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Exact few-particle eigenstates in partially reduced QED
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We consider a reformulation of QED in which covariant Green functions are used to solve for the electro-
magnetic field in terms of the fermion fields. It is shown that exact few-fermion eigenstates of the resulting
Hamiltonian can be obtained in the canonical equal-time formalism for the case where there are no free
photons. These eigenstates lead to two- and three-body Dirac-like equations with electromagnetic interactions.
Perturbative and some numerical solutions of the two-body equations are presented for positronium- and
muonium-like systems, for various strengths of the coupling.
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I. INTRODUCTION

It has been pointed out in previous publicatidis that
various models in quantum field theof@FT), including

QED, can be reformulated using mediating-field Green func-

PACS nuntder12.20.Ds, 03.65.Pm, 36.10.Dr, 11.10.St

whereD ,,(x—x") is a Green functiottor photon propagator
in QFT terminology, defined by

900D, (X=X') = 3,0D 4 (Xx—X") =7, 6*(x—x"),
€7

tions in such a way that exact few-particle eigenstates of the
resulting partially truncated Hamiltonian can be obtained.andAfL(x) is a solution of the homogeneo(w “free field”)
This approach was then applied to two-body eigenstates iaquation(1.4) with j#(x)=0.

the scalar Yukaw&Wick-Cutkosky theory[2,3]. We imple-
ment such an approach to QED in this paper.

The Lagrangian of two fermion fields/(x) and ¢(x),
interacting electromagnetically is

L=y ¥, — A y*A,(X) — My ](X)
+ [ Y9, — A2 ¥ A (X) — Myl B(X)
1 apB BAa
= ZL0aAB(X) = A0 [0"AF(X) = PA(X)].

(1.9

The corresponding Euler-Lagrange equations of motion are

the coupled Dirac-Maxwell equations

(1 7%, — My) $(X) = QYA (X) (X), (1.2
(7, — My) p(X) = o yA ,(X) (X, (1.3
and
d, 0" AY(X) = 3", AH(X) =] "(X), (1.9
where
()= (X) Y () + A2 p(X) Y b(x). (1.5

We recall, in passing, that Eql.7) does not define the
covariant Green functiorD ,,(x—x") uniquely. For one
thing, one can always add a solution of the homogeneous
equation[Eq. (1.7) with g,,—0]. This allows for a certain
freedom in the choice ob,,, as is discussed in standard
texts(e.g., Refs[4,5]). In practice, the solution of Eq1.7),
like that of Eq.(1.4), requires a choice of gauge. However,
we do not need to specify one at this stage.

Substitution of the formal solutiofl.6) into Egs. (1.2
and(1.3) yields the partially reduced equations

(1743, —mq) h(X)

=017

A2(X)+fd“x’DM,,(x—x’)jV(x’)):p(x) (1.8
and
(1y*d,—my) $(X)
:qzyﬂ(Ai’L(xH f d“x'D#V(x—x')jV(x'))¢><x>.
(1.9
These are nonlinear coupled Dirac equations for two differ-

ent fermion fields. To our knowledge, no exdanalytic or
numerig solutions of Eqs(1.8) and(1.9) for classical fields

Equations(1.2—(1.4) can be decoupled in part by using the have been reported in the literature, even for the case of a
well-known [4,5] formal solution of the Maxwell equation single-fermion fieldsay ¢ =0), though approximat@ertur-

(1.4), namely,
AM(X)=A2(X)+I D, (x=x")j*(x)d*', (1.6
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bative solutions have been discussed by various authors,
particularly by Barut and his co-worke(see Refs[6,7] and
references thereinHowever, our interest here is in the quan-
tized field theory.
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The partially reduced equation$.8) and(1.9) are deriv- In the Sec. X the set of eight coupled radial first-order dif-

able from the stationary action principle ferential equations is reduced to four first-order ones and
then to two second-order Scllinger-like equations. They
_ 4y are solved perturbatively in Sec. XI a@(«?) relativistic
oS . 4] éf LrAX=0, (110 corrections to the nonrelativistic mass spectrum are obtained.

_ _ ) A summary and concluding remarks are given in Sec. XII.
with the Lagrangian density

II. HAMILTONIAN IN THE CANONICAL, EQUAL-TIME

Lg= ([ ¥, — My = 017, AL () ]9(X) FORMALISM

+ L1740, — M=~ A2y, AG(X)]B(X) We consider this theory in the canonical, equal-time for-
malism. To this end we write down the Hamiltonian density

1 . :
- Ef d4x’j“(x’)DW(x—x’)jV(x), (1.1)  corresponding to the Lagrangidh.11),

provided that the Green function is symmetric in the sensdtrR=#'(X)(—ia: V+myB)p(x)+auih(X) 7,A5(X)h(X)

that £ X (— i@V +MaB) h(X)+ God(X) 7, AL(X) (x)
D,,(x=x")=D,,(x"—x) and

1
+5 | dXHX)D (X =X)] (), 2.1
D, (x=X') =D, (x=x"). (1.12 2f X' JHX)D (X=X " (x) 2.

One can proceed to use conventional covariant perturbaNhere we have not written out the Hamiltonian density for
tion theory using the reformulated QED Lagrangidnll). the freeA§(x) field.
The interaction part of Eq1.11) has a somewhat modified Equal-time quantization corresponds to the imposition of
structure from that of the usual formulation of QED. Thus, anticommutation rules for the fermion fields, namely,
there are two interaction terms. The last term of @ql]) is
a “current-current” interaction, which contgin_s the photon {c,/fa(x,t),z//}g(y,t)}={¢a(x,t),¢L(y,t)}=5aﬁbﬁ(x—y),
propagator sandwiched between the fermionic currents. As (2.2
such, it corresponds to Feynman diagrams without external
photon lines. The terms containind, correspond to dia- and all others vanish. In addition, A5+#0, there are the
grams that cannot be generated by the term contaiDipg usual commutation rules for th&f field, and commutation
particularly diagrams involving external photon linggare  of the A4 field operators with they and ¢ field operators.
would have to be taken not to double count physical effects ~ The Hamiltonian(2.1) contains an interaction term that is
However, we shall not pursue perturbation theory in thisnonlocal in time, which can complicate the transition to a
work. Rather, we shall consider an approach that allows onguantized theory. We shall avoid this problem by working in
to write down some unorthodox but exact eigenstates of ghe Sch'r'dinger picture witht=0 in the expressions for the
truncated model, in which terms involvingy are ignored. field operators and currents, that igh(x)= ¢(x,t=0),
The paper is organized as follows. In Sec. Il we quantizg*(x)=j*(x,t=0), etc. in Eq(2.1). This corresponds to ne-
the system using the canonical equal-time formalism in theylecting higher-order retardation effects. Thereupon we ob-
Schralinger picture. In Sec. Il an unconventional “empty” tain the result
vacuum state is used to construct exact one-, two-, and three-
fermion eigenstates of the Hamiltonian, truncated to exclude
states with freéphysica) photons. In Sec. IV we show that f dt'D,, (X=X") =G, (x—=X"), 23
the resulting two-fermion equation is the Breit equation in
the Coulomb gauge, but that it is the Eddington-Gaunt equaynere
tion in the Lorentz gauge. In Sec. V we demonstrate that the

Breit equation can be obtained in the Lorentz gauge, pro- d3k _
vided that higher-order retardation effects are taken into ac- G, (X)= f (27)3(3W(k)e”"X and
count.
The reduction of the Breit equation to radial form is de- u
scribed briefly in Sec. VI. For states of zero total angular G (k) =D, (k*=(0K)). 24

momentum §=0), four coupled radial equations are shown )

to arise. The analytical structure of their solutions is studied0r €xample, in the Lorentz gauge,A“=0), we have
in Sec. VII. Perturbatived(a?) corrections to the Rydberg
spectrum ofJ=0 states are obtained in Sec. VIII. In the case
of equal rest masses, tde=0" state equations have no un-
usual singularities and can be solved numerically. Some of
these results are presented and discussed in Sec. IX. TA&us, in the Schidinger picture, the third term of the Hamil-
remainder of the paper is devoted to the study®0 states. tonian density(2.1) takes on the form

1
GW(X)IQWW- (2.9
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1 o). _ With these conventions, we write the normal-ordered
Hi(x)= EJ A JA(X") G (X=X")j"(X).  (2.6)  Hamiltonian

In the remainder of this paper, we shall consider a simpli- .., . Ly 4 Ef dBxdx'G . (x—x'
fied model without the interaction terms in E(.1) that R T D ul )
contain A%. Such a model is suitable for describing few-

2, v Y vt
fermion states interacting via virtual photon exchange, but XLarpy (" y" ")t Aul2 oy (4" v §") b
without decay or annihilation involving fre@hysica) pho- — T T W T v
tons. In short, in all that follows we consider the field theory T 0014 (Y S )t Aady (47" $T) ],
based on the Hamiltonian density of E(R.1) but with (3.5

AZ(x)=0. An attractive feature of this model is that exact

few-fermion eigenstates of the Hamiltonian can be obtainedyhere = y(x) and¢’ = ¢(x'), etc. The normal ordering is
achieved by using the anticommutation ru{@s2) as usual;
l1l. ONE, TWO, AND THREE FERMION EIGENSTATES but note that it is not identical to the conventional normal
) ) . . ordering because of the unconventional empty vacuum that
We consider now the model for which the Hamiltonian, in jg being used, and the unconventional definitionjoind ¢
the Schrdinger picture witlt=0, is given by the expression g annihilation operators and, ¢! as creation operators. To

underscore this unconventional procedure we use the nota-

Hr=H,+H,+H,, (3-D tion ;Hg; rather than Hy: in Eq. (3.5).
We note that the state defined by
where
I I N B
H¢=fd3x¢/T(x,O)(—ia-V+m1,8)z,/f(x,0), (3.2 L) fd Xy (X)F(x)[0), (3.6
where F(X) is a 4X1 c-number coefficient vector, is an
H¢:f dBxdT(x,0)(—ia- V+m,B8)b(x,0), (3.3 eigenstatg of Hr; [EqQ. (3.5] provided thatF(x) satisfies
the equation
and H,= [d®xH,(x), where H,(x) is given in Eq.(2.6). (—ia-V+mB)F(X)=EF(X), (3.7

Note, again, that the terms iy have been suppressed, so

that processes in which fréphysica) photons are emitted or - which is the usual time-independent one-particle Dirac equa-
absorbed are not accommodated. tion (with positive- and negative-energy solutipnso that

The Hamiltonian HR has the same structure as the F(X) is a Dirac Spinor_ Therefore7 we refer |tb> as a one-
Coulomb-QED (CQED) Hamiltonian, that is, the Hamil- Djrac-fermion state.

tonian of QED in the Coulomb gauge, but with the S|m||ar|y, the two-Dirac-fermion state
transverse-photon pafhat containsy- A) turned off. Indeed

Hg would be identical tdHcqep if the indicesu andv took _

on only the value 0 in Eq2.6) [as it is,u,»=0,1,2,3 in Eq. |2>=f d3x APy F ,(X,Y) (X) B (y)[0) (3.9
(2.6)]. It has been shown earli¢8] that exact two-fermion

eigenstates oficoep can be written down if we use an un- (summation one,3=1,2,3,4 implied is an eigenstate of

conventional(or “empty”) vacuum state|0), defined by :Hgr; [Eq. (3.5)], provided that the %4 eigenmatrixF sat-
_ _ isfies the equation
¥a(x,0[0)= ¢4(x,0[0)=0. (3.9

_ . hm, (OF () + [ (MFT(x,Y)]T
The same is true of the present more realistic model, as we

point out below. +0102G,,(X= V) Y*F(,y)(7") T=EF(x,y),
The unconventional empty vacuum definiti4) means

that#(x) is interpreted as éree) Dirac-particle annihilation 3.9

operator, whileys'(x) is, correspondingly, a Dirac-particle -

creation operator. By “Dirac-particle” we mean one de- Wherehy, (x)=—ia- V,+m;B, y*=y,v*=(1,a), and the

scribed by the full Dirac spinor, including positive- and superscriptT indicates the transpose of the matrix in ques-
negative-frequency component®Recall that in the conven- tion.

tional approach, i.e., using a Dirac “filled negative-energy The detailed form of the interaction matr@,,(x—x")
sea” vacuum, which is annihilated by the positive-frequencydepends on the choice of gauge. Equati@r®) is a two-
component ofy, it is only the negative-frequency compo- fermion Dirac-like, or Breit-like, equation with positive- and
nent of ¢ that is an antiparticle creation operator, and thenegative-energy solutions, and is, in this respect, different
positive-frequency component gf' that is the particle cre- from those obtained in the conventional approf@h15], in
ation operator which the negative-energy solutions do not arise.
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We note, in passing, that if the interaction is turned off inwith the full complexity of a relativistic three-body system.
Eqg. (3.9 (i.e.,,q;=0,=0), then the solution can be written We shall not consider solutions of the three-body equation
as (3.13 in this paper.

F(xy)=f(x)g'(y), (3.10 IV. TWO-BODY EQUATION IN THE COULOMB GAUGE

At this stage we must specify the choice of the Green
function, that is, the choice of gauge. We could use any
gauge, in principle, but we shall use the Coulomb gauge, as
this avoids nonphysical degrees of freedom and the need to
take account of auxiliary conditiortsuch as?,A*=0 in the
drorentz gaugke We use the relation

where f(x) and g(y) are solutions of the one-body Dirac
eigenvalue equatio3.7). This indicates that irF=[F;;],
the indexi corresponds to particle fwith coordinatesx)
while j corresponds to particle @uith coordinatesy).

In the rest frame of the two-fermion systefine., when
|2) is taken to be an eigenstate of the momentum operat

for this QFT, with eigenvalue )0 Eq. (3.9) reduces to an d*k
ion i i i i - —ik-x
in;:llogous equation in the single relative coordinatex DM(X)_J' (277)4e D,.(k), 4.9
- ~ ~ T and note that
A, (NF(M) +[hy (=1 F (N ]+ 01026, ¥*F(r) (")
B 1 1 kiK;
=EF(r). (3.1 Doo(k)=E, Dyo;(k)=0, Dij(k)=?(5ij—?—)
It can, therefore, be reduced to a set of ordinary, coupled, (4.2

first-order differential equations for states of givéh Such . .
equations can, at the very least, be solved numerically. Thignéhfhg%ﬂz?&[ggf glfl?gé; ge]refore, if we use Eq2.3
is a straightforward, though somewhat tedious, problem » £Q- (9.

[8,16] which we address below.

3
The structure of the Hamiltonia; [Eq. (3.5] is such f dk aikex akb k:i i a b_a- rb-r
that generalizations to systems of more than two fermions (2m)3 (k32 4w 2r r2 '
are readily obtained. Thus, the three-fermion state, corre- 4.3

sponding to a system such s e~ u "), defined by
we obtain the coordinate-space representation of the

N Coulomb-gauge Green function,
3)= | PR 00 Ho o) 00

~ 1 1 Xin
Xyl (x2) 1 (%5)[0), 312  CwlN=z7r Ga=0, Gij(N=—g=r| dj* 5|,

: . L : (4.9
is an exact eigenstate ofly; with eigenvaluekE, provided _
that the =64 coefficient functions, 4, a,(X1,X2,X3) sat- wherer =|r| andr=(x,Xz,x3). Consequently, in the Cou-

isfy the three-body Dirac-like equation lomb gauge, Eq(3.11) becomes

_ T T
[hml(xl)]alaFaazas(XlIXZ1X3) hml(r)F(r)+[hm2( r)F (r)]

+[hml(x2)]a2aFalaa3(Xl ,X2,X3) +V(r)

1 1
F(r)— E( aF(r)-a'+ 2 raF(nr aT)
+ [, (X3) ]agaF ayape(X1:X2,X3) + 0102G (X3 = X1) —EF(r), (4.5

XY a1 V") agF aayp(X1, X2, %3) T 102G 10(Xa=X2)  \whereV(r)=(q,q,/4)(1/r).
Keeping in mind the notation, as explained below Eq.

><(y”)aza(yV)%BFalaﬁ(xl,xz,x3)+q§GM(xl—x2) (3.10, we see that Eq4.5) is nothing other than the Breit
- ~ equation[19], written in the rest frame of the two-fermion
X(’y’u)ala( yv)azﬁFaBas(XI!XZ!XS) system.
The fact that the coefficient matrix of the two-particle
=EFa a0;(X1:%2,X3), (813 gigenstatd3.9) is a solution of the Breit equation means that

the two-fermion eigenenergies that follow from E@.5)
where summation on repeated spinor indices is implied. Ircannot be valid beyon®(a*) (wherea=|q,qy|/47). It is
the rest frame of the three-body system, 8413 reduces to  well known that the Breit equation does not include radiative
an equation in two independent vectors only. Neverthelesgffects[18]. This limitation is a consequence of our neglect
the reduction of the equation for states of givEnis more  of retardation effects beyond the first ordef. Eq. (2.3
formidable than in the two-body case. Even then, one is lefabovd, the use of the empty vacuufof. Eq. (3.4)], and the
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neglect of the terms containing the free photon figfi[cf. JX ) =X t+N)
Eq. (2.1)] in the Hamiltonian(3.1).
If we had used the Lorentz-gauge form of the Green func-

. 1
= ! i 4 — 2 ! “e .
tion (2.5, Eq. (3.11) would take on the form JOCDFN O+ 2)\ JO O+

i, (NF (1) + [N (— DF ()T V(N [F(1) — aF (1) - @] 54

which reduces the potentigh.3) to the form
=EF(r), (4.6

— 3y H ’ 1 ’

which is recognized to be the Eddington-Gaunt equationAM(X’t)_f dx [G(r)J#(X DFZCUDIFED+--
[20,21. The Gaunt equation, unlike the Breit equation, does (5.5
not contain even lowest-order retardation effe(tse also .
Sec. \J. Therefore, it will yield energy eigenvalues that will Wherer =|r[=[x—x'[. The functions
differ from those of the Breit equation already@fa*?).

Note also that Eqg4.5 and(4.6), with the terms involv- G(r)=f d\ D(A2—r2)= o (5.6)
ing « left out, become identical to the Coulomb-QED model Amr

discussed earlidi8]. and

V. TWO-BODY EQUATION IN THE LORENTZ GAUGE o oo T
Gi(r)= | dAD(A“=r9)N =1 (5.7
Although we shall use the Coulomb gauge in this paper, it m

is instructive to see how, in the Lorentz gauge, one needs Qi .
: ’ ’ > satisfy the relation
keep retardation effects at least to the lowest nonvanishing fy

order, in order to achieve the same results. The Green func- G(r)=rG(r). (5.8
tion of the d’Alembert equation in the Lorentz gauge has the !
form The terms of odd power in in the expansior{5.4) vanish

becausé is an even function ok [cf. Egs.(5.6) and(5.7)].
_ 1 ) As a result, the interaction Lagrangiafy (up to surface
Duu(¥)=9,,D (%), D(X)= 72— 8(x%). (5D termsg takes the following single-time form:

~ (0 (1) (2)
The reduced Lagrangiafig in this case readpwith Ag(x) L= Ly L7 L, 5.9
=0] where
- =(X)(iy*o, — 1
ER £¢+‘C¢+[’I lﬁ(X)(I’y 07;/. ml)lﬁ(X) 'CI(O):_ Ef d3X'G(I’)j0(X)jO(X'), (510)
— 1 .
P (I y#d, = M) p(X) = S A*(X)] u(X), (5.2) 1
£iv=3 f A G(Nj(x)-j(X'), (5.19
where the potential of electromagnetic interparticle interac-
tion is »n 1 . .
£i¥=; f d*'Gy(NJ°(0j°%x) (512

s — N Vi My
AF(X) f A DO =X’ (hereafter we omit the common time argumént

The quantized theory based on the Lagrangid®= 2,
Ef dsx,J At D[ (t—t")2— (x—x")2]j (1" x'). +L,+L£{% (the Coulomb QED mentioned in Sec.)las
discussed if8]. It takes into account the relativistic kine-
(5.3 matics of the fermion fields exactly, but describes their elec-
tromagnetic interaction with the transverse-photon part

Thus, the Lagrangia6.2) is nonlocal in time. Because of turned off. The termsC (" and £(? can be treated as first-
this, the standard Hamiltonization procedure is not appliorder corrections toZ (%), thus providing the approximate
cable. single-time form Lg=£©+ £ M+ £(? for the reduced
In order to employ the canonical Hamiltonian formalism, nonlocal Lagrangiarfy [cf. Eq.(1.1D)]. Other terms follow-
it is necessary to convert this Lagrangian to a single-timeéng from the expansion are corrections of higher order. They
form. We shall do so by employing a procedure that takesvill not be considered in the present paper.
into account the retardation effects approximately. The Lagrangianlg leads to Euler-Lagrange equations
Using the substitution’ =t+\ in Eqg. (5.3) and expand- which are second order in time derivatives, because of the
ing the curreni in a Taylor series in, we obtain the result term £(?. Thus, it describes the system with twice as many
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degrees of freedom a8(®) does, because¢' are no longer 1( 5, L

the conjugate momenta af. This changes completely the W(x)= Ef d*X'Gy(N)V’-j(x"). (5.18
dynamical content of the fieldg and ¢. Since the second-

order time derivatives occur in small terms only, they ShOUldThe transformatio(5.17) can be regarded as an approximate
be eliminated by means of the Euler-Lagrange equations of g(1) gauge transformation, which, however, is not canonical
lower-order approximation. But the resulting field equationsgue to the dependence @ on the fields. This transforma-
are then not necessarily the Euler-Lagrange equations of #n removes time derivatives from the interaction part of

known Lagrang|an. Thus the tran§|t|_on to the Hamlltomanzsl To the accuracy required, and up to surface terms, the
and to a canonical quantum description becomes unclear. . = . .
LagrangianLg can be written in the form

To avoid this difficulty, it is tempting to eliminate the time

derivative of the charge densify directly in £ (? by taking - 1
into account the conservation law Ls=LO+ M+ Zf A3 Gy (N[ V-j(x)I[V'-j(x)],

(5.19

where the notations(®), j, etc. mean that the fields, ¢ are
This conservation law is a consequence of the Eulerreplaced byy, ¢.

Lagrange equations, which follow from the reduced La-
grangianLg as well as from the truncated on®®. How-
ever, the direct use of the equations of moti@r their
consequenceésn the Lagrangian is not a correct procedure:
it changes the equations of motion themselves. This fact was _ . ,

first emphasized in the case of the Golubenkov-Smorodinskii Ls=i(y g+ ¢'d)—Hs, (5.20
Lagrangian[22,23 and then subsequently discussed in the

literature [24—28. Instead, one can use the method ofwhere

“double zero,” used in Refs[24,27. In our case this con-

9,j*=0, e, j°+V-.j=0. (5.13

Integrating the last term ofs by parts, omitting surface
terms, and using Eg¢5.6) and(5.8), we reduce the Lagrang-

ian Lg to the form

sists of the following modification of the Lagrangian: He= lﬂT(X)(—ia‘V+ My B) (%)
Ls—Ls=Ls+ L, (5.14 + "0 (—ia-V+myB) ¢(x)
1 1 1
where T A3 T 0 i 0 i i
+877jdxr J()j7(x") 2J_(x) j(x")

£f=- % f ¥’ Gy (N){j°(%) 1
_ —P[m;(x)][r-j_(x')]}. (5.21
+VOOHI PO +V (X)) (5.15)

It is easy to see that the termf3) possesses the property TTh|s formulation allows us to treat the var|abl¢§ and
¢' as the canonical conjugates ¢f and ¢, respectively.

3 (3) That is, we impose the anticommutation relatig2s?) on
5f XL spq3xc ©=0=0, (5.16 the underscored fields, and not on the original ones, when
performing the quantization. Thereafter, since the Hamil-
so that it does not change the variational problem to th@onian Hs=[d3xHs is formally identical to the Coulomb
accuracy required. On the other hand, it cancels those terngauge Hamiltoniaicf. Eq.(2.1) with Eq. (4.4)], calculations
of Lg which are quadratic in the time derivatives of the such as those of Sec. IV lead to the Breit equafi®s).

fields. Thus the modified Lagrangia(_tg yields equations of

motion, which are first order in the time derivatives of the VI. TWO-BODY EQUATIONS IN BLOCK
particle fieldsy, ¢. COMPONENT FORM
Next, we perform the following transformation of the ) , )
field variables: Although two-fermion equations have been around since
the 1920s, their full reduction to the radial form is of more
J— = (1—iq,W) p~e 191Wy, recent vintage(see, for exampl€e}29,6]). The reduction of
B Eq. (4.5 to radial form is essentially the same as presented
lﬁﬂlﬂ (1+ig W) g~el Wy, in Ref.[8], hence all the details shall not be repeated here. As
shown in[8], we note that Eq(4.5 has the Schidinger
d— dp=(1—iq,W)p~e 92Wg, equation as a nonrelativistic limit, and the Dirac equation as
B a one-body limit if eithemm, or m, tends to.
b p=(1+iq,W) p~e92We, (5.17) For the two-fermion stat¢2), Eq. (3.8, to be simulta-
- neously an eigenstate df, J;, and parity, the “bispinor”
where F=[Fi;] must be of the form
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=t is1(1) (D) +isy(r) (1), ta(N)e™ (N+ta(r)e™ () 61
Flui(ne™ (N+uxNet (1), Tvy(r)eAr) +ivy(r)ed(r) ]’ '
for —(—1)’=(—1)’*1 parity eigenstates, and
1]isy(Ne (N+isa(Ne (1),  to(r) AN +1ta(r)e%(r)
F(r)=-— o o . L Lo (6.2
ML ou(nDe (N +ua(r)e(r),  ivy(r)e () +ivy(r)e™(r)

for —(—1)’*1=(—1)’ parity eigenstates.
The 2x 2 angular bispinor harmonias®(r), ¢°(r), " (r), ¢ (r), for given total angular-momentum quantum numbers
Jandm;=M, are

A=y 6.3
@(f)—ﬁ J(r)l ol (6.3
. 1 VAI-M+1)(J+M) YNt —MmYY
0% = —— M M1l (6.4
2J(J+1) -MY} ~JA+M+1)(I-M)YN*
. 1 VA+M -1 A+MYME Ja+Mya-mvy
(D= M M+1]” 6.5
V23(23-1)| VEEM)@-M)YEL JI-M-1)(3-M)YY
and
) 1 VA-M+1)A-M+2)YM 1 —JAa+M+1)I-M+1)YY,
¢ (N= . wer |- (6.6
V2(3+1)(23+3) [ ~VA+M+1)A-M+ YN . JAI+M+1)I+M+2)YW,
|
We note thate” is antigym/rI]etric aDqDO'i are symmetric o Te°=Bo +Ae", 6.9
matrices. Furthermoreg”, ¢”, ande~ correspond to oppo-
site parity becaus¥}'(—r)=(—1)-YM(r) and¢®, ¢* have o 1o"=Cq°, (6.10
L=J wherease™ haveL=J+1. These four bispinor har-
monics form an orthonormal set, in the sense that o 1¢%=— %+ Co*, (6.1
Jdr Tr(¢! ;)= 8, wherei,j=A,0+,— and the integra- _ _
tions are taken over the entire solid angle. olgm==(J+2)¢", (6.1
The eight radial functions in the bispinof®.1) and(6.2) ol =(I-1)e", 6.13

are solutions of the coupled radial equations that are obtained
by substituting Eqs(6.1) and(6.2) into Eq. (4.5 and equat- \yhere
ing the coefficients of the four independent bispinor harmon-

ics. J+1 J
We make use of the following identities in carrying out A= \/5577 B=\ 5577 and C=+J(J+1).

the radial reduction: (6.19
A df . i A A It is evident from Eqs.(6.1) and (6.2) that, in general,
O-.pf(r)(P(r):—iao’-r(p(r)-i-Ff(r)aﬂro'-hp(r), eight coupled radial equations are obtained, for arbitrary

J>0.
(6.7)

R VII. RADIAL REDUCTION OF THE TWO-BODY
where ¢(r) is any 2x2 bispinor harmonicf(r) a radial EQUATIONS FOR J=0 STATES
function,r=r/r, andl=rx p=—irxV. In addition, we note
the following useful properties of the above bispinors har-
monics:

For theJ=0 states, namely, the @'S;) and 0" (3Py)
states, only two linearly independent bispinor harmonics
arise, namelyp” and ¢~ [Egs. (6.3 and (6.6)], and sos,

R =t,=U,=v,=0 in Egs. (6.1 and (6.2). (Here, as else-
oroh=Ap —Bo™, (6.9 where, we give in brackets the nonrelativistic limit designa-
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tion, 2571L,, corresponding to thgd® state in question. two segments of a distorted semicircle. The upper branch
Thus there is only one set of four coupled radial equation®f this distorted semicircle corresponds to the upper

for each of 0 (*S,) and 0" (°P,) states: (positive) sign in Eq.(7.5). It begins fromE=m;+m, at
< < a=0 [indeed, E=m;+m,—1/2m,(a/n)?>—1/8m,(1
[m, +V(r)—E]s(r)—t'(r)— —t(r)—u’(r)——u(r) +m,/my)(a/n)*+--- for a/n<1], and decreases t&
r r =m?+m?Z at the critical value ofx=n, beyond whichE
+EV(N(r)=0 (7.1) ceases to be real, and the wave functions cease to be normal-
' izable. The lower branch, by contrast, begins fr&m|m;
K K —m,| at «=0 and rises monotonically to meet the upper
[m-+V(N)—EJtr)+s'(r)—s(r)+v'(r)——v(r) branch at the same critical poiB{( /n) = /m?+m2. These
|m; —m,|-type bound-state eigenenergies do not have the
+V(r)u(r)=0, (7.2 correct Balmer limit, since for this branch
, K , K E— " 1 m1m2 o 2
[=m-_+V(r)—EJu(r)+s'(r)— —s(r)+v’(r)——v(r) =[my —my| 2\|m;—m,|/\n
+V(N)H(r) =0, (7.3 +5( mym, )( _mymy )(g ‘
K K 8\ |my—my| (my—my)?/ i n
[—m++V(r)—E]u(r)—t’(r)—Tt(r)—u’(r)—Tu(r) (7.6)
+EV(r)s(r) =0, (7.4 for m#my, but E_=m[.(a/n)+l/8(a/n)3+~.-] for m,
=m,=m. Thus, this “mixed energy’E=|m;—m,| bound-
where m.=m;*=m,, s’'=ds/dr, the potential V(r)= state spectrum must be regarded as unphysical. There are
—alr (a=]|q,q,//47), and E is the eigenenergytwo- also negative-energy solutions of tke=—m;—m, an.d E
particle bound-state mast be determined, whilk=1 (¢  =—|m;—my| type, but they are not bound states, since the
=2,7=0) for the 0 (}S,) states anK=—1 (£=0,7=2) potential effectively reverses sign for the negative-energy so-
for the 0" (°P,) states. As shown in Ref8], Egs. (7.1)— lutions (as happens_ also in the Dirac-Coqum_b gadethe _
(7.4) have the expected Schtiager nonrelativistic limit and same type of behavior of the energy spectrum is observed in
the Dirac one-body limit. another analytically solvable case, namely, a fermion and a

We note that the case with= =0 corresponds to the Scalar particle interacting via massless scalar quantum ex-
simplified model without transverse-photon interactions, thaghange[31]. Thus we expect that the energy eigenvalue
is, the Coulomb-QED model of Ref8]. Similarly for ¢  spectrum of Eqs(7.1)—(7.4) will be qualitatively similar to
= »=0, if the potential isV(r) = — (0,0, /47) (e~ #'/r) and that of the scalar exchange models just described.
the sign of the potential is reversed in E¢&.2) and (7.3, We have not been able to determine solutions to the
we recover the © radial equation of the Yukawa model dis- coupled radial equation&7.1)—(7.4) in terms of common
cussed in Ref[30], for which the interfermion interaction is analytic functions. It is of interest, therefore, to consider the
via a (massive or masslesscalar mediating field. properties and general behavior of the solutions before com-

We should point out that Eq$7.1)—(7.4), like the Dirac  Mencing with numerical solutions.
equations, have both positive- and negative-energy solutions. N analogy with the scalar model just described, and with
Indeed, in this two-body case, there are solutions of fouthe Coulomb-QED cask8] we expect that, as increases,
types: E=m;+m,, E=—m;+m,, E=m;—m,, and E= the eigenenergy spectrui{ «) of Egs.(7.1)—(7.4) will have
—m;—m,, as can be seen most easily from the 0 case. & qualitative behavior similar to that of the Dirac spectrum,
Of these, two are positive-energy and two are negativenamely, thatE(a) decreases monotonically frol(a=0)
energy solutions. =m;+m, until « hits a critical valuea., beyond which

Since we do not have analytic solutions for the eigenenE(a) ceases to be real. It is possible to infer the value of
ergies of the present QED case, it is useful to illustrate thi®y considering the ultrarelativistic limitp—c, in which
phenomenon on the scalar Yukawar Wick-Cutkosky ~ case we can neglect the massesandm,, and seek solu-
model, in which scalar particles interact via a massive ottions of Egs.(7.1)—(7.4) with E=m;=m,=0. (This ap-
massless mediating field. For such a scalar model, analytigroach, when applied to the one-body Dirac-Coulomb case,

1/2

expressions for the two-body bound-state energy eigenvalugselds the correct critical values.=|«|=|j+1/2.) In this
are available in the massless-exchange 3ke ultrarelativistic approximation, Eq$7.1)—(7.4) have the so-
. lutions t=u, s=v, |t|=|s|=1 (i.e., Focllr) with o2
@ =4K?/(1+&)(1+ ), which gives a,=2/\/3=1.1547 . ..
E= \/mi+m§i2m1m2{1—(ﬁ) ’ (7.9 for all 0* states. Note, however, that this result does not
mean that the value of the two-fermion rest masat «. is
where a is the effective dimensionless coupling constant,necessarily the same for theé @nd 0" stateq(certainly, such
analogous to the fine-structure constant of QED, migithe is not the case in the one-body lititNote also that the
principal quantum number. The in Eq. (7.5 correspond to resulta,=2/\/3 for 0" states is independent of the masses,
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that is, we expect it to be the same for all finitg /m,. The (y+K+wv)b,—6b, 1+ (y+K+v)c,— 8¢, 4
value a,=2/\/3 is different, and somewhat larger, than the
known one-body limit(Dirac-Coulomb value of =1 for ta(m,+E)d, ;+ad,+£aa,=0, (7.19

|k|=1 states. Also, this value is much smaller that the value

a.=2, which is obtained for the two-fermion Coulomb- Wheres=1. If 5=0 then Eqgs(7.12—(7.19 are the recur-

QED casewhereé= 7=0) for 0" states. sion relations for the power-seies representations of the
For the Coulomb potentialV=—a/r, where a  functionss(r), etc., rather than fos(r), etc.

=|q;q,|/4, itis often convenient to rescale the radial vari- For »=0, and bearing in mind thaa_;=b_;=c_;

able, that is, to lep=r/a, wherea is a suitable scale param- =d_;=0, Egs.(7.12—(7.15 vyield four coupled homoge-

eter. For example, the radial functiogg, u, v have the large neous equations for the parametes by, cq, dg, which

r (negligibleVV andK/r) behaviors~e™?, etc. for positive- have nontrivialland nonsingularsolutions only if

energyJ=0 bound states, wheieis given by

, 1 ) 3a?
1 _[mi—Ez][Ez—mZ_] 1, [E\? y=\K =71+ HA+na"=\1-—— (7.1
a2~ 4E2 RPN )
if my=m,. 7.7 for the J=0 states, for any values of;, m,, whereupon
Equation(7.7) implies thata is positive only for|m;—my| %:1 bo_Co_ (A+Ha 2(y-K) (7.17)
<E=m;+m,, which means that the bound-state spectrum a, ag Qg 2(y+K) (1+npa’

must lie in this domaircf. Eq. (7.5]. From this, and in
analogy with the scalar model results, we can infer that the The condition(7.16) implies that the radial equations
critical value E(a.=2/+/3) lies betweenE=m, and E have real bound-state solutions of the form of E(s8—
=|m_|, and likely closer to the former rather than the latter.(7.11) only for a<2/4/3, for any values of, andm,. This,
With the rescalingp=r/a, Egs. (7.1)—(7.4 become in turn, implies thata,<2/\3 for the 0" states for any
modified slightly, in thatr is replaced byap in all of them.  (finite) values ofm; andm,, in agreement with the ultrarela-
For purposes of numerical integration of the radial equationsijvistic limit discussed above. This condition for bound-
the scale parametexr can be chosen to be anything that is states,w<2/+/3, is additional to the one that follows from
convenient, be it that given in Eq7.7), or a=1 or a Eq. (7.7), namely, thaim; —m,|<E<m;+m,.
=1lpa, or whatever. The recursion relation$7.12—(7.15, with Egs. (7.16
For a power-series analysis of the radial equations it isand(7.17), can be used to generate the power-series form of
useful to make the replacemesse™*, etc. Assuming so- the solutions of Eqs(7.8)—(7.11). These series converge in

lutions of the form the domairr sa/m, , as discussed below and[i8]. Such a
series can be used, for example, as a starting procedure for
s=pag+aptap+---], (7.8  the numerical integration of the radial equatidisl)—(7.4).

Unlike in the Dirac case, the recursion relatigqi@sl2—
(7.15 do not admit power-series solutions of the foffn8)—

t=p? 24 ...

t=p"bo*byp+bop™+-- -1, (7.9 (7.1, which terminate at the same power, sayn’, so that
_ 5 a,+1=byi1=Cyh 11=dy 1=0. In particular, the ground-
u=p’cotcCiptCopt---], (7.10  state solution is not of the simple form
v_:py[d0+dlp+d2p2+ e ]i (711) ;: aopy, t_: bopy, U: Copy, U_: dopy (718)

we find, upon substitution into the radial equations$pt,  as it is for the two radial Dirac equations. This is perhaps to
u, v and equating coefficients of powers@f* "1, thatthe be expected, since in the Dirac case there are only two func-
coefficientsa; , b;, ¢;, d; must satisfy the following recur- tions, says and t, and four unknowns to be determined,

sion relations: namely,by/ay, v, a, andE. Since the two coupled radial
Dirac equations yield four equatiorithe coefficients ofp”
a(m,—-E)a,_;—ea,~(y+K+v)b,+6b, andp?~1), it is not surprising that a solution is obtained. In

(7.12 the present case, we have four coupled radial equations
' (7.1)—(7.4), which yield eight equation&he coefficients of

p? and p”~ 1) to be satisfied by the six unknowns of the

proposed solution§7.18, namely,by, cq, dg, v, & andE.
+(y—K+v)d,—8d,_,— nac,=0, (7.13  Thus the system is overdetermined and no solution of the
form (7.18 is possible. This situation persists for any solu-
tion of the form(7.8)—(7.11), where the polynomials all ter-
minate at the same degree. Therefore, we shall solve the
+(y—K+v)d,—éd, 1—nab,=0, (7.14  radial equation$7.)—(7.4) numerically.

—(y+K+v)c,+6c,_1—é&ad, =0,

(y—K+wv)a,—da,_;+a(m_—E)b,_;—ab,

(y—K+v)a,—da, +a(—m_—E)c, ;—ac,
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Equations(7.1)—(7.4) are not independent. Indeed, el-  For the present QED case in the Coulomb gauge, for the
ementary manipulations of these equations, namely, subtraay— states(for which ¢=2,7=0), V,7=V,7=V, while V,
ing Eq.(7.4) from Eq.(7.1) and similarly Eq.(7.3) from Eq. —3V andvgz V. In this case we see thi¥,(r) is singu-
(7.2) show that lar at r;=a/E=a?(m,/E)(1/m,a), wherem, is the re-

E—m, —(1—&V(r) duced mass and fin; « is the reduced Bohr radius. This sin-
v(r)= Etm. —(1- V(1) s(r), gular point is quite close to the origi{in units of the reduced
+ Bohr radius for small «. The appearance of this singularity
E—m_—(1—)V(r) may signal difficulties in the numerical determination of
u(r)= - t(r). (7.19  eigensolutions of the equatiorig.20 by standard “shoot-

CE+m_o—(1- V(1) ing” methods. For the 0(3P,) states(for which é=0,7
=2), the singularity at,=«/E occurs inW,, but only if

tTv\r/1ct)Js, the number of equations can be reduced from four tomlimz. Thus for the equal-mass Ostates, EGs(7.20) have

. . . _ only the usual ¥/ singularities at the origin, and are ame-
We introduce the auxiliary function$(r)=s(r)+uv(r) . :
and g(r)=t(r)+u(r). Then, adding Eq(7.1) to Eq. (7.4) nable to solution by standard methods, as discussed below.

and Eq.(7.2) to Eq. (7.3, and using Eq(7.19 yields the

equations VIIl. PERTURBATIVE DETERMINATION OF THE
RELATIVISTIC CORRECTION TO THE TWO-BODY
f'(r)= Ef(r)+W (rg(r) EIGENENERGIES FOR J=0 STATES
r g ’ . o .
Equations(7.20 can be written in the matrix form
K
—g'(n)=—9()+W(r)f(r), (7.20 d K
e—W; — ———
dr r
where H|y)=€ly), where H= 4 K ,
— = =W,
1 (my—my)? dr r € K
Wy(r)==z|E-V, (r)— ——|, 7.2
(1) 2[ )
f
1 (my+my)? ¢=[ } 8.1
Wi(r)==|E=V (r)— ————|, 7.2
#(r) > £(r) EV,(r) (7.22 g
and where and wheree=E—(m;+m;). If W; is replaced byWV{'= e,
_ —V andW, by Wg'=2u, whereu=m;m,/(my+m,), then
Ve(r)=(1+EV(r), Vr)=(1-&)V(r), Eqg. (7.20, or Eq. (8.1), is equivalent to the radial Schro

. dinger equation. The first-order correction to the nonrelativ-
V(N=(1+V(r), V,(1=(1-nV(r). (7.23 istic energye,=—1/2una?(1/n% is then given by

<¢nr| H-—H nr| T/ <fnr| €~ €pt er1r_ Wf| fnr> + <gnr| € €nt Wgr_ Wg|gm>
A = = .
T (el V) (Foel Fo) (G G

(8.2

If we expand the coefficients/; and Wy [Egs.(7.10 and  where5=m_/m, . This leads to the following (a*) cor-
(7.1D] in powers ofV/m;, and keep only the lowest-order rection to the nonrelativistic energy for tide=0 states:
terms, we obtain

Ae= ! 2—2en(1—ENV)+(1— )% V?
€= 2m+[€nr enr( §)< > ( g) < >]

1
€—€nt W?r_ W= H(fnr_ V§)21 (8.3 o 1 )
" - 1_2m_+ end (1)) + 5[(1+ 1)+ (1= 7)5°J(V)).
(8.9
e et W W= — | 1- 2 | et 2V, 4 57V
e 9 m,/ ™ 27 K We use the notatior(X)=(f ., |X|f,)/(f./fn) but ((X))

(84) :<gnrlx|gnr>/<fnr|fnr>'
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For the 0 (nS,) states(for which K=1 and ¢é=2,3

TABLE I. Values of E/m for the n=2,
=0) this formula gives, for the lowest-order relativistic cor- =m;=m).

PHYSICAL REVIEW A66, 032102 (2002

0" (®P,) state (n,

rection, the result

Perturbative Numeric
- 1(3 1 u [Eq. (9.9)] [Egs.(7.20]
A€[0 <nlso)]=ﬂa“[—4(—— ——)
n*\8 8m, 1/137 1.999996 6699532 1.999 996 669 953 2
1 “ 0.01 1.9999937496908 1.9999937496908
+ |-+ 2_) , (8.6 0.05 1.999 843556 7220 1.999 843 5564
n 2. my 0.1 1.999 371907 552 1 1.999 371 886
. 11 4 0.5 1.982 4422200521 1.982 02802
which becomeszg;ma” in the equal-massm;=m,=m, 07 1 961 950 032 552 1 1957997 74
case. This does not agree with the known positronium vaIuS' 1'929 085 449 218 8 1'902 4531
of — 2 ma” [18]. This is not surprising, since the Breit equa- 1 1.906 575 520 833 3 183878105
tion, without modification, is known to give the incorrect fine " 1.879 098 470 052 1 1 688 2317
structure for hydrogen and positronium. Brown and Raven—l'15 1'863 256 642 6595 1'436 9434
hall [32] argue that the reason for this is the mixing ofl'154 1'861924 1910995 1555 17076
positive- and negative-energy one-particle stafesich 1'1547 1.861 689 995 054 9 1 301 3199
arises, in our formalism, because of our use of the empt)i'154 700538 379 2 '1861 6898148148 '1 299 74

vacuum(3.4)]. This difficulty of the unmodified Breit equa-
tion is discussed in various workg.g., Refs[32,33,1§).
The modification that is needed to bring the result into agree-
ment with the observed fine structure of H or Ps is to subtra
off the expectation value of the opera{®@3,34],

a2

m based on a relativistic generalization of the Lippmann-

chwinger equation due to De Groot and Ruijg88]. Our
corrected expressiofB.9) agrees with the results of these
authors[The O(a*) corrections for hydrogen and muonium
2(3=201 0pt0y0y), oy =011, quoted in standard references are expansions, itm, (e.g.,

(8.7) [39,40).]
For then0™ (3P,) states(for which K=—1 and¢=0,7

where, in this equation, we use the notation[®8]. The =2) Eq.(8.5 gives
expectation value of Eq8.7) (with respect to the nonrela-
tivistic eigenfunctionsis

H!

dm,r

1/3 1
Ae[no+(3Po>]=ua4{—4(———i)

1- 82 4f “ n*18 8m,
o 4 _  f.= 4= =
(Hn=pe’ mmggy fs= 1 B my 1/ 1 2p
8.8 Bl T2 3m
(8.9) +n3 573 m+) ,  (8.10

wherefs=1 for the singlelS=0 states, whild ;= 1/4 for the

triplet S=1 states with)>0, butfs=0 for the triplet states \yhjch doesagree, in the equal-mass case, with the Ps values
with J=0 (see, also, Sec. X belgwThe expression8.8  for all then0™ (3P,) states, as well as with the unequal-mass
gives the valuezma* for the equal-mass ground state, expressions of Conne[l35] and HersbacH37] for these
which, when subtracted from the Breit valuegma® gives  states. This agreement implies that the “correctidhi” ),
the expected positronium resuttZma*. More generally yanishes for thé'P, states, as indeed it does.
fqr arbitrary masses, if we subtract £§.8) from the expres- We might note, in passing, that formui8.5) gives the
sion (8.5), we obtain the corrected result correctO(a?) results for the Coulomb-QEDEE 7=0) case

3 14 ) [8], for which theW coefficients are nonsingular for>0.

1
-1 — 4) — (7
Aefn0”(18,)]=pa [nA(S s
IX. NUMERICAL SOLUTIONS FOR SOME J=0% STATES

1
T3

n

1 _nu
o] e

In the case of equal masseg =m,=m the radial equa-
tions (7.20 for J=0"(°P,) states are free of singularities.
This same result8.9 was obtained previously for the  Thus the boundary-value problem is well posed, and it can
=2 state by Darewych and Horbatsft3(b)], who used a be solved by means of a standard numerical ODE-solving
perturbative approximation on variationally derived equa-procedure. We solved it by the “shooting” method using the
tions. MAPLE Runge-Kutta program.

Somewhat surprisingly, the unequal-m&36x*) correc- The corresponding perturbative spectrfeh Eq. (8.10],

tions for arbitrary states seem to have been worked out fully

only relatively recently. We refer to the work of Connell 2 11 1
[35], who used a quasipotential formalism based on the work Elm=o— % 44 == & , 9.1
of Todorov[36], and of Hersbach37], who used a formal- 4n? 64n* 3n
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TABLE Il. Values of E/m for the n=3,4, 0" (3P,) states (n; o8
=m,=m). ’
Perturbative Numeric
n a [Eqg. (9.1)] [Egs.(7.20]
3 1/137 1.9999985199892 1.999998519989 2
0.01 1.999997 2221200 1.999997 2221200 *°]
0.05 1.999930491 6570 1.9999304916570
0.1 1.9997211998457 1.999721193728
0.5 1.9924165702160 1.992 303736
0.7 1.983934 162 808 6 1.982 908 59
0.9 1.970792 1875000 1.964 6458 0.4
1.0 1.961 998 456 790 1 1.948 028 09
1.1 1.951 4202739198 1.9186196
1.15 1.945382 4592496 1.884 4358
1.154 1.944 8763731198 1.875613
1.1547 1.944 787 448 407 1 1.8705697 :
1.154 7005383792 1.944 7873799726 1.8704234 ]
4 1/137 1.999999 1674974 1.999999 167 497 4
0.01 1.999998 4374546 1.999998437 4546
0.05 1.9999609091441 1.9999609091441
0.1 1.9998432963053  1.9998432939
0.5 1.9958101908366  1.9957662947
0.7 1.991 2544291178 1.990864 9
0.9 1.984 367 059 326 2 1.9821441 0 1 2 3 4 5 r/a
1.0 1.979 8380533854 1.9749816 ) )
11 1.974 451 206 461 6 1.963 685 FIG. 1. Reduced radial wave functions for the lowes{=m,
115 1.971 400 789 515 2 1952562 =m, n=2, 0"(3P,) state fora=1, E/m=1.838781.s(p), full
1.154 1.971 145810 108 7 1.9501225 curve; t(p)=u(p), broken curve;v(p), chain curve.p=r/a,
1.1547 1971101018 2659 1948751 wherea=2.542291(1h). Unitsh=c=1 are used.
1.1547005383792 1.971100983 7963 1.948714

1.2

agrees with the orthopositronium spectrum, since the contri-
bution of the extra termgcf. Eq. (8.7)] (caused by positive-
energy—negative-energy mixinganishes in this case. o]
In Table | the numeric and perturbative results are
presented for the lowest-energy Gtate(i.e., J=0, €=1,
n=2) for different values of a=<a.=2//3 ;
~1.1547005383792515. it
There are, as we explained in Sec. VE>0 “mixed
energy” solutions of the fornE/m=a+ O(«?), which are
unphysical, because they do not have the Balmer nonrelativye]
istic limit. We do not list such solutions here, though they
can be calculated readily enough in the same way as those i
the Table I. This unphysical branch of tlne=2 0" state
rises uniformly from zero a&=0 to join the physical branch
of Table | smoothly aE(«a.). As mentioned previously, the
two branches together resemble a distorted semicjiefle
Eq. (7.5]. 02]
Analogous results for the=3 andn=4 0" (3P,) equal-
mass two-fermion energies are given in Table Il. The quali-
tative behavior ofe(«)/m for these states is similar to that
for the lowest such staten&2), except that the critical
value of « increases withn, as it does in the case of the
analytically solvable scalar model of E¢7.5. However,
here we obtaina./n=0.64987,0.6024745,0.487 1785 for
then=2,3, and 4 states, respectively, in contrast to the scalar FIG. 2. Same as Fig. 1 but= a.=2/\/3, E/m=1.299 74, and
model valuesz./n=1 for all n. a=1.315711(1h).

0.4

1 2 3 4 r/a
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0.8
0.6

0.4

—

0.2

e

0.0

-0.2

-0.4

-0.6

0 1 2 3 4 5 6 r/a 0 1 2 3 4 5 H 7 8 s r/a
FIG. 3. Same as Fig. 1 but for the exciteet 3, 0" (°P,) state, FIG. 4. Same as Fig. 1 but for the excited: 4, 0% (°P,) state,
with a=a,=2/\3, E/m=1.870 423, anc=2.824 148(1m). with @=1, E/m=1.974 982, and=6.342 094(1rh).

Note that the critical value of the two-body mass, three, respectively In then=40"(3P,) case(Fig. 4) each
E(a¢)/m, increases with, in contrast to the scalar model, of the functionss(r), t(r), andv(r) gets one more node.
for which E(a.)/m= /2 for all n. This tendency likely continues for higher values of the quan-

Figure 1 is a plot of the unnormalized reduced radial waveum numbem.
functionss(r), t(r)=u(r), andv(r) [see Eqs(7.1)—(7.4)]
in the case of equal massey;=m,=m, for the lowest-
energyn=20"(3P,) states, wherv=1. These wave func- _ _
tions are qualitatively similar to those obtained for these For states with)>0, the eigenstate problem reduces to a
states in the Coulomb-QED caf@]. The large component set of eight first-order differential equations for the functions
s(r) is nodeless while the small compone(t)=u(r) and  Si(r)---vz(r) and the energ§ [cf. Egs.(6.1) and(6.2)]. It
the doubly small one(r) have one node. The node at the IS convenient to present this set in the following matrix form.
origin, r =0, is a consequence of our use of reduced radial-et us introduce the eight-dimensional vector function
wave functionss(r), etc., rather than the actus(r)/r, etc.

X. RADIAL REDUCTION FOR J>0 STATES

Indeed, the wave functions behave at smadk follows: [ s1(r) 7]
Sa(r)
s(r)=uv(r)~consX ar?, x()=| tm |. (10.1
t(r)=u(r)~const (2/3)(y+1)r?, (9.2 ‘
vo(r) |

where 0<y<1 [see Eq(7.18]. Thus the matrix wave func- -

tion F(r) is singular,F(r)~r?"1, as happens also in the Then the set of radial equations reads
one-body Dirac equation with a Coulomb potential. Never-

theless,F(r) is normalizable for alla up to and including d
a=ag, at which pointt(0)=u(0)=(2/3)s(0)=(2/3)v(0) HX(”E( B+ U(f)}x(”: EX(r), (102
#0, as can be seen in Figs. 2 and 3.

Figure 3 represents the excitae-30" (°P,) state for the
critical coupling strength:uc=2/\/§. In this case, the wave
function s(r) has one node, whilg(r) andv(r) have two U(r)=M+[G—a(I+9)]/r. (10.3
nodes. This behavior differs from that found in CQEF) for
the same cas@vhere the number of nodes was two, one, andHerel is the unit matrix,M is diagonal,

where the &8 matrix U(r) has the following structure:
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m,
m,
m_ 0
m_
M= L (10.9
-m_
0 -m,
L —my
m..=m;*m,, and the form of &8 matricesH, G, andS depends on the parit:
0 0O -A B -A B 0 0 T
0 B A -B —-A O 0
A -B 0 0 0 0o A B
-B -A O 0 0 0O -B A
H“'A B 0 0o o o A -B| (10.9
-B A 0 0 0 0 -B —-A
0 0O -A B -A B 0 0
L O 0 -B -A B A 0 0 |
0 —(J+1)A —-JB —(J+1)A -JB 0 0
0 J+1)B  —JA —(J+1)B JA 0 0
J+1)B 0 0 0 0 —-(J+DHA —-J+1)B
—JA 0 0 0 0 —-JB JA
-(J+1)B 0 0 0 0 —-(J+1A @J+1)B |’ (10.6
JA 0 0 0 0 —-JB —JA
0 —-(J+1)A —-JB —-(J+1)A -JB 0 0
0 -J+1)B JA (J+1)B -JA 0 0o
|
0 0 2 07 0 0O -A B -A -B O 0 T
0 0 0 -1 0 0 B A B —-A O 0
-B2 -AB 0 O A -B 0O O O 0 A -B
-AB —-A2 0 O -B-A 0 0O O 0 B A
0 0 0 0 "“l'aA B 0o 0o o o A -8l
0 0 0O 0 B A 0 0 0 0O -B —-A
0 0 0 O 0 0 -A -B -A B 0 0
0 0 0 0] . O 0 B —-A B A 0 0 |
(10.7) (10.8

for P=(—)"*1, and
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I 0 0 @(+1A —-(J+1)B (J+1)A (J+1)B 0 0 7
0 0 JB JA JB -JA 0 0
(J+1)A  JB 0 0 0 0 (J+1)A JB
-(J+1)B  JA 0 0 0 0 (J+1)B  —JA
G= J+1)A  JB 0 0 0 0 J+1DA  JIB |’ (109
J+1)B  —JA 0 0 0 0 -(J+1)B  JA
0 0 (+DA @J+1)B (J+1A —-(J+1)B 0 0
L 0 0 JB —JA JB JA 0 0
[
T 0 0O 0 0O 0O 0 -B?> —ABT P=(—)"*1, (10.149
0 0O 0 0O 0O 0O —-AB -A?
0 0O 0 0 2 0 0 0 "0 O 1 0 1 0 0 Q0
0 0O 0 0 0 -1 0 0 -A B 0O O OO0 -A B
=l o 0O 2 0 0 0 O 0 0O 0 0 -101 0 O
0 0 0 -10 O 0 0 1/-B -A 0 0 0 0 B A
-B2 -AB O 0O 0 0 O O "%l B A 0 0 00 B Al
-AB -A2 0 0 0 O 0 0 | A -B 0 O 0O0-A B
(10.10 0O 0 -1 0 10 0
for P=(—)7, whereA, B, andC are defined in Eq(6.14). 0 0 0 1 0 1 0

Due to the properties
H'=-H, UT=U, (10.11) P=(—), (10.15

the radial Hamiltoniarf{ is a Hermitian operator with re-

spect to the inner product It preserves the inner produd0.12 and reduces Eq$10.2

to the form
(Y|X)g= JO drYT(r)X(r), (10.12 .
, _ _ ﬂ)"((r)z[ﬂ—+0(r)]>"<(r)=E>"<(r), U=EUEL.
where the subscript 8 denotes the dimensions of the vector dr
functionsX, Y. (10.16
In the subsequent reduction of the $£0.2) one can use
the fact that rankfl)=4 (for either parity. Thus one can
reduce the number of differential equations from eight to
four. We perform this reduction in a way that ensures, as fa
as possible, the Hamiltonian structure of the equations.
First of all we perform the orthogonal transformation

It is convenient at this stage to express the eight-
dimensional vectors and matrices in terms of four-
pimensional blocks:

\711(r) \712(r)

- - o 1 ~
X(r)=EX(r), H=EHE™?, (10.13 X= % V(r)=U(r)—El= Gt Vi) | etc.
where (10.17
1 0 0 0 0 0 1 (@ Then the matrixH takes the form
0 0O A —-B A —-B 0O
0 -1 0 0 0 0 01 A ol 30 0 -1
_ _ H= . ) H11:2 , J= ,
E 1 0 0 B A B A 0 O 0 0 0 J 1 0
“2/-1 0o o o o o0 1 0 (10.18
0 1 00 0 0 0 1 and the set of Eq410.16 becomes
0 0 B A B A 0 O
I 0O A -B -A B 0 0] H1iX1(r) +Via(NXy(r) +ViAr)Xy(r)=0, (10.19
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Substitution of Eq(10.21) into Eq.(10.19 yields the closed

Var(1) X (1) + Vool 1) Xo(r) = 0. 10.2
2(1)Xa(1) VA1) X(1) (1020 Set of four first-order differential equations:
The set(10.20 is purely algebraic. It permits us to ex- 1 d
pressX,(r) in the terms ofXy(r): £(E)>?1(r)s[2F|11cjr +\7V(E)])?l(r)=0, (10.22
Xao(r) ==V (1)Vay(N)Xy(r). (102D where
- (E+3afr) ]
ms 20m- |
m-—J/r
+ E—afr —2/r 0 - T+
. 4C%r?
E
—(E+alr) 2Cm< [r
—2/r 2 — 0
n m= E+afr
3 3 o 1 E+afr
W(E)E(Vll_V12V;21V21)/2: 2] (10.23
—(E+2afr)
2
mZ
0 B 2Cm~[r n f 0
E+afr
4C%r?
E+alr
2Cm- Jr —(E+2afr)
—z ° n
- E
|
Here the upper sign corresponds Bo=(—)’*! and the 1 0 0 0
lower sign corresponds tB=(—)". 00 1 0
The operator(E) in Eq. (10.22 is formally Hermitian, L= for P=(—)"*! (10.29
i.e., givenE, it is Hermitian with respect to the inner product 0100
CERIERE But any two solutions of Eq10.22, X; andYj, 000 1
corresponding to different values of the energyand E’,
are not orthogonal. This is due to the nonlinear dependen(ﬂ'é”d
of E(I_E) on E _(_)rthogonal_ity can be instated by using the 0O 1.0 O
following definition of the inner product:
0 0 0 -1 . 5
L= 10 0 or P=(-)".
L(E")—L(E)
Y X Wa={ Y| ———=|X,) . (10.29 6 01 O
(Y2l Xa))a < = 3 1026
Then, in terms of the two-dimensional blocks
This inner product follows directly by substitution of Eq. _ - v,
(10.21) into Eq.(10.12. Xi=LX = w,|" (10.27
The set of first-order equation(d0.22 can also be ex-
pressed as a second-order equation. For this purpose it tke equations take the form
convenient to permute the elements>gf by means of the i —
matrix L, where =W+ Wy W +Wy,W,=0, (10.28
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is a two-component wave functiorl{ is the Hamiltonian
divided by ua? and expressed in terms of dimensionless
quantities(11.1),

W1+\K/21\I’1+W22\I’2:0, (1029

whereW=LWL ™. Elimination of ¥, leads to the following

equation for the X 1 vector functionW¥ ;: 1{ d 1 1
O)—_=J - _ 7 _=
d — |- ,(d - _ H Z{dpz 2 ] (11.4
FHE)= a_le Wiz =+ Wayp + Wy | W (r)=0.

dr
(10.39 s the unperturbed.e., zeroth-ordgrHamiltonian, and

EigenstatedV';, ¢, corresponding to different values of the

d d
O\y= — —
energy are orthogonal with respect to the inner product: RN = deC(p,)\) dp +M(p.M) (1.9

FE")—FHE) is the perturbative correction to E@L1.4. The form of the
<<q)l|q’l>>2:<q)l  E-E ‘P1> , (10.33 symmetric 2<2 matrices”, K(p,\), M(p,\) depends on

2 the parity. In order to obtain the energy spectrun®iar*),

which also follows from the reduction procedure. it is sufficient to calculate the eigenvalues Jofto O(a?),
i.e, A=AO+ a2\ @) wherex© will be calculated exactly,

X|. PERTURBATIVE SOLUTIONS FOR J>0 STATES while for )\(1), first-order perturbation theory iaz is suffi-

cient. Hence, the dependencelsf?)(\) on\ is not crucial:

The form of Eqs(10.30 is convenient for examining the to the accuracy required, it can be replacecd\). In addi-

energy spectrum ofJ>0 bound-states perturbatively to tion, the kernel of the inner produ¢t0.3) can be set to
O(a®). For this purpose we introduce the dimensionlessunity.

quantities In the caseP=(—)’** we haveJ=C?l, so thatH{(© is
the (dimensionlessradial Coulomb Hamiltoniai ; with the
-m, m_ o o
p=par, \= , and 8= — (11.)  angular momentuma’=J, repeated twice:
na
H 0
whereu=my;m,/m, is the reduced mass. We now perform )= J } = E[i_w - }
a perturbative expansion ia of Eq. (10.30. To ordera?, 0 H, 2|dp?  p? P
Eq. (10.30 takes the Hamiltonian fornthereafter we omit (11.6
the subscript 1 of the wave functioh,) The matricesC(p,\) and M(p,\) are
HY (p)~{H O+ a®HBN)}W(p)=\¥(p), 1
11.2 L] At )| N+ = 0
where IC(p,)\)=§ P ol
P1(p) 0 (1+ 8N+ —
Y(p)= (11.3 P
¥o(p) (11.7
|
) 2) 1-8*-CA\(1+6% 1+68%1-2C? 2Cé
(1- N A==+ . + . —
1 p p p p
M(p.N) =g 2 2
2Co ~ Co(1+6°) 1
— (1= PN ——— | A+ =
p p p
(118

The eigenvalues of the zeroth-order Hamiltoniéil.6,  where|n,J) is a solution of the Coulomb problei;[n,J)
namely, =\|n,J). Thus, the correction ™) must be calculated ap-

propriately for the degenerate situation:

ANO=—-1/2n%), n=1.2,... (11.9
. . 1
are twofold degenerate, each with the two eigenstates )\Ei,)z)zz[/\lﬁ Ayt \/(All—A22)2+ 4A§2],
11.11
In.J) (
(0= and V9= . (111
W1 o @1|n,J) (110 here the matrix is defined as follows:
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A=[(TQIHONO) W] pa?  pat(11+8% 23+1
Epp=mi— 7=+ 3 T A2
11+ 62 52 ) 2n?>  4n 8n C
3nt (2J+1)n® 2C(2J+1)n® J1+4C?5° (1116
= . t—_, 1.1
8 11+ 8% (3+6%)C?+2 (2J+1)C?
2C(2J+1)n® 32n* 4C%23+1)nd
(11.12 which coincides with the results of Conn¢85] and Hers-

bach[37] for the parity (—1)’** states. Thus, correcting for
the spurious terms in the Breit Hamiltonian, we obtain the
The mass spectrum expectedd(a?) results.

In the P=(—1)’ case, the matrix/ is not diagonal:

E@=m,+ wa’\ O+ ,u,az)\&)z) (11.13
; ; C2+2 -2C
obtained with the use of Eq$11.9, (11.11), and (11.12 J= 5 } (11.179
coincides neither with the muonium spectrum found in -2C C

[35,37 nor (if m;=m,) with the spectrum of parapositro-

nium (see[18] and references thergirThe reason, as for the |t can be diagonalized by means of the orthogonal transfor-
J=0 states, lies in the use of the empty vacul@), which  mation, using the matrix:

leads to single-particle states of positive and negative ener-
gies, and subsequently to the Breit equation with its spurious
term H', Eqg. (8.7), in the Hamiltonian[33,34,18, as dis-
cussed in connection with the=0 states. We are going to
show that the elimination of the contribution Ef from the
spectrum leads to the correct result.

First of all we transformH’ into a radial representation.
For this purpose we note that=s;+v, (=s; in the non-
relativistic limit), i.e., ¢, contains only those components of ~ 1
F(r), Eg.(6.1), which are coefficients of bispinor harmonics J=RIR "=
#"\(r). Similarly, y,=—s,+v, (=—s, in the nonrelativis-
tic limit), i.e., ¢; contains only coefficients of the bispinor
harmonicsg®(r). Thus, forP=(—)’*1 parity states the spu-
rious term(divided by ua?) takes the following radial form:

o al

R:[B A

(11.18

(J+1)(J+2) 0
0 (J-1)J

}, (11.19
so that the zeroth-order Hamiltonian becomes

H
e (11.20

1 HJ—J.
"=

1-s2[4 0 HO=RHOR 1=
Mmoo [ },

f drTr(dH'goj)}: 0 1
(11.19 It possesses the doubly degenerate eigenvalles) with
eigenstates
wherei,j=A,0, and the corresponding matrix elements are

8p?

[n,J+1)
_s2 [4 0 (0)— (0)— _
A== } YOI o | A Ve gy
P77 ai+ 30 1 (11.29
(11.15
If we now useA=A—A’, instead ofA, in Egs.(11.1]) and The first-order correctior{*), Eq. (11.5, with the ma-
(11.13, we obtain the spectrum trices
3—6%)A2+2B% C?(1-6° AB(1— 62
(14 Pt o) _&X _ ) AB(1-&)
k( z) 1 p p p
pN)=7
8 AB(1- 6% 2A%+(3—6%)B? C?(1- 6
N (1+ 6N+ o
P p P
(11.22
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" (1— 82)N(N+2A%/p)
—AZ[{\(6J%+11)+2)—1}
— 8N(23%4+3-2)—1}]/p?
—A[7J%+22)+9- 6%(3J?+8J+3)]/p3

M(p,x):% +(1-6%)3(I+1)%(I+4)/p*

AB(1- 6% 1+2n C2
—| 2+
p p2

generates diagonal matrix elements only:

11+ 8% (7+68%)3%+(17-6%)I+8—-28

PHYSICAL REVIEW A66, 032102 (2002

AB(1—62)(2)\+

1+2\n C2
p

p p2

(1— 5NN +2B%p)
—B{N(8I2+J—3)—1}— 62N (2J%+3J—1)—1}]/p?
—B2[7J2-8J-6—56%(3J>—23—2)]/p®
+(1-6%3(I+1)2(I-3)/p*

(11.23

0

_ 32n*
A=[(TQIHONO) W)=

0

The energy spectruni11.13 with N{{J=A1;, N3)=Az
contains the contribution of the spurious tet&7). Again,
we present this term in the radial form

S PR } 1-5°[B* AB
Tt _,ua4 j FTeiH (Pj) _8—p2 AB AZ|
(11.29
where, for the preser®=(—)’*! parity casej,j=—,+.
The corresponding matrix elements are
BZ
1-6%| 23+3
r_ (0) ’ (0)\7—
A =[(UIH )= a3 . A2
2J-1
(11.26

The substitution oR (%)= A1;— A 3; and\(§)=Az— Az, into
Eq. (11.13 yields the spectrum

2 2 4
Mmoo 11+ 6° pa
Eip=M,— — + pa? BT
@™ o2 TR Taona ot
1 1-6°
J11 (2013)(20+ 1) ,
X 11.
1 1- 682 (1129

J (23+1)(23-1)°

which coincides with the results of Conng¢85] and Hers-
bach[37] for the parity (—1)’ states.

4(2J+1)(J+1)(23+3)n3

11+ 62 (7+6%)32—3(1—6%)J3-2
32t 4(2J-1)J(23+1)n®
(11.249

XIl. CONCLUDING REMARKS

We have studied a reformulation of QED, in which the
coupled Dirac-Maxwell field equations are partially decou-
pled by expressing the mediating photon field in terms of the
Dirac-particle field, using covariant Green functions. This
allows us to reformulate the Hamiltonian of the theory so
that the photon propagator appears directly in a quartic, non-
local interaction term. We then consider a truncated model,
in which there are no fre¢physica) photons. For such a
model, eachN-particle segment of the Fock space of the
quantized, equal-time Hamiltonian is an invariant space, that
is, there is no coupling among the varioNsfermion seg-
ments. This is achieved by introducing an unconventional
“empty” vacuum state. As a consequence, there exist exact
few-particle eigenstates of the truncated Hamiltonian, which
lead to Dirac-like two- and three-fermion wave equations.
We show, in particular, that the two-fermion wave equation,
in the Coulomb gauge, is just the Breit equation.

For specificJ” states, the Breit equation reduces to the
radial form, and then to Dirac-like equations fb+ 0 states,
and to a coupled pair of Schiimger-like equations fod
>0 states. The perturbative solution of these equations
yields a* corrections to the nonrelativistic Rydberg spec-
trum, which do not reproduce the muonium spectrum as cal-
culated by Connell35] and Hersbach37] (nor the positro-
nium spectrum in then, = m, case. The apparent reason for
this disagreement is the mixing of positive- and negative-
energy states, which is characteristic of the Breit equation
[32,33,18. However, agreement is achieved if we subtract
the contribution of the spurious operat8t7), which appears
in the Breit equatioricf. Eqgs.(8.9), (8.10, (11.16, (11.27].

We have not been able to obtain analytic solutions of the
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radial equations. These radial wave equations have, in gen- The present approach has limitations, as has been pointed
eral, a singular point at;~a/E>0, whereE is the two-  out below Eq.(4.5), particularly that no radiativéloop) ef-
fermion bound-state energfrest mass The existence of fects are included. Nevertheless the approach allows one to
such an “interior” singularity makes it difficult to obtain determine relativistic two-fermion eigenstat@ergies and
numerical solutions of the radial boundary-value problem byyave functiong albeit of a truncated QED Hamiltonian, in a
standard methods. The only exception is the cas®",  semianalytic fashion for arbitrary states. That is, the problem
m;=m,, for which the radial equations are regular, andjs shown to reduce to the solution of at most four radial
which we have therefore studied numerica[ly.is notewor- equations of Dirac or Schdinger type. In addition, as we
thy that this is the case where the contribution of the operatofaye shown that the method is straightforwardly generaliz-
(8.7) is zero] able to systems of three particles.

Our numerical results for the equal-mass-0” stat.es We end with a remark on gauge invariance. In conven-
show that _the de_pe_ndencg qf the enekggn _the coupllng tional QED, the use of the Lorentz gauge, rather than the
constantx is qualitatively S|m|la_r to that obtained earh_er for Coulomb gauge, requires special consideratioh Gupta-
the Coulomb-QED modafor which transverse-photon inter- g o, quantizationand the use of second-order perturba-
actions are ignored8]. For low «, the numerically obtained pon theory to deduce the Breit equatiéhg]. In our ap-

eigenenergies are in agreement with the result derived pe - ) .
g g g P proach it is straightforward to ensure, at the classical level,

turbatively. ThereafterE(a) decreases monotonically to that diff t diti lead to th its at th
E(a;)>0 asa approaches a critical valug, . We find that at aifrerent gauge conditions lead to the same resufts at the

a.=2/\/3 (in contrast to the CQED value af,=2). quantum level.

[1] J.w. Darewych, Ann. Fond. Louis de Brogk&, 15(1998; in [22] V.N. Golubenkov and la.A. Smorodinskii, ZHkEp. Teor. Fiz.

Causality and Locality in Modern Physiosdited by G. Hunter 31, 40 (1956 [Sov. Phys. JETH, 55 (1957)].

et al. (Kluwer Academic, Dordrecht, 1998pp. 333—-344. [23] L.D. Landau and E.M. Lifshitz,The Classical Theory of
[2] J.W. Darewych, Can. J. Phyg6, 523(1998. Fields 4th ed.(Pergamon, New York, 1975
[3] M. Barham and J. Darewych, J. Phys3A, 3481(1998. [24] B.M. Barker and R.F. O’Connell, Phys. Lef8A, 231(1980.
[4] 3.D. JacksonClassical ElectrodynamicéWiley, New York,  [25] B.M. Barker and R.F. O’Connell, Ann. Phyé\.Y.) 129 358

1975. (1980.

[5] A.O. Barut, Electrodynamics and Classical Theory of Fields [26] G. Schifer, Phys. Lett100A, 128 (1984

and Particles(Dover, New York, 1980 _ [27] B.M. Barker and R.F. O'Connell, Can. J. Phy8, 1659
[6] W.T. Grandy, Jr.Relativistic Quantum Mechanics of Leptons (1980

7] an FEi;ee:?St(KLu(\;v:;n':\Z?rqceaT:H dDXTd;??(’: fsgtcts of Nonlin [28] R.P. Gaida, Yu. B. Kluchkovsky, and V. I. Tretyak, froceed-
" U | : 9 : P : ings of the Workshop on Constraint's Theory and Relativistic

i/?a[rn':wfli :dh((aaor{/i?;sﬁz?sg\);i esrl ’\?:WF\'(';F;EO'lQ'\gB'\;Zr'g‘;“_Oé 1G' Dynamics, Firenze, 198&dited by G. Longhi and L. Lusanna
: : ' ' : ' (World Scientific, Singapore, 1987pp. 210-241.

[8] J.W. Darewych and L. Di Leo, J. Phys.29, 6817(1996.

[9] G. Hardekopf and J. Sucher, Phys. Re\8G\ 703 (1984: 31, [29] J. Malenfant, Phys. Rev. B8, 3295(1998; Phys. Rev. A43,
2020(1985. 1233(1991).

[10] P.M. Stevenson and I. Roditi, Phys. Rev3B, 2305(1989. 30/ J. Darewych, Condens. Matter Phyis.593 (1998.

[11] R. Koniuk and J.W. Darewych, Phys. Lett. 186, 195 (1986- [31] V. ShpytkO and J. Darewych, PhyS. Rev6B, 045012(200]).

[12] W. Dykshoorn and R. Koniuk, Phys. Rev.44, 64 (1990. [32] G.E. Brown and D.G. Ravenhall, Proc. R. Soc. London, Ser. A
[13] (@ J.W. Darewych and M. Horbatsch, J. Phys.2B 973 208, 552(1951).
(1989 (b) 23, 337(1990. [33] Z.V. Chraplyvy, Phys. Re\91, 388(1953.
[14] J.W. Darewych, M. Horbatsch, and R. Koniuk, Phys. Rev. D[34] W.A. Barker and F.N. Glover, Phys. Re39, 317 (1955.
45, 675(1992. [35] J.H. Connell, Phys. Rev. B3, 1393(199).
[15] B. Ding and J. Darewych, J. Phys. Z8, 907 (2000. [36] I.T. Todorov, Phys. Rev. [3, 2351(1972.
[16] T.C. Scott, J. Shertzer, and R.A. Moore, Phys. Re¥5A4393 [37] H. Hersbach, Phys. Rev. #6, 3657 (1992.
(1992. [38] E.H. de Groot and Th.W. Ruijgok, Nucl. Phys. B)1, 95
[17] E.E. Salpeter, Phys. Re87, 328(1952. (1975.
[18] H. A. Bethe and E. E. SalpeteQuantum Mechanics of One- [39] J.R. Sapirstein and D.R. Yennie, @uantum Electrodynamics
and Two-Electron Atomé&Springer, Berlin, 1951 edited by T. KinoshitdWorld Scientific, Singapore, 1990Eq.
[19] G. Breit, Phys. Rev34, 553(1929. (2.3), p. 568.
[20] A. Eddington, Proc. R. Soc. London, Serl22, 358(1929. [40] P.J. Mohr, inAtomic, Molecular and Optical Physics Hand-
[21] J.A. Gaunt, Philos. Trans. R. Soc. London, Ser228 151 book edited by G.W.F. DrakéAIP, Woodbury, NY, 199§ Eq.
(1929; Proc. R. Soc. London, Ser. 222, 153(1929. (28.39, p. 344.

032102-20



