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Three-qutrit correlations violate local realism more strongly than those of three qubits
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We present numerical data showing that three-qutrit correlations for a pure state, which is not maximally
entangled, violate local realism more strongly than three-qubit correlations. The strength of violation is mea-
sured by the minimal amount of noise that must be admixed to the system so that the noisy correlations have
a local and realistic model.
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The seminal paper of Greenberger, Horne, and Zeilin
@1# has initiated a completely new phase in the discussi
regarding the Bell theorem@2#. Einstein-Podolsky-Rosen@3#
elements of reality were suddenly ridiculed by a straightf
ward argumentation. The physics community immediat
noticed that the increasing complexity of entangled syste
does not lead to a less pronounced disagreement with
classical views, but just the opposite. Moreover, the disag
ment exponentially grew with the number of qubits involv
in the GHZ-type entangled states. Indeed, prior to the pu
cation of Ref.@1#, it was commonly perceived that every
thing regarding the Bell theorem is known. However, t
new insight has renewed the interest in the Bell theorem
its implications.

Another widely shared perspective was that one can
gain additional useful insight into the Bell theorem by i
creasing the dimensionality of the entangled systems. S
papers even suggested that inN-dimensional systems, in
creasing the dimensionN effectively brings the system close
and closer to the classical realm. However, due to the
that theN.2 dimensional systems can reveal the Koch
Specker paradox@4#, this view could be challenged. The a
vent of the quantum information theory created the awa
ness that such systems require much less entanglement
nonseparable than qubits@5#. Certain strange features, suc
as bound entanglement@6# or inextensible product bases@7#,
suddenly emerged.

Recently, it was shown that higher dimensional entang
systems indeed may lead to stronger violations of local r
ism, even in straightforward experimental situations invo
ing only the von Neumann–type experiments~with no se-
quential measurements, etc.!.

In the early 1990s, the blueprints for straightforward B
tests involving higher dimensional systems were given~for a
summary see@8#!. The idea was to use unbiased multipo
beam splitters to define the local observables. Surprisingl
turned out that such observables suffice to reveal the fact
a pair of entangled higher-dimensional systems violate lo
realism more strongly than qubits@9#. This result was ob-
tained numerically by employing the linear optimization pr
cedures to search for underlying local realistic joint proba
ity distribution that would reproduce the quantum predicti
~with some noise admixture!. The results were confirme
analytically in Refs.@10# and @11#. Later in Ref.@12# it was
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shown that in the case of pairs of entangled high
dimensional systems, violations of local realism are ev
stronger fornonmaximallyentangled states. In a parallel re
search, it has been shown that higher dimensional syst
can lead to the GHZ-like paradox without inequaliti
@13,14#. In view of all these facts, it is tempting to test th
strength of violation of local realism by triples of highe
dimensional systems~starting of course with three qutrits!,
and that for nonmaximally entangled states.

Since Bell-type inequalities for three qutrit systems a
unknown at the moment, it is necessary to invoke the
merical algorithm presented in@15#. As we shall see, some
surprising results can be obtained in this way.

We show here the result of our numerical analysis.
~1! There is a strong violation of local realism~for the stan-

dard von Neumann–type measurements! for three qutrit
systems in the symmetric GHZ state; however, it is n
as strong as in the case of the three entangled qubit

~2! Allowing nonmaximally entangled states, the situati
changes. We find the three qutrit state which reveals c
relations much more resistant to noise than those for
tangled three qubits~maximally entangled three qub
states give maximal violation of local realism@16–18#!.

In our numerical analysis, we consider a class of p
states of three qutrits in the form of

uc&5 (
g,i , j 51

3

dgi j ug&u i &u j & ~1!

with real coefficientsdgi j . The ketsug&,u i &,u j & denote the
orthonormal basis states for the first, second, and the t
qutrit, respectively. Three spatially separated observers,
ice, Bob and Cecil, are allowed to perform the measurem
of two alternative local noncommuting trichotomic obser
ables on the stateuc&. We assume that they measure obse
ables defined by unbiased symmetric three-port beam s
ters @8#. In such a situation the kets in Eq.~1! represent
spatial beams, in which the particles can propagate. The
servers select the specific local observables by setting ap
priate phase shifts in the beams leading to the entry port
the beam splitters. The overall unitary transformation p
formed by such a device is given by
©2002 The American Physical Society03-1
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U j 8 j5
1

A3
expS i2p

3
~ j 821!~ j 21! Dexp~f j !, ~2!

wherej denotes an input beam to the device, andj 8 an output
one, andf j are the three phases that can be set by the l
observer~for a more detailed description see@8#!. Please note
that the actual physics of the device is irrelevant for o
theoretical discussion here, thus it suffices just to assume
the observers perform their von Neumann measuremen
the basis which is related to the ‘‘computational’’ basis of t
initial state~1! by the transformation~2!. It is interesting that
the unitary transformation for all phase settings leads t
new basis for the local qutrit, which is unbiased with resp
to the ‘‘computational’’ one.

Let us denote Alice’s local unitary transformations as
ciated with her device byUA(fW 0),UA(fW 1), Bob’s by
UB(xW 0),UB(xW 1), and Cecil’s byUC(dW 0),UC(dW 1), where the
three component vectorsfW k ,xW l ,dW m(k,l ,m50,1) denote the
set of the phases defining the appropriate observables.
measurement of each observable can yield three possibl
sults which we denote bya for Alice, b for Bob, andc for
Cecil (a,b,c51,2,3). The probabilityPQM(ak ,bl ,cm), that
Alice, Bob, and Cecil obtain the specific results after p
forming the unitary transformationsUA(fW k), UB(xW l), and
UC(dW m), respectively, is given by the following formula:

PQM~ak ,bl ,cm!

5 z^aku^bl u^cmuUA~fW k!UB~xW l !UC~dW m!uc& z2

5
1

27
1

1

27 (
g8 i 8 j 8Þgi j

dg8 i 8 j 8dgi j

3cosS 2p

3
@~ak21!~g2g8!1~bl21!~ i 2 i 8!

1~cm21!~ j 2 j 8!#1fk
g2fk

g81x l
i2x l

i 81dm
j 2dm

j 8D ,

~3!

where, for instance,fk
g denotes thegth component offW k .

In the presence of random noise, in order to describe
system one has to introduce the mixed staterF5
(12F)uc&^cu1Frnoise, where rnoise5

1
27 I , and I is the

identity operator. The non-negative parameterF specifies the
amount of noise present in the system. In such a case
quantum probabilities read

PQM
F ~ak ,bl ,cm!5~12F !PQM~ak ,bl ,cm!1

F

27
.

The hypothesis of local realism assumes that there ex
some joint probability distributionPLR(a0 ,a1 ;b0 ,b1 ;c0 ,c1)
that returns quantum probabilitiesPQM

F (ak ,bl ,cm) as mar-
ginals, e.g.,

PQM
F ~a0 ,b0 ,c0!5 (

a151

3

(
b151

3

(
c151

3

PLR~a0 ,a1;b0 ,b1;c0 ,c1!.

~4!
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Please note that a concise notation of the full set of s
conditions can be given by

PQM
F ~ak ,bl ,cm!5 (

ak1151

3

(
bl 1151

3

(
cm1151

3

3PLR~a0 ,a1 ;b0 ,b1 ;c0 ,c1!, ~5!

wherek11,l 11,m11 are understood as modulo 2. For ea
pure stateuc&, one can find the thresholdFthr ~the minimal
value ofF) above which such a joint probability distributio
satisfying Eq.~5! exists ~obviously, for any separable stat
Fthr50; however, this may hold also for some nonsepara
states!.

There is a well-defined mathematical procedure called
ear programming that allows us to find the thresholdFthr for
the given stateuc& and for the given set of observables. W
should stress thatFthr found in this way gives us sufficien
and necessary conditions for violation of local realism. T
procedure works as follows.

The computation of the thresholdFthr is equivalent to
finding the joint probability distribution
PLR(a0 ,a1 ;b0 ,b1 ;c0 ,c1), i.e., the set of 36 of positive num-
bers summing up to one and fulfilling 83275216 condi-
tions given by Eq.~5! such thatF is minimal. Therefore,F
andPLR(a0 ,a1 ;b0 ,b1 ;c0 ,c1) can be treated as variables ly
ing in a (3611)-dimensional real space. The set of line
conditions~5! and the condition that 0<F<1 defines a con-
vex set in this space.

Next, we define a linear function, whose domain is t
convex set defined above so that it returns the numberF. The
task of findingFthr is then equivalent to a search for th
minimum of this function. As the domain of the function
very complicated, the procedure can only be done num
cally ~we have used the numerical procedure HOPDM 2.
see@19#!.

It is obvious that theFthr depends on the observable
measured by Alice, Bob, and Cecil~which in turn depend on
the set of phases! as well as on the stateuc& ~indeed, for
some unfortunate choices of the observables, or the state
both, one can haveFthr50). Let us clarify that the task o
the linear optimization procedure is to find theminimal F
each time for which the relation~5! can be satisfied by som
positive probabilities on its right-hand side. However, t
left-hand side of Eq.~5! depends on the chosen states a
observables, and we are interested in the case when ge
the local realistic model requires a maximal possible adm
ture of noise, therefore we search for such states and obs
ables, for which the minimalFthr has the largest possible
value. There are two possible interesting scenarios. We
fix the stateuc& and maximizeFthr over the observables. In
this way we find the best violation of local realism for th
given state. Alternatively, we can maximizeFthr over the
coefficients defining the state, as well as over the obse
ables. This procedure allows us to find the optimal state,
optimal observables measured on this state, which can y
the best possible violation of local realism by the class
pure states with real coefficients~1!. Of course, we do not
have to limit ourselves to pure states with real coefficien
3-2
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TABLE I. The expansion coefficients of the nonmaximally entangled state for which one requiresFthr50.571.

Basis u000& u001& u002& u010& u011& u012& u020& u021& u022&
Coeff 10.186 10.076 10.230 10.218 10.046 10.112 10.172 10.033 10.247

Basis u100& u101& u102& u110& u111& u112& u120& u121& u122&
Coeff 10.216 10.050 10.110 10.160 10.049 10.236 10.204 10.055 10.235

Basis u200& u201& u202& u210& u211& u212& u220& u221& u222&
Coeff 20.078 10.406 20.029 20.023 10.385 10.035 20.123 10.393 20.128
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nor even to pure states but then in these cases the numb
parameters over which we have to optimize becomes
large for our computers to handle.

We have applied the procedure described above for
fixed stateuc&, which we have chosen to be a symmet
GHZ state, i.e.,uc&5(1/A3)(u111&1u222&1u333&). Run-
ning the program we have found that the threshold amoun
noise that has to be admixed to the symmetric GHZ state
that the correlations generated by it, forany sets of pairs of
local settings of the phases, become describable in a l
and realistic way, isFthr50.4. The optimal observables form
the point of view of violations of local realism, i.e., exact
those for which the noise admixture must be maximal to
a local realistic model, are defined by the following sets

phases fW 05(0,0,23 p), fW 15(0,0,0); xW 05(0,0,p), xW 1

5(0,0,53 p); dW 05(0,1
3 p,0), dW 15(0,p,0). We can therefore

say that the violation of local realism in this case is stron
than for two qutrits in the symmetric GHZ state, in whic
case the threshold amount of noise is only 0.304. Howeve
is weaker than the violation by three entangled qubits,
which the threshold amount of noise is 0.5.

Naturally, one should check whether one can obtain be
violations for nonmaximally entangled states. Therefore
have taken the predictions for Eq.~1!, and used a procedur
for the maximization ofFthr over the parametersdgi j as well
as the observables.

We have found that there exists a nonmaximally e
tangled state, and a certain set of local observables, for w
one requiresFthr50.571 noise admixture for the correlation
to have a local realistic description. The expansion coe
cients of the state are given Table I, whereas the phases
fining the optimal observables will not be presented here
they are not easily interpretable. However, for very clo

local settings given byfW 05(0,2
3 p,2 5

9 p), fW 15(0,2
3 p,0);

xW 05(0,17
18 p,2 1

18 p), xW 15(0,0,0); dW 05(0,p, 23
36 p), dW 1

5(0, 7
36 p,2 2

3 p), there is a state for which the thresho
noise equals 0.570.
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In summary, we have shown that for the symmetric GH
state three entangled qutrits violate local realism stron
than two entangled qutrits~the threshold amount of nois
0.304, see@9#!. The threshold amount of noise to get loc
realistic correlations is 0.4. This violation is not as strong
for three entangled qubits for which one has to admix 50%
noise to make the system describable by local realistic th
ries. However, we can obtain a much stronger violation
the nonmaximally entangled states. In this case there exis
nonmaximally entangled state~see Table I! for which Fthr
50.57, i.e., we have to add 57% of noise before we enter
region in which the state admits local and realistic desc
tion.

We must stress that although for the state given in Tab
the threshold amount of noiseFthr50.57 gives the necessar
and sufficient conditions for the existence of local realis
for the measurement of the observables given by unbia
symmetric three-port beam splitters it does not mean
with a different choice of observables, or by allowing com
plex coefficients in the state~1!, one cannot increaseFthr .

Moreover, it is reasonable to expect that for four or high
numbers of entangled qutrits the difference between the
bustness against noise~i.e., the resistance of quantum corr
lations to classical description! of symmetric GHZ states and
nonmaximally entangled ones will still increase. Note that
optimal nonmaximally entangled state of two qutrits~for
which the threshold amount of noise is 0.3139! is around 3%
more resistant to noise than the symmetric GHZ state~for
which the threshold amount of noise is 0.3038!. In the case
of three entangled qutrits the difference between the thre
old amount of noise for the nonmaximally entangled st
~0.571! and for the maximally entangled state~0.4! is about
40%.
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