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Efficient and robust entanglement generation in a many-particle system
with resonant dipole-dipole interactions
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We propose and discuss a scheme for robust and efficient generation of many-particle entanglement in an
ensemble of Rydberg atoms with resonant dipole-dipole interactions. It is shown that in the limit of complete
dipole blocking, the system is isomorphic to a multimode Jaynes-Cummings model. While dark-state popula-
tion transfer is not capable of creating entanglement, other adiabatic processes are identified that lead to
complex, maximally entangled states, such adNtmarticle analog of the Greenberger-Horne-ZeilingeHZz)
state in a few steps. The process is robust, works for even and odd particle numbers and the characteristic time
for entanglement generation scales linearly viNth
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Entanglement is one of the most distinct quantum featuremg in the ion-trap scheme of Refll], it is important that
of many-particle systems and has only recently started to bthe total interaction timd is kept as small as possible. For
studied in a more systematic way. It provides strong tests athe Sa@ensen-Mémer scheme as well as the-pulse tech-
qguantum nonlocality1] and is at the heart of quantum infor- nique in the dipole-blockade systef,scales linearly with
mation science with numerous applicatig@s-5]. One of the the number of particledN, which is in fact the optimum
open practical problems is to identify mechanisms for itssituation. Adiabatic processes, on the other hand, require
robust and controlled generation. Recently/lMer and large interaction times determined by the energy separation
Strensen suggested a scheme to creatéNtparticle analog of the instantaneous eigenstates. Since in many-particle sys-
of the GHZ state in an ion trap without the need for a preciséems the typical energy separation is exponentially small in
control over the collective vibrational modes of the ig6% N, it is not clear whether an adiabatic method can give a
Due to Kramers degeneragy] in the underlying nonlinear polynomial or even linear scaling df with N [12].
Hamiltonian, different unitary operations needed to be ap- Following the proposal of Ref9] let us consider an en-
plied for even and odd number of particles. The optimumsemble ofN atoms with two lower level$a) and|b) both
interaction timeT scales linearly with the number of particles coupled to a Rydberg staje) by coherent laser fields with
and extreme fine tuning oF is required. As a consequence, (real Rabi frequencie$);(t) andQ,(t), respectively. Let us
this method is highly sensitive to variations of external andfurther assume that there are two additional Rydberg levels
internal parameters. above and belovr) with equal energy splitting. In such a

In the present paper we discuss a robust and efficientonfiguration there is a resonant energy transfer between two
method to create complex entangled states likeNdparticle  atoms in Rydberg levels, leading to a symmetric splitting of

analog of the GHZ statf8] the doubly excited states. If the minimum splitting, given by
the atoms of largest separation, exceeds the natural line-
1 width, resonant laser excitation into doubly excited or higher
E(|a,a, cooa)+|b,b, ... b)), (1)  excited states is suppress@ipole blockadg In this limit

the dipole-dipole interaction can easily be modeled by treat-
ing atoms in the Rydberg state as fermions with annihilation
i.e., a superposition of all atoms in stag and all atoms in  and creation operators, o' ({o,a"}=1), while representing
state|b), in a total interaction time which scales linear with agtoms in levels|a) and |b) by bosons with creation and
N. The underlying interaction is the resonant dipole-dipoleannihilation operatorsa,a’, b,b', ([a,a’]=[b,b']=1).
interaction and the associated blockade effect in an ensembighe interaction can then be described by a multimode
of frozen Rydberg atoms studied in RE]. It was shown in  jaynes-Cummings Hamiltonida3],
Ref.[9] that the dipole blockade can be used to generate any
(symmetrig entangled many-particle state by applying a spe- H(t)=Aa’a+A,bTb+[(Qa+Q,b)cT+H.c]. (2
cific sequence of resonant pulsgd]. A substantial draw-
back is however the need of a large number of puledsch  The detunings\; have to be much smaller than the minimum
scales linear irN) with well-defined pulse area. Hence the splitting of the doubly excited manifold for the blockade
method is also highly sensitive to variations of external andimit to hold.
internal parameters. We will show in the present paper that The isomorphism to the multimode Jaynes-Cummings
this drawback can be overcome by applying adiabatic techmodel has a nhumber of interesting consequences. First of all
niques. it simplifies the analysis by allowing to employ angular mo-
Due to the presence of decoherence, as e.g., spontaneauentum techniques. Second many known features of the
emission in the dipole-blockade scheme of R6f.or heat- Jaynes-Cummings dynamics, such as decay and revivals of
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= = with o,=c'o—oo'. Here irrelevant terms containing the
constants of motioD'D (number of particles in the dark-

VA state manifoltl and B'B+ o'~ (number of particles in the
Wﬂn? iﬂz f i f N / KWQz bright-state—Rydberg manifoldhave been omitted. The cor-
S o N2 ~5 Y responding Schiinger equation can be solved analytically
a’h’ ab ay ab a’b in the adiabatic limit, i.e., when the mixing angk(t)

FIG. 1. Coupling scheme of collectivg-atom states in limit of changes sgfflmently SIQWW in time. .
dipole blockade, shown here fdr,=A,=0. Individual atoms have | To obtain a convenient closed form of the SOIUU?” we
two lower statega) and|b) coupled to Rydberg state) with Rabi  Infroduce _angular ~ momentum  operators); =(o'B
frequencied); and(),, respectively]a¥~™b™) denotes symmetric + oBN)/2yM,J,=i(dB"~0'B)/12yM, and J;=0,/2,
superposition oN—m atoms in statéa) andm atoms in statéb). ~ WhereM=B'B+ oo is the constant particle number in the

bright-state—Rydberg manifold. In terms of these operators

oscillations [14], squeezed-state generation, and quantunthe Hamiltonian readsH=Qe #%2J,e'#%2  where Q
state transfer between different modd$] can be antici- = \/4MQ§(t)+Azcos°-29 and  tamB(t)=2/MQq(t)/
pated in the dipole-blocking system. A cos X.

The blockade of double and higher excitations results in a et us now consider the case of Bllatoms being initially
chainwise coupling between symmetric collective states ag, |a). If an intuitive pulse sequence is applied, i.eQf is

shown in Flg 1. This COUp“I’lg with an odd total number of switched on and off befor@z, one has:ﬁzoﬂﬂ- and the
levels suggests the application of dark-state Raman adiabatigstem starts from a bright state

passage techniqudd6]. To analyze adiabatic passage in
such a system it is convenient to introduce dark- and bright- 1 1
state boson operators |Wo)=|aV)=—(ahNo)y=—=—(BNHN0).  (5)

NI VNE

The unitary evolution operator then reads

D=acosf—bsingd, B=asinf+bcosé,

with tanf=Q,/Q,. In terms of these variables the interac- —
tion Hamiltonian reads W= —2iJ2ex;{ —iJ3f dtQ(t)}

— oo

L A+A,

A —
(D'D+B'B)+ 1TZ(DTD— B'B)cos 29 One-time application ofV generates a symmetric collective
state containing a single Rydberg excitation and all other

A—A, atoms are irjb),
+ T(DTB+ B'D)sin20+Qq(Bo'+B' o),
1
— - fyN-1_t
3) W) =W|¥o) D) (bH™ o |0),
with Qo= vQ1(t) +Q5(t). corresponding to

Under conditions of two-photon resonance, i&;=A,
the dark-state subspace decouples from the remaining sys- w
tem. Its dynamics has however SU(2) symmetry and factor- |aNy—[bN1r). (6)
ized states remain factorized. Hence dark-state adiabatic
transfer is not suitable for entanglement generation. This reApplying W twice, generates the/ -state of Ref[17]
sult can easily be understood physically. Since the dark state )
does not contain any excited-state population, the presence N w N-1
of dipole-dipole interactions and the resulting dipole block- %) —[a""b),

ade are irrelevant. Nevertheless, as will be shown in the fol-

N—mpm H H™
lowing, adiabatic techniques can be used to create entanglﬁ{-{ﬁ%?% thebstét(;;;g;edsr:)z/irtgﬁit%csi:{)éi)r;) 08'222?;& ;
ment if other than the zero-eigenvalue state are involved. '

To this end we consider here a situation opposite to th(l.Jand starting from an initial state with all ?“0”.‘5:'@ cor-
two-photon resonance when=A ;= —A,. We first discuss [:;gg?gihtg t?aﬁgi? sequence in counterintuitive order and
the case of a substantial delay between the two pulsges
and(},, corresponding to small values of sifl 2xcept in a W
very small intermediate time interval, such that the coupling BNy | aMy.
between the dark and bright components is negligible. In this
approximation the Hamiltoniaf3) can be expressed in the
simple form

()

Iterative applications of theameoperatorW allows one
to reach any state in theN2+1 dimensional manifold of
A symmetric many-particle excitations with at most one Ryd-
H= = o,c08 20+ Qy(Bo'+BTo), 4) berg.atom. Thav operation is based on adiabatic evolution
2 and is robust against variations of parameters as long as the
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population

t/T

FIG. 2. Temporal evolution of population i@y and|bN~1r)
form initial state|W¥() for N=5. The laser pulses are Gaussian
Q4 t)=Qnexd —(t=7)%T?, the delay ist=0.5T the pulse area
0, T=125, andAT=50. ), is the peak value of Rabi frequencies.

condition yT<1 is fulfilled, with y being the decay rate of

the Rydberg levels and is the time of the pulsed fields.
Although the application ofV leads to an entangled state

whose creation would require many pulses,O(N) steps
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FIG. 3. Final population of statga) and|bN~1r) under con-
ditions of Fig. 2 as function of),,T for 7=0.5T.

While the state transfer froma~1r) to [bN"1r) is
STIRAP-like[18] and thus also faithfully maps the phases of
the initial to the target state, the adiabatic return process is
associated with a dynamical phase g#p. Very similar to
the situation in adiabatic quantum computation and Berry-
phase measuremenit$9] this phase needs to be compen-

are needed for the generation of complex states like thgated. This can be achieved in the following way: After cre-

N-particle analog of the GHZ statel). We will now show
that a small modification of th&/ operation can achieve this
goal in a few steps.

ation of the superposition~(e'¢|aV)+|bN"1r)) with
unknown dynamical phasey, W is applied again with a
reversed time order of the pulses. This doubles the dynamical

For this we assume that the system is initially in an equaphase accumulated ") and returns the population from

superposition of atoms being |a) and the symmetric state
containing a single Rydberg excitation,

1
|‘1’6>=—2(|aN>+|aN71r>)-

8
N ®)

|W() can easily be created out p¥ ) in a robust way e.g.,
by sweeping the frequency &1, through resonancéapid
adiabatic passag€18]. We now apply théNV operation dis-

|bN~r) to |aV~1r). Applying W for a third time, however,
with A— —2A and()— 2() leads to an exact cancellation of
the unknown dynamical phase i), while transferring the
excited state amplitude tdN"1r).

In a final step the inverse &, Eqgs.(6) and(7), leads to
the N-particle GHZ statd1). This corresponds to the overall
few-step adiabatic process:

1
|aN>—>E(|aN>+|aN‘1r>)

cussed above with a smaller time delay between the two

pulses. In this process, denoted\&s the dark-bright state
coupling in the Hamiltoniart3) proportional to sin 2 needs

to be taken into account. Furthermore it is assumed that

|Q0/>]A|. Under these conditions the ScHioger equation

can no longer be solved analytically. However numerically

evaluating the equatior{for N up to 30, we found the popu-
lation behavior shown in Fig. 2.

The mechanism can qualitatively be understood as fol-

lows: Due to the nonvanishing detunidg and the chosen
intuitive pulse order, the state amplitude |&l') undergoes
an adiabatic return procegE8] and ends up in the same state

- %(la“>+|b“‘1r>)

5

1
~—2<|bN>+|aN>)- (9)

3

The transfer is in all parts robust. It does not depend on
the exact pulse form of); andQ,, nor does it require an
extreme control of the delay time or the pulse length.
Furthermore, the mechanism works for even and odd num-

as it started from. At the same time the chosen pulse order isers of atoms in the same way. In Fig. 3 we have shown the

counter-intuitive for the statéa™~'r) and hence its ampli-
tude undergoes Raman adiabatic passage™or) through

a chain of successivé-type transitions. Since the fields are
not in N-photon resonance, it is essential theX,|>|A|,
where(), is the peak value of Rabi frequencies.

dependence of the final population in the sta@¥) and
|bN~1r) for N=5 as function of the pulse aréd,,T. It can
be seen that the mechanism is—above some critical limit—
robust against small variation of the pulse area. It should be
mentioned that for very large values of the pulse area the
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populations decrease again, since then the t&rsm 26 in
Eq. (3) is negligible and there is a transfer (/]_2/)(|a’\'>
+a¥ 1)) — (142) (M) + BN 1r)).

An important question is how the time for generating
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Thus we see that in the present scheme adiabatic transfer is
possible in a total interaction time which scales linearly with
the number of particles.

In conclusion, we have proposed an efficient and robust

the GHZ state scales with the number of particles. To estiMethod to generate complex entanglement structures, such as

mateT it is sufficient to discuss the chainlike STIRAP trans-

the N-particle GHZ state in a many-particle system with

fer in the second step. For this we consider the equivalerf€Senant dipole-dipole interactions. The method is robust

transfer betweefg™ 1) and|bN~1) in anN—1 particle sys-
tem and assuma =0. The adiabatic energies of the Hamil-
tonian (4) are in this caseE,==*=Qy/n (n=0,1,...N
—1), with the corresponding eigenstatesEg,)
~(DNHN70), |[E~)~(BT+oT)(DT)N"2|0), etc. The ini-
tial state is the dark state of the—1 particle system.
To ensure adiabaticity it is necessary thal
>|(E+4|(d/dO)H|E)|/|E+1—Eo|?. One easily verifies that
dH/d6=Qy(Do'+D's) (where one has to take into ac-
count thatD and B depend ong). With this one finds),T
>[(N—1)/2~/N. On the other hand the maximum value
of Qg is limited by the dipole-blocking condition. Ik de-

notes the frequency splitting of the doubly excited RydbergO

manifold, we haveyNQ,<«. Combining these conditions
one arrives at

N
T>—. (10)

against variations of parameters since for all steps adiabatic
transfer processes are used. Although dark-state adiabatic
passage is not suitable for entanglement generation, as it
does not involve population of the interacting Rydberg lev-
els, other adiabatic processes are identified that allow e.g.,
for the generation of th&l-particle GHZ statg1) in a few
steps. The suggested method works for even and odd number
of particles. Exact knowledge of the number of particles is
not required, making the method robust against number fluc-
tuations. As opposed to the proposal of Héf. no extreme

fine tuning of the interaction time is needed and the mini-
mum interaction time scales linearly with the number of par-
ticles. Finally it should be mentioned that similar ideas can
e applied to other many-particle systems, e.g., ions in a trap.
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