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Delay time and tunneling transient phenomena
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Analytic solutions to the time-dependent Safirger equation for cutoff wave initial conditions are used to
investigate the time evolution of the transmitted probability density for tunneling. For a broad range of values
of the potential barrier opacitw, we find that the probability density exhibits two evolving structures. One
refers to the propagation of fmrerunnerrelated to atime domain resonancgPhys. Rev. A64, 0121907
(2001)], while the other consists of a semiclassical propagating wave front. We find a regime where the
forerunnersare absent, corresponding to positiie delaysand show that this regime is characterized by
opacitiesa<a.. The critical opacitya, is derived from the analytical expression for ttielay time which
reflects a link between transient effects in tunneling anddiday time
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[. INTRODUCTION wave front exhibits a time delay with respect to the free case
situation. We corroborate that this dynamichdlay timeis
In recent times there have been relevant technological adiccurately described by the analytical expression obtained
vances that have made it possible to design and construfiom the phase energy derivative of the transmission ampli-
artificial quantum structures at nanometric scdteg]. On tude. The analysis of this time scale as a function of the
the theoretical side, the above achievements have stimulat@tential parameters yields positive and negatitiene-
work on the issue of time-dependent tunneling. In particularadvance delay timesWe have found thaforerunnersexist
one finds a number of works that deal with the solution to thevhenever thelelay timeis negative, thus establishing a deep
time-dependent Schdinger’s equation for cutoff wave ini- connection between transient and asymptotic effects in tun-
tial stateg§3—6]. One interesting feature of these approachedeling.
is that at asymptotically long times the time-dependent solu- The paper is organized as follows. Section Il provides the
tion goes into the well-known stationary solution. This estabmain expressions of the formalism, which are relevant to
lishes a bridge between time-dependent and timecalculate the probability density along the transmitted region.
independent approaches that may be used to address soieSec. Il we consider the time honored rectangular barrier
subtle questions, such as the controversial problem of theotential model. Here we study through several subsections
relevant time scales for tunnelind]. the time evolution of the transmitted probability density, and
In a recent work we have used a time-dependent analytiiscuss thedelay time Finally, in Sec. IV we present the
solution to the Schidinger equation for an arbitrary poten- conclusions.
tial [5], to explore the tunneling dynamics for a rectangular
potential barrie6]. We found that the probability density
exhibits a transient structure that we namt@de domain Il. FORMALISM

resonanceand obtained that it provi the largest probabil- . . .
esonanceand o ed that it provides the largest probab The relevant expressions to calculate the time evolution of

ity of finding the tunneling particle at the potential barrier . . . S
edge. Moreover, we discussed the relevant time scales asstg—e transmitted wave with the reflecting cutoff wave initial

ciated with thetime domain resonancas a function of the condition were considered in Re{iBJ. They follow from a

potential parameters and the incidence energy. gene_ral formahgm developed by .Q:.ﬂcmaldero [.5] for the
The purpose of this work is to extend the above investi-SOIl.Jtlon of the tlme-dgpendent Sc_tirnger equathn for tun-

gation to study the time evolution of the probability density neling through an arbitrary potentil(x) that vanishes out-

along the transmitted region of the potential. We found thats'de a region &x<L. Our approach is a generalization of

for a large variation of potential parameters, the probabilitythe free case problem considered by Moshingthat led

to the diffraction in timephenomenon. This transient effect

density exhibits two evolving structgres. One of _them is ahas been recently verified experimentd®j and has stimu-
forerunnerthat corresponds to the time propagation of theIate d further stu d)ileél 0l P

time domain resonangcevhereas the other structure consists . .

of a propagating wave front. We find that tfiererunner For the sake of completeness and to fix the notation we
vanishes at asymptotically long times and distances from th&eca(ljl!t_the relevant g_qua:lons P}Fret._ The cutoff w%ve |r_1:|al
interaction region, whereas the propagating wave front tendg2ndtion corresponding to a refiecting wave may be written

to the stationary solution of the problem. The propagatin

ikx _ q—ikx -
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The time-dependent solutions(x,k;t) of Schralinger’s
equation for the transmitted regiox=L reads,

P K 1) = g (X, Kit) + e (X, K t), 2
where i, is given by
Pg(X, K ) =T M () = T_(M(y_k) ()
and ¢, by
Yr(x kiD= =2 TiM(yi). (4)

In the above expressions the quantifigsandT_, =T} re-
fer, respectively, to transmission amplitudes ang,
=2ikun(0)u,(L)exp(—ik,L)/(k*— kﬁ) is given in terms of the
set of resonant statgsi,(x)} and the complex polegk,
=a,—ib,} of the problen[5]. The functionsM(y;) are de-
fined ag[5]

1
M(ys)= 5™ 2 w(iy), (5)

where thew(iy,) is the complex error functiofil2] with the
argumenty given by

. m \ 12
— a4
ys=¢ (Zﬁt)

In Egs.(5) and(6), s stands for either-k or k..,, and the

s
X— —t]|.
m

(6)

index n refers to a given complex pole. Poles are located on

the third and fourth quadrants of the complexylane. The

free case solution to the above problem for a cutoff plan

wave was considered by Moshins|g]. The solution for the
free case with a reflecting initial condition is given by
ho(X,Kit) =My ) =M(y_). (7)

Note that in the absence of a potential, i'lB;=1, the term

g, given by Eq.(3), becomes identical to the free case

solution ¢, given above. We shall refer tg,, which re-
sembles the free contribution, as th@asimonochromatic
contributionand to the sum term given by E(), namely,
¢, , as theresonant contributionFrom the analysis given in
Ref. [5] one can see that the exact solutign= s+ ¢,
given by Eq.(2), satisfies the initial condition and that at
asymptotic long timesy;, —0 and ¢, goes into the station-
ary solution. Hence at very long timesbecomes
(/I(X’k;t):TkeikXefiEt/fz.

8

As pointed out in Ref[6] a cutoff wave initial state has,
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Ill. THE MODEL

As has been customary in studies involving tunneling
times in one dimension, we consider a model that has been
used extensively in studies on time-dependent tunneling,
namely, the rectangular barrier potential, characterized by a
height V, in the region Gsx<L. To calculate the time-
dependent solutiogi(x,k;t) given by Eq.(2), in addition to
the barrier parameterg,, L, and the corresponding inci-
dence energf =#2k?/2m, we need to determine the com-
plex poles{k,} and the resonant stat¢s,(x)} of the sys-
tem. Both the complex pole&k,} and the corresponding
resonant eigenfunctionfu,(x)} can be calculated using a
well established method, as discussed elsewfe@. For
the rectangular potential barrier the set of complex energies
Enzﬁzkﬁ/Zmzsn—iFn/Z corresponds to the poles of the
transmission amplitude of the probldf], and hence it may
be used to describe the well-known top-barrier transmission
resonances appearing in that system.

A. Dynamics of the transmitted probability density

To exemplify the time evolution of the probability density
in the transmitted region we consider a set of parameters
typical of semiconductor artificial quantum structurds:
Vy=0.3 eV, L=5.0 nm, E=0.01 eV, andm=0.067m,,
with m, the electron mass. Our choice of parameters is the
same as in Ref6], and it guarantees that most momentum
components of the initial state tunnel through the potential.
The different parameters may also be expressed in terms of
the opacitya defined as

a=k0L, (9)

whereko=[2mV,]"%/7%, and the ratiai=V,/E. In our case

a=23.63 andu=30. For example, the regime of opaque bar-
rier is reached for values af>5. In what follows we shall
explore the time evolution ofy|? at several position,
away from the interaction region. From E@&) we can write
2= g2 [P 1 g (10
wherequ=2Re(¢§ y,) stands for the corresponding inter-
ference term. Figure 1 displays the time evolution|¢f?
(solid line) at the right edge of the potential barrigr- L, as
considered in Ref6]. This is the same example exhibited in
Fig. 2 of Ref.[6] using a larger time scale. The sharp peak at
very short times is mainly due to the resonant contribution
||? (dotted ling. As discussed in Ref6], the maximum
value of thistime domain resonance,, provides a tunnel-
ing time scale representing the largest probability to find the
particle at the barrier edge. In our exampje=5.4 fs. The
figure also shows the quasimonochromatic contribqti,lz;ﬂ\2
(dashed lingthat rises and oscillates with time in a manner

in addition to tunneling components, momentum componentsesembling the free cage,|? (dashed-dotted line The in-

that go above the barrier height. One sees from(Eg.that

terference contributioh, is not shown, although clearly it is

the probability density exhibits and interplay between tunnelnecessary to account for the complete solution.

ing and over-the-barrier processes. However, ag&qndi-

Along the transmitted regiorx>L, the probability den-

cates, at asymptotically long times, the transient effects vansity becomes a propagating solution. We can see thairttee

ish and one ends up with a stationary tunneling solution.

domain resonanceecomes a propagating structure that we
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FIG. 1. Time evolution of the normalized probability density ~ FIG. 3. Time evolution of|¢|?> at the fixed positionx
| 4|2 (solid line) at the barrier edgg=L. The main contribution to  =1000.0 nm. Notice that tHererunnerhas almost disappearéah
the time domain resonanceomes from the resonant terf,|? arrow indicates its position The parameters are the same as in
(dotted ling, the quasimonochromatic contributi<$|31r0||2 (dashed  Fig. 1.
line) oscillates with time in a similar fashion as the free solution

|l? [8] (dashed-dotted line The system parameters aré,  second type of response is given in a natural way by the
=0.3eV,L=5.0nm, andE=0.01 eV, see text. maximum of the first peak of the probability density associ-

) ated with the quasimonochromatic contributihphlz. This
shall refer to adorerunner Figure 2 shows the case 8  comes mostly from the momentum components centered
=50.0 nm. One sees that the amplitude of this transient, ¢ the momenturk, which tunnel through the structure.
structure (dotted ling is smaller than the quasimonochro- At still much larger distances,=1000.0 nm as shown in
matic contribution(dashed ling Note also that the solution Fig. 3, theforerunner has disappeared almost completely,

has separated itself into two well defined structures thaénd the time evolution of the probability density is domi-
propagate with different velocities. THererunner propa-  4teq by ¢q|2_

gates with a velocity given approximately by=+a,/m, The behavior of thdorerunnermay be understood quali-
the velocity associated with the first top-barrier resonanceytively by using the asymptotic propertids] of the
whereas the quasimonochromatic contribution does that, a (y«_) functions in Eq.(4). By numerical inspection we

proximately byv,=7k/m, the velocity associated with the_find that at a fixed positiorxg, the main features of the

incident particle. From a physical point of view we can un be d ibed using th : 1
derstand the above situation by noting that our initial Statgorer_unngrcan © describe usmgz © one- ermZ:( ).ap-
proximation to Eq.(4), namely, |¢|*=[TM(y,)|*. Since

possesses momentum componentk gpace above the bar- ' e
rier, which can be transmitted more effectively by the resodn the vicinity of the peak of théorerunnerthe argumeny,
nance window corresponding to the first top-barrier resoof M(yy ) lies within —m/2<argy, <w/2, one obtains

nance. This is the origin of the fast tunneling response, giveny,|2=(4+)~1|T, /y, |2. This allows us to write a simple
1

i i 2 - . . . . . .
by the forerunn_er maln_ly c_jescnbed byl¢/;|. In our e2x analytical expression for the time evolution of this transient
ample, the main contribution to the resonant tefw,|?,

) . structure, namely,
comes from the first top-barrier resonant state. However, de- y

pending on the distance,, one may need to sum up over 5
many terms to account for the complete wave function. The [y 1 (Ait/m)

ITy2 27 [(xo—hast/m)?+ (fibyt/m)?]

(11

14

From the above equation we can see that the peak of the
forerunner propagates with a velocity,=#%a;/m, as dis-
cussed earlier in the text. Figure 4 exhibits a plot| ¢f|?
(dashed lingas a function of time for the same parameters
used in Fig. 1. We observe good agreement with the exact
calculation of| /|2 (solid line), given by Eq.(2). It is worth-
while to point out by inspection of Eqll) that as time
increases, the maximum of tHererunner occurring atr

0.0 o5 0 15 =Xo/v,, diminishes at a rate proportionalxgl. Hence, for

an increasing value ofy, the transient structure tends to a
vanishing value.

FIG. 2. Time evolution of #|? (solid line) at the fixed position It is interesting to mention that in the case of opaque
Xo=50.0 nm. | |2 (dotted ling and |y|? (dashed lingaccount, ~ barriers, i.e.a>5.0, the resonant contributidw,|* may be
respectively, for théorerunnerand the quasimonochromatic contri- much larger than the quasimonochromatic contribution
butions, see text. |¢q|2. This occurs even at quite large distances from the

2
¥

Time (ps)
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FIG. 4. Comparison between the formula for the forerunner, FIG. 6. Time evolution of théorerunnerfor a fixed value of the
|y|2 (dashed ling and the exact solution;#|? (solid line), as a  POsitionx,=50.0 nm, for different values of the barrier width(a)
function of time for a fixed value of the positio=50.0 nm. The 5.0 nm(solid line), (b) 4.5 nm (dashed ling (c) 3.0 nm (dotted
parameters are the same as in Fig. 1. line), and(d) 2.0 nm(dashed-dotted lineNotice that the transient
structure disappears as the barrier width diminishes. The parameters
interaction region. Figure 5 exhibits an example of this situ-are the same as in Fig. 1. The inset exhibits a plot of the contribu-
ation for L=15.0 nm and a distance,=1x10° nm from tions to |¥|? (dashed ling of case(d). Notice that the resonant
the potential. Since the solution is normalized|TQ|2 and  contribution|¥ |2 (solid ling) that gives rise to théorerunner is
this quantity becomes very small for large one sees that almost canceled out entirely by the interference contributign
|¢|? is several orders of magnitude larger tham|?, de-  (dotted ling.
picted in the inset of that figure. Clearly, as previously dis- o ) )
cussed, and exemplified in Fig. 3, at still much larger values Similarly Fig. 7 shows that theorerunneralso disappears
of the distancex, the term|y|? shall eventually dominate by diminishing the barrier height,, and again, as the inset
over| |2 shows, this occurs by the same reason as discussed in the
Let us now discuss another interesting behavior of thd’révious case. The above results hold also forttime do-
forerunner In Fig. 6 we plot it as a function of time at a Main resonancei.e., atx=L. From the above analysis one
given distancex,>L, for different values of the barrier could argue that the existence of e domain resonance
thickness,L =5.0 nm (solid ling), L=4.5 nm (dashed ling and henge of théorerunners depends basically on a pqrhcu-
L=3.0 nm (dotted ling, and L=2.0 nm (dashed-dotted lar comblnatlon of the parameté@ qndL. In the following
line), for the same parameters used in Fig. 1. We can see thg#bsection we shall show that this is indeed the case.
the intensity of the transient structure diminishesLade-
creases. In fact, for the case of a barrier witlth 2.0 nm, B. Delay time and forerunners
we observe that thdorerunner disappears. However, as
shown in the inset of Fig. 6, what happens is that both th
resonant contributior|¥,|?, and the interference terrh, ,
in Eq. (10) for the probability density, are not only over- 0.6
whelmed by the monochromatic contributipi 4> but also
almost cancel each other.

An interesting result of the analysis of the preceding sub-
Section, depicted by Fig. 3, is that at very large distances

1.0x10° 04r
15
10 N; 0.10
N - ook Time (ps)
< .
. 5ox10°r 05
R A Y N Y B A
T T EYE— 0.0 . y y
: Time (10°18) : 0.00 0.05 0.10 0.15 0.20
0.0 Time (ps)
0.0 1.0 2.0 3.0 4.0 FIG. 7. Time evolution of théorerunnerfor a fixed value of the
Time (10°fs) position x,="50.0 nm, for three different values of the barrier po-

tential Vy: (a) 0.3 eV (solid line), (b) 0.2 eV (dashed ling and(c)

FIG. 5. The main graph shows the time evolutior} gf® for the 0.1 eV (dotted ling. Notice that the amplitude of thfsrerunner
case of an opaque barrier of width=15.0 nm @=10.88), at a decreases as the barrier height of the potential diminishes. At the
fixed positionx,=1x10° nm. Notice that theforerunnet given  inset we plot the contributions tb¥|? (dashed ling of case(c).
essentially by the resonant contributidg,|?>, overwhelms the Notice that the resonant contributid®,|? (solid line) is almost
quasimonochromatic term described hyq|2, as depicted in the canceled out by the interference contributipg (dotted ling. The
inset, see text. parameters are the same as in Fig. 1.
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FIG. 9. Plot of At (full square$ and thedelay time §, (solid
line) as a function of the barrier width, at fixed positionx,=1
X10° nm, with the same parameters as in Fig. 1. Hége
=0.07 258 and hence varies from 7.2% 103 to 13.065, see text.

from the interaction region the time evolution of the prob-. . - L B
ability density|y|? is essentially given byy|* and exhibits ignored. F'ggre 1 exhibits this situation fag=L. The be-
a well-defined wave front. As mentioned above, the WavAT"aVIor OfM .(SOI'd Ilzne) IS very dlfferen.t from th_at of the
front propagates with approximately the classical velocity ree contribution|y,|* (dashed-dotted line As discussed

v = (fk/m), as follows by direct inspection of the argument previously, tha.|me. domain res.or_1anqeeak comes from the
to the M function, given by Eq(6). A comparison off |2 resonant contribution. The splitting of the solution observed
' e at larger distances and longer times has yet not occurred.

near the above wave front with the corresponding free prob- Note also in Fig. 9 that for thin barriers there is a positive

ability density||* is exhibited in Fig. 8. The parameters delay time and asE.increases there is a transition tog nega-

and the value of the positior, are the same as in Fig. 3. y umea ’ 9
tive delay time In what follows we shall demonstrate that

Both solutions look very much alike. Note that its corre- o - i
such a transition occurs for a critical value of the opaaity

sponding wave fronts are slightly displaced with respect t . i
each other. In fact the maximum values ¢f2 and| |2, for qgor?rgf trht;) sgf;:ngirft;e;a Iuet_lils ;eEwr:aemE(edlfj) as afunc
) I I

the parameters used in our example, exhibit a time differenc
that corresponds to a negatidelay time(time advancg

FIG. 8. Time advance of the solutigg|? (solid line) relative to
the free propagation caskj|? (dashed ling The parameters are
the same as in Fig. 1.

—1qj _ 2 —2__
The above considerations lead us to the notio@hy to_ [4y sinhy—coshy+y"a "~3] ,
timeas discussed by Bohfi3]. He has argued thatthe main o [y?a~2—y*a™ 4/4+sint?(y/2)][4— y?a ™ 2]"?
contribution to the transmitted probability density comes (14

from values in the neighborhood of space, for which the ]

phase of the wave function changes slowly with energy. Thié’Vhe_ria e have definedo=(mL/7iko) and y=2a(1
yields the well-known expression for thielay time[13] as U ") Thus from Eq(14) the condition for the transition
ty=(d¢/dk)/v,, whereg stands for the phase of the trans- from positive to negativelelay timesi.e.,t,=0, is simply
mission amplitude, i.eT,=|T,/exp(¢) andv, is the classi- diven by the vanishing of the numerator, namely,

cal velocity as defined above. For the case of the rectangular

potential barrier thelelay timereads Y

2
4~ sinhy—coshy= ( 3— —2> . (15)
m [Kisinh2xL)—2xLk2(K2—k?)| mL “

" hkk AK2 12+ késinhZ(KL) hk” For a particular value of the opacity, we can determine
(12)  from the above equation the value wfat which the transi-
tion occurs. However, one finds by inspection of Ef5)
We defineAt as the time difference of the maximum val- that such a transition is not possible for small valuesvof
ues of the curves fofy|? and |yo|? obtained numerically, That is, there exists a critical value of the opacity- a,
namely, such that fore<«., the transition does not occur. This situ-
ation corresponds to impose the limit- o0 in the solution to
At=|ymaq2—| g2, (13 Eq. (15). This implies thaty—2a,, and hence Eq(15)
becomes

Figure 9 displays a plot oAt (full square$ and thedelay

time t, (solid line), as a function of the barrier width for a cosh 2u.— 2aglsinh 20.=1. (16)
large fixed value of the positiox,. One sees thakt repro-

duces exactly the behavior obtained from the analytical exThe numerical solution to Eq16) yields the critical opacity
pression fott ;. The above agreement At with t,, does not  a,=2.0653. Note that in addition to the potential parameters
hold when the distancg, is very close to the interaction V, andL, the opacity depends on the mas®f the incident
region. There, the effect of the transient structure cannot bparticle. It turns out that this value ef, accounts for sys-
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tems where the potential barrier is either too shallow or too 35.0

thin. Therefore, in the regime<a,, only a positivedelay

timeis observed. 28.0
We have also found that, plays an important role in the

existence ofime domain resonanceand hence oforerun- @ 2101

ners In fact, we find that for systems whete<«a, notime Py

domain resonancenor forerunnersare observed. This be- E “or

havior can be seen in Figs. 6 and 7. For example, in the cases
(c) and (d) of Fig. 6, which correspond to barrier widtts
=3.0 nm andL=2.0 nm, the parameter is, respectively,
2.17 and 1.45. Clearly in cagd) the forerunner has com- 0.0
pletely disappeared. In Fig. 7, the cagbg and (c) corre-
sponding to the potential height¥;=0.2 eV and V,

7.0

=0.1 eV, which refer, respectively, to the valuesagf2.96 20.0 o)
and 2.095. In this case the disappearance offéherunner
occurs in the vicinity of the critical opacity. . 15.0}

C. Comment on the phase-delay time % 1001

Hartman has argueld.1] that the time it takes for a par- E
ticle to traverse the classical forbidden region of a potential 5.0
barrier can be obtained from an analysis involving detay
time He referred to this quantity as tHeansmission time 0.0 : . . . :
00 30 60 90 120 150 180

4, though nowadays it is often callgzthase-delay timelt
corresponds to the difference between the time at which a
transmitted particle of momentufik would leave the rear of FIG. 10. Comparison of théransmission timery, (solid line)
the barrierx=L, and the time the same particle would arrive yith 5,, (full squareg as a function of the barrier width, measured
at the front of the barrierk=0. Thetransmission timery at (a) the barrier edgex=L and (b) at a fixed positionx,=1
can be written agsee Eq(13) of Ref. [11]], % 10° nm. The parameters are as in Fig. 1. Hekge 0.7258, and
the opacity varies as mentioned in Fig. 9, see text.
TH:t¢+to, (17)

L (nm)

very far away from the interaction region, i.exg=1.0

wheret,, is given by Eq.(12) andty=(mL/%k) represents X 10° nm. This figure also shows a plot of, (solid line)
the free time across a distance equal to the barrier width 2nd we see that they match quite well for all valuesaof
Note thatt, cancels out exactly the second term on the right-1 "€ lack of agreement between the plotsefandéy, in Fig.
hand side of Eq(17). The idea of considering, as the 10@ follows because théme domain resonancéhe quasi-
relevant time scale for tunneling through a classically forbid-Tionochromatic contribution, and the interference term are
den region has been criticized by arguing that there is nd€Y_close together, as exemplified in Fig. 1 far
physical justification for relating in a causative sense the freg- >-0 NM. However, at long distances tioeerunnerand the
evolving peak and the transmitted peak through a barriegua&monochromaﬂc contribution are quite separated, though

[7,14]. Our analysis of the time evolution of the probability it may 'be shown that the interference term accounts for the
density supports this criticism. Indeed, as discussed in Sed€lay time[15]. _ , _

IlA, along the transmitted region, the probability density " the opaque barrier regime;>1, the above times be-
may split into two structures evolving with different veloci- C0Me independent of the barrier width, giving rise to the
ties. Hence it is not physically justified to choose a feature ofVell-known Hartman effect. Indeed at asymptotically large
one of them to compare it with the free evolving case. Inv&lues ofL, 7, goes as &/(#ikx) as follows by inspection
particular, at the barrier edge=L, for a>a., the behavior Of EG. (17) [11]. As can be seen, it is only at long distances
of probability density| (L ,t)|2 is governed by théime do- from. the !nteracnon region, whefy, coincides with the dy-
main resonancewhich yields a completely different time namical ime scalé,. o

scale[6] than thephase-delay timeMoreover, even for The_ at_aove_ co_n5|derat_|ons, therefore, indicate that the
<a, where there is ndime domain resonanceur calcy- ~ ransmission timei.e., 7, given by Eq.(17), does not repre-
lations do not support Hartman'’s transmission time This sent. the tunnglmg time of the' particle throygh the c]gssmally
is illustrated in Fig. 108), where we plotr as a function of ~ forbidden region. Thephase time delay,, in the spirit of

the barrier width_ (solid line), and compare it with a plot of YVigner and EisenbudL6], represents an asymptotic effect of
Sy=At+t, (full squares measured dynamically at the bar- th€ potential on the tunneling particle.

rier edgex=_L. Although both curves exhibit a similar quali-
tative behavior, the values of; and 6, are quite different.
However, Figure 1() exhibits a plot ofs, (full square$ as Using an analytical solution to the time-dependent Schro
a function of the barrier width., measured at a distangg  dinger equation for cutoff semi-infinite initial waves, we

IV. CONCLUSION
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have investigated the dynamics of the transmitted probabilitya given problem, would depend on the interplay among the
density for tunneling through a rectangular potential barrierdifferent contributions to the probability density given by Eq.
We have found two regimes, characterized by a critical opac¢10). Our results suggest also that the study of transient ef-
ity parameterx,, such that for values ok <« there are no  fects cannot be ignored for a thorough understanding of the
domain resonancesand consequently noforerunners  tunneling time problem.

whereas fora>a,, these transient structures may exist de-

pending on the value ai=V,/E. The above result follows

from an unexpected connection between the existence of ACKNOWLEDGMENTS

these transient structures and theday time This deserves to
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