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Efficient and robust entanglement generation in a many-particle system
with resonant dipole-dipole interactions
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We propose and discuss a scheme for robust and efficient generation of many-particle entanglement in an
ensemble of Rydberg atoms with resonant dipole-dipole interactions. It is shown that in the limit of complete
dipole blocking, the system is isomorphic to a multimode Jaynes-Cummings model. While dark-state popula-
tion transfer is not capable of creating entanglement, other adiabatic processes are identified that lead to
complex, maximally entangled states, such as theN-particle analog of the Greenberger-Horne-Zeilinger~GHZ!
state in a few steps. The process is robust, works for even and odd particle numbers and the characteristic time
for entanglement generation scales linearly withN.
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Entanglement is one of the most distinct quantum featu
of many-particle systems and has only recently started to
studied in a more systematic way. It provides strong test
quantum nonlocality@1# and is at the heart of quantum info
mation science with numerous applications@2–5#. One of the
open practical problems is to identify mechanisms for
robust and controlled generation. Recently Mo” lmer and
So”rensen suggested a scheme to create theN-particle analog
of the GHZ state in an ion trap without the need for a prec
control over the collective vibrational modes of the ions@6#.
Due to Kramers degeneracy@7# in the underlying nonlinear
Hamiltonian, different unitary operations needed to be
plied for even and odd number of particles. The optimu
interaction timeT scales linearly with the number of particle
and extreme fine tuning ofT is required. As a consequenc
this method is highly sensitive to variations of external a
internal parameters.

In the present paper we discuss a robust and effic
method to create complex entangled states like theN-particle
analog of the GHZ state@8#

1

A2
~ ua,a, . . . ,a&1ub,b, . . . ,b&), ~1!

i.e., a superposition of all atoms in stateua& and all atoms in
stateub&, in a total interaction time which scales linear wi
N. The underlying interaction is the resonant dipole-dip
interaction and the associated blockade effect in an ense
of frozen Rydberg atoms studied in Ref.@9#. It was shown in
Ref. @9# that the dipole blockade can be used to generate
~symmetric! entangled many-particle state by applying a s
cific sequence of resonant pulses@10#. A substantial draw-
back is however the need of a large number of pulses~which
scales linear inN) with well-defined pulse area. Hence th
method is also highly sensitive to variations of external a
internal parameters. We will show in the present paper
this drawback can be overcome by applying adiabatic te
niques.

Due to the presence of decoherence, as e.g., spontan
emission in the dipole-blockade scheme of Ref.@9# or heat-
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ing in the ion-trap scheme of Ref.@11#, it is important that
the total interaction timeT is kept as small as possible. Fo
the So”rensen-Mo” lmer scheme as well as thep-pulse tech-
nique in the dipole-blockade system,T scales linearly with
the number of particlesN, which is in fact the optimum
situation. Adiabatic processes, on the other hand, req
large interaction times determined by the energy separa
of the instantaneous eigenstates. Since in many-particle
tems the typical energy separation is exponentially smal
N, it is not clear whether an adiabatic method can give
polynomial or even linear scaling ofT with N @12#.

Following the proposal of Ref.@9# let us consider an en
semble ofN atoms with two lower levelsua& and ub& both
coupled to a Rydberg stateur & by coherent laser fields with
~real! Rabi frequenciesV1(t) andV2(t), respectively. Let us
further assume that there are two additional Rydberg lev
above and belowur & with equal energy splitting. In such
configuration there is a resonant energy transfer between
atoms in Rydberg levels, leading to a symmetric splitting
the doubly excited states. If the minimum splitting, given
the atoms of largest separation, exceeds the natural
width, resonant laser excitation into doubly excited or high
excited states is suppressed~dipole blockade!. In this limit
the dipole-dipole interaction can easily be modeled by tre
ing atoms in the Rydberg state as fermions with annihilat
and creation operatorss,s†($s,s†%51), while representing
atoms in levelsua& and ub& by bosons with creation and
annihilation operatorsa,a†, b,b†, (@a,a†#5@b,b†#51).
The interaction can then be described by a multimo
Jaynes-Cummings Hamiltonian@13#,

H~ t !5D1a†a1D2b†b1@~V1a1V2b!s†1H.c.#. ~2!

The detuningsD i have to be much smaller than the minimu
splitting of the doubly excited manifold for the blockad
limit to hold.

The isomorphism to the multimode Jaynes-Cummin
model has a number of interesting consequences. First o
it simplifies the analysis by allowing to employ angular m
mentum techniques. Second many known features of
Jaynes-Cummings dynamics, such as decay and reviva
©2002 The American Physical Society09-1
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oscillations @14#, squeezed-state generation, and quan
state transfer between different modes@15# can be antici-
pated in the dipole-blocking system.

The blockade of double and higher excitations results
chainwise coupling between symmetric collective states
shown in Fig. 1. This coupling with an odd total number
levels suggests the application of dark-state Raman adia
passage techniques@16#. To analyze adiabatic passage
such a system it is convenient to introduce dark- and brig
state boson operators

D5a cosu2b sinu, B5a sinu1b cosu,

with tanu5V1 /V2. In terms of these variables the intera
tion Hamiltonian reads

H5
D11D2

2
~D†D1B†B!1

D12D2

2
~D†D2B†B!cos 2u

1
D12D2

2
~D†B1B†D !sin 2u1V0~B s†1B† s!,

~3!

with V05AV1
2(t)1V2

2(t).
Under conditions of two-photon resonance, i.e.,D15D2

the dark-state subspace decouples from the remaining
tem. Its dynamics has however SU(2) symmetry and fac
ized states remain factorized. Hence dark-state adiab
transfer is not suitable for entanglement generation. This
sult can easily be understood physically. Since the dark s
does not contain any excited-state population, the prese
of dipole-dipole interactions and the resulting dipole bloc
ade are irrelevant. Nevertheless, as will be shown in the
lowing, adiabatic techniques can be used to create entan
ment if other than the zero-eigenvalue state are involved

To this end we consider here a situation opposite to
two-photon resonance whenD5D152D2. We first discuss
the case of a substantial delay between the two pulsesV1
andV2, corresponding to small values of sin 2u except in a
very small intermediate time interval, such that the coupl
between the dark and bright components is negligible. In
approximation the Hamiltonian~3! can be expressed in th
simple form

H5
D

2
szcos 2u1V0~Bs†1B†s2!, ~4!

FIG. 1. Coupling scheme of collectiveN-atom states in limit of
dipole blockade, shown here forD15D250. Individual atoms have
two lower statesua& andub& coupled to Rydberg stateur & with Rabi
frequenciesV1 andV2, respectively.uaN2mbm& denotes symmetric
superposition ofN2m atoms in stateua& andm atoms in stateub&.
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with sz5s†s2ss†. Here irrelevant terms containing th
constants of motionD†D ~number of particles in the dark
state manifold! and B†B1s†s ~number of particles in the
bright-state–Rydberg manifold! have been omitted. The cor
responding Schro¨dinger equation can be solved analytica
in the adiabatic limit, i.e., when the mixing angleu(t)
changes sufficiently slowly in time.

To obtain a convenient closed form of the solution w
introduce angular momentum operatorsJ15(s†B
1sB†)/2AM ,J25 i (sB†2s†B)/2AM , and J35sz/2,
whereM5B†B1s†s is the constant particle number in th
bright-state–Rydberg manifold. In terms of these operat
the Hamiltonian readsH5V̄e2 ibJ2J3eibJ2, where V̄
[A4MV0

2(t)1D2cos22u and tanb(t)52AMV0(t)/
D cos 2u.

Let us now consider the case of allN atoms being initially
in ua&. If an intuitive pulse sequence is applied, i.e. ifV1 is
switched on and off beforeV2, one has:b50→p and the
system starts from a bright state

uC0&5uaN&[
1

AN!
~a†!Nu0&5

1

AN!
~B†!Nu0&. ~5!

The unitary evolution operator then reads

W522iJ2expF2 iJ3E
2`

1`

dt V̄~ t !G .
One-time application ofW generates a symmetric collectiv
state containing a single Rydberg excitation and all ot
atoms are inub&,

uC1&5WuC0&5
1

A~N21!!
~b†!N21s†u0&,

corresponding to

uaN&→
W

ubN21r &. ~6!

Applying W twice, generates theW -state of Ref.@17#

uaN&→
W2

uaN21b&,

whereuaN2mbm& denotes symmetric superposition ofN2m
atoms in the stateua& andm atoms in stateub&. On the other
hand starting from an initial state with all atoms inub& cor-
responds to a pulse sequence in counterintuitive order
leads to the transfer

ubN&→
W

uaN&. ~7!

Iterative applications of thesameoperatorW allows one
to reach any state in the 2N11 dimensional manifold of
symmetric many-particle excitations with at most one Ry
berg atom. TheW operation is based on adiabatic evolutio
and is robust against variations of parameters as long as
9-2
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conditiongT!1 is fulfilled, with g being the decay rate o
the Rydberg levels andT is the time of the pulsed fields.

Although the application ofW leads to an entangled sta
whose creation would require manyp pulses,O(N) steps
are needed for the generation of complex states like
N-particle analog of the GHZ state~ 1!. We will now show
that a small modification of theW operation can achieve thi
goal in a few steps.

For this we assume that the system is initially in an eq
superposition of atoms being inua& and the symmetric stat
containing a single Rydberg excitation,

uC08&5
1

A2
~ uaN&1uaN21r &). ~8!

uC08& can easily be created out ofuC0& in a robust way e.g.,
by sweeping the frequency ofV1 through resonance~rapid
adiabatic passage! @18#. We now apply theW operation dis-
cussed above with a smaller time delay between the
pulses. In this process, denoted asW̃, the dark-bright state
coupling in the Hamiltonian~3! proportional to sin 2u needs
to be taken into account. Furthermore it is assumed
uV0u@uDu. Under these conditions the Schro¨dinger equation
can no longer be solved analytically. However numerica
evaluating the equations~for N up to 30!, we found the popu-
lation behavior shown in Fig. 2.

The mechanism can qualitatively be understood as
lows: Due to the nonvanishing detuningD and the chosen
intuitive pulse order, the state amplitude inuaN& undergoes
an adiabatic return process@18# and ends up in the same sta
as it started from. At the same time the chosen pulse ord
counter-intuitive for the stateuaN21r & and hence its ampli-
tude undergoes Raman adiabatic passage toubN21r & through
a chain of successiveV-type transitions. Since the fields a
not in N-photon resonance, it is essential thatuVmu@uDu,
whereVm is the peak value of Rabi frequencies.

FIG. 2. Temporal evolution of population inuaN& and ubN21r &
form initial state uC08& for N55. The laser pulses are Gaussi
V1,2(t)5Vmexp@2(t6t)2/T2#, the delay ist50.5T the pulse area
VmT5125, andDT550. Vm is the peak value of Rabi frequencie
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While the state transfer fromuaN21r & to ubN21r & is
STIRAP-like@18# and thus also faithfully maps the phases
the initial to the target state, the adiabatic return proces
associated with a dynamical phase exp$if%. Very similar to
the situation in adiabatic quantum computation and Ber
phase measurements@19# this phase needs to be compe
sated. This can be achieved in the following way: After c
ation of the superposition;(eifuaN&1ubN21r &) with
unknown dynamical phasef, W̃ is applied again with a
reversed time order of the pulses. This doubles the dynam
phase accumulated inuaN& and returns the population from
ubN21r & to uaN21r &. Applying W̃ for a third time, however,
with D→22D andV→2V leads to an exact cancellation o
the unknown dynamical phase inuaN&, while transferring the
excited state amplitude toubN21r &.

In a final step the inverse ofW, Eqs.~6! and~7!, leads to
theN-particle GHZ state~1!. This corresponds to the overa
few-step adiabatic process:

uaN&→
1

A2
~ uaN&1uaN21r &)

→ 1

A2
~ uaN&1ubN21r &)

→ 1

A2
~ ubN &1uaN &). ~9!

The transfer is in all parts robust. It does not depend
the exact pulse form ofV1 and V2, nor does it require an
extreme control of the delay timet or the pulse lengthT.
Furthermore, the mechanism works for even and odd nu
bers of atoms in the same way. In Fig. 3 we have shown
dependence of the final population in the statesuaN& and
ubN21r & for N55 as function of the pulse areaVmT. It can
be seen that the mechanism is—above some critical lim
robust against small variation of the pulse area. It should
mentioned that for very large values of the pulse area

FIG. 3. Final population of statesuaN& and ubN21r & under con-
ditions of Fig. 2 as function ofVmT for t50.5T.
9-3
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populations decrease again, since then the termD sin 2u in
Eq. ~3! is negligible and there is a transfer (1/A2)(uaN&
1uaN21r &)→(1/A2)(ubN&1ubN21r &).

An important question is how the timeT for generating
the GHZ state scales with the number of particles. To e
mateT it is sufficient to discuss the chainlike STIRAP tran
fer in the second step. For this we consider the equiva
transfer betweenuaN21& andubN21& in anN21 particle sys-
tem and assumeD50. The adiabatic energies of the Ham
tonian ~4! are in this caseEn56V0An (n50,1, . . . ,N
21), with the corresponding eigenstatesuE0&
;(D†)N21u0&, uE61&;(B†6s†)(D†)N22u0&, etc. The ini-
tial state is the dark state of theN21 particle system.
To ensure adiabaticity it is necessary thatT
@u^E61u(d/du)HuE0&u/uE612E0u2. One easily verifies tha
dH/du5V0(Ds†1D†s) ~where one has to take into ac
count thatD andB depend onu). With this one findsV0T
@A(N21)/2;AN. On the other hand the maximum valu
of V0 is limited by the dipole-blocking condition. Ifk de-
notes the frequency splitting of the doubly excited Rydb
manifold, we haveANV0!k. Combining these condition
one arrives at

T@
N

k
. ~10!
m

-

s
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Thus we see that in the present scheme adiabatic transf
possible in a total interaction time which scales linearly w
the number of particles.

In conclusion, we have proposed an efficient and rob
method to generate complex entanglement structures, su
the N-particle GHZ state in a many-particle system wi
resonant dipole-dipole interactions. The method is rob
against variations of parameters since for all steps adiab
transfer processes are used. Although dark-state adia
passage is not suitable for entanglement generation, a
does not involve population of the interacting Rydberg le
els, other adiabatic processes are identified that allow e
for the generation of theN-particle GHZ state~1! in a few
steps. The suggested method works for even and odd num
of particles. Exact knowledge of the number of particles
not required, making the method robust against number fl
tuations. As opposed to the proposal of Ref.@6# no extreme
fine tuning of the interaction time is needed and the mi
mum interaction time scales linearly with the number of p
ticles. Finally it should be mentioned that similar ideas c
be applied to other many-particle systems, e.g., ions in a t
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