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Delay time and tunneling transient phenomena
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Analytic solutions to the time-dependent Schro¨dinger equation for cutoff wave initial conditions are used to
investigate the time evolution of the transmitted probability density for tunneling. For a broad range of values
of the potential barrier opacitya, we find that the probability density exhibits two evolving structures. One
refers to the propagation of aforerunner related to atime domain resonance@Phys. Rev. A64, 0121907
~2001!#, while the other consists of a semiclassical propagating wave front. We find a regime where the
forerunnersare absent, corresponding to positivetime delays, and show that this regime is characterized by
opacitiesa,ac . The critical opacityac is derived from the analytical expression for thedelay time, which
reflects a link between transient effects in tunneling and thedelay time.
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I. INTRODUCTION

In recent times there have been relevant technological
vances that have made it possible to design and cons
artificial quantum structures at nanometric scales@1,2#. On
the theoretical side, the above achievements have stimu
work on the issue of time-dependent tunneling. In particu
one finds a number of works that deal with the solution to
time-dependent Schro¨dinger’s equation for cutoff wave ini
tial states@3–6#. One interesting feature of these approach
is that at asymptotically long times the time-dependent so
tion goes into the well-known stationary solution. This esta
lishes a bridge between time-dependent and tim
independent approaches that may be used to address
subtle questions, such as the controversial problem of
relevant time scales for tunneling@7#.

In a recent work we have used a time-dependent ana
solution to the Schro¨dinger equation for an arbitrary poten
tial @5#, to explore the tunneling dynamics for a rectangu
potential barrier@6#. We found that the probability densit
exhibits a transient structure that we namedtime domain
resonance, and obtained that it provides the largest probab
ity of finding the tunneling particle at the potential barri
edge. Moreover, we discussed the relevant time scales a
ciated with thetime domain resonanceas a function of the
potential parameters and the incidence energy.

The purpose of this work is to extend the above inve
gation to study the time evolution of the probability dens
along the transmitted region of the potential. We found t
for a large variation of potential parameters, the probabi
density exhibits two evolving structures. One of them is
forerunner that corresponds to the time propagation of t
time domain resonance, whereas the other structure consis
of a propagating wave front. We find that theforerunner
vanishes at asymptotically long times and distances from
interaction region, whereas the propagating wave front te
to the stationary solution of the problem. The propagat
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wave front exhibits a time delay with respect to the free c
situation. We corroborate that this dynamicaldelay timeis
accurately described by the analytical expression obtai
from the phase energy derivative of the transmission am
tude. The analysis of this time scale as a function of
potential parameters yields positive and negative~time-
advance! delay times. We have found thatforerunnersexist
whenever thedelay timeis negative, thus establishing a dee
connection between transient and asymptotic effects in
neling.

The paper is organized as follows. Section II provides
main expressions of the formalism, which are relevant
calculate the probability density along the transmitted regi
In Sec. III we consider the time honored rectangular bar
potential model. Here we study through several subsect
the time evolution of the transmitted probability density, a
discuss thedelay time. Finally, in Sec. IV we present the
conclusions.

II. FORMALISM

The relevant expressions to calculate the time evolution
the transmitted wave with the reflecting cutoff wave initi
condition were considered in Ref.@6#. They follow from a
general formalism developed by Garcı´a-Caldero´n @5# for the
solution of the time-dependent Schro¨dinger equation for tun-
neling through an arbitrary potentialV(x) that vanishes out-
side a region 0<x<L. Our approach is a generalization o
the free case problem considered by Moshinsky@8# that led
to the diffraction in timephenomenon. This transient effe
has been recently verified experimentally@9# and has stimu-
lated further studies@10#.

For the sake of completeness and to fix the notation
recall the relevant equations here. The cutoff wave ini
condition corresponding to a reflecting wave may be writ
as

c~x,k;t50!5H eikx2e2 ikx, x<0

0, x.0.
~1!
©2002 The American Physical Society04-1
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GASTÓN GARCÍA-CALDERÓN AND JORGE VILLAVICENCIO PHYSICAL REVIEW A 66, 032104 ~2002!
The time-dependent solutionc(x,k;t) of Schrödinger’s
equation for the transmitted region,x>L reads,

c~x,k;t !5cq~x,k;t !1c r~x,k;t !, ~2!

wherecq is given by

cq~x,k;t !5TkM ~yk!2T2kM ~y2k! ~3!

andc r by

c r~x,k;t !52(
n

`

TnM ~ykn
!. ~4!

In the above expressions the quantitiesTk andT2k5Tk* re-
fer, respectively, to transmission amplitudes andTn

52ikun(0)un(L)exp(2iknL)/(k22kn
2) is given in terms of the

set of resonant states$un(x)% and the complex poles$kn
5an2 ibn% of the problem@5#. The functionsM (ys) are de-
fined as@5#

M ~ys!5
1

2
e( imx2/2\t)w~ iys!, ~5!

where thew( iys) is the complex error function@12# with the
argumentys given by

ys[e2 ip/4S m

2\t D
1/2Fx2

\s

m
t G . ~6!

In Eqs. ~5! and ~6!, s stands for either6k or k6n , and the
index n refers to a given complex pole. Poles are located
the third and fourth quadrants of the complexk plane. The
free case solution to the above problem for a cutoff pla
wave was considered by Moshinsky@8#. The solution for the
free case with a reflecting initial condition is given by

c0~x,k;t !5M ~yk!2M ~y2k!. ~7!

Note that in the absence of a potential, i.e.,Tk51, the term
cq , given by Eq.~3!, becomes identical to the free ca
solution c0 given above. We shall refer tocq , which re-
sembles the free contribution, as thequasimonochromatic
contributionand to the sum term given by Eq.~4!, namely,
c r , as theresonant contribution. From the analysis given in
Ref. @5# one can see that the exact solutionc5cq1c r ,
given by Eq.~2!, satisfies the initial condition and that a
asymptotic long times,c r→0 andcq goes into the station
ary solution. Hence at very long timesc becomes

c~x,k;t !5Tke
ikxe2 iEt/\. ~8!

As pointed out in Ref.@6# a cutoff wave initial state has
in addition to tunneling components, momentum compone
that go above the barrier height. One sees from Eq.~2!, that
the probability density exhibits and interplay between tunn
ing and over-the-barrier processes. However, as Eq.~8! indi-
cates, at asymptotically long times, the transient effects v
ish and one ends up with a stationary tunneling solution.
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III. THE MODEL

As has been customary in studies involving tunneli
times in one dimension, we consider a model that has b
used extensively in studies on time-dependent tunnel
namely, the rectangular barrier potential, characterized b
height V0 in the region 0<x<L. To calculate the time-
dependent solutionc(x,k;t) given by Eq.~2!, in addition to
the barrier parametersV0 , L, and the corresponding inci
dence energyE5\2k2/2m, we need to determine the com
plex poles$kn% and the resonant states$un(x)% of the sys-
tem. Both the complex poles$kn% and the corresponding
resonant eigenfunctions$un(x)% can be calculated using
well established method, as discussed elsewhere@5,6#. For
the rectangular potential barrier the set of complex energ
En5\2kn

2/2m5«n2 iGn/2 corresponds to the poles of th
transmission amplitude of the problem@6#, and hence it may
be used to describe the well-known top-barrier transmiss
resonances appearing in that system.

A. Dynamics of the transmitted probability density

To exemplify the time evolution of the probability densi
in the transmitted region we consider a set of parame
typical of semiconductor artificial quantum structures@1#:
V050.3 eV, L55.0 nm, E50.01 eV, andm50.067me ,
with me the electron mass. Our choice of parameters is
same as in Ref.@6#, and it guarantees that most momentu
components of the initial state tunnel through the potent
The different parameters may also be expressed in term
the opacitya defined as

a5k0L, ~9!

wherek05@2mV0#1/2/\, and the ratiou5V0 /E. In our case
a53.63 andu530. For example, the regime of opaque ba
rier is reached for values ofa.5. In what follows we shall
explore the time evolution ofucu2 at several positionsx0
away from the interaction region. From Eq.~2! we can write

ucu25ucqu21uc r u21I rq , ~10!

where I rq52Re(cq* c r) stands for the corresponding inte
ference term. Figure 1 displays the time evolution ofucu2

~solid line! at the right edge of the potential barrier,x5L, as
considered in Ref.@6#. This is the same example exhibited
Fig. 2 of Ref.@6# using a larger time scale. The sharp peak
very short times is mainly due to the resonant contribut
uc r u2 ~dotted line!. As discussed in Ref.@6#, the maximum
value of thistime domain resonance, tp , provides a tunnel-
ing time scale representing the largest probability to find
particle at the barrier edge. In our exampletp55.4 fs. The
figure also shows the quasimonochromatic contributionucqu2
~dashed line! that rises and oscillates with time in a mann
resembling the free caseuc0u2 ~dashed-dotted line!. The in-
terference contributionI rq is not shown, although clearly it is
necessary to account for the complete solution.

Along the transmitted region,x.L, the probability den-
sity becomes a propagating solution. We can see that thetime
domain resonancebecomes a propagating structure that
4-2
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DELAY TIME AND TUNNELING TRANSIENT PHENOMENA PHYSICAL REVIEW A 66, 032104 ~2002!
shall refer to asforerunner. Figure 2 shows the case forx0
550.0 nm. One sees that the amplitude of this trans
structure~dotted line! is smaller than the quasimonochr
matic contribution~dashed line!. Note also that the solution
has separated itself into two well defined structures t
propagate with different velocities. Theforerunner propa-
gates with a velocity given approximately byv r5\a1 /m,
the velocity associated with the first top-barrier resonan
whereas the quasimonochromatic contribution does that,
proximately byvk5\k/m, the velocity associated with th
incident particle. From a physical point of view we can u
derstand the above situation by noting that our initial st
possesses momentum components ink space above the bar
rier, which can be transmitted more effectively by the re
nance window corresponding to the first top-barrier re
nance. This is the origin of the fast tunneling response, gi
by the forerunner, mainly described byuc r u2. In our ex-
ample, the main contribution to the resonant term,uc r u2,
comes from the first top-barrier resonant state. However,
pending on the distancex0, one may need to sum up ove
many terms to account for the complete wave function. T

FIG. 1. Time evolution of the normalized probability densi
ucu2 ~solid line! at the barrier edgex5L. The main contribution to
the time domain resonancecomes from the resonant termuc r u2

~dotted line!, the quasimonochromatic contributionucqu2 ~dashed
line! oscillates with time in a similar fashion as the free soluti
uc0u2 @8# ~dashed-dotted line!. The system parameters are:V0

50.3 eV, L55.0 nm, andE50.01 eV, see text.

FIG. 2. Time evolution ofucu2 ~solid line! at the fixed position
x0550.0 nm. uc r u2 ~dotted line! and ucqu2 ~dashed line! account,
respectively, for theforerunnerand the quasimonochromatic contr
butions, see text.
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second type of response is given in a natural way by
maximum of the first peak of the probability density asso
ated with the quasimonochromatic contributionucqu2. This
comes mostly from the momentum components cente
about the momentum\k, which tunnel through the structure

At still much larger distances,x051000.0 nm as shown in
Fig. 3, the forerunner has disappeared almost complete
and the time evolution of the probability density is dom
nated byucqu2.

The behavior of theforerunnermay be understood quali
tatively by using the asymptotic properties@5# of the
M (yk6n

) functions in Eq.~4!. By numerical inspection we

find that at a fixed positionx0, the main features of the
forerunnercan be described using the one-term (n51) ap-
proximation to Eq.~4!, namely,uc f u25uT1M (yk1

)u2. Since

in the vicinity of the peak of theforerunnerthe argumentyk1

of M (yk1
) lies within 2p/2,argyk1

,p/2, one obtains

uc f u25(4p)21uT1 /yk1
u2. This allows us to write a simple

analytical expression for the time evolution of this transie
structure, namely,

uc f u2

uT1u2
5

1

2p

~\t/m!

@~x02\a1t/m!21~\b1t/m!2#
. ~11!

From the above equation we can see that the peak of
forerunner propagates with a velocityv r5\a1 /m, as dis-
cussed earlier in the text. Figure 4 exhibits a plot ofuc f u2

~dashed line! as a function of time for the same paramete
used in Fig. 1. We observe good agreement with the ex
calculation ofucu2 ~solid line!, given by Eq.~2!. It is worth-
while to point out by inspection of Eq.~11! that as time
increases, the maximum of theforerunner, occurring att
5x0 /v r , diminishes at a rate proportional tox0

21. Hence, for
an increasing value ofx0, the transient structure tends to
vanishing value.

It is interesting to mention that in the case of opaq
barriers, i.e.,a.5.0, the resonant contributionuc r u2 may be
much larger than the quasimonochromatic contribut
ucqu2. This occurs even at quite large distances from

FIG. 3. Time evolution of ucu2 at the fixed positionx0

51000.0 nm. Notice that theforerunnerhas almost disappeared~an
arrow indicates its position!. The parameters are the same as
Fig. 1.
4-3
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GASTÓN GARCÍA-CALDERÓN AND JORGE VILLAVICENCIO PHYSICAL REVIEW A 66, 032104 ~2002!
interaction region. Figure 5 exhibits an example of this si
ation for L515.0 nm and a distancex0513105 nm from
the potential. Since the solution is normalized touTku2 and
this quantity becomes very small for largeL, one sees tha
uc r u2 is several orders of magnitude larger thanucqu2, de-
picted in the inset of that figure. Clearly, as previously d
cussed, and exemplified in Fig. 3, at still much larger valu
of the distancex0, the termucqu2 shall eventually dominate
over uc r u2.

Let us now discuss another interesting behavior of
forerunner. In Fig. 6 we plot it as a function of time at
given distancex0.L, for different values of the barrie
thickness,L55.0 nm ~solid line!, L54.5 nm ~dashed line!,
L53.0 nm ~dotted line!, and L52.0 nm ~dashed-dotted
line!, for the same parameters used in Fig. 1. We can see
the intensity of the transient structure diminishes asL de-
creases. In fact, for the case of a barrier widthL52.0 nm,
we observe that theforerunner disappears. However, a
shown in the inset of Fig. 6, what happens is that both
resonant contribution,uC r u2, and the interference term,I rq ,
in Eq. ~10! for the probability density, are not only ove
whelmed by the monochromatic contributionuCqu2 but also
almost cancel each other.

FIG. 4. Comparison between the formula for the forerunn
uc f u2 ~dashed line!, and the exact solution,ucu2 ~solid line!, as a
function of time for a fixed value of the positionx0550.0 nm. The
parameters are the same as in Fig. 1.

FIG. 5. The main graph shows the time evolution ofucu2 for the
case of an opaque barrier of widthL515.0 nm (a510.88), at a
fixed positionx0513105 nm. Notice that theforerunner, given
essentially by the resonant contributionuc r u2, overwhelms the
quasimonochromatic term described byucqu2, as depicted in the
inset, see text.
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Similarly Fig. 7 shows that theforerunneralso disappears
by diminishing the barrier heightV0, and again, as the inse
shows, this occurs by the same reason as discussed in
previous case. The above results hold also for thetime do-
main resonance, i.e., atx5L. From the above analysis on
could argue that the existence of thetime domain resonance,
and hence of theforerunners, depends basically on a particu
lar combination of the parametersV0 andL. In the following
subsection we shall show that this is indeed the case.

B. Delay time and forerunners

An interesting result of the analysis of the preceding s
section, depicted by Fig. 3, is that at very large distan

r, FIG. 6. Time evolution of theforerunnerfor a fixed value of the
positionx0550.0 nm, for different values of the barrier widthL: ~a!
5.0 nm ~solid line!, ~b! 4.5 nm ~dashed line!, ~c! 3.0 nm ~dotted
line!, and~d! 2.0 nm~dashed-dotted line!. Notice that the transien
structure disappears as the barrier width diminishes. The param
are the same as in Fig. 1. The inset exhibits a plot of the contr
tions to uCu2 ~dashed line! of case~d!. Notice that the resonan
contribution uC r u2 ~solid line! that gives rise to theforerunner, is
almost canceled out entirely by the interference contributionI rq

~dotted line!.

FIG. 7. Time evolution of theforerunnerfor a fixed value of the
position x0550.0 nm, for three different values of the barrier p
tential V0: ~a! 0.3 eV ~solid line!, ~b! 0.2 eV ~dashed line!, and~c!
0.1 eV ~dotted line!. Notice that the amplitude of theforerunner
decreases as the barrier height of the potential diminishes. At
inset we plot the contributions touCu2 ~dashed line! of case~c!.
Notice that the resonant contributionuC r u2 ~solid line! is almost
canceled out by the interference contributionI rq ~dotted line!. The
parameters are the same as in Fig. 1.
4-4
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DELAY TIME AND TUNNELING TRANSIENT PHENOMENA PHYSICAL REVIEW A 66, 032104 ~2002!
from the interaction region the time evolution of the pro
ability densityucu2 is essentially given byucqu2 and exhibits
a well-defined wave front. As mentioned above, the wa
front propagates with approximately the classical veloc
vk5(\k/m), as follows by direct inspection of the argume
to the M function, given by Eq.~6!. A comparison ofucu2

near the above wave front with the corresponding free pr
ability density uc0u2 is exhibited in Fig. 8. The paramete
and the value of the positionx0 are the same as in Fig. 3
Both solutions look very much alike. Note that its corr
sponding wave fronts are slightly displaced with respec
each other. In fact the maximum values ofucu2 anduc0u2, for
the parameters used in our example, exhibit a time differe
that corresponds to a negativedelay time~time advance!.

The above considerations lead us to the notion ofdelay
timeas discussed by Bohm@13#. He has argued that the ma
contribution to the transmitted probability density com
from values in the neighborhood of space, for which t
phase of the wave function changes slowly with energy. T
yields the well-known expression for thedelay time@13# as
tf5(df/dk)/vk , wheref stands for the phase of the tran
mission amplitude, i.e.,Tk5uTkuexp(if) andvk is the classi-
cal velocity as defined above. For the case of the rectang
potential barrier thedelay timereads

tf5
m

\kk F k0
4sinh~2kL !22kLk2~k22k2!

4k2k21k0
4sinh2~kL !

G2
mL

\k
.

~12!

We defineDt as the time difference of the maximum va
ues of the curves forucu2 and uc0u2 obtained numerically,
namely,

Dt5ucmaxu22uc0
maxu2. ~13!

Figure 9 displays a plot ofDt ~full squares! and thedelay
time tf ~solid line!, as a function of the barrier widthL for a
large fixed value of the positionx0. One sees thatDt repro-
duces exactly the behavior obtained from the analytical
pression fortf . The above agreement ofDt with tf does not
hold when the distancex0 is very close to the interaction
region. There, the effect of the transient structure canno

FIG. 8. Time advance of the solutionucu2 ~solid line! relative to
the free propagation case,uc0u2 ~dashed line!. The parameters are
the same as in Fig. 1.
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ignored. Figure 1 exhibits this situation forx05L. The be-
havior of ucu2 ~solid line! is very different from that of the
free contributionuc0u2 ~dashed-dotted line!. As discussed
previously, thetime domain resonancepeak comes from the
resonant contribution. The splitting of the solution observ
at larger distances and longer times has yet not occurred

Note also in Fig. 9 that for thin barriers there is a positi
delay time, and asL increases, there is a transition to a neg
tive delay time. In what follows we shall demonstrate tha
such a transition occurs for a critical value of the opacityac .
In order to show the latter, let us rewrite Eq.~12! as a func-
tion of the parametersa andu5V0 /E, namely,

tf

t0
5

@4g21sinhg2coshg1g2a2223#

@g2a222g4a24/41sinh2~g/2!#@42g2a22#1/2
,

~14!

where we have definedt05(mL/\k0) and g52a(1
2u21)1/2. Thus from Eq.~14! the condition for the transition
from positive to negativedelay times, i.e., tf50, is simply
given by the vanishing of the numerator, namely,

4g21sinhg2coshg5S 32
g2

a2D . ~15!

For a particular value of the opacitya, we can determine
from the above equation the value ofu at which the transi-
tion occurs. However, one finds by inspection of Eq.~15!
that such a transition is not possible for small values ofa.
That is, there exists a critical value of the opacitya5ac
such that fora,ac , the transition does not occur. This situ
ation corresponds to impose the limitu→` in the solution to
Eq. ~15!. This implies thatg→2ac , and hence Eq.~15!
becomes

cosh 2ac22ac
21sinh 2ac51. ~16!

The numerical solution to Eq.~16! yields the critical opacity
ac52.0653. Note that in addition to the potential paramet
V0 andL, the opacity depends on the massm of the incident
particle. It turns out that this value ofac accounts for sys-

FIG. 9. Plot ofDt ~full squares! and thedelay time tf ~solid
line! as a function of the barrier widthL, at fixed positionx051
3105 nm, with the same parameters as in Fig. 1. Herek0

50.07 258 and hencea varies from 7.2531023 to 13.065, see text.
4-5
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GASTÓN GARCÍA-CALDERÓN AND JORGE VILLAVICENCIO PHYSICAL REVIEW A 66, 032104 ~2002!
tems where the potential barrier is either too shallow or
thin. Therefore, in the regimea,ac , only a positivedelay
time is observed.

We have also found thatac plays an important role in the
existence oftime domain resonancesand hence offorerun-
ners. In fact, we find that for systems wherea,ac , no time
domain resonancesnor forerunnersare observed. This be
havior can be seen in Figs. 6 and 7. For example, in the c
~c! and ~d! of Fig. 6, which correspond to barrier widthsL
53.0 nm andL52.0 nm, the parametera is, respectively,
2.17 and 1.45. Clearly in case~d! the forerunner has com
pletely disappeared. In Fig. 7, the cases~b! and ~c! corre-
sponding to the potential heightsV050.2 eV and V0
50.1 eV, which refer, respectively, to the values ofa, 2.96
and 2.095. In this case the disappearance of theforerunner
occurs in the vicinity of the critical opacityac .

C. Comment on the phase-delay time

Hartman has argued@11# that the time it takes for a par
ticle to traverse the classical forbidden region of a poten
barrier can be obtained from an analysis involving thedelay
time. He referred to this quantity as thetransmission time
tH , though nowadays it is often calledphase-delay time. It
corresponds to the difference between the time at whic
transmitted particle of momentum\k would leave the rear o
the barrier,x5L, and the time the same particle would arri
at the front of the barrier,x50. The transmission timetH
can be written as@see Eq.~13! of Ref. @11##,

tH5tf1t0 , ~17!

where tf is given by Eq.~12! and t05(mL/\k) represents
the free time across a distance equal to the barrier widtL.
Note thatt0 cancels out exactly the second term on the rig
hand side of Eq.~17!. The idea of consideringtH as the
relevant time scale for tunneling through a classically forb
den region has been criticized by arguing that there is
physical justification for relating in a causative sense the f
evolving peak and the transmitted peak through a bar
@7,14#. Our analysis of the time evolution of the probabili
density supports this criticism. Indeed, as discussed in S
II A, along the transmitted region, the probability dens
may split into two structures evolving with different veloc
ties. Hence it is not physically justified to choose a feature
one of them to compare it with the free evolving case.
particular, at the barrier edgex5L, for a.ac , the behavior
of probability densityuc(L,t)u2 is governed by thetime do-
main resonance, which yields a completely different time
scale@6# than thephase-delay time. Moreover, even fora
,ac , where there is notime domain resonance, our calcu-
lations do not support Hartman’s transmission timetH . This
is illustrated in Fig. 10~a!, where we plottH as a function of
the barrier widthL ~solid line!, and compare it with a plot o
dH5Dt1t0 ~full squares! measured dynamically at the ba
rier edgex5L. Although both curves exhibit a similar qual
tative behavior, the values oftH anddH , are quite different.
However, Figure 10~b! exhibits a plot ofdH ~full squares! as
a function of the barrier widthL, measured at a distancex0
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very far away from the interaction region, i.e.,x051.0
3105 nm. This figure also shows a plot oftH ~solid line!
and we see that they match quite well for all values ofa.
The lack of agreement between the plots oftH anddH in Fig.
10~a! follows because thetime domain resonance, the quasi-
monochromatic contribution, and the interference term
very close together, as exemplified in Fig. 1 forL
55.0 nm. However, at long distances theforerunnerand the
quasimonochromatic contribution are quite separated, tho
it may be shown that the interference term accounts for
delay time@15#.

In the opaque barrier regime,a@1, the above times be
come independent of the barrier width, giving rise to t
well-known Hartman effect. Indeed at asymptotically lar
values ofL, tH goes as 2m/(\kk) as follows by inspection
of Eq. ~17! @11#. As can be seen, it is only at long distanc
from the interaction region, whendH coincides with the dy-
namical time scaledH .

The above considerations, therefore, indicate that
transmission time, i.e.,tH given by Eq.~17!, does not repre-
sent the tunneling time of the particle through the classica
forbidden region. Thephase time delay tf , in the spirit of
Wigner and Eisenbud@16#, represents an asymptotic effect
the potential on the tunneling particle.

IV. CONCLUSION

Using an analytical solution to the time-dependent Sch¨-
dinger equation for cutoff semi-infinite initial waves, w

FIG. 10. Comparison of thetransmission timetH ~solid line!
with dH ~full squares! as a function of the barrier widthL, measured
at ~a! the barrier edgex5L and ~b! at a fixed positionx051
3105 nm. The parameters are as in Fig. 1. Hencek050.7258, and
the opacity varies as mentioned in Fig. 9, see text.
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have investigated the dynamics of the transmitted probab
density for tunneling through a rectangular potential barr
We have found two regimes, characterized by a critical op
ity parameterac , such that for values ofa,ac there are no
domain resonancesand consequently noforerunners,
whereas fora.ac , these transient structures may exist d
pending on the value ofu5V0 /E. The above result follows
from an unexpected connection between the existenc
these transient structures and thedelay time. This deserves to
be studied further. An interesting feature of the formalis
used in this work is that it applies to arbitrary potential pr
files of finite range. Hence, the existence offorerunners, for
,

03210
ty
r.
c-

-

of

-

a given problem, would depend on the interplay among
different contributions to the probability density given by E
~10!. Our results suggest also that the study of transient
fects cannot be ignored for a thorough understanding of
tunneling time problem.
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