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We study(by an exact numerical scheirie single-particle density matrix of 10° ultracold atoms in an
optical lattice with a parabolic confining potential. Our simulation is directly relevant to the interpretation and
further development of the recent pioneering experiment by Greinal, Nature,(London 415 39 (2002.

In particular, we show that restructuring of the spatial distribution of the superfluid component when a domain
of Mott-insulator phase appears in the system, results in a fine structure of the particle momentum distribution.
This feature may be used to locate the point of the superfluid—Mott-insulator transition.
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The fascinating physics of the superfluid-insulator transi- Unfortunately, what is measured in the experiment is not
tion in a system of interacting bosons on a lattice has beethe original spatial density distribution in the trap, but the
attracting the constant interest of theorists during recenabsorption image of the free evolving atomic cloud, after the
years[1-8]. Lattice bosons are one of the simplest many-trapping/optical potential is removed,; i.e., the quantity that is
body problems with strong competition between potentialdirectly related to the single-particle density matrix rivo-
and kinetic energy, and a typical example of the quantunmentumspace p,=n,. (This statement implies that in the
phase transition system. One of its great advantages is tifeee evolving atomic cloud, the interparticle interaction can
possibility to study it by powerful Monte Carlo methods be neglected; see the discussion beldvow, in terms ofn,
which nowadays allow simulations of many thousands ofthe inhomogeneous trapping potential is a disadvantage since
particles at low temperature with unprecedented accuracly broadens the superfluid-functional contribution atk
(see, e.g.[8]). However, until very recently the canonical =0, and the observed picture is a convolution of the original
Bose-Hubbard model real-space density matrip(r,r’). As we show below, one

has then to look at the fine structure of the central peak in the
U experimental data to decipher the Mott-Hubbard phase
H=—t> alaj+ > 2P =2 win, (1) diagram.
) ' ' In this Rapid Communication, we relate quantitatively the
particle distribution in momentum space observed in experi-
(wherea/ creates a particle on the sitg(ij) stands for the ments to the corresponding spatial density distribution in the
nearest-neighbor sitesizai*ai , andt, U, and u;, are the trap. Our ultimate goal is to reveal which featufésany) in
hopping amplitude, the on-site interaction, and the on-sitehe structure of, indicate unambiguously the presence of
external field, respectivelyvas not particularly useful in the the Mott phase. To this end we perform quantum Monte
analysis of realistic systems. The situation has changed witarlo simulations of the single-particle density matrix for the
the exciting success of the experiment by Greieeal. [9] Bose-Hubbard systems with up to*liattice sites using the
(originally proposed by Jaksddt al [10]) in which a gas of  continuous-time Worm algorithriil1]. We find thatn, dis-
ultracold 8’Rb atoms was trapped in a three-dimensionalgribution remains sharply peaked at the center of the Bril-
simple-cubic optical lattice potential. The uniqueness of thdouin zone at the critical point and in the Mott phase with
new system is that it is adequately described by the Bosdarge correlation length. This means that the “fading” of
Hubbard Hamiltoniarf9,10], and allows virtually unlimited Bragg peaks in the experiment has very little to do with the
control over the strength of the effective interparticle inter-transition point and happens when the system is already deep
actionU/t and particle density. in the insulating phase. The onset of the phase transition in

The characteristic feature of the experimental setup othe trap center should be seen in appearance of at least one
Ref. [9] is the presence of the overall parabolic potentialsatellite peak im,, reflecting a shell-type form of the super-
V(r) which confines the sample. This feature could be offluid component. This peak was not mentioned in the experi-
great advantage if one were able to directly measure the spasents of Ref[9]. We suggest a possible explanation for this
tial density distribution in the trap. We recall the structure offact, and argue that by collimating the expanding atomic
the u— U/t phase diagram for the Bose-Hubbard sysféin  cloud one can render this peak observable. We also discuss
which predicts commensurate particle density distributiorthe role of self-repulsion in the free expanding cloud, which
for the insulating phase whenever the chemical potential liesan affect the simple interpretation of the absorption images
within the Mott-Hubbard gap. The slowly varyin@t the in terms of the initial single-particle momentum distribution.

length scale of the lattice peripdrapping potential effec- In Figs. a)—1(f) we present our data for the density dis-
tively provides a scan over of this phase diagram at a fixed tribution as a function of the lattice site distance from the
value ofU/t. trap centery/a, wherea is the lattice constant. For all prac-
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N @ L ® sponding momentum distribution functiop . By definition,
O T o ne=Jd% d3’exdik-(r—r")]p(r,r’), where p(r,r’)
odf S ot =(yT(r)y(r")), and y(r) is the bosonic field operator. In
03 \. osf our case of a single-zone lattice, the field operator is ex-
ol % 0al \‘\ panded as follows:
oaf N\ o2}
N - Wn=3 s(r-ra;, @
2 ' 6 r/a 2 4 6 8 10T/a !
n © " @ where ¢ is the Wannier function. We thus finally have
N * oevoe m\. 1 oooooou-—-.\.
0.8 0.8 . ik-(r—r:
* ' “ n=[B(k) 2, e (i py 3
0.6 . 0.6 1]
o4 . 4 : where pij=(afaj) and ¢(k) is the Fourier transform of
02r . 02p . ¢(r). From Eq.(3), it is seen that up to a trivial reweighting
+ S 72 factor | ¢(k)|? the distribution is a periodic function in the
n n reciprocal lattice. Thus without loss of generality we may
P © b S, ® restrict ourselves to the first Brillouin zone. Actually(k)
*. \.. has nothing to do with the Bose-Hubbard model, being a
) ’ . 15p Kl nonuniversal property of the lattice site potential; in what
m———— kY follows we will ignore this function altogether by formally
. ! ¥ setting it to unity.
0t osf Having calculatedp;; with the Worm algorithn{11], we
. readily obtainn, using Eq.(3); the results are presented in
0 2 4 6 T T %~ T Figs. 2a)—2(f). In Fig. 2a), we see a typical picture for the

_ o o strongly correlated superfluid phase, characterized by a

FIG. 1. Particle density distribution®n-site filling factor$ as single, narrow peak at small momenta. When a domain of the
Mott-insulating phase appears in the center of the trap
(where the on-site filling is close to unjtya pronounced fine
structure develops in Fig.(B). We associate this structure
with the shell-type form of the condensate wave function. To
prove the point, we model the situation with the pure-
condensate density matrixr,r’)=Wwg (r)¥o(r), where the
tical purposes one may assume the zero-temperature limgondensate wave functio®y(r) has the shell-type form
here. The simulation was done at finite but very 1w  with the shell radiud. The presence of the Mott insulator is
=0.2; the relevant energy parameters in this model are thé&aken into account through the suppression of¥hgr) in
bandwidth W/t=12 and (/t).~35 [2,3]. In accordance the center. The Fourier transform of sudty(r) is alternat-
with the phase diagram of RdfL], we observe a shell-type ing in sign, with the half-period irk related to the shell
structure of the particle density with the Mott-insulator radius ak~ 7/l. Thus in the pure condensate we would see
phases visible as integer plateau regions. In each case tk&act zeros imy with the typical separation between them
confining potential of the formu; /t=U,+ «i? was adjusted ~/l. Surprisingly, this naive model works extremely well
to achieve the required density at the trap cefisingU, as  and adequately describes the case of the realistic strongly
the overall chemical potentjaland the vanishing particle correlated system close to the phase transitiorFig. 2(b),
density at the sample perimet@rsing «). In Fig. 1(a), the the couplingU/t=32 is close to the critical value estimated
sample is in the superfluid phase. WHeiis increased above in Refs.[2,3]]. We consider the appearance of the satellite
(but close to the critical value, a domain of the Mott phase peaks as a clear signature of the Mott-insulator transition in
appears at the center of the trap if the gas density is close the center of the trap.
the commensurate value, see Figh)l The correlation In Fig. 2(c), the coupling strength is significantly in-
length gets smaller for larger values Wf[as in Figs. {c)—  creased tdJ/t=_80, but the shell-type structure of the super-
1(d)]; the size of the Mott domain and the amount of thefluid phasdin fact, most of the sample volume is superfluid
superfluid phase at the perimeter depend on the value of the Fig. 1(c)] and the corresponding fine structurerip are
chemical potential. In Fig. (£), uo/t=U, is close to the still present. The crucial difference between Figc)2and
lower gap edge, while in Fig.(d) w is deep inside the gap. Fig. 2(d) is in the suppressiofalmost completeof the su-
The density is further increased to reach the incommensurateerfluid fraction. Now the distribution, has only a central
value at the trap center in Fig(el (now the insulating phase peak with an extended tail towards large momenta, as ex-
with short correlation length is pushed to the perimetand  pected for the insulating system. Still, it is not flat, which
then=2 Mott domain in Fig. ). tells us about large off-diagonal correlations between the

Next, we relate each of the above figures to the correnearest lattice sites even fat/t as large as~2.5 (U/t)..
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coupling parameters and filling factors in the centétt=24, U,
=-11.08, k=0.19531(a); U/t=32, Uy=—28.08, k=0.195 31
(b); U/t=80, U,=-65.0 «=0.97656 (c); U/t=80, U,
=-90.0, k=1.03062(d); U/t=80, Uy=—120.08, k=2.003 75
(e); U/t=80, Uy=—150.0, x=1.757 81(f).
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FIG. 2. Then, distributions(in arbitrary unitg in the first Brillouin zone in the (0,0,1) direction derived from the single-particle density
matrices for systems shown in Figgat-1(f).

[Direct comparison of Figs. (&) and Xd) concerning the “continuous” spatial distribution with the typical size of or-
value ofn,_ ./, is not possible because plots are normalizedder of the original system siz@lus the corresponding rep-
to the central peak value, which is set by the larger-indicas in higher Brillouin zones For the potential energy we
volume superfluid fraction in cage).] have E ,~nU(0), wheren is the continuous number den-

Figure Ze) is similar in physics to the caga), except for  sity, U(0)=4x#2as/m, ag is thes-scattering length, anth
the large-momentum tail due to the Mott-insulator shell. Fi-is the atom mass. Recalling that the lattice filling factor is of
nally, in Fig. 2f) we see again the fine structure of satellite order unity, we can estimate~1/a. The lowest kinetic
peaks reflecting the appearance of the Mott-insulator phasenergy is associated with the spatial distribution of the con-
in the center of the trap and the corresponding superfluidlensate. Estimatinge,,~ 72%%/ma’L?, where integerL
phase shellin close resemblance with Fig(i8]. stands for the typical size of the superfluid component in

We note that the momentum distributiong presented units of lattice constants, we arrive at a simple requirement,
above may be observed experimentally if atoms are colli-
mated out of the expanding cloud so that the distribution in a (alag)L " ?>1. (5)
given direction is photographed. In the current setup, the
absorption images of the three-dimensional distribution argn the experiment of Ref9], the ratioa/as is of order 16.
taken along two orthogonal axes. This procedure revealplence, we are restricted to<10, that is, to typical system
only the integralN(k,,k,)> [~ .dk,n(k). It is easy to see sizes of our present simulation. Note also that the condition
that integration effectively erases fine-structure features of4) is much easier to satisfy for the atomic cloud in gez-
n(k)—although peaks do not disappear completely, theyondBrillouin-zone peak, where the spatial density is signifi-
now show up as shoulders M(k,k,). cantly suppressef®].

Finally, we would like to discuss the repulsive interaction =~ Summarizing, we presented a simulation of the ground-
between particles during the initial period of their free ex-state properties of ultracold atoms in an optical lattice with a
pansion. Obviously, the interpretation of the photoabsorptiortonfining external potential, in the regime where the Mott-
image in terms of thénitial momentum distribution is valid insulator and superfluid phases coexist. We have demon-
only if the effect of interactions is small. Meanwhile, given strated that when the insulator domain in the center of the
realistic experimental parameters, this turns out to be th&rap is surrounded by the superfluid component, the global
case only for rather moderate system sizes. The criterion fanomentum distribution of particles features satellite peaks.

neglecting the effect of interparticle repulsion is This picture can be employed by the experiment as an un-
ambiguous evidence of the Mott transition. We do not see
Ekin/Epoe> 1, 4 other features of the momentum distribution that could be

easily associated with the Mott transition: unless the ratio
whereEy;, andE, are, respectively, the kinetic and poten- U/t is not much larger than the critical one, the momentum
tial energy per particle in the most fragile low-momentumdistribution in the reciprocal lattice still has a peaked form
part of the distributiom, and at the most dangerous period reflecting strong local off-diagonal correlations. The deple-
of free evolution at the end of the restructuring period, whertion of condensates in the superfluid phasdJatU. does
the “discrete” distribution of density transforms into the result in a nonzero contribution at finite but this effect is
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