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Revealing the superfluid–Mott-insulator transition in an optical lattice
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We study~by an exact numerical scheme! the single-particle density matrix of;103 ultracold atoms in an
optical lattice with a parabolic confining potential. Our simulation is directly relevant to the interpretation and
further development of the recent pioneering experiment by Greineret al., Nature,~London! 415, 39 ~2002!.
In particular, we show that restructuring of the spatial distribution of the superfluid component when a domain
of Mott-insulator phase appears in the system, results in a fine structure of the particle momentum distribution.
This feature may be used to locate the point of the superfluid–Mott-insulator transition.
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The fascinating physics of the superfluid-insulator tran
tion in a system of interacting bosons on a lattice has b
attracting the constant interest of theorists during rec
years@1–8#. Lattice bosons are one of the simplest man
body problems with strong competition between poten
and kinetic energy, and a typical example of the quant
phase transition system. One of its great advantages is
possibility to study it by powerful Monte Carlo method
which nowadays allow simulations of many thousands
particles at low temperature with unprecedented accur
~see, e.g.,@8#!. However, until very recently the canonic
Bose-Hubbard model
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~whereai
† creates a particle on the sitei, ^ i j & stands for the

nearest-neighbor sites,ni5ai
†ai , and t, U, andm i , are the

hopping amplitude, the on-site interaction, and the on-
external field, respectively! was not particularly useful in the
analysis of realistic systems. The situation has changed
the exciting success of the experiment by Greineret al. @9#
~originally proposed by Jakschet al. @10#! in which a gas of
ultracold 87Rb atoms was trapped in a three-dimension
simple-cubic optical lattice potential. The uniqueness of
new system is that it is adequately described by the Bo
Hubbard Hamiltonian@9,10#, and allows virtually unlimited
control over the strength of the effective interparticle int
actionU/t and particle density.

The characteristic feature of the experimental setup
Ref. @9# is the presence of the overall parabolic poten
V(r ) which confines the sample. This feature could be
great advantage if one were able to directly measure the
tial density distribution in the trap. We recall the structure
them2U/t phase diagram for the Bose-Hubbard system@1#,
which predicts commensurate particle density distribut
for the insulating phase whenever the chemical potential
within the Mott-Hubbard gap. The slowly varying~at the
length scale of the lattice period! trapping potential effec-
tively provides a scan overm of this phase diagram at a fixe
value ofU/t.
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Unfortunately, what is measured in the experiment is
the original spatial density distribution in the trap, but t
absorption image of the free evolving atomic cloud, after
trapping/optical potential is removed; i.e., the quantity tha
directly related to the single-particle density matrix inmo-
mentumspace,rkk5nk . ~This statement implies that in th
free evolving atomic cloud, the interparticle interaction c
be neglected; see the discussion below.! Now, in terms ofnk
the inhomogeneous trapping potential is a disadvantage s
it broadens the superfluidd-functional contribution atk
50, and the observed picture is a convolution of the origi
real-space density matrixr(r ,r 8). As we show below, one
has then to look at the fine structure of the central peak in
experimental data to decipher the Mott-Hubbard ph
diagram.

In this Rapid Communication, we relate quantitatively t
particle distribution in momentum space observed in exp
ments to the corresponding spatial density distribution in
trap. Our ultimate goal is to reveal which features~if any! in
the structure ofnk indicate unambiguously the presence
the Mott phase. To this end we perform quantum Mon
Carlo simulations of the single-particle density matrix for t
Bose-Hubbard systems with up to 163 lattice sites using the
continuous-time Worm algorithm@11#. We find thatnk dis-
tribution remains sharply peaked at the center of the B
louin zone at the critical point and in the Mott phase w
large correlation length. This means that the ‘‘fading’’
Bragg peaks in the experiment has very little to do with t
transition point and happens when the system is already d
in the insulating phase. The onset of the phase transitio
the trap center should be seen in appearance of at leas
satellite peak innk , reflecting a shell-type form of the supe
fluid component. This peak was not mentioned in the exp
ments of Ref.@9#. We suggest a possible explanation for th
fact, and argue that by collimating the expanding atom
cloud one can render this peak observable. We also dis
the role of self-repulsion in the free expanding cloud, whi
can affect the simple interpretation of the absorption ima
in terms of the initial single-particle momentum distributio

In Figs. 1~a!–1~f! we present our data for the density di
tribution as a function of the lattice site distance from t
trap center,r /a, wherea is the lattice constant. For all prac
©2002 The American Physical Society01-1
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tical purposes one may assume the zero-temperature
here. The simulation was done at finite but very lowT
50.2t; the relevant energy parameters in this model are
bandwidth W/t512 and (U/t)c;35 @2,3#. In accordance
with the phase diagram of Ref.@1#, we observe a shell-type
structure of the particle density with the Mott-insulat
phases visible as integer plateau regions. In each case
confining potential of the formm i /t5U01k i 2 was adjusted
to achieve the required density at the trap center~usingU0 as
the overall chemical potential! and the vanishing particle
density at the sample perimeter~using k). In Fig. 1~a!, the
sample is in the superfluid phase. WhenU is increased above
~but close to! the critical value, a domain of the Mott phas
appears at the center of the trap if the gas density is clos
the commensurate value, see Fig. 1~b!. The correlation
length gets smaller for larger values ofU @as in Figs. 1~c!–
1~d!#; the size of the Mott domain and the amount of t
superfluid phase at the perimeter depend on the value o
chemical potential. In Fig. 1~c!, m0 /t5U0 is close to the
lower gap edge, while in Fig. 1~d! m0 is deep inside the gap
The density is further increased to reach the incommensu
value at the trap center in Fig. 1~e! ~now the insulating phase
with short correlation length is pushed to the perimeter!, and
the n52 Mott domain in Fig. 1~f!.

Next, we relate each of the above figures to the co

FIG. 1. Particle density distributions~on-site filling factors! as
functions of the lattice site distance from the trap center for vari
coupling parameters and filling factors in the center:U/t524, U0

5211.08, k50.195 31~a!; U/t532, U05228.08, k50.195 31
~b!; U/t580, U05265.0, k50.976 56 ~c!; U/t580, U0

5290.0, k51.030 62~d!; U/t580, U052120.08, k52.003 75
~e!; U/t580, U052150.0,k51.757 81~f!.
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sponding momentum distribution functionnk . By definition,
nk5*d3r d3r 8exp@ik•(r2r 8)#r(r ,r 8), where r(r ,r 8)
5^c†(r )c(r 8)&, and c(r ) is the bosonic field operator. In
our case of a single-zone lattice, the field operator is
panded as follows:

c~r !5(
i

f~r2r i !ai , ~2!

wheref is the Wannier function. We thus finally have

nk5uf~k!u2(
i , j

eik•(r i2r j )r i j , ~3!

where r i j 5^ai
†aj& and f(k) is the Fourier transform of

f(r ). From Eq.~3!, it is seen that up to a trivial reweightin
factor uf(k)u2 the distribution is a periodic function in th
reciprocal lattice. Thus without loss of generality we m
restrict ourselves to the first Brillouin zone. Actually,f(k)
has nothing to do with the Bose-Hubbard model, being
nonuniversal property of the lattice site potential; in wh
follows we will ignore this function altogether by formall
setting it to unity.

Having calculatedr i j with the Worm algorithm@11#, we
readily obtainnk using Eq.~3!; the results are presented
Figs. 2~a!–2~f!. In Fig. 2~a!, we see a typical picture for the
strongly correlated superfluid phase, characterized b
single, narrow peak at small momenta. When a domain of
Mott-insulating phase appears in the center of the t
~where the on-site filling is close to unity!, a pronounced fine
structure develops in Fig. 2~b!. We associate this structur
with the shell-type form of the condensate wave function.
prove the point, we model the situation with the pur
condensate density matrixr(r ,r 8)5C0* (r )C0(r ), where the
condensate wave functionC0(r ) has the shell-type form
with the shell radiusl. The presence of the Mott insulator
taken into account through the suppression of theC0(r ) in
the center. The Fourier transform of suchC0(r ) is alternat-
ing in sign, with the half-period ink related to the shell
radius ask;p/ l . Thus in the pure condensate we would s
exact zeros innk with the typical separation between the
;p/ l . Surprisingly, this naive model works extremely we
and adequately describes the case of the realistic stro
correlated system close to the phase transition@in Fig. 2~b!,
the couplingU/t532 is close to the critical value estimate
in Refs. @2,3##. We consider the appearance of the satel
peaks as a clear signature of the Mott-insulator transition
the center of the trap.

In Fig. 2~c!, the coupling strength is significantly in
creased toU/t580, but the shell-type structure of the supe
fluid phase@in fact, most of the sample volume is superflu
in Fig. 1~c!# and the corresponding fine structure innk are
still present. The crucial difference between Fig. 2~c! and
Fig. 2~d! is in the suppression~almost complete! of the su-
perfluid fraction. Now the distributionnk has only a central
peak with an extended tail towards large momenta, as
pected for the insulating system. Still, it is not flat, whic
tells us about large off-diagonal correlations between
nearest lattice sites even forU/t as large as;2.5 (U/t)c .

s
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FIG. 2. Thenk distributions~in arbitrary units! in the first Brillouin zone in the (0,0,1) direction derived from the single-particle den
matrices for systems shown in Figs. 1~a!–1~f!.
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@Direct comparison of Figs. 1~c! and 1~d! concerning the
value ofnk5p/a is not possible because plots are normaliz
to the central peak value, which is set by the larger-
volume superfluid fraction in case~c!.#

Figure 2~e! is similar in physics to the case~a!, except for
the large-momentum tail due to the Mott-insulator shell.
nally, in Fig. 2~f! we see again the fine structure of satell
peaks reflecting the appearance of the Mott-insulator ph
in the center of the trap and the corresponding superfl
phase shell@in close resemblance with Fig. 2~b!#.

We note that the momentum distributionsnk presented
above may be observed experimentally if atoms are co
mated out of the expanding cloud so that the distribution i
given direction is photographed. In the current setup,
absorption images of the three-dimensional distribution
taken along two orthogonal axes. This procedure reve
only the integralN(kx ,ky)}*2`

` dkzn(k). It is easy to see
that integration effectively erases fine-structure features
n(k)—although peaks do not disappear completely, th
now show up as shoulders inN(kx ,ky).

Finally, we would like to discuss the repulsive interacti
between particles during the initial period of their free e
pansion. Obviously, the interpretation of the photoabsorp
image in terms of theinitial momentum distribution is valid
only if the effect of interactions is small. Meanwhile, give
realistic experimental parameters, this turns out to be
case only for rather moderate system sizes. The criterion
neglecting the effect of interparticle repulsion is

Ekin /Epot@1, ~4!

whereEkin andEpot are, respectively, the kinetic and pote
tial energy per particle in the most fragile low-momentu
part of the distributionnk and at the most dangerous perio
of free evolution at the end of the restructuring period, wh
the ‘‘discrete’’ distribution of density transforms into th
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‘‘continuous’’ spatial distribution with the typical size of or
der of the original system size~plus the corresponding rep
licas in higher Brillouin zones!. For the potential energy we
haveEpot;nU(0), wheren is the continuous number den
sity, U(0)54p\2as /m, as is thes-scattering length, andm
is the atom mass. Recalling that the lattice filling factor is
order unity, we can estimaten;1/a3. The lowest kinetic
energy is associated with the spatial distribution of the c
densate. EstimatingEkin;p2\2/ma2L2, where integerL
stands for the typical size of the superfluid component
units of lattice constants, we arrive at a simple requireme

~a/as!L
22@1. ~5!

In the experiment of Ref.@9#, the ratioa/as is of order 102.
Hence, we are restricted toL,10, that is, to typical system
sizes of our present simulation. Note also that the condit
~4! is much easier to satisfy for the atomic cloud in thesec-
ond Brillouin-zone peak, where the spatial density is sign
cantly suppressed@9#.

Summarizing, we presented a simulation of the grou
state properties of ultracold atoms in an optical lattice wit
confining external potential, in the regime where the Mo
insulator and superfluid phases coexist. We have dem
strated that when the insulator domain in the center of
trap is surrounded by the superfluid component, the glo
momentum distribution of particles features satellite pea
This picture can be employed by the experiment as an
ambiguous evidence of the Mott transition. We do not s
other features of the momentum distribution that could
easily associated with the Mott transition: unless the ra
U/t is not much larger than the critical one, the momentu
distribution in the reciprocal lattice still has a peaked fo
reflecting strong local off-diagonal correlations. The dep
tion of condensates in the superfluid phase atU;Uc does
result in a nonzero contribution at finitek, but this effect is
1-3
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confined to momenta significantly smaller thanp/a; even in
the Mott phase close to the transition point, typical mome
~ignoring the momentum phase-volume factork2) are
smaller thanp/a.
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