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Three-qutrit correlations violate local realism more strongly than those of three qubits
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We present numerical data showing that three-qutrit correlations for a pure state, which is not maximally
entangled, violate local realism more strongly than three-qubit correlations. The strength of violation is mea-
sured by the minimal amount of noise that must be admixed to the system so that the noisy correlations have
a local and realistic model.
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The seminal paper of Greenberger, Horne, and Zeilingeshown that in the case of pairs of entangled higher-
[1] has initiated a completely new phase in the discussiondimensional systems, violations of local realism are even
regarding the Bell theorefi2]. Einstein-Podolsky-Rosdi3]  stronger fornonmaximallyentangled states. In a parallel re-
elements of reality were suddenly ridiculed by a straightfor-search, it has been shown that higher dimensional systems
ward argumentation. The physics community immediatelycan lead to the GHZ-like paradox without inequalities
noticed that the increasing complexity of entangled systembl3,14. In view of all these facts, it is tempting to test the
does not lead to a less pronounced disagreement with tHrength of violation of local realism by triples of higher-
classical views, but just the opposite. Moreover, the disagreedimensional systemgstarting of course with three qutrits
ment exponentially grew with the number of qubits involved@nd that for nonmaximally entangled states.
in the GHZ-type entangled states. Indeed, prior to the publi- Since Bell-type inequalities for three qutrit systems are
cation of Ref.[1], it was commonly perceived that every- unknown at the moment, it is necessary to invoke the nu-
thing regarding the Bell theorem is known. However, themerical algorithm presented ii15]. As we shall see, some
new insight has renewed the interest in the Bell theorem an8Urprising results can be obtained in this way.
its implications. We show here the result of our numerical analysis.

Another widely shared perspective was that one cannodtl) There is a strong violation of local realisffor the stan-
gain additional useful insight into the Bell theorem by in-  dard von Neumann—type measuremgits three qutrit
creasing the dimensionality of the entangled systems. Some Systems in the symmetric GHZ state; however, it is not
papers even suggested that Nadimensional systems, in- as strong as in the case of the three entangled qubits.
creasing the dimensiad effectively brings the system closer (2) Allowing nonmaximally entangled states, the situation
and closer to the classical realm. However, due to the fact changes. We find the three qutrit state which reveals cor-
that theN>2 dimensional systems can reveal the Kochen- relations much more resistant to noise than those for en-
Specker paradopd], this view could be challenged. The ad- tangled three qubit§maximally entangled three qubit
vent of the quantum information theory created the aware-  states give maximal violation of local realigrh6—18§).
ness that such systems require much less entanglement to be
nonseparable than qubifs]. .Certain _strange features, such |0 our numerical analysis, we consider a class of pure
as bound entanglemefg] or inextensible product basgs], states of three qutrits in the form of
suddenly emerged.

Recently, it was shown that higher dimensional entangled 3
systems indeed may lead to stronger violations of local real- ly)= E dgij|9)]i)) (1)
ism, even in straightforward experimental situations involv- g.i,j=1
ing only the von Neumann—type experimeifftgth no se-
guential measurements, etc. with real coefficientsdg;; . The kets|g),|i),|j) denote the

In the early 1990s, the blueprints for straightforward Bell orthonormal basis states for the first, second, and the third
tests involving higher dimensional systems were giffena  qutrit, respectively. Three spatially separated observers, Al-
summary seg8]). The idea was to use unbiased multiportice, Bob and Cecil, are allowed to perform the measurement
beam splitters to define the local observables. Surprisingly, iof two alternative local noncommuting trichotomic observ-
turned out that such observables suffice to reveal the fact thables on the statge)). We assume that they measure observ-
a pair of entangled higher-dimensional systems violate locadbles defined by unbiased symmetric three-port beam split-
realism more strongly than qubif®]. This result was ob- ters[8]. In such a situation the kets in E@l) represent
tained numerically by employing the linear optimization pro- spatial beams, in which the particles can propagate. The ob-
cedures to search for underlying local realistic joint probabil-servers select the specific local observables by setting appro-
ity distribution that would reproduce the quantum predictionpriate phase shifts in the beams leading to the entry ports of
(with some noise admixtuye The results were confirmed the beam splitters. The overall unitary transformation per-
analytically in Refs[10] and[11]. Later in Ref.[12] it was  formed by such a device is given by

1050-2947/2002/68)/0321034)/$20.00 66 032103-1 ©2002 The American Physical Society



KASZLIKOWSKI, GOSAL, LING, KWEK, ZUKOWSKI, AND OH PHYSICAL REVIEW A 66, 032103 (2002

1 i 24 Please note that a concise notation of the full set of such
Uj,j:ﬁex T(j "—1)(j—1) |exp(¢)), (2)  conditions can be given by

3 3 3
wherej denotes an input beam to the device, ahen output PF (aL by C.)=

one, andg; are the three phases that can be set by the local Qu (. By . Cm) akgzl bHEl:l cmgzl

observer(for a more detailed description sg&). Please note

that the actual physics of the device is irrelevant for our XPrr(ag,a1;bg,b1;Co,C1), (5

theoretical discussion here, thus it suffices just to assume that
the observers perform their von Neumann measurements ifherek+11+1m+1 are understood as modulo 2. For each
the basis which is related to the “computational” basis of thePure state ), one can find the threshol, (the minimal
initial state(1) by the transformatior2). It is interesting that ~ value ofF) above which such a joint probability distribution
the unitary transformation for all phase settings leads to &atisfying Eq.(5) exists (obviously, for any separable state
new basis for the local qutrit, which is unbiased with respect r=0; however, this may hold also for some nonseparable
to the “computational” one. states.

Let us denote Alice’s local unitary transformations asso- There is a well-defined mathematical procedure called lin-
ciated with her device byUa(do),Ua(db), Bob's by ear programming that allows us to find the threshgjg for

- - . = = the given statéy) and for the given set of observables. We
Us(X0).Us(x1), and Cecil's byUc(5), Uc(41), where the  gp 4 stress thak,,, found in this way gives us sufficient

three component vectoidy , xi, m(k,I,m=0,1) denote the and necessary conditions for violation of local realism. The
set of the phases defining the appropriate observables. Thgocedure works as follows.

measurement of each observable can yield three possible re- The computation of the threshol,,, is equivalent to
sults which we denote by for Alice, b for Bob, andc for  finding the joint probability distribution
Cecil (a,b,c=1,2,3). The probabilityPou(ax,by,Cm), that  p (a,,a;:bg,b1;Co.Cy), i.€., the set of 3 of positive num-
Alice, Bob, and Cecil obtain the speCiIiC result§ after per-pers summing up to one and fulfilling>827=216 condi-
forming the unitary transformationd(¢,), Ug(x;), and tions given by Eq(5) such thatF is minimal. ThereforeF

Uc(3,,), respectively, is given by the following formula: ~ andP_g(ao,a1;bg,b1;¢o,¢1) can be treated as variables ly-
ing in a (¥+1)-dimensional real space. The set of linear

Pom(ax,by,cm) conditions(5) and the condition that€F=<1 defines a con-
R ) R vex set in this space.
=(a{(by|{cm|Ua( ) Ug(x1)Uc(Sm)| )2 Next, we define a linear function, whose domain is the
convex set defined above so that it returns the nurb&he
=£+i 2 Aererinde: task of findingF,,, is then equivalent to a search for the
27 27y gy 0 minimum of this function. As the domain of the function is
oy very complicated, the procedure can only be done numeri-
< _ A AN cally (we have used the numerical procedure HOPDM 2.30,
xcos( 3 L@ 1(g=g")+(b—1)(i—i") see[19])
It is obvious that theF,,, depends on the observables
+(Cm=1) (i =)+ 0= +xi—xi '+ — 5l |, measured by Alice, Bob, and Ce6ivhich in turn depend on

the set of phase¢sas well as on the statey) (indeed, for
3) some unfortunate choices of the observables, or the states or
both, one can have,,,=0). Let us clarify that the task of

where, for instanceg? denotes thegth component ofp,,. the linear optimization procedure is to find thanimal F
In the presence of random noise, in order to describe theach time for which the relatiofb) can be satisfied by some
system one has to introduce the mixed staie= positive probabilities on its right-hand side. However, the

(1=F)| ¢} ]+ Fpnoise» Where pnoise=21, and | is the left-hand side of Eq(5) depends on the chosen states and

identity operator. The non-negative paramétepecifies the observables, and we are interested in the case when getting
amount of noise present in the system. In such a case, ttiBe local realistic model requires a maximal possible admix-

qguantum probabilities read ture of noise, therefore we search for such states and observ-
= ables, for which the minimaF,,, hasthe largest possible
PBM(ak,b| Cm)=(1—F)Pgm(ay,by,cpn)+ >7 value There are two possible interesting scenarios. We can

fix the state ) and maximizeF,,, over the observables. In

The hypothesis of local realism assumes that there exisi#lis way we find the best violation of local realism for this
some joint probability distributiof, r(ag,a; ;by,b1:Co.C1) given state. Alternatively, we can maximi#g;,, over the

that returns quantum probabiliti@gM(ak b,,c,) as mar- coefficients defining the state, as well as over the observ-
ginals, e.g. ables. This procedure allows us to find the optimal state, and

3 3 3 optimal observables measured on this state, which can yield
. . the best possible violation of local realism by the class of
PEum(20.bg,Co) = P.r(@9,a1;b9,b1;Co,C1). ) S
qu(@o:Po, Co) a12:1 b12=1 c12=1 LR(30,81iB0,b1iCo.C) o Srates with real coefficientd). Of course, we do not
(4)  have to limit ourselves to pure states with real coefficients,
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TABLE |. The expansion coefficients of the nonmaximally entangled state for which one regires.571.

Basis |000) |001) |002) 1010 |011) 1012 1020 |021) 1022
Coeff +0.186  +0.076  +0.230  +0.218  +0.046  +0.112  +0.172  +0.033  +0.247
Basis 1100 |101) 1102 1110 111) 1112 1120 |121) 1122
Coeff +0.216  +0.050  +0.110  +0.160  +0.049  +0.236  +0.204  +0.055  +0.235
Basis 1200 |201) 1202 1210 |211) 1212 1220 |221) |222)
Coeff ~0.078  +0.406  —-0029  -0.023  +0.385  +0035  -0.123  +0.393  —0.128

nor even to pure states but then in these cases the number of In summary, we have shown that for the symmetric GHZ
parameters over which we have to optimize becomes tostate three entangled qutrits violate local realism stronger
large for our computers to handle. than two entangled qutritéhe threshold amount of noise

We have applied the procedure described above for th@.304, sed9]). The threshold amount of noise to get local
fixed state|), which we have chosen to be a symmetricrealistic correlations is 0.4. This violation is not as strong as
GHZ state, i.e.,|¢)= (1/\/§)(|11]>+ |222)+/333). Run- for three entangled qubits for which one has to admix 50% of
ning the program we have found that the threshold amount ghoise to make the system describable by local realistic theo-
noise that has to be admixed to the symmetric GHZ state, st€s. However, we can obtain a much stronger violation for
that the correlations generated by it, fomy sets of pairs of the nonmaximally entangled states. In this case there exists a
local settings of the phases, become describable in a locAlonmaximally entangled statsee Table )l for which Fy,,
and realistic way, i¥,,=0.4. The optimal observables form =0.57, i.e., we have to add 57% of noise before we enter the
the point of view of violations of local realism, i.e., exactly region in which the state admits local and realistic descrip-
those for which the noise admixture must be maximal to getion.

a local realistic model, are defined by the following sets of ) Wﬁ mL;}StIC?UGSS that falthough f%f the state Eiven in Table |
7 _ 2 7 _ Lo > the threshold amount of noi$g;,,=0.57 gives the necessary
phasess %o 50’0’3 T)' ¢19 (0.0.0); x0=(0.0m). x1 and sufficient conditions for the existence of local realism,
=(0,03m); 60=(05m,0), 6=(0,m,0). We can therefore ¢, the measurement of the observables given by unbiased
say that the wolafuon. of local reallsm in this case is Stro’_‘ge"symmetric three-port beam splitters it does not mean that
than for two qutrits in the symmetric GHZ state, in which \ith a different choice of observables, or by allowing com-
case the threshold anjount of noise is only 0.304. However, ﬁBIex coefficients in the statél), one cannot increasg,, .
is weaker than the violation by three entangled qubits, for \joreover, it is reasonable to expect that for four or higher
which the threshold amount of noise is 0.5. _ numbers of entangled qutrits the difference between the ro-
_ Naturally, one should check whether one can obtain bettegsiness against noigee., the resistance of quantum corre-
violations for nonmaximally entangled states. Therefore Waations to classical descriptipof symmetric GHZ states and
have taken the predictions for E@.), and used a procedure ponmaximally entangled ones will still increase. Note that an
for the maximization of,, over the parameterk;;; as well  gptimal nonmaximally entangled state of two qutrifsr
as the observables. _ _ which the threshold amount of noise is 0.3189around 3%

We have found that there exists a nonmaximally en-mngre resistant to noise than the symmetric GHZ stéde
tangled state, and a certain set of local observables, for whiclyhich the threshold amount of noise is 0.3038 the case
one requires-y, = 0.571 noise admixture for the correlations of three entangled qutrits the difference between the thresh-
to have a local realistic description. The expansion coeffig|d amount of noise for the nonmaximally entangled state

cients of the state are given Table I, whereas the phases dgy.571) and for the maximally entangled stai@4) is about
fining the optimal observables will not be presented here, aggos.

they are not easily interpretable. However, for very close

local settings given bypo=(0,27,—m), ¢1=(0,2m,0);
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noise equals 0.570. 104-0040.
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