimir force should be conside
in more detail.

There are two kinds of surface roughness on the m
surfaces: infrequently distributed tall crystals and short-sc
stochastic distortions. The infrequent tall crystals practica
do not influence the lateral Casimir force as they are situa
nonperiodically and lead to zero contribution after the av
aging over the corrugation period. The situation here is
same as for two corrugated plates with different corrugat
periods. In Ref.@15# it was shown that if the corrugation
periods are different~and larger than a separation distancez)
the Casimir energy does not depend on a lateral shift of
plate relative to the other one. As a result, the derivative
the energy with respect to the phase shift is equal to zero
the lateral force is absent.

To take stochastic roughness into account we can cha
Flat(z,w) for Flat(zi ,w) with

zi5z1xi , ^xi&50, ^xi
2&5

1

2
Ast

2 , ~16!

wherexi describes the random change of the separation
tance due to the stochastic roughness with an amplitudeAst ,
3-3
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and the angle brackets denote the averaging over the
semble of all particular realizations of the corresponding s
chastic function. It is important to note thatzi enters Eq.~14!
directly as a replacement forz and indirectly through the
functions ofb2 that should now be changed tob i

25b2/(z
1xi)

2. The lateral Casimir force with account of stochas
roughness is defined as

Fst
lat~z,w!5^Flat~zi ,w!&. ~17!

Performing the computations up to the second order in p
ers ofAst /z the following result is obtained:

Fst
lat~z,w!5

p4R\c

120z4

A1A2sinw

L~12b2!5/2

3F11
5~119b223b4!

4~12b2!2

Ast
2

z2 G
3F11 (

n51

4

cn,x
st S lp

2pzD
nG . ~18!

Here the coefficientscn,x
st are only slightly different from

those given by Eq.~15! ~which does not include stochast
roughness!. For example, forn51, 2 their expressions are

c1,x
st 5c1,xF11

15b2

2~41b2!~12b2!

Ast
2

z2 G ,

c2,x
st 5c2,xF11

3b2~1113b2!

2~41b2!~12b2!

Ast
2

z2 G . ~19!

If we take into consideration the typical values ofb2,0.1
andAst'10 nm, Eq.~18! can be approximately rewritten i
a more simple form,

Fst
lat~z,w!'Flat~z,w!F11

5~119b223b4!

4~12b2!2

Ast
2

z2 G .

~20!

From Eq. ~20! one can conclude that at separationsz
.200 nm used in the experiment the influence of stocha
roughness on the lateral force is less than 1% and can
neglected. Thus Eqs.~14! and~15! give us a reliable theoret
ical expression for the lateral Casimir force including all ne
essary corrections.

The most interesting characteristic feature of Eq.~14! is
the harmonic dependence of the lateral Casimir force o
phase shift between the corrugations of both bodies. H
ever, the actual dependence ofFlat on w is not exactly sinu-
soidal becauseb also depends onw which leads to some
deviation from the exact sine. To illustrate this, in Fig. 2 t
dependence ofFlat/Fmax

lat on w at a separationz5272 nm is
plotted ~solid line!. In the same figure the graph of sinw is
shown by a dashed line. To make deviations from a per
sine larger, the case of equal amplitudesA15A2559 nm is
considered~in the experiment of Secs. III–V the amplitud
03211
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of corrugations on a sphere is smaller than on the plate!. As
is seen from Fig. 2, the maximum of the lateral Casimir for
is displaced from the position of the maximum of sine
approximately 0.21 rad.

The values of the lateral force given by Eq.~14! depend
on the corrugation amplitudes~both in an explicit form and
through the parameterb). In Fig. 3 the graph ofFmax

lat as a
function of A2 is plotted forA1559 nm. For each value o
A2 the distance z5z01A11A2 is chosen wherez0
5154 nm which is in accordance with the experimen
value of the separation on contact~see Secs. III–V!. It is
seen thatFmax

lat increases with an increase ofA2 and takes the
largest valueFmax

lat 51.2310212 N whenA25A1.
The effects of the finite conductivity of the bounda

metal make a significant contribution to the value of t
lateral Casimir force from Eq.~14!. This is illustrated by Fig.
4, where the correction coefficienth5Flat/F0

lat is plotted as
a function of separation distance, andF0

lat is computed for an
ideal metal~i.e., with lp50). Here the experimental value
of the corrugation amplitudes were chosen, i.e.,A1
559 nm, A258 nm, and a phase shiftw5p/2 ~see Secs.
III–V !. It should be noted that the value of the correcti
factor h depends only slightly on the phase shift. The val

FIG. 2. The lateral Casimir force between the corrugated p
and sphere normalized for its maximum value as a function o
phase shift~solid line! is compared to a graph of sine~dashed line!.

FIG. 3. The maximum value of the lateral Casimir force as
function of a corrugation amplitude on a sphere.
3-4
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of the plasma wavelengthlp5136 nm for Au was used@13#.
It is seen from the figure that in the separation range
interest here the correction coefficient changes between
and 0.7. Because of this, it would be incorrect to use a the
which does not include the effect of the finite conductiv
corrections for interpretation of the experimental data on
lateral Casimir force.

At the end of this section we briefly discuss the dema
that the corrugations be uniaxial. This demand is of cruc
importance for the observation of the lateral Casimir for
In fact, let us assume for a moment that there is some n
zero angleq between the corrugation axes. Then the ph
shift w along thex axis becomes the periodical function ofy
with a periodLy5Lcotq. In the limit of one periodw(y)
depends ony linearly, taking on values from 0 to 2p. To
obtain the resulting lateral force, the expressionFlat@z,w(y)#
should be averaged over the periodLy which leads to a zero
value. For real bodies of finite size the lateral Casimir fo
will exist only for small deviations of the corrugation axe
from parallelity such thatLcotq is much larger than the
smallest body. In our case the smallest body is the 10-mm
section of the sphere covered with corrugations. That is w
in order to observe the lateral Casimir force one must m
sure that the angle between the corrugation axes is bou
by the conditionq!0.1 rad.

III. EXPERIMENTAL SETUP

A schematic diagram of the experiment is shown in Fig
These experiments are performed using a standard AFM
pressure below 50 mTorr and at room temperature. The
periment requires two sinusoidally corrugated surfaces w
their respective axes perfectly parallel. Misalignment by
of the corrugation axes can lead to loss of any lateral fo
due to the crossover of the axes as is described in Sec.
plastic diffraction grating with uniaxial sinusoidal corrug
tions of periodL51.2 mm and an amplitude of 90 nm wa
used as the corrugated plate. In order to obtain perfect or
tation and phase between the two corrugated surfaces a
cial in situ procedure was developed, where the corrugati

FIG. 4. Correction coefficient due to the effects of finite co
ductivity on the lateral Casimir force between the corrugated p
and sphere made of ideal metals as a function of surface separ
03211
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from the plate are imprinted on the gold coated sphere
pressure. This imprinting procedure required special ada
tion of the cantilever which is described next.

A polystyrene sphere was attached to the tip of a 320mm
long cantilever with conductive silver epoxy. After this
,10 mm thick, 100–200mm wide, and 0.5 mm long piece
of freshly cleaved mica was attached to the bottom of
sphere with silver epoxy. Then a second polystyrene sph
of 2R520064 mm diameter was mounted on the tip o
mica with the same silver epoxy. This second sphere is
printed with the corrugations and will interact with the co
rugated plate. The sphere and the plates are mounte
shown in Fig. 5. Let us first note that the laser beam for
detection of the cantilever deflection is reflected off its t
The addition of the first sphere and mica plate is needed
isolate the laser reflection spot on the cantilever tip from
interaction region between the two corrugated surfaces. T
isolation is necessary to reduce the effect of scattered l
from the top and sides of the corrugated plate. Second,
procedure developed for the imprinting of the corrugatio
requires access to interior regions of the corrugated plate
away from the edges. Third, the addition of the mica pl
leads also to an effective increase in the detection sensit
due to the increase in the lever arm. The cantilever~with
mica plate and spheres!, corrugated plate, and a smooth fl
plate ~polished sapphire! were then coated with about 40
nm of gold in a thermal evaporator. A small region close
one edge of the corrugated plate is also coated with 100
of aluminum. As Al exhibits more hardness than gold, th
region is used to imprint the corrugations from the plate o
the gold coated sphere.

The cantilever~with mica plate and spheres!, corrugated
plate, and a smooth flat plate are then mounted as show
Fig. 5. Now, the imprinting of the corrugations on the sphe
is done. The sphere is moved over to the region of the c
rugated plate coated with Al. The other side of the spher
mechanically supported and the corrugations are imprin
on the gold coating of the surface by pressure using the
zos shown. A scanning electron micrograph of the impr

te
on.

FIG. 5. Schematic of experimental setup. For clarity, the size
the corrugations have been exaggerated. Thex-piezo andz-piezo
are independent.
3-5
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on the sphere, taken after the completion of the experim
is shown in Fig. 6. An AFM scan of the imprinted corrug
tions is shown in Fig. 7. The amplitude of the imprinte
corrugations is measured from the AFM scan to beA258
61 nm. The amplitude of the corrugations on the metalliz
plate was also measured, using the AFM,A155967 nm.
These AFM measurements were made after completion o
the lateral force experiments which are reported below. A
this imprinting, the mechanical supports are removed and
sphere is translated over to the gold coated area of the p
Extreme care to preserve the parallel orientation of the
corrugations is necessary during this translation, as any
allignment leads to the destruction of any lateral Casi
force. This is done by tracking the orientation of the canti
ver during this translation by reflecting two optical beam
from the edges of the cantilever holder. The reflected be
positions allow measurement of the cantilever orientation
an accuracy of 231023 rad.

The corrugated plate is mounted on two piezoelec
tubes that allow independent movement of the plate in
vertical and the horizontal directions with the help of
x-piezo and az-piezo, respectively. Movement in thex direc-
tion with the x-piezo is necessary to achieve lateral pha
shift w between the corrugated sphere and the plate. In

FIG. 6. Scanning electron micrograph of the imprint of the c
rugations on the sphere.

FIG. 7. Atomic force microscope scan of the imprinted cor
gations on the sphere.
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pendent movement in thez direction is necessary for contro
of the surface separation between the corrugated sphere
plate. The corrugated plate is mounted vertically in order
increase the sensitivity for detection of lateral forces a
suppress the effect of the normal Casimir force on the ca
lever. Thus a lateral force tangential to the corrugated sph
surface would result in the usual bending of the cantileve
response to the force. Whereas a force acting normal to
sphere and corrugated plate~from the normal Casimir force!
would lead to the torsional deflection~rotation! of the canti-
lever. The torsional spring constant of this cantileverktor is
much greater than the bending spring constantkben, making
it much more sensitive to detecting the lateral Casimir for
while simultaneously suppressing the effect of the norm
Casimir force.

IV. MEASUREMENT SCHEME

The calibration of the cantilever (ktor and kben) and the
measurement of the residual potentials between the sp
and plate is done by electrostatic means@7–11#. These cali-
brations are done after the measurement of the lateral
simir forces, but is reported in this section for the benefit
continuity. Here, in order to measurektor , the sphere is kep
grounded and various voltages are applied to the corrug
plate. The normal electrostatic force between the corruga
sphere and plate is given by

Fz
el~z,w!52pR«0

~V12V0!2

z

1

A12b2
, ~21!

where«0 is the permittivity of free space.V1 are the voltages
applied on the corrugated plate andV0 is the residual poten-
tial on the grounded sphere. The approximate expres
~21! was obtained by exactly the same procedure as Eq.~12!
for the normal Casimir force@instead of Eq.~3!, we have
started here from the energy per unit area of a capac
formed by two large, flat conducting sheets#.

If V1 is applied to the corrugated plate, the electrosta
force acting normal to the spherical surface leads to the
sional rotation of the cantilever. By applying differentV1 we
can solve for the torsional spring constantktor50.138
60.005 N/m and the residual voltage between the sph
and the corrugated plateV0520.135 V. Next the measure
ment of kben is done. The sphere is moved away from t
vertical corrugated plate and brought closer to the smo
plate which is positioned horizontally at the bottom as sho
in Fig. 5. Again different voltagesV1 are applied to the bot-
tom plate@here in Eq.~21! A15A25b50 due to the smooth
surfaces#, and the electrostatic force leads to the norm
bending of the cantilever. We again solve for the norm
spring constantkben50.005260.0001 N/m and the residua
voltage between the sphere and the smooth plate. Note
ktor@kben is required for isolation and detection of the ro
of the lateral Casimir force. The piezoextension in thex di-
rection with applied voltage was calibrated by optical inte
ferometry@51#. The horizontal displacement of the piezo
the z direction was calibrated with AFM standards.

-

-
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Similar to the lateral Casimir force, there also exists
lateral electrostatic force which arises from the presence
an applied or residual electrostatic potential difference
tween the two corrugated surfaces. It is given by

Fx
el~z,w!52p2R«0~V12V0!2

A1A2

Lz2

3
sinw

A12b2~11A12b2!
. ~22!

This expression is obtained from Eq.~21! by integration with
respect toz ~in order to find the electric energy in configu
ration of a corrugated plate and a corrugated sphere! and
differentiation with respect tox05wL/2p. Both Eqs.~21!
and ~22! are valid with an error smaller than 1% for th
experimental parameters under consideration.

In contrast with the lateral Casimir force, the lateral ele
trostatic force is dependent on the inverse second powe
the separation distancez between the corrugated surfac
~the dependence ofb on z is small!. One can measure th
lateral electrostatic force in order to distinguish its diffe
ences from the lateral Casimir force. The measurement o
lateral electrostatic force also will help in providing an a
proximate measure of the separation distance between
two corrugated surfaces on contact. Note that because o
roughness of the metal surfaces and the imprinting proce
used, the contact separation is much greater than the
tances between the means of the corrugations.

Two different voltage differences between the corruga
plate and sphere were used in the measurements of the la
electrostatic force. In the first case, we utilized the resid
voltage differenceV050.135 V with V150 V. The sphere
was moved next to the corrugated plate and the separa
distance between the two surfaces was kept fixed. To m
sure the lateral electrostatic forceFx

el as a function of the
phasew, the corrugated plate is moved in thex direction by
x-piezo in average steps of 0.46 nm~due to the small non-
linear response of the piezo, the exact step size will differ
a few percent depending on the applied voltage@51#! and the
lateral electrostatic force is measured at each step. The
rugated plate could have been mounted with a small
nonzero tilt away from the vertical (x axis!. Such tilts would
lead to changes in surface separations during the above t
lations of the plate in thex direction. In order to rectify this,
a small correction voltage is applied to thez-piezo, synchro-
nous with the lateral translation in thex direction, to keep the
surface separation distance between the corrugated sp
and plate constant. The lateral force measurement is repe
60 times and the average lateral force at each step is
corded. The measured force in this case is actually the
of the lateral Casimir force and the lateral electrostatic for
The observed lateral force is shown in Fig. 8. A sine curve
best fit to the observed data and an amplitude of 1
310213 N is obtained for the total force. This amplitud
when fit to the sum of the two lateral forces~Casimir
1electrostatic! resulting from Eq.~14! and from Eq.~22!
leads to a separation distance ofz522564 nm between the
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two corrugated surfaces. This separation distance is use
subtract the lateral Casimir force from the measured to
force to obtain the lateral electrostatic force. The error in
separation distancez corresponds to the error in the amp
tude of the electrostatic force resulting from the 16 nm u
certainty inx. This uncertainty isx was determined experi
mentally by measuring the random variations in the phas
the peaks of the sinusoidal oscillations from 30 scans. N
that this random uncertainty in the phase corresponding to
nm is much smaller than the period of corrugationsL
51.2 mm). The separation between the sphere and co
gated plate is changed in steps of 24 nm and the meas
ment is repeated. This was repeated until the sphere and
corrugated plate come in contact. The surface separatio
contact of the two corrugated surfaces is 202638 nm ~the
large uncertainty is the total of the uncertainty of 24 n
resulting from the step size, the 5 nm systematic uncerta
from the measurement of the force amplitude, and the 9
random error from the force measurement at different se
ration distances!.

In the second case a different voltageV1520.055 V is
applied to the corrugated plate (V0520.135 V) and the lat-
eral electrostatic force measurement is repeated. Again
distance between the corrugated surfaces is changed in
of 24 nm, starting at some separation, until the two surfa
come into contact. The separation between the two co
gated surfaces on contact was 169633 nm ~in this case a 4
nm random error from the force measurement at differ
separations was present!. Thus the average separation o
contact from the two applied voltages was 186638 nm.
Note that the lateral electrostatic force measurement
done a few hours after the measurement of the lateral
simir force ~described below! and thus this separation dis
tance on contact obtained from the lateral electrostatic fo
serves as only a constraint on the separation distan
between the corrugated surfaces to be expected for
measurement of the lateral Casimir force. In Fig. 9,
log10-log10 plot of the measured lateral electrostatic for
amplitude as a function of the separation distance is done
the two applied voltages as solid squares and triangles
spectively. The slopes of the best straight fit lines~using the
least-squares procedure! to the two sets of measured later

FIG. 8. The average measured sum of the electric and Cas
lateral forces as a function of the lateral displacement of the co
gated plate is shown as solid squares. The solid line is the be
sine curve to the data leading to a lateral force amplitude of 1
310213 N.
3-7
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electrostatic forces are 2.560.4 and 2.060.3, respectively,
leading to an average slope of 2.360.4. Thus the measure
slope is consistent with the second power distance de
dence expected from Eq.~22!.

V. OBTAINED DATA, ERROR ANALYSES,
AND COMPARISON WITH THEORY

In this section we discuss the results obtained with
measurement of the lateral Casimir force. The measurem
procedures described above with the measurement of the
eral electrostatic force are used. The important differenc
that for the measurement of the lateral Casimir force,
residual potential difference between the corrugated sp
and plate is compensated by application of voltageV0 to the
corrugated plate. As before the sphere is brought close to
corrugated plate and the separation distance is kept fixed
measure the lateral Casimir forceFlat as a function of the
phasew, for a given sphere-plate separation, the corruga
plate is moved in thex direction in average steps of 0.46 n
using thex-piezo and the lateral Casimir force is measured
each step. As discussed above, correction voltages are
plied to thez-piezo synchronous with the movement in thex
direction to correct for any tilts from the mounting of th
corrugated plate away from the vertical (x axis!. This is re-
peated 60 times and the average lateral Casimir force at
step is recorded. The average lateral Casimir force meas
is shown as the solid squares in Fig. 10. The scattered l
light leads to a small linear drift. Thus a correspondi
straight line has been subtracted from the acquired data.
sinusoidal oscillations in the lateral Casimir force expec
from Eq. ~14! as a function of the phase difference betwe
the two corrugations are clearly observed. The periodicity
the lateral Casimir force oscillation is also in agreement w
the corrugation period of the plate. A sine curve fit to t
observed data is shown as the solid line and correspond
an amplitude of 3.2310213 N. From Eq. ~14! this corre-
sponds to a separation distance ofz522162 nm between
the two corrugated surfaces.

Here a more detailed error analysis is performed in co
parison to Ref.@42#. The mean quadratic error of the avera
lateral force amplitude iss Ā50.22310213 N. The largest
source of the systematic error is due to the resolution of

FIG. 9. The log10-log10 plot of the measured lateral electrosta
force amplitude as a function of the surface separation distanc
shown as solid squares.
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A/D board used in the data acquisition. This systematic e
is DA

(s)50.33310213 N. Using the value of Student coeffi
cient t0.95,6052 one obtains for the half-width of the confi
dence interval, or for the total absolute error,DA5DA

(s)

12s Ā50.77310213 N with a 95% confidence probability
The resulting precision of the amplitude measurement at
closest point is around 24%.

The above lateral Casimir force measurement is repe
for other surface separations. First, the separation betw
the sphere and corrugated plate is increased by 12 nm
the z-piezo and the measurement is repeated. The ave
measured amplitude of lateral force is 2.6310213 N. Based
on Eq. ~14! this corresponds toz523362 nm consistent
with the 12 nm increase in the separation distance. Thus
measured lateral Casimir force is in agreement with the co
plete theory taking into account the conductivity correctio
The separation distance is increased in 12 nm steps and
lateral Casimir force is measured for two more surface se
rations. The amplitudes of the measured forces 2.1310213

and 1.7310213 N were found to be consistent with the co
responding separation distances. In Fig. 11 a log10-log10 plot
of the amplitudes of the measured lateral force as a func
of the various separation distances is shown as solid squ
Here the separation distance of 221 nm determined from
10 is used for the closest point. The remainder of the po
are fixed by the 12 nm step increase in the separa
distance. A linear fit to the data yields a slope of 4.160.2
consistent with the inverse fourth powerz dependence of the
lateral force expected from Eq.~14!. Note that the correc-
tions to this fourth power dependence are rather small gi
that the valueb,0.3. Thus the lateral Casimir force demo
strates a very different dependence on separation dist
than the lateral electrostatic force which leads to an inve
second powerz dependence.

VI. LATERAL HYPOTHETICAL FORCES AND
CONSTRAINTS ON THEIR PARAMETERS

The measurement of the lateral Casimir force presente
the above section gives the possibility of constraining

is

FIG. 10. The average measured lateral Casimir force as a f
tion of the lateral displacement of the corrugated plate is shown
solid squares. The solid line is the best fit sine curve to the d
leading to a lateral force amplitude of 3.2310213 N.
3-8
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parameters of the hypothetical long-range interactions wh
may act between the test bodies. The problem of hypothe
long-range interactions has a long history. It is well know
that such interactions complementary to the gravitational
electromagnetic forces are predicted by many extension
the standard model@52#. They may be caused by the e
change of light elementary particles@3,25# or by extra-
dimensional physics with a low compactification scale@53#.
In both cases, additional Yukawa-type interactions are p
dicted that can be described by the potential

VYu~r !52
Gm1m2

r
~11aGe2r /l!, ~23!

whereG is the Newtonian gravitational constant,m1,2 are the
masses of the atoms,r is the separation distance betwe
them,aG is the dimensionless constant of hypothetical int
action, andl is the interaction range.

It is common knowledge that atl.1024 m the gravita-
tional experiments of Eo¨tvos- and Cavendish-type lead to th
strongest constraints onaG @52#. However, for smallerl the
best constraints onaG were obtained from the measuremen
of the normal Casimir force@26–31#. The above measure
ments of the lateral Casimir force deal with smaller forc
than the previous experiments on the normal force. Thus t
may lead to the competitive constraints on hypothetical
teraction.

We start with the calculation of the lateral hypothetic
Yukawa-type interaction for the configuration of a plate a
a sphere with uniaxial corrugations. The same procedur
was used above for the Casimir force is applicable. The
pothetical interaction between two flat parallel plates of m
densitiesr andr8 covered by a thin Au layer of densityrAu
and thicknessD can be obtained by an additive summati
of the Yukawa parts of interatomic potentials~23!. The result
is @3,25–27,29,31#

FIG. 11. The log10-log10 plot of the measured lateral Casim
force amplitude as a function of the surface separation distanc
shown as solid squares. The slope of the straight line fit is
60.2.
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Epp
Yu~z!522pGaGl3e2z/l

3@rAu2~rAu2r!e2D/l#@rAu2~rAu2r8!e2D/l#.

~24!

Note that in Sec. II, where the Casimir force was calculat
only the top metallic Au covering layers were essential a
the underlying substances did not influence the force val

The corrugations on both plates can be included
changingz in Eq. ~24! for z22z1 defined in Eq.~7! and by
averaging the obtained quantity over the corrugation per
in accordance with Eq.~9!. The result is given by

Epp
cor,Yu~z,w!5Epp

Yu~z!I ~w!, ~25!

where the notation is introduced

I ~w![
1

2pE0

2p

dte2[b(w)/l]cos(t2a), ~26!

b(w) anda are defined in Eq.~8!.
Using PFT from Eq.~12! and integrating the obtaine

force with respect to the separation distance, one finds
energy in the configuration of a corrugated plate and a sph
as

EYu~z,w!52pRlEpp
Yu~z!I ~w!52pRlEpp

cor,Yu~z,w!.
~27!

Differentiating Eq.~27! with respect to a phase shift as it wa
done in Eq.~13! we come to the expression for the later
hypothetical force for the configuration of a plate and
sphere covered with uniaxial corrugations

Flat,Yu~z,w!52
4p2Rl

L
Epp

Yu~z!
dI~w!

dw
. ~28!

The derivative with respect tow can be calculated most ea
ily if one uses the representation of the quantityI from Eq.
~26! in the form of an infinite series

I ~w!511 (
n51

`
an

~2n!! Fb~w!

l G2n

, ~29!

where

an[
1

2pE0

2p

dt~cost !2n. ~30!

Differentiating Eq.~29! with respect tow along with the use
of Eq. ~30! and substituting into Eq.~28! one finally obtains
the lateral hypothetical force in the form

Flat,Yu~z,w!524p2REpp
Yu~z!

A1A2

Lb~w!
sinw

3 (
n51

`
an

~2n21!! Fb~w!

l G2n21

, ~31!

is
.1
3-9
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whereEpp
Yu(z) is defined in Eq.~24!. Notice that the coeffi-

cients an from Eq. ~30! are simply calculated~e.g., a1
50.5, a250.375, a350.3125, etc.! and the sum converge
rapidly due to the factorial terms.

Now we are in a position to find the constraints on t
hypothetical interactions following from the measureme
of the lateral Casimir force. They can be obtained from
inequality

uFmax
lat,Yuu,DA , ~32!

whereDA50.77310213 N is the total absolute error of th
lateral Casimir force measurements with a 95% confide
probability ~see Sec. V!. The quantityFmax

lat,Yu is the maximal
value of the lateral hypothetical force from Eq.~31! with
respect to a phase shiftw computed at a smallest separati
distancez5221 nm~note that the lateral Newtonian force
many orders less thanDA). The obtained constraints are plo
ted in Fig. 12 by the solid curve. The region of th
(l,aG)-plane above the curve is prohibited, and below
curve is permitted by the results of the measurement of
lateral Casimir force.l is measured in meters and the log
rithm to the base 10 is used. The short-dashed curve in
12 was obtained from the old Casimir force measureme
between dielectrics~see@3,25#!. The long-dashed curve fol
lows @31# from the measurements of the normal Casim
force between gold surfaces by means of atomic force
croscope@10#. It is seen that in the interaction range 80 n
,l,150 nm the constraints obtained by means of the
eral Casimir force measurements are of almost the s
strength as the previous results. They, however, can be
sidered as more reliable as in the Casimir force meas
ments between dielectrics the measurement error was
mated rather approximately, whereas in Refs.@10,31# the
confidence level and confidence probability were n
indicated.

FIG. 12. Constraints on the Yukawa-type hypothetical inter
tions following from the measurement of the lateral Casimir fo
between corrugated surfaces~solid curve!, normal Casimir force
between a gold plate and a sphere~long-dashed curve!, and normal
Casimir force between dielectrics~short-dashed curve!. The loga-
rithm is to the base 10.
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VII. CONCLUSIONS AND DISCUSSION

In the above, the experimental and theoretical investi
tion of the lateral Casimir force is presented. The late
Casimir force was first demonstrated in Ref.@42#. Here the
measurements were performed with the use of an AFM s
cially adapted to increase the sensitivity for detection of
lateral Casimir forces. The measured lateral force has
periodic dependence on the phase shift between the corr
tions on both test bodies. The period of the lateral fo
coincides with the period of corrugations. The amplitude
the lateral force was found to be equal to 3.2310213 N at the
separation distance 221 nm. The resulting experimental r
tive error of the amplitude measurement is 24% with a 9
confidence probability.

The normal electrostatic force between a sphere an
plate was used for both calibration of the cantilever and
the measurement of the residual potentials between the
bodies. The lateral electrostatic force leading to the inve
second power distance dependence is applied for the i
pendent measurement of surface separation for the first t
The inverse fourth power dependence of the lateral Cas
force on separation distance was confirmed with high pre
sion.

The experimental data were compared with a comp
theory taking into account both finite conductivity an
roughness corrections to the lateral Casimir force~the tem-
perature corrections are not important at separations sm
than 0.5mm). The finite conductivity corrections to the la
eral Casimir force decrease the result computed for id
metals by 30%–40% in the separation range under consi
ation. Thus the inclusion of these corrections is necessary
the comparison of theory and experiment.

The obtained experimental data on the lateral Casi
force were used to set constraints on the constants
Yukawa-type hypothetical interactions. In the interacti
range 80 nm,l,150 nm the obtained constraints a
shown to be quite competitive~although a bit weaker! with
the previously known ones from the measurement of the n
mal Casimir force. In the future with the increased precis
one may expect that stronger constraints on the paramete
hypothetical long-range interactions will be obtained fro
the measurements of the lateral Casimir force.

Another prospective application where the above res
can be used is in nanotechnology. With device dimensi
shrinking to hundreds and even to tens of nanometers
Casimir force becomes the leading force which determi
its functioning. The existence of the lateral Casimir force
the case of corrugated surfaces gives the possibility to a
ate both normal and lateral translations by means of the e
tromagnetic zero-point fluctuations. This opens new prom
ing opportunities for the application of the Casimir effect
microelectromechanical systems.
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