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Exact few-particle eigenstates in partially reduced QED
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We consider a reformulation of QED in which covariant Green functions are used to solve for the electro-
magnetic field in terms of the fermion fields. It is shown that exact few-fermion eigenstates of the resulting
Hamiltonian can be obtained in the canonical equal-time formalism for the case where there are no free
photons. These eigenstates lead to two- and three-body Dirac-like equations with electromagnetic interactions.
Perturbative and some numerical solutions of the two-body equations are presented for positronium- and
muonium-like systems, for various strengths of the coupling.
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I. INTRODUCTION

It has been pointed out in previous publications@1# that
various models in quantum field theory~QFT!, including
QED, can be reformulated using mediating-field Green fu
tions in such a way that exact few-particle eigenstates of
resulting partially truncated Hamiltonian can be obtain
This approach was then applied to two-body eigenstate
the scalar Yukawa~Wick-Cutkosky! theory @2,3#. We imple-
ment such an approach to QED in this paper.

The Lagrangian of two fermion fields,c(x) and f(x),
interacting electromagnetically is

L5c̄~x!@ igm]m2q1gmAm~x!2m1#c~x!

1f̄~x!@ igm]m2q2gmAm~x!2m2#f~x!

2
1

4
@]aAb~x!2]bAa~x!#@]aAb~x!2]bAa~x!#.

~1.1!

The corresponding Euler-Lagrange equations of motion
the coupled Dirac-Maxwell equations

~ igm]m2m1!c~x!5q1gmAm~x!c~x!, ~1.2!

~ igm]m2m2!f~x!5q2gmAm~x!f~x!, ~1.3!

and

]m]mAn~x!2]n]mAm~x!5 j n~x!, ~1.4!

where

j n~x!5q1c̄~x!gnc~x!1q2f̄~x!gnf~x!. ~1.5!

Equations~1.2!–~1.4! can be decoupled in part by using th
well-known @4,5# formal solution of the Maxwell equation
~1.4!, namely,

Am~x!5Am
0 ~x!1E Dmn~x2x8! j n~x8!d4x8, ~1.6!
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whereDmn(x2x8) is a Green function~or photon propagator
in QFT terminology!, defined by

]a]aDmn~x2x8!2]m]aDan~x2x8!5gmnd4~x2x8!,

~1.7!

andAm
0 (x) is a solution of the homogeneous~or ‘‘free field’’ !

equation~1.4! with j m(x)50.
We recall, in passing, that Eq.~1.7! does not define the

covariant Green functionDmn(x2x8) uniquely. For one
thing, one can always add a solution of the homogene
equation@Eq. ~1.7! with gmn→0#. This allows for a certain
freedom in the choice ofDmn , as is discussed in standar
texts~e.g., Refs.@4,5#!. In practice, the solution of Eq.~1.7!,
like that of Eq.~1.4!, requires a choice of gauge. Howeve
we do not need to specify one at this stage.

Substitution of the formal solution~1.6! into Eqs. ~1.2!
and ~1.3! yields the partially reduced equations

~ igm]m2m1!c~x!

5q1gmS Am
0 ~x!1E d4x8Dmn~x2x8! j n~x8! Dc~x! ~1.8!

and

~ igm]m2m2!f~x!

5q2gmS Am
0 ~x!1E d4x8Dmn~x2x8! j n~x8! Df~x!.

~1.9!

These are nonlinear coupled Dirac equations for two diff
ent fermion fields. To our knowledge, no exact~analytic or
numeric! solutions of Eqs.~1.8! and~1.9! for classical fields
have been reported in the literature, even for the case
single-fermion field~sayf50), though approximate~pertur-
bative! solutions have been discussed by various auth
particularly by Barut and his co-workers~see Refs.@6,7# and
references therein!. However, our interest here is in the qua
tized field theory.
©2002 The American Physical Society02-1
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The partially reduced equations~1.8! and ~1.9! are deriv-
able from the stationary action principle

dS@c,f#5dE L Rd4x50, ~1.10!

with the Lagrangian density

LR5c̄~x!@ igm]m2m12q1gmA0
m~x!#c~x!

1f̄~x!@ igm]m2m22q2gmA0
m~x!#f~x!

2
1

2E d4x8 j m~x8!Dmn~x2x8! j n~x!, ~1.11!

provided that the Green function is symmetric in the se
that

Dmn~x2x8!5Dmn~x82x! and

Dmn~x2x8!5Dnm~x2x8!. ~1.12!

One can proceed to use conventional covariant pertu
tion theory using the reformulated QED Lagrangian~1.11!.
The interaction part of Eq.~1.11! has a somewhat modifie
structure from that of the usual formulation of QED. Thu
there are two interaction terms. The last term of Eq.~1.11! is
a ‘‘current-current’’ interaction, which contains the photo
propagator sandwiched between the fermionic currents
such, it corresponds to Feynman diagrams without exte
photon lines. The terms containingA0

m correspond to dia-
grams that cannot be generated by the term containingDmn ,
particularly diagrams involving external photon lines~care
would have to be taken not to double count physical effec!.
However, we shall not pursue perturbation theory in t
work. Rather, we shall consider an approach that allows
to write down some unorthodox but exact eigenstates o
truncated model, in which terms involvingA0

n are ignored.
The paper is organized as follows. In Sec. II we quant

the system using the canonical equal-time formalism in
Schrödinger picture. In Sec. III an unconventional ‘‘empty
vacuum state is used to construct exact one-, two-, and th
fermion eigenstates of the Hamiltonian, truncated to excl
states with free~physical! photons. In Sec. IV we show tha
the resulting two-fermion equation is the Breit equation
the Coulomb gauge, but that it is the Eddington-Gaunt eq
tion in the Lorentz gauge. In Sec. V we demonstrate that
Breit equation can be obtained in the Lorentz gauge, p
vided that higher-order retardation effects are taken into
count.

The reduction of the Breit equation to radial form is d
scribed briefly in Sec. VI. For states of zero total angu
momentum (J50), four coupled radial equations are show
to arise. The analytical structure of their solutions is stud
in Sec. VII. PerturbativeO(a4) corrections to the Rydberg
spectrum ofJ50 states are obtained in Sec. VIII. In the ca
of equal rest masses, theJ501 state equations have no un
usual singularities and can be solved numerically. Some
these results are presented and discussed in Sec. IX.
remainder of the paper is devoted to the study ofJ.0 states.
03210
e

a-

,

s
al

s
e
a

e
e

e-
e

a-
e
-

c-

r

d

of
he

In the Sec. X the set of eight coupled radial first-order d
ferential equations is reduced to four first-order ones a
then to two second-order Schro¨dinger-like equations. They
are solved perturbatively in Sec. XI andO(a4) relativistic
corrections to the nonrelativistic mass spectrum are obtain
A summary and concluding remarks are given in Sec. XI

II. HAMILTONIAN IN THE CANONICAL, EQUAL-TIME
FORMALISM

We consider this theory in the canonical, equal-time f
malism. To this end we write down the Hamiltonian dens
corresponding to the Lagrangian~1.11!,

HR5c†~x!~2 i a•“1m1b!c~x!1q1c̄~x!gmA0
m~x!c~x!

1f†~x!~2 i a•“1m2b!f~x!1q2f̄~x!gmA0
m~x!f~x!

1
1

2E d4x8 j m~x8!Dmn~x2x8! j n~x!, ~2.1!

where we have not written out the Hamiltonian density
the freeA0

m(x) field.
Equal-time quantization corresponds to the imposition

anticommutation rules for the fermion fields, namely,

$ca~x,t !,cb
†~y,t !%5$fa~x,t !,fb

†~y,t !%5dabd3~x2y!,

~2.2!

and all others vanish. In addition, ifA0
mÞ0, there are the

usual commutation rules for theA0
m field, and commutation

of the A0
m field operators with thec andf field operators.

The Hamiltonian~2.1! contains an interaction term that
nonlocal in time, which can complicate the transition to
quantized theory. We shall avoid this problem by working
the Schro¨dinger picture witht50 in the expressions for the
field operators and currents, that is,c(x)5c(x,t50),
j m(x)5 j m(x,t50), etc. in Eq.~2.1!. This corresponds to ne
glecting higher-order retardation effects. Thereupon we
tain the result

E dt8Dmn~x2x8!5Gmn~x2x8!, ~2.3!

where

Gmn~x!5E d3k

~2p!3 Gmn~k!eik•x and

Gmn~k!5Dmn„k
m5~0,k!…. ~2.4!

For example, in the Lorentz gauge (]mAm50), we have

Gmn~x!5gmn

1

4puxu
. ~2.5!

Thus, in the Schro¨dinger picture, the third term of the Hamil
tonian density~2.1! takes on the form
2-2
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HI~x!5
1

2E d3x8 j m~x8!Gmn~x2x8! j n~x!. ~2.6!

In the remainder of this paper, we shall consider a sim
fied model without the interaction terms in Eq.~2.1! that
contain Am

0 . Such a model is suitable for describing few
fermion states interacting via virtual photon exchange,
without decay or annihilation involving free~physical! pho-
tons. In short, in all that follows we consider the field theo
based on the Hamiltonian density of Eq.~2.1! but with
A0

m(x)50. An attractive feature of this model is that exa
few-fermion eigenstates of the Hamiltonian can be obtain

III. ONE, TWO, AND THREE FERMION EIGENSTATES

We consider now the model for which the Hamiltonian,
the Schro¨dinger picture witht50, is given by the expressio

HR5Hc1Hf1HI , ~3.1!

where

Hc5E d3xc†~x,0!~2 i a•“1m1b!c~x,0!, ~3.2!

Hf5E d3xf†~x,0!~2 i a•“1m2b!f~x,0!, ~3.3!

and HI5*d3xHI(x), where HI(x) is given in Eq. ~2.6!.
Note, again, that the terms inA0

m have been suppressed,
that processes in which free~physical! photons are emitted o
absorbed are not accommodated.

The Hamiltonian HR has the same structure as t
Coulomb-QED ~CQED! Hamiltonian, that is, the Hamil-
tonian of QED in the Coulomb gauge, but with th
transverse-photon part~that containsa•A) turned off. Indeed
HR would be identical toHCQED if the indicesm andn took
on only the value 0 in Eq.~2.6! @as it is,m,n50,1,2,3 in Eq.
~2.6!#. It has been shown earlier@8# that exact two-fermion
eigenstates ofHCQED can be written down if we use an un
conventional~or ‘‘empty’’ ! vacuum state,u0̃&, defined by

ca~x,0!u0̃&5fa~x,0!u0̃&50. ~3.4!

The same is true of the present more realistic model, as
point out below.

The unconventional empty vacuum definition~3.4! means
thatc(x) is interpreted as a~free! Dirac-particle annihilation
operator, whilec†(x) is, correspondingly, a Dirac-particl
creation operator. By ‘‘Dirac-particle’’ we mean one d
scribed by the full Dirac spinor, including positive- an
negative-frequency components.~Recall that in the conven
tional approach, i.e., using a Dirac ‘‘filled negative-ener
sea’’ vacuum, which is annihilated by the positive-frequen
component ofc, it is only the negative-frequency compo
nent of c that is an antiparticle creation operator, and t
positive-frequency component ofc† that is the particle cre-
ation operator!.
03210
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With these conventions, we write the normal-order
Hamiltonian

;HR ;5Hc1Hf1
1

2E d3xd3x8Gmn~x2x8!

3@q1
2c̄gm~c̄8gnc8!c1q1q2f̄gm~c̄8gnc8!f

1q2q1c̄gm~f̄8gnf8!c1q2
2f̄gm~f̄8gnf8!f#,

~3.5!

wherec5c(x) andf̄85f̄(x8), etc. The normal ordering is
achieved by using the anticommutation rules~2.2! as usual;
but note that it is not identical to the conventional norm
ordering because of the unconventional empty vacuum
is being used, and the unconventional definition ofc andf
as annihilation operators andc†,f† as creation operators. T
underscore this unconventional procedure we use the n
tion ;HR ; rather than :HR : in Eq. ~3.5!.

We note that the state defined by

u1&5E d3xc†~x!F~x!u0̃&, ~3.6!

where F(x) is a 431 c-number coefficient vector, is an
eigenstate of ;HR ; @Eq. ~3.5!# provided thatF(x) satisfies
the equation

~2 i a•“1m1b!F~x!5EF~x!, ~3.7!

which is the usual time-independent one-particle Dirac eq
tion ~with positive- and negative-energy solutions!, so that
F(x) is a Dirac spinor. Therefore, we refer tou1& as a one-
Dirac-fermion state.

Similarly, the two-Dirac-fermion state

u2&5E d3xd3yFab~x,y!ca
†~x!fb

†~y!u0̃& ~3.8!

~summation ona,b51,2,3,4 implied! is an eigenstate o
;HR ; @Eq. ~3.5!#, provided that the 434 eigenmatrixF sat-
isfies the equation

hm1
~x!F~x,y!1@hm2

~y!FT~x,y!#T

1q1q2Gmn~x2y!g̃mF~x,y!~ g̃n!T5EF~x,y!,

~3.9!

wherehmj
(x)52 i a•“x1mjb, g̃m5g0 gm5(1,a), and the

superscriptT indicates the transpose of the matrix in que
tion.

The detailed form of the interaction matrixGmn(x2x8)
depends on the choice of gauge. Equation~3.9! is a two-
fermion Dirac-like, or Breit-like, equation with positive- an
negative-energy solutions, and is, in this respect, differ
from those obtained in the conventional approach@9–15#, in
which the negative-energy solutions do not arise.
2-3
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We note, in passing, that if the interaction is turned off
Eq. ~3.9! ~i.e., q15q250), then the solution can be writte
as

F~x,y!5 f ~x!gT~y!, ~3.10!

where f (x) and g(y) are solutions of the one-body Dira
eigenvalue equation~3.7!. This indicates that inF5@Fi j #,
the index i corresponds to particle 1~with coordinatesx)
while j corresponds to particle 2~with coordinatesy).

In the rest frame of the two-fermion system~i.e., when
u2& is taken to be an eigenstate of the momentum oper
for this QFT, with eigenvalue 0!, Eq. ~3.9! reduces to an
analogous equation in the single relative coordinater5x
2y:

hm1
~r!F~r!1@hm2

~2r!FT~r!#T1q1q2Gmn~r!g̃mF~r!~ g̃n!T

5EF~r!. ~3.11!

It can, therefore, be reduced to a set of ordinary, coup
first-order differential equations for states of givenJP. Such
equations can, at the very least, be solved numerically. T
is a straightforward, though somewhat tedious, probl
@8,16# which we address below.

The structure of the Hamiltonian ;HR ; @Eq. ~3.5!# is such
that generalizations to systems of more than two fermi
are readily obtained. Thus, the three-fermion state, co
sponding to a system such asue2e2m1&, defined by

u3&5E d3x1d3x2d3x3Fa1a2a3
~x1 ,x2 ,x3!ca1

† ~x1!

3ca2

† ~x2!fa3

† ~x3!u0̃&, ~3.12!

is an exact eigenstate of ;HR ; with eigenvalueE, provided
that the 43564 coefficient functionsFa1a2a3

(x1 ,x2 ,x3) sat-
isfy the three-body Dirac-like equation

@hm1
~x1!#a1aFaa2a3

~x1 ,x2 ,x3!

1@hm1
~x2!#a2aFa1aa3

~x1 ,x2 ,x3!

1@hm2
~x3!#a3aFa1a2a~x1 ,x2 ,x3!1q1q2Gmn~x32x1!

3~ g̃m!a1a~ g̃n!a3bFaa2b~x1 ,x2 ,x3!1q1q2Gmn~x32x2!

3~ g̃m!a2a~ g̃n!a3bFa1ab~x1 ,x2 ,x3!1q1
2Gmn~x12x2!

3~ g̃m!a1a~ g̃n!a2bFaba3
~x1 ,x2 ,x3!

5EFa1a2a3
~x1 ,x2 ,x3!, ~3.13!

where summation on repeated spinor indices is implied
the rest frame of the three-body system, Eq.~3.13! reduces to
an equation in two independent vectors only. Neverthel
the reduction of the equation for states of givenJP is more
formidable than in the two-body case. Even then, one is
03210
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with the full complexity of a relativistic three-body system
We shall not consider solutions of the three-body equat
~3.13! in this paper.

IV. TWO-BODY EQUATION IN THE COULOMB GAUGE

At this stage we must specify the choice of the Gre
function, that is, the choice of gauge. We could use a
gauge, in principle, but we shall use the Coulomb gauge
this avoids nonphysical degrees of freedom and the nee
take account of auxiliary conditions~such as]mAm50 in the
Lorentz gauge!. We use the relation

Dmn~x!5E d4k

~2p!4 e2 ik•xDmn~k!, ~4.1!

and note that

D00~k!5
1

k2
, D0 j~k!50, Di j ~k!5

1

k2 S d i j 2
kikj

k2 D
~4.2!

in the Coulomb gauge@17#. Therefore, if we use Eq.~2.3!
and the identity@@18#, Eq. ~39.8!#

E d3k

~2p!3eik•x
a•k b•k

~k2! 2
5

1

4p

1

2r S a•b2
a•r b•r

r 2 D ,

~4.3!

we obtain the coordinate-space representation of
Coulomb-gauge Green function,

G00~r!5
1

4pr
, G0i50, Gi j ~r!52

1

8pr S d i j 1
xixj

r 2 D ,

~4.4!

wherer 5uru and r5(x1 ,x2 ,x3). Consequently, in the Cou
lomb gauge, Eq.~3.11! becomes

hm1
~r!F~r!1@hm2

~2r!FT~r!#T

1V~r !FF~r!2
1

2 S aF~r!•aT1
1

r 2 r•aF~r!r•aTD G
5EF~r!, ~4.5!

whereV(r )5(q1q2 /4p)(1/r ).
Keeping in mind the notation, as explained below E

~3.10!, we see that Eq.~4.5! is nothing other than the Brei
equation@19#, written in the rest frame of the two-fermio
system.

The fact that the coefficient matrixF of the two-particle
eigenstate~3.8! is a solution of the Breit equation means th
the two-fermion eigenenergies that follow from Eq.~4.5!
cannot be valid beyondO(a4) ~wherea5uq1q2u/4p). It is
well known that the Breit equation does not include radiat
effects@18#. This limitation is a consequence of our negle
of retardation effects beyond the first order@cf. Eq. ~2.3!
above#, the use of the empty vacuum@cf. Eq. ~3.4!#, and the
2-4
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neglect of the terms containing the free photon fieldA0
m @cf.

Eq. ~2.1!# in the Hamiltonian~3.1!.
If we had used the Lorentz-gauge form of the Green fu

tion ~2.5!, Eq. ~3.11! would take on the form

hm1
~r!F~r!1@hm2

~2r!FT~r!#T1V~r !@F~r!2aF~r!•aT#

5EF~r!, ~4.6!

which is recognized to be the Eddington-Gaunt equat
@20,21#. The Gaunt equation, unlike the Breit equation, do
not contain even lowest-order retardation effects~see also
Sec. V!. Therefore, it will yield energy eigenvalues that w
differ from those of the Breit equation already atO(a4).

Note also that Eqs.~4.5! and~4.6!, with the terms involv-
ing a left out, become identical to the Coulomb-QED mod
discussed earlier@8#.

V. TWO-BODY EQUATION IN THE LORENTZ GAUGE

Although we shall use the Coulomb gauge in this pape
is instructive to see how, in the Lorentz gauge, one need
keep retardation effects at least to the lowest nonvanish
order, in order to achieve the same results. The Green f
tion of the d’Alembert equation in the Lorentz gauge has
form

Dmn~x!5gmnD~x!, D~x!5
1

4p
d~x2!. ~5.1!

The reduced LagrangianLR in this case reads@with A0(x)
50#

LR5Lc1Lf1LI5c̄~x!~ igm]m2m1!c~x!

1f̄~x!~ igm]m2m2!f~x!2
1

2
Am~x! j m~x!, ~5.2!

where the potential of electromagnetic interparticle inter
tion is

Am~x!5E d4x8D~x2x8! j m~x8!

[E d3x8E dt8D@~ t2t8!22~x2x8!2# j m~ t8,x8!.

~5.3!

Thus, the Lagrangian~5.2! is nonlocal in time. Because o
this, the standard Hamiltonization procedure is not ap
cable.

In order to employ the canonical Hamiltonian formalism
it is necessary to convert this Lagrangian to a single-ti
form. We shall do so by employing a procedure that ta
into account the retardation effects approximately.

Using the substitutiont85t1l in Eq. ~5.3! and expand-
ing the currentj in a Taylor series inl, we obtain the result
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j ~x8,t8!5 j ~x8,t1l!

5 j ~x8,t !1l j̇ ~x8,t !1
1

2
l2 j̈ ~x8,t !1•••,

~5.4!

which reduces the potential~5.3! to the form

Am~x,t !5E d3x8H G~r ! j m~x8,t !1
1

2
G1~r ! j̈ m~x8,t !1•••J ,

~5.5!

wherer 5uru5ux2x8u. The functions

G~r !5E dl D~l22r 2!5
1

4pr
~5.6!

and

G1~r !5E dl D~l22r 2!l25
r

4p
~5.7!

satisfy the relation

G18~r !5rG~r !. ~5.8!

The terms of odd power inl in the expansion~5.4! vanish
becauseD is an even function ofl @cf. Eqs.~5.6! and~5.7!#.
As a result, the interaction LagrangianLI ~up to surface
terms! takes the following single-time form:

LI'L I
(0)1L I

(1)1L I
(2) , ~5.9!

where

L I
(0)52

1

2E d3x8G~r ! j 0~x! j 0~x8!, ~5.10!

L I
(1)5

1

2E d3x8G~r !j~x!• j~x8!, ~5.11!

L I
(2)5

1

4E d3x8G1~r ! j̇ 0~x! j̇ 0~x8! ~5.12!

~hereafter we omit the common time argumentt).
The quantized theory based on the LagrangianL (0)5Lc

1Lf1L I
(0) ~the Coulomb QED mentioned in Sec. III! was

discussed in@8#. It takes into account the relativistic kine
matics of the fermion fields exactly, but describes their el
tromagnetic interaction with the transverse-photon p
turned off. The termsL I

(1) andL I
(2) can be treated as first

order corrections toL (0), thus providing the approximate
single-time form LS5L (0)1L I

(1)1L I
(2) for the reduced

nonlocal LagrangianLR @cf. Eq. ~1.11!#. Other terms follow-
ing from the expansion are corrections of higher order. Th
will not be considered in the present paper.

The LagrangianLS leads to Euler-Lagrange equation
which are second order in time derivatives, because of
termL I

(2) . Thus, it describes the system with twice as ma
2-5
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degrees of freedom asL (0) does, becausec† are no longer
the conjugate momenta ofc. This changes completely th
dynamical content of the fieldsc andf. Since the second
order time derivatives occur in small terms only, they sho
be eliminated by means of the Euler-Lagrange equations
lower-order approximation. But the resulting field equatio
are then not necessarily the Euler-Lagrange equations
known Lagrangian. Thus the transition to the Hamiltoni
and to a canonical quantum description becomes unclea

To avoid this difficulty, it is tempting to eliminate the tim
derivative of the charge densityj̇ 0 directly in L I

(2) by taking
into account the conservation law

]m j m50, i.e., j̇ 01“• j50. ~5.13!

This conservation law is a consequence of the Eu
Lagrange equations, which follow from the reduced L
grangianLR as well as from the truncated oneL (0). How-
ever, the direct use of the equations of motion~or their
consequences! in the Lagrangian is not a correct procedu
it changes the equations of motion themselves. This fact
first emphasized in the case of the Golubenkov-Smorodin
Lagrangian@22,23# and then subsequently discussed in
literature @24–28#. Instead, one can use the method
‘‘double zero,’’ used in Refs.@24,27#. In our case this con-
sists of the following modification of the Lagrangian:

LS→L̄S5LS1L I
(3) , ~5.14!

where

L I
(3)52

1

4E d3x8G1~r !$ j̇ 0~x!

1“• j~x!%$ j̇ 0~x8!1“8• j~x8!%. ~5.15!

It is easy to see that the termL I
(3) possesses the property

dE d3xL I
(3)ud*d3xL (0)5050, ~5.16!

so that it does not change the variational problem to
accuracy required. On the other hand, it cancels those te
of LS which are quadratic in the time derivatives of th
fields. Thus the modified LagrangianL̄S yields equations of
motion, which are first order in the time derivatives of t
particle fieldsc,f.

Next, we perform the following transformation of th
field variables:

c→c5~12 iq1W!c'e2 iq1Wc,

c̄→c̄5~11 iq1W!c̄'eiq1Wc̄,

f→f5~12 iq2W!f'e2 iq2Wf,

f̄→f̄5~11 iq2W!f̄'eiq2Wf̄, ~5.17!

where
03210
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W~x!5
1

2E d3x8G1~r !“8• j~x8!. ~5.18!

The transformation~5.17! can be regarded as an approxima
U~1! gauge transformation, which, however, is not canoni
due to the dependence ofW on the fields. This transforma
tion removes time derivatives from the interaction part
L̄S . To the accuracy required, and up to surface terms,
LagrangianL̄S can be written in the form

L̄S5L(0)1LI
(1)1

1

4E d3x8G1~r !@“• j~x!#@“8• j~x8!#,

~5.19!

where the notationsL(0), j , etc. mean that the fieldsc, f are
replaced byc, f.

Integrating the last term ofL̄S by parts, omitting surface
terms, and using Eqs.~5.6! and~5.8!, we reduce the Lagrang
ian L̄S to the form

L̄S5 i ~c†ċ1f†ḟ !2HS , ~5.20!

where

HS5c†~x!~2 i a•“1m1b!c~x!

1f†~x!~2 i a•“1m2b!f~x!

1
1

8pE d3x8
1

r H j 0~x! j 0~x8!2
1

2
j~x!• j~x8!

2
1

2r 2
@r• j~x!#@r• j~x8!#J . ~5.21!

This formulation allows us to treat the variablesc† and
f† as the canonical conjugates ofc and f, respectively.
That is, we impose the anticommutation relations~2.2! on
the underscored fields, and not on the original ones, w
performing the quantization. Thereafter, since the Ham
tonian HS5*d3xHS is formally identical to the Coulomb
gauge Hamiltonian@cf. Eq. ~2.1! with Eq. ~4.4!#, calculations
such as those of Sec. IV lead to the Breit equation~4.5!.

VI. TWO-BODY EQUATIONS IN BLOCK
COMPONENT FORM

Although two-fermion equations have been around sin
the 1920s, their full reduction to the radial form is of mo
recent vintage~see, for example,@29,6#!. The reduction of
Eq. ~4.5! to radial form is essentially the same as presen
in Ref. @8#, hence all the details shall not be repeated here
shown in @8#, we note that Eq.~4.5! has the Schro¨dinger
equation as a nonrelativistic limit, and the Dirac equation
a one-body limit if eitherm1 or m2 tends to`.

For the two-fermion stateu2&, Eq. ~3.8!, to be simulta-
neously an eigenstate ofJ2, J3, and parity, the ‘‘bispinor’’
F5@Fi j # must be of the form
2-6
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F~r!5
1

r F is1~r !wA~ r̂!1 is2~r !w0~ r̂!, t1~r !w2~ r̂!1t2~r !w1~ r̂!

u1~r !w2~ r̂!1u2~r !w1~ r̂!, iv1~r !wA~ r̂!1 iv2~r !w0~ r̂!
G , ~6.1!

for 2(21)J5(21)J61 parity eigenstates, and

F~r!5
1

r F is1~r !w2~ r̂!1 is2~r !w1~ r̂!, t1~r !wA~ r̂!1t2~r !w0~ r̂!

u1~r !wA~ r̂!1u2~r !w0~ r̂!, iv1~r !w2~ r̂!1 iv2~r !w1~ r̂!
G ~6.2!

for 2(21)J615(21)J parity eigenstates.
The 232 angular bispinor harmonicswA( r̂), w0( r̂), w1( r̂), w2( r̂), for given total angular-momentum quantum numbe

J andmJ[M , are

wA~ r̂!5
1

A2
YJ

M~ r̂!F0 21

1 0 G , ~6.3!

w0~ r̂!5
1

A2J~J11!
FA~J2M11!~J1M ! YJ

M21 2MYJ
M

2MYJ
M

2A~J1M11!~J2M !YJ
M11G , ~6.4!

w1~ r̂!5
1

A2J~2J21!
FA~J1M21!~J1M !YJ21

M21 A~J1M !~J2M !YJ21
M

A~J1M !~J2M !YJ21
M A~J2M21!~J2M !YJ21

M11G , ~6.5!

and

w2~ r̂!5
1

A2~J11!~2J13!
F A~J2M11!~J2M12!YJ11

M21 2A~J1M11!~J2M11!YJ11
M

2A~J1M11!~J2M11!YJ11
M A~J1M11!~J1M12!YJ11

M11 G . ~6.6!
-

-
ha

in

on

ut

ar

ary

ics

a-
We note thatwA is antisymmetric andw0,6 are symmetric
matrices. Furthermore,w0, wA, andw6 correspond to oppo
site parity becauseYL

M(2 r̂)5(21)LYL
M( r̂) andw0, wA have

L5J whereasw6 haveL5J61. These four bispinor har
monics form an orthonormal set, in the sense t
*dr̂ Tr(w i

†w j )5d i j , where i , j 5A,0,1,2 and the integra-
tions are taken over the entire solid angle.

The eight radial functions in the bispinors~6.1! and~6.2!
are solutions of the coupled radial equations that are obta
by substituting Eqs.~6.1! and~6.2! into Eq. ~4.5! and equat-
ing the coefficients of the four independent bispinor harm
ics.

We make use of the following identities in carrying o
the radial reduction:

s•pf ~r !w~ r̂!52 i
d f

dr
s• r̂w~ r̂!1

i

r
f ~r !s• r̂s• lw~ r̂!,

~6.7!

where w( r̂) is any 232 bispinor harmonic,f (r ) a radial
function, r̂5r/r , andl5r3p52 i r3“. In addition, we note
the following useful properties of the above bispinors h
monics:

s• r̂ wA5Aw22Bw1, ~6.8!
03210
t

ed

-

-

s• r̂w05Bw21Aw1, ~6.9!

s• lwA5Cw0, ~6.10!

s• lw052w01CwA, ~6.11!

s• lw252~J12!w2, ~6.12!

s• lw15~J21!w1, ~6.13!

where

A5A J11

2J11
, B5A J

2J11
, and C5AJ~J11!.

~6.14!

It is evident from Eqs.~6.1! and ~6.2! that, in general,
eight coupled radial equations are obtained, for arbitr
J.0.

VII. RADIAL REDUCTION OF THE TWO-BODY
EQUATIONS FOR JÄ0 STATES

For the J50 states, namely, the 02(1S0) and 01(3P0)
states, only two linearly independent bispinor harmon
arise, namely,wA and w2 @Eqs. ~6.3! and ~6.6!#, and sos2
5t25u25v250 in Eqs. ~6.1! and ~6.2!. ~Here, as else-
where, we give in brackets the nonrelativistic limit design
2-7
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tion, 2S11LJ , corresponding to theJP state in question.!
Thus there is only one set of four coupled radial equati
for each of 02(1S0) and 01(3P0) states:

@m11V~r !2E#s~r !2t8~r !2
K

r
t~r !2u8~r !2

K

r
u~r !

1jV~r !v~r !50, ~7.1!

@m21V~r !2E#t~r !1s8~r !2
K

r
s~r !1v8~r !2

K

r
v~r !

1hV~r !u~r !50, ~7.2!

@2m21V~r !2E#u~r !1s8~r !2
K

r
s~r !1v8~r !2

K

r
v~r !

1hV~r !t~r !50, ~7.3!

@2m11V~r !2E#v~r !2t8~r !2
K

r
t~r !2u8~r !2

K

r
u~r !

1jV~r !s~r !50, ~7.4!

where m65m16m2 , s85ds/dr, the potential V(r )5
2a/r (a5uq1q2u/4p), and E is the eigenenergy~two-
particle bound-state mass! to be determined, whileK51 (j
52,h50) for the 02(1S0) states andK521 (j50,h52)
for the 01(3P0) states. As shown in Ref.@8#, Eqs. ~7.1!–
~7.4! have the expected Schro¨dinger nonrelativistic limit and
the Dirac one-body limit.

We note that the case withj5h50 corresponds to the
simplified model without transverse-photon interactions, t
is, the Coulomb-QED model of Ref.@8#. Similarly for j
5h50, if the potential isV(r )52(q1q2 /4p)(e2mr /r ) and
the sign of the potential is reversed in Eqs.~7.2! and ~7.3!,
we recover the 06 radial equation of the Yukawa model dis
cussed in Ref.@30#, for which the interfermion interaction is
via a ~massive or massless! scalar mediating field.

We should point out that Eqs.~7.1!–~7.4!, like the Dirac
equations, have both positive- and negative-energy soluti
Indeed, in this two-body case, there are solutions of f
types: E.m11m2 , E.2m11m2 , E.m12m2, and E.
2m12m2, as can be seen most easily from thea50 case.
Of these, two are positive-energy and two are negat
energy solutions.

Since we do not have analytic solutions for the eigen
ergies of the present QED case, it is useful to illustrate
phenomenon on the scalar Yukawa~or Wick-Cutkosky!
model, in which scalar particles interact via a massive
massless mediating field. For such a scalar model, ana
expressions for the two-body bound-state energy eigenva
are available in the massless-exchange case@3#:

E5Am1
21m2

262m1m2F12S a

n
D 2G1/2

, ~7.5!

where a is the effective dimensionless coupling consta
analogous to the fine-structure constant of QED, andn is the
principal quantum number. The6 in Eq. ~7.5! correspond to
03210
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-
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two segments of a distorted semicircle. The upper bra
of this distorted semicircle corresponds to the upp
~positive! sign in Eq. ~7.5!. It begins fromE5m11m2 at
a50 @indeed, E5m11m221/2mr(a/n)221/8mr(1
1mr /m1)(a/n)41••• for a/n!1#, and decreases toE
5Am1

21m2
2 at the critical value ofa5n, beyond whichE

ceases to be real, and the wave functions cease to be no
izable. The lower branch, by contrast, begins fromE5um1
2m2u at a50 and rises monotonically to meet the upp
branch at the same critical pointE(a/n)5Am1

21m2
2. These

um12m2u-type bound-state eigenenergies do not have
correct Balmer limit, since for this branch

E5um12m2u1
1

2 S m1m2

um12m2u D S a

n D 2

1
1

8 S m1m2

um12m2u D S 12
m1m2

~m12m2!2D S a

n D 4

1•••

~7.6!

for m1Þm2, but E5m@(a/n)11/8(a/n)31•••# for m1
5m25m. Thus, this ‘‘mixed energy’’E.um12m2u bound-
state spectrum must be regarded as unphysical. There
also negative-energy solutions of theE.2m12m2 and E
.2um12m2u type, but they are not bound states, since
potential effectively reverses sign for the negative-energy
lutions ~as happens also in the Dirac-Coulomb case!. The
same type of behavior of the energy spectrum is observe
another analytically solvable case, namely, a fermion an
scalar particle interacting via massless scalar quantum
change@31#. Thus we expect that the energy eigenval
spectrum of Eqs.~7.1!–~7.4! will be qualitatively similar to
that of the scalar exchange models just described.

We have not been able to determine solutions to
coupled radial equations~7.1!–~7.4! in terms of common
analytic functions. It is of interest, therefore, to consider t
properties and general behavior of the solutions before c
mencing with numerical solutions.

In analogy with the scalar model just described, and w
the Coulomb-QED case@8# we expect that, asa increases,
the eigenenergy spectrumE(a) of Eqs.~7.1!–~7.4! will have
a qualitative behavior similar to that of the Dirac spectru
namely, thatE(a) decreases monotonically fromE(a50)
5m11m2 until a hits a critical valueac , beyond which
E(a) ceases to be real. It is possible to infer the value ofac
by considering the ultrarelativistic limit,p→`, in which
case we can neglect the massesm1 andm2, and seek solu-
tions of Eqs. ~7.1!–~7.4! with E5m15m250. ~This ap-
proach, when applied to the one-body Dirac-Coulomb ca
yields the correct critical valuesac5uku5u j 11/2u.! In this
ultrarelativistic approximation, Eqs.~7.1!–~7.4! have the so-
lutions t5u, s5v, utu5usu51 ~i.e., F}1/r ) with ac

2

54K2/(11j)(11h), which givesac52/A351.1547 . . .
for all 06 states. Note, however, that this result does
mean that the value of the two-fermion rest massE at ac is
necessarily the same for the 02 and 01 states~certainly, such
is not the case in the one-body limit!. Note also that the
resultac52/A3 for 06 states is independent of the mass
2-8
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that is, we expect it to be the same for all finitem1 /m2. The
value ac52/A3 is different, and somewhat larger, than t
known one-body limit~Dirac-Coulomb! value ofac51 for
uku51 states. Also, this value is much smaller that the va
ac52, which is obtained for the two-fermion Coulomb
QED case~wherej5h50) for 06 states.

For the Coulomb potential V52a/r , where a
5uq1q2u/4p, it is often convenient to rescale the radial va
able, that is, to letr5r /a, wherea is a suitable scale param
eter. For example, the radial functionss, t, u, v have the large
r ~negligibleV andK/r ) behaviors;e2r, etc. for positive-
energyJ50 bound states, wherea is given by

1

a2 5
@m1

2 2E2#@E22m2
2 #

4E2 or
1

a2 5m22S E

2 D 2

if m15m2 . ~7.7!

Equation~7.7! implies thata is positive only forum12m2u
<E<m11m2, which means that the bound-state spectr
must lie in this domain@cf. Eq. ~7.5!#. From this, and in
analogy with the scalar model results, we can infer that
critical value E(ac52/A3) lies betweenE5m1 and E
5um2u, and likely closer to the former rather than the latt

With the rescalingr5r /a, Eqs. ~7.1!–~7.4! become
modified slightly, in thatr is replaced byar in all of them.
For purposes of numerical integration of the radial equatio
the scale parametera can be chosen to be anything that
convenient, be it that given in Eq.~7.7!, or a51 or a
51/ma, or whatever.

For a power-series analysis of the radial equations i
useful to make the replacements5 s̄e2r, etc. Assuming so-
lutions of the form

s̄5rg@a01a1r1a2r21•••#, ~7.8!

t̄ 5rg@b01b1r1b2r21•••#, ~7.9!

ū5rg@c01c1r1c2r21•••#, ~7.10!

v̄5rg@d01d1r1d2r21•••#, ~7.11!

we find, upon substitution into the radial equations fors̄, t̄ ,
ū, v̄ and equating coefficients of powers ofrg1n21, that the
coefficientsaj , bj , cj , dj must satisfy the following recur
sion relations:

a~m12E!an212aan2~g1K1n!bn1dbn21

2~g1K1n!cn1dcn212jadn50, ~7.12!

~g2K1n!an2dan211a~m22E!bn212abn

1~g2K1n!dn2ddn212hacn50, ~7.13!

~g2K1n!an2dan211a~2m22E!cn212acn

1~g2K1n!dn2ddn212habn50, ~7.14!
03210
e

e
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is

~g1K1n!bn2dbn211~g1K1n!cn2dcn21

1a~m11E!dn211adn1jaan50, ~7.15!

whered51. If d50 then Eqs.~7.12!–~7.15! are the recur-
sion relations for the power-series representations of
functionss(r ), etc., rather than fors̄(r ), etc.

For n50, and bearing in mind thata215b215c21
5d2150, Eqs. ~7.12!–~7.15! yield four coupled homoge-
neous equations for the parametersa0 , b0 , c0 , d0, which
have nontrivial~and nonsingular! solutions only if

g5AK22
1

4
~11j!~11h!a25A12

3a2

4
~7.16!

for the J50 states, for any values ofm1 , m2, whereupon

d0

a0
51,

b0

a0
5

c0

a0
52

~11j!a

2~g1K !
5

2~g2K !

~11h!a
. ~7.17!

The condition ~7.16! implies that the radial equation
have real bound-state solutions of the form of Eqs.~7.8!–
~7.11! only for a<2/A3, for any values ofm1 andm2. This,
in turn, implies thatac<2/A3 for the 07 states for any
~finite! values ofm1 andm2, in agreement with the ultrarela
tivistic limit discussed above. This condition for boun
states,a<2/A3, is additional to the one that follows from
Eq. ~7.7!, namely, thatum12m2u<E<m11m2.

The recursion relations~7.12!–~7.15!, with Eqs. ~7.16!
and~7.17!, can be used to generate the power-series form
the solutions of Eqs.~7.8!–~7.11!. These series converge i
the domainr &a/m1 , as discussed below and in@8#. Such a
series can be used, for example, as a starting procedur
the numerical integration of the radial equations~7.1!–~7.4!.

Unlike in the Dirac case, the recursion relations~7.12!–
~7.15! do not admit power-series solutions of the form~7.8!–
~7.11!, which terminate at the same power, sayn5n8, so that
an8115bn8115cn8115dn81150. In particular, the ground-
state solution is not of the simple form

s̄5a0rg, t̄ 5b0rg, ū5c0rg, v̄5d0rg ~7.18!

as it is for the two radial Dirac equations. This is perhaps
be expected, since in the Dirac case there are only two fu
tions, says̄ and t̄ , and four unknowns to be determine
namely,b0 /a0 , g, a, and E. Since the two coupled radia
Dirac equations yield four equations~the coefficients ofrg

andrg21), it is not surprising that a solution is obtained.
the present case, we have four coupled radial equat
~7.1!–~7.4!, which yield eight equations~the coefficients of
rg and rg21) to be satisfied by the six unknowns of th
proposed solutions~7.18!, namely,b0 , c0 , d0 , g, a, andE.
Thus the system is overdetermined and no solution of
form ~7.18! is possible. This situation persists for any sol
tion of the form~7.8!–~7.11!, where the polynomials all ter
minate at the same degree. Therefore, we shall solve
radial equations~7.1!–~7.4! numerically.
2-9
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Equations~7.1!–~7.4! are not independent. Indeed, e
ementary manipulations of these equations, namely, subt
ing Eq.~7.4! from Eq.~7.1! and similarly Eq.~7.3! from Eq.
~7.2! show that

v~r !5
E2m12~12j!V~r !

E1m12~12j!V~r !
s~r !,

u~r !5
E2m22~12h!V~r !

E1m22~12h!V~r !
t~r !. ~7.19!

Thus, the number of equations can be reduced from fou
two.

We introduce the auxiliary functionsf (r )5s(r )1v(r )
and g(r )5t(r )1u(r ). Then, adding Eq.~7.1! to Eq. ~7.4!
and Eq.~7.2! to Eq. ~7.3!, and using Eq.~7.19! yields the
equations

f 8~r !5
K

r
f ~r !1Wg~r !g~r !,

2g8~r !5
K

r
g~r !1Wf~r ! f ~r !, ~7.20!

where

Wg(r )5
1

2 FE2Vh(r )2
(m12m2)2

E2V̄h ~r )
G , ~7.21!

Wf~r !5
1

2 FE2Vj~r !2
~m11m2!2

E2V̄j~r !
G , ~7.22!

and where

Vj~r !5~11j!V~r !, V̄j~r !5~12j!V~r !,

Vh~r !5~11h!V~r !, V̄h~r !5~12h!V~r !. ~7.23!
r

03210
ct-

to

For the present QED case in the Coulomb gauge, for
02 states~for which j52,h50), Vh5V̄h5V, while Vj

53V andV̄j52V. In this case we see thatWf(r ) is singu-
lar at r 15a/E5a2(mr /E)(1/mra), where mr is the re-
duced mass and 1/mra is the reduced Bohr radius. This sin
gular point is quite close to the origin~in units of the reduced
Bohr radius! for small a. The appearance of this singularit
may signal difficulties in the numerical determination
eigensolutions of the equations~7.20! by standard ‘‘shoot-
ing’’ methods. For the 01(3P0) states~for which j50,h
52), the singularity atr 15a/E occurs inWg , but only if
m1Þm2. Thus for the equal-mass 01 states, Eqs.~7.20! have
only the usual 1/r singularities at the origin, and are am
nable to solution by standard methods, as discussed bel

VIII. PERTURBATIVE DETERMINATION OF THE
RELATIVISTIC CORRECTION TO THE TWO-BODY

EIGENENERGIES FOR JÄ0 STATES

Equations~7.20! can be written in the matrix form

Huc&5euc&, where H5F e2Wf 2
d

dr
2

K

r

d

dr
2

K

r
e2Wg

G ,

c5F f

gG , ~8.1!

and wheree5E2(m11m2). If Wf is replaced byWf
nr5enr

2V andWg by Wg
nr52m, wherem5m1m2 /(m11m2), then

Eq. ~7.20!, or Eq. ~8.1!, is equivalent to the radial Schro¨-
dinger equation. The first-order correction to the nonrela
istic energyenr521/2ma2(1/n2) is then given by
De5
^cnruH2Hnrucnr&

^cnr ucnr&
5

^ f nrue2enr1Wf
nr2Wf u f nr&1^gnrue2enr1Wg

nr2Wgug
nr

&

^ f nr u f nr&1^gnrugnr&
. ~8.2!
If we expand the coefficientsWf and Wg @Eqs. ~7.10! and
~7.11!# in powers ofV/mi , and keep only the lowest-orde
terms, we obtain

e2enr1Wf
nr2Wf.

1

2m1
~enr2Vj!

2, ~8.3!

e2enr1Wg
nr2Wg.2S 122

m

m1
D enr1

1

2
Vh1d2V̄h ,

~8.4!
whered5m2 /m1 . This leads to the followingO(a4) cor-
rection to the nonrelativistic energy for theJ50 states:

De5
1

2m1
@enr

2 22enr~12j!^V&1~12j!2^V2&#

2S 122
m

m1
D enr̂ ^1&&1

1

2
@~11h!1~12h!d2#^^V&&.

~8.5!

We use the notation̂ X&5^ f nruXu f nr&/^ f nru f nr& but ^^X&&
5^gnruXugnr&/^ f nru f nr&.
2-10
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For the 02(n1S0) states~for which K51 and j52,h
50) this formula gives, for the lowest-order relativistic co
rection, the result

De@02~n1S0!#5ma4H 1

n4 S 3

8
2

1

8

m

m1
D

1
1

n3 S 2
1

2
12

m

m1
D J , ~8.6!

which becomes11
64 ma4 in the equal-mass,m15m25m,

case. This does not agree with the known positronium va
of 2 21

64 ma4 @18#. This is not surprising, since the Breit equ
tion, without modification, is known to give the incorrect fin
structure for hydrogen and positronium. Brown and Rav
hall @32# argue that the reason for this is the mixing
positive- and negative-energy one-particle states@which
arises, in our formalism, because of our use of the em
vacuum~3.4!#. This difficulty of the unmodified Breit equa
tion is discussed in various works~e.g., Refs.@32,33,18#!.
The modification that is needed to bring the result into agr
ment with the observed fine structure of H or Ps is to subt
off the expectation value of the operator@33,34#,

H85
a2

4m1r 2 ~322s1•s21s1rs2r !, s ir 5si•r/r ,

~8.7!

where, in this equation, we use the notation of@18#. The
expectation value of Eq.~8.7! ~with respect to the nonrela
tivistic eigenfunctions! is

^H8&nr5ma4
12d2

n3~2J11!
f S5ma4

4 f S

n3~2J11!

m

m1
,

~8.8!

wheref S51 for the singletS50 states, whilef S51/4 for the
triplet S51 states withJ.0, but f S50 for the triplet states
with J50 ~see, also, Sec. X below!. The expression~8.8!
gives the value1

2 ma4 for the equal-mass ground stat
which, when subtracted from the Breit value of11

64 ma4 gives
the expected positronium result2 21

64 ma4. More generally
for arbitrary masses, if we subtract Eq.~8.8! from the expres-
sion ~8.5!, we obtain the corrected result

Dec@n02~1S0!#5ma4H 1

n4 S 3

8
2

1

8

m

m1
D

1
1

n3 S 2
1

2
22

m

m1
D J . ~8.9!

This same result~8.9! was obtained previously for then
52 state by Darewych and Horbatsch@13~b!#, who used a
perturbative approximation on variationally derived equ
tions.

Somewhat surprisingly, the unequal-massO(a4) correc-
tions for arbitrary states seem to have been worked out f
only relatively recently. We refer to the work of Conne
@35#, who used a quasipotential formalism based on the w
of Todorov @36#, and of Hersbach@37#, who used a formal-
03210
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ism based on a relativistic generalization of the Lippman
Schwinger equation due to De Groot and Ruijgok@38#. Our
corrected expression~8.9! agrees with the results of thes
authors.@TheO(a4) corrections for hydrogen and muonium
quoted in standard references are expansions inm1 /m2 ~e.g.,
@39,40#!.#

For then01(3P0) states~for which K521 andj50,h
52) Eq. ~8.5! gives

De@n01~3P0!#5ma4H 1

n4 S 3

8
2

1

8

m

m1
D

1
1

n3 S 2
1

2
2

2

3

m

m1
D J , ~8.10!

which doesagree, in the equal-mass case, with the Ps va
for all then01(3P0) states, as well as with the unequal-ma
expressions of Connell@35# and Hersbach@37# for these
states. This agreement implies that the ‘‘correction’’^H8&nr
vanishes for the3P0 states, as indeed it does.

We might note, in passing, that formula~8.5! gives the
correctO(a4) results for the Coulomb-QED (j5h50) case
@8#, for which theW coefficients are nonsingular forr .0.

IX. NUMERICAL SOLUTIONS FOR SOME JÄ0¿ STATES

In the case of equal massesm15m2[m the radial equa-
tions ~7.20! for J501(3P0) states are free of singularities
Thus the boundary-value problem is well posed, and it c
be solved by means of a standard numerical ODE-solv
procedure. We solved it by the ‘‘shooting’’ method using t
MAPLE Runge-Kutta program.

The corresponding perturbative spectrum@cf. Eq. ~8.10!#,

E/m522
a2

4n2
1a4H 11

64n4
2

1

3n3J , ~9.1!

TABLE I. Values of E/m for the n52, 01(3P0) state (m1

5m2[m).

Perturbative Numeric
a @Eq. ~9.1!# @Eqs.~7.20!#

1/137 1.999 996 669 953 2 1.999 996 669 953
0.01 1.999 993 749 690 8 1.999 993 749 690
0.05 1.999 843 556 722 0 1.999 843 5564
0.1 1.999 371 907 552 1 1.999 371 886
0.5 1.982 442 220 052 1 1.982 028 02
0.7 1.961 950 032 552 1 1.957 997 74
0.9 1.929 085 449 218 8 1.902 4531
1.0 1.906 575 520 833 3 1.838 781 05
1.1 1.879 098 470 052 1 1.688 2317
1.15 1.863 256 642 659 5 1.436 9434
1.154 1.861 924 191 099 5 1.355 170 76
1.1547 1.861 689 995 054 9 1.301 3199
1.154 700 538 379 2 1.861 689 814 814 8 1.299 74
2-11
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agrees with the orthopositronium spectrum, since the con
bution of the extra terms@cf. Eq. ~8.7!# ~caused by positive-
energy–negative-energy mixing! vanishes in this case.

In Table I the numeric and perturbative results a
presented for the lowest-energy 01 state~i.e., J50, ,51,
n52) for different values of a<ac52/A3
'1.154 700 538 379 251 5.

There are, as we explained in Sec. VII,E.0 ‘‘mixed
energy’’ solutions of the formE/m5a1O(a3), which are
unphysical, because they do not have the Balmer nonrela
istic limit. We do not list such solutions here, though th
can be calculated readily enough in the same way as tho
the Table I. This unphysical branch of then52 01 state
rises uniformly from zero ata50 to join the physical branch
of Table I smoothly atE(ac). As mentioned previously, the
two branches together resemble a distorted semicircle@cf.
Eq. ~7.5!#.

Analogous results for then53 andn54 01(3P0) equal-
mass two-fermion energies are given in Table II. The qu
tative behavior ofE(a)/m for these states is similar to tha
for the lowest such state (n52), except that the critica
value of a increases withn, as it does in the case of th
analytically solvable scalar model of Eq.~7.5!. However,
here we obtainac /n50.649 87,0.602 474 5,0.487 178 5 fo
then52,3, and 4 states, respectively, in contrast to the sc
model valuesac /n51 for all n.

TABLE II. Values of E/m for the n53,4, 01(3P0) states (m1

5m2[m).

Perturbative Numeric
n a @Eq. ~9.1!# @Eqs.~7.20!#

3 1/137 1.999 998 519 989 2 1.999 998 519 989
0.01 1.999 997 222 120 0 1.999 997 222 120
0.05 1.999 930 491 657 0 1.999 930 491 657
0.1 1.999 721 199 845 7 1.999 721 193 72
0.5 1.992 416 570 216 0 1.992 303 736
0.7 1.983 934 162 808 6 1.982 908 59
0.9 1.970 792 187 500 0 1.964 645 8
1.0 1.961 998 456 790 1 1.948 028 09
1.1 1.951 420 273 919 8 1.918 619 6
1.15 1.945 382 459 249 6 1.884 435 8
1.154 1.944 876 373 119 8 1.875 613
1.1547 1.944 787 448 407 1 1.870 569 7

1.154 700 538 379 2 1.944 787 379 972 6 1.870 423 4

4 1/137 1.999 999 167 497 4 1.999 999 167 497
0.01 1.999 998 437 454 6 1.999 998 437 454
0.05 1.999 960 909 144 1 1.999 960 909 144
0.1 1.999 843 296 305 3 1.999 843 293 9
0.5 1.995 810 190 836 6 1.995 766 294 7
0.7 1.991 254 429 117 8 1.990 864 9
0.9 1.984 367 059 326 2 1.982 144 1
1.0 1.979 838 053 385 4 1.974 981 6
1.1 1.974 451 206 461 6 1.963 685
1.15 1.971 400 789 515 2 1.952 562
1.154 1.971 145 810 108 7 1.950 122 5
1.1547 1.971 101 018 265 9 1.948 751

1.154 700 538 379 2 1.971 100 983 796 3 1.948 714
03210
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FIG. 1. Reduced radial wave functions for the lowest,m15m2

[m, n52, 01(3P0) state fora51, E/m51.838 781.s(r), full
curve; t(r)5u(r), broken curve;v(r), chain curve.r5r /a,
wherea52.542 291(1/m). Units \5c51 are used.

FIG. 2. Same as Fig. 1 buta5ac52/A3, E/m51.299 74, and
a51.315 711(1/m).
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Note that the critical value of the two-body mas
E(ac)/m, increases withn, in contrast to the scalar mode
for which E(ac)/m5A2 for all n.

Figure 1 is a plot of the unnormalized reduced radial wa
functionss(r ), t(r )5u(r ), andv(r ) @see Eqs.~7.1!–~7.4!#
in the case of equal masses,m15m2[m, for the lowest-
energyn5201(3P0) states, whena51. These wave func-
tions are qualitatively similar to those obtained for the
states in the Coulomb-QED case@8#. The large componen
s(r ) is nodeless while the small componentt(r )5u(r ) and
the doubly small onev(r ) have one node. The node at th
origin, r 50, is a consequence of our use of reduced ra
wave functionss(r ), etc., rather than the actuals(r )/r , etc.
Indeed, the wave functions behave at smallr as follows:

s~r !'v~r !'const3ar g,

t~r !5u~r !'const3~2/3!~g11!r g, ~9.2!

where 0,g,1 @see Eq.~7.18!#. Thus the matrix wave func-
tion F(r) is singular,F(r);r g21, as happens also in th
one-body Dirac equation with a Coulomb potential. Nev
theless,F(r) is normalizable for alla up to and including
a5ac , at which pointt(0)5u(0)5(2/3)s(0)5(2/3)v(0)
Þ0, as can be seen in Figs. 2 and 3.

Figure 3 represents the excitedn5301(3P0) state for the
critical coupling strengthac52/A3. In this case, the wave
function s(r ) has one node, whilet(r ) and v(r ) have two
nodes. This behavior differs from that found in CQED@8# for
the same case~where the number of nodes was two, one, a

FIG. 3. Same as Fig. 1 but for the excitedn53, 01(3P0) state,
with a5ac52/A3, E/m51.870 423, anda52.824 148(1/m).
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three, respectively!. In the n5401(3P0) case~Fig. 4! each
of the functionss(r ), t(r ), and v(r ) gets one more node
This tendency likely continues for higher values of the qua
tum numbern.

X. RADIAL REDUCTION FOR JÌ0 STATES

For states withJ.0, the eigenstate problem reduces to
set of eight first-order differential equations for the functio
s1(r )•••v2(r ) and the energyE @cf. Eqs.~6.1! and~6.2!#. It
is convenient to present this set in the following matrix for
Let us introduce the eight-dimensional vector function

X~r !5F s1~r !

s2~r !

t1~r !

A

v2~r !

G . ~10.1!

Then the set of radial equations reads

HX~r ![H H
d

dr
1U~r !J X~r !5EX~r !, ~10.2!

where the 838 matrix U(r ) has the following structure:

U~r !5M1@G2a~ I1S!#/r . ~10.3!

Here I is the unit matrix,M is diagonal,

FIG. 4. Same as Fig. 1 but for the excitedn54, 01(3P0) state,
with a51, E/m51.974 982, anda56.342 094(1/m).
2-13
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M53
m1

m1

m2 0

m2

2m2

2m2

0 2m1

2m1

4 , ~10.4!

m65m16m2, and the form of 838 matricesH, G, andS depends on the parityP:

H53
0 0 2A B 2A B 0 0

0 0 B A 2B 2A 0 0

A 2B 0 0 0 0 A B

2B 2A 0 0 0 0 2B A

A B 0 0 0 0 A 2B

2B A 0 0 0 0 2B 2A

0 0 2A B 2A B 0 0

0 0 2B 2A B A 0 0

4 , ~10.5!

G53
0 0 2~J11!A 2JB 2~J11!A 2JB 0 0

0 0 ~J11!B 2JA 2~J11!B JA 0 0

2~J11!A ~J11!B 0 0 0 0 2~J11!A 2~J11!B

2JB 2JA 0 0 0 0 2JB JA

2~J11!A 2~J11!B 0 0 0 0 2~J11!A ~J11!B

2JB JA 0 0 0 0 2JB 2JA

0 0 2~J11!A 2JB 2~J11!A 2JB 0 0

0 0 2~J11!B JA ~J11!B 2JA 0 0

4 , ~10.6!
S53
0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 21

0 0 0 0 2B2 2AB 0 0

0 0 0 0 2AB 2A2 0 0

0 0 2B2 2AB 0 0 0 0

0 0 2AB 2A2 0 0 0 0

2 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

4
~10.7!

for P5(2)J61, and
032102
H53
0 0 2A B 2A 2B 0 0

0 0 B A B 2A 0 0

A 2B 0 0 0 0 A 2B

2B 2A 0 0 0 0 B A

A 2B 0 0 0 0 A 2B

B A 0 0 0 0 2B 2A

0 0 2A 2B 2A B 0 0

0 0 B 2A B A 0 0

4 ,

~10.8!
-14
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G53
0 0 ~J11!A 2~J11!B ~J11!A ~J11!B 0 0

0 0 JB JA JB 2JA 0 0

~J11!A JB 0 0 0 0 ~J11!A JB

2~J11!B JA 0 0 0 0 ~J11!B 2JA

~J11!A JB 0 0 0 0 ~J11!A JB

~J11!B 2JA 0 0 0 0 2~J11!B JA

0 0 ~J11!A ~J11!B ~J11!A 2~J11!B 0 0

0 0 JB 2JA JB JA 0 0

4 , ~10.9!
-

ec

t t
fa

ht-
ur-
S53
0 0 0 0 0 0 2B2 2AB

0 0 0 0 0 0 2AB 2A2

0 0 0 0 2 0 0 0

0 0 0 0 0 21 0 0

0 0 2 0 0 0 0 0

0 0 0 21 0 0 0 0

2B2 2AB 0 0 0 0 0 0

2AB 2A2 0 0 0 0 0 0

4
~10.10!

for P5(2)J, whereA, B, andC are defined in Eq.~6.14!.
Due to the properties

HT52H, UT5U, ~10.11!

the radial HamiltonianH is a Hermitian operator with re
spect to the inner product

^YuX&85E
0

`

drY†~r !X~r !, ~10.12!

where the subscript 8 denotes the dimensions of the v
functionsX,Y.

In the subsequent reduction of the set~10.2! one can use
the fact that rank(H)54 ~for either parity!. Thus one can
reduce the number of differential equations from eigh
four. We perform this reduction in a way that ensures, as
as possible, the Hamiltonian structure of the equations.

First of all we perform the orthogonal transformation

X̃~r !5EX~r !, H̃5EHE21, ~10.13!

where

E5
1

A2 3
1 0 0 0 0 0 1 0

0 0 A 2B A 2B 0 0

0 21 0 0 0 0 0 1

0 0 B A 2B 2A 0 0

21 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 B A B A 0 0

0 0 A 2B 2A B 0 0

4 ,
03210
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o
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P5~2 !J61, ~10.14!

E5
1

A2 3
0 0 1 0 1 0 0 0

2A B 0 0 0 0 2A B

0 0 0 21 0 1 0 0

2B 2A 0 0 0 0 B A

B A 0 0 0 0 B A

A 2B 0 0 0 0 2A B

0 0 21 0 1 0 0 0

0 0 0 1 0 1 0 0

4 ,

P5~2 !J. ~10.15!

It preserves the inner product~10.12! and reduces Eqs.~10.2!
to the form

H̃X̃~r ![H H̃
d

dr
1Ũ~r !J X̃~r !5EX̃~r !, Ũ5EUE21.

~10.16!

It is convenient at this stage to express the eig
dimensional vectors and matrices in terms of fo
dimensional blocks:

X̃5F X̃1

X̃2
G , Ṽ~r ![Ũ~r !2EI5F Ṽ11~r ! Ṽ12~r !

Ṽ21~r ! Ṽ22~r !
G , etc.

~10.17!

Then the matrixH̃ takes the form

H̃5F H̃11 0

0 0
G , H̃1152F J 0

0 JG , J5F0 21

1 0 G ,
~10.18!

and the set of Eqs.~10.16! becomes

H̃11X̃18~r !1Ṽ11~r !X̃1~r !1Ṽ12~r !X̃2~r !50, ~10.19!
2-15
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Ṽ21~r !X̃1~r !1Ṽ22~r !X̃2~r !50. ~10.20!

The set~10.20! is purely algebraic. It permits us to ex
pressX̃2(r ) in the terms ofX̃1(r ):

X̃2~r !52Ṽ22
21~r !Ṽ21~r !X̃1~r !. ~10.21!
ct

n
e

.

it

03210
Substitution of Eq.~10.21! into Eq.~10.19! yields the closed
set of four first-order differential equations:

L~E!X̃1~r ![H 1

2
H̃11

d

dr
1W̃~E!J X̃1~r !50, ~10.22!

where
~10.23!
Here the upper sign corresponds toP5(2)J11 and the
lower sign corresponds toP5(2)J.

The operatorL(E) in Eq. ~10.22! is formally Hermitian,
i.e., givenE, it is Hermitian with respect to the inner produ
^•••u•••&4. But any two solutions of Eq.~10.22!, X1 andY1,
corresponding to different values of the energy,E and E8,
are not orthogonal. This is due to the nonlinear depende
of L(E) on E. Orthogonality can be instated by using th
following definition of the inner product:

^^Y1uX1&&45K Y1UL~E8!2L~E!

E82E
UX1L

4

. ~10.24!

This inner product follows directly by substitution of Eq
~10.21! into Eq. ~10.12!.

The set of first-order equations~10.22! can also be ex-
pressed as a second-order equation. For this purpose
convenient to permute the elements ofX1 by means of the
matrix L, where
ce

is

L5F 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

G for P5~2 !J61 ~10.25!

and

L5F 0 1 0 0

0 0 0 21

21 0 0 0

0 0 1 0

G for P5~2 !J.

~10.26!

Then, in terms of the two-dimensional blocks

X̄15LX̃1[FC1

C2
G , ~10.27!

the equations take the form

2C281W̄11C11W̄12C250, ~10.28!
2-16
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C181W̄21C11W̄22C250, ~10.29!

whereW̄5LW̃L21. Elimination ofC2 leads to the following
equation for the 231 vector functionC1:

F~E![F H d

dr
2W̄12J W̄22

21H d

dr
1W̄21J 1W̄11GC1~r !50.

~10.30!

EigenstatesC1 , F1 corresponding to different values of th
energy are orthogonal with respect to the inner product:

^^F1uC1&&25K F1UF~E8!2F~E!

E82E
UC1L

2

, ~10.31!

which also follows from the reduction procedure.

XI. PERTURBATIVE SOLUTIONS FOR JÌ0 STATES

The form of Eqs.~10.30! is convenient for examining the
energy spectrum ofJ.0 bound-states perturbatively t
O(a4). For this purpose we introduce the dimensionle
quantities

r5mar , l5
E2m1

ma2
, and d5

m2

m1
, ~11.1!

wherem5m1m2 /m1 is the reduced mass. We now perfor
a perturbative expansion ina of Eq. ~10.30!. To ordera2,
Eq. ~10.30! takes the Hamiltonian form~hereafter we omit
the subscript 1 of the wave functionC1)

HC~r!'$H (0)1a2H (1)~l!%C~r!5lC~r!,
~11.2!

where

C~r!5Fc1~r!

c2~r!
G ~11.3!
03210
s

is a two-component wave function,H is the Hamiltonian
divided by ma2 and expressed in terms of dimensionle
quantities~11.1!,

H (0)52
1

2 H d

dr2
2

1

r2
JJ 2

1

r
~11.4!

is the unperturbed~i.e., zeroth-order! Hamiltonian, and

H (1)~l!5
d

dr
K~r,l!

d

dr
1M~r,l! ~11.5!

is the perturbative correction to Eq.~11.4!. The form of the
symmetric 232 matricesJ, K(r,l), M(r,l) depends on
the parity. In order to obtain the energy spectrum toO(a4),
it is sufficient to calculate the eigenvalues ofl to O(a2),
i.e., l'l (0)1a2l (1), wherel (0) will be calculated exactly,
while for l (1), first-order perturbation theory ina2 is suffi-
cient. Hence, the dependence ofH (1)(l) on l is not crucial:
to the accuracy required, it can be replaced byl (0). In addi-
tion, the kernel of the inner product~10.31! can be set to
unity.

In the caseP5(2)J61 we haveJ5C2I, so thatH (0) is
the ~dimensionless! radial Coulomb HamiltonianHJ with the
angular momentuml 5J, repeated twice:

H (0)5FHJ 0

0 HJ
G , HJ52

1

2 H d

dr2
2

J~J11!

r2 J 2
1

r
.

~11.6!

The matricesK(r,l) andM(r,l) are

K~r,l!5
1

8F ~11d2!S l1
1

r D 0

0 ~11d2!l1
2

r

G ,

~11.7!
M~r,l!5
1

8F ~12d2!lS l2
2

r D1
12d22C2l~11d2!

r2
1

11d2~122C2!

r3

2Cd

r3

2Cd

r3
~12d2!l22

C2~11d2!

r2 S l1
1

r D G .

~11.8!
-

The eigenvalues of the zeroth-order Hamiltonian~11.6!,
namely,

l (0)521/~2n2!, n51,2, . . . ~11.9!

are twofold degenerate, each with the two eigenstates

C (1)
(0)5F un,J&

0 G and C (2)
(0)5F 0

un,J&
G , ~11.10!
whereun,J& is a solution of the Coulomb problemHJun,J&
5l (0)un,J&. Thus, the correctionl (1) must be calculated ap
propriately for the degenerate situation:

l (1,2)
(1) 5

1

2
@L111L226A~L112L22!

214L12
2 #,

~11.11!

where the matrixL is defined as follows:
2-17
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L5@^C ( i )
(0)uH (1)~l (0)!uC ( j )

(0)&#

5F 111d2

32n4
2

d2

~2J11!n3

d

2C~2J11!n3

d

2C~2J11!n3

111d2

32n4
2

~31d2!C212

4C2~2J11!n3

G .

~11.12!

The mass spectrum

E(1,2)5m11ma2l (0)1ma2l (1,2)
(1) ~11.13!

obtained with the use of Eqs.~11.9!, ~11.11!, and ~11.12!
coincides neither with the muonium spectrum found
@35,37# nor ~if m15m2) with the spectrum of parapositro
nium ~see@18# and references therein!. The reason, as for th
J50 states, lies in the use of the empty vacuum~3.4!, which
leads to single-particle states of positive and negative e
gies, and subsequently to the Breit equation with its spuri
term H8, Eq. ~8.7!, in the Hamiltonian@33,34,18#, as dis-
cussed in connection with theJ50 states. We are going t
show that the elimination of the contribution ofH8 from the
spectrum leads to the correct result.

First of all we transformH8 into a radial representation
For this purpose we note thatc15s11v1 ('s1 in the non-
relativistic limit!, i.e.,c1 contains only those components
F(r), Eq. ~6.1!, which are coefficients of bispinor harmonic
fA(r ). Similarly, c252s21v2 ('2s2 in the nonrelativis-
tic limit !, i.e., c1 contains only coefficients of the bispino
harmonicsf0(r ). Thus, forP5(2)J61 parity states the spu
rious term~divided byma4) takes the following radial form:

H 85
1

ma4 F E dr̂ Tr~w i
†H8w j !G5 12d2

8r2 F4 0

0 1G ,
~11.14!

wherei , j 5A,0, and the corresponding matrix elements a

L85@^C ( i )
(0)uH 8uC ( j )

(0)&#5
12d2

4~2J11!n3 F4 0

0 1G .
~11.15!

If we now useL̄5L2L8, instead ofL, in Eqs.~11.11! and
~11.13!, we obtain the spectrum
03210
r-
s

E(1,2)5m12
ma2

2n2
1

ma4

4n3 H 111d2

8n
2

2J11

C2

6
A114C2d2

~2J11!C2 J , ~11.16!

which coincides with the results of Connell@35# and Hers-
bach@37# for the parity (21)J61 states. Thus, correcting fo
the spurious terms in the Breit Hamiltonian, we obtain t
expectedO(a4) results.

In the P5(21)J case, the matrixJ is not diagonal:

J5FC212 22C

22C C2 G . ~11.17!

It can be diagonalized by means of the orthogonal trans
mation, using the matrix:

R5FA 2B

B A G . ~11.18!

Then

J̃5RJ R 215F ~J11!~J12! 0

0 ~J21!J
G , ~11.19!

so that the zeroth-order Hamiltonian becomes

H̃(0)5RH (0)R 215FHJ11 0

0 HJ21
G . ~11.20!

It possesses the doubly degenerate eigenvalues~11.9! with
eigenstates

C (1)
(0)5F un,J11&

0 G and C (2)
(0)5F 0

un,J21&
G .

~11.21!

The first-order correctionH̃(1), Eq. ~11.5!, with the ma-
trices
K̃~r,l!5
1

8F ~11d2!l1
~32d2!A212B2

r
2

C2~12d2!

r2

AB~12d2!

r

AB~12d2!

r
~11d2!l1

2A21~32d2!B2

r
2

C2~12d2!

r2

G ,

~11.22!
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M̃~r,l!5
1

8 3
~12d2!l~l12A2/r!

2A2[ $l~6J2111J12!21%

2d2$l~2J21J22!21%]/r2

2A2@7J2122J192d2~3J218J13!#/r3

1~12d2!J~J11!2~J14!/r4

AB~12d2!

r S 2l1
112l

r
2

C2

r2 D

AB~12d2!

r S 2l1
112l

r
2

C2

r2 D
~12d2!l~l12B2/r!

2B2@$l~6J21J23!21%2d2$l~2J213J21!21%#/r2

2B2@7J228J262d2~3J222J22!#/r3

1~12d2!J~J11!2~J23!/r4

4
~11.23!

generates diagonal matrix elements only:

L5@^C ( i )
(0)uH̃(1)~l (0)!uC ( j )

(0)&#5F 111d2

32n4
2

~71d2!J21~172d2!J1822d2

4~2J11!~J11!~2J13!n3
0

0
111d2

32n4
2

~71d2!J223~12d2!J22

4~2J21!J~2J11!n3

G .

~11.24!
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The energy spectrum~11.13! with l (1)
(1)5L11, l (2)

(1)5L22

contains the contribution of the spurious term~8.7!. Again,
we present this term in the radial form

H 85
1

ma4 F E dr̂ Tr~w i
†H8w j !G5 12d2

8r2 F B2 AB

AB A2 G ,
~11.25!

where, for the presentP5(2)J61 parity case,i , j 52,1.
The corresponding matrix elements are

L85@^C ( i )
(0)uH 8uC ( j )

(0)&#5
12d2

4n3 F B2

2J13
0

0
A2

2J21

G .

~11.26!

The substitution ofl (1)
(0)5L112L118 andl (2)

(0)5L222L228 into
Eq. ~11.13! yields the spectrum

E(1,2)5m12
ma2

2n2
1ma4

111d2

32n4
2

ma4

2n3

3H 1

J11
1

12d2

~2J13!~2J11!

1

J
2

12d2

~2J11!~2J21!
,

~11.27!

which coincides with the results of Connell@35# and Hers-
bach@37# for the parity (21)J states.
03210
XII. CONCLUDING REMARKS

We have studied a reformulation of QED, in which th
coupled Dirac-Maxwell field equations are partially deco
pled by expressing the mediating photon field in terms of
Dirac-particle field, using covariant Green functions. Th
allows us to reformulate the Hamiltonian of the theory
that the photon propagator appears directly in a quartic, n
local interaction term. We then consider a truncated mo
in which there are no free~physical! photons. For such a
model, eachN-particle segment of the Fock space of t
quantized, equal-time Hamiltonian is an invariant space,
is, there is no coupling among the variousN-fermion seg-
ments. This is achieved by introducing an unconventio
‘‘empty’’ vacuum state. As a consequence, there exist ex
few-particle eigenstates of the truncated Hamiltonian, wh
lead to Dirac-like two- and three-fermion wave equation
We show, in particular, that the two-fermion wave equatio
in the Coulomb gauge, is just the Breit equation.

For specificJP states, the Breit equation reduces to t
radial form, and then to Dirac-like equations forJ50 states,
and to a coupled pair of Schro¨dinger-like equations forJ
.0 states. The perturbative solution of these equati
yields a4 corrections to the nonrelativistic Rydberg spe
trum, which do not reproduce the muonium spectrum as
culated by Connell@35# and Hersbach@37# ~nor the positro-
nium spectrum in them15m2 case!. The apparent reason fo
this disagreement is the mixing of positive- and negati
energy states, which is characteristic of the Breit equat
@32,33,18#. However, agreement is achieved if we subtra
the contribution of the spurious operator~8.7!, which appears
in the Breit equation@cf. Eqs.~8.9!, ~8.10!, ~11.16!, ~11.27!#.

We have not been able to obtain analytic solutions of
2-19
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radial equations. These radial wave equations have, in
eral, a singular point atr 1;a/E.0, whereE is the two-
fermion bound-state energy~rest mass!. The existence of
such an ‘‘interior’’ singularity makes it difficult to obtain
numerical solutions of the radial boundary-value problem
standard methods. The only exception is the caseJ501,
m15m2, for which the radial equations are regular, a
which we have therefore studied numerically.@It is notewor-
thy that this is the case where the contribution of the oper
~8.7! is zero.#

Our numerical results for the equal-massJ501 states
show that the dependence of the energyE on the coupling
constanta is qualitatively similar to that obtained earlier fo
the Coulomb-QED model~for which transverse-photon inter
actions are ignored! @8#. For lowa, the numerically obtained
eigenenergies are in agreement with the result derived
turbatively. Thereafter,E(a) decreases monotonically t
E(ac).0 asa approaches a critical valueac . We find that
ac52/A3 ~in contrast to the CQED value ofac52).
s

s

n-
.

D

-

03210
n-

y

or

r-

The present approach has limitations, as has been poi
out below Eq.~4.5!, particularly that no radiative~loop! ef-
fects are included. Nevertheless the approach allows on
determine relativistic two-fermion eigenstates~energies and
wave functions!, albeit of a truncated QED Hamiltonian, in
semianalytic fashion for arbitrary states. That is, the probl
is shown to reduce to the solution of at most four rad
equations of Dirac or Schro¨dinger type. In addition, as we
have shown that the method is straightforwardly genera
able to systems of three particles.

We end with a remark on gauge invariance. In conve
tional QED, the use of the Lorentz gauge, rather than
Coulomb gauge, requires special consideration~cf. Gupta-
Bleuler quantization! and the use of second-order perturb
tion theory to deduce the Breit equation@18#. In our ap-
proach it is straightforward to ensure, at the classical le
that different gauge conditions lead to the same results a
quantum level.
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