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Classical rules in quantum games
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~Received 11 April 2002; published 6 August 2002!

We consider two aspects of quantum game theory: the extent to which the quantum solution solves the
original classical game, and to what extent the new solution can be obtained in a classical model.
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There have been a few dozen papers on quantum g
theory ~see, for instance,@1#!. All discuss versions of some
classical game@2# where new rules that make explicit use
quantum mechanics lead to new solutions. Here we cons
two aspects of quantum game theory that are important
that have been neglected so far. The first question is to w
extent the quantum solution solves the underlying class
game. Ideally, when quantizing a game, one would like
leave the game unchanged and solve it using quantum op
tions. By analogy, Shor’s algorithm@3# is quantum mechani
cal but still solves the classical factoring problem. The s
ond question is to what extent the quantum solution is re
quantum mechanical in that it cannot be achieved classic
Taking again Shor’s algorithm as guidance, no classical
lution for the game of efficiently factoring large numbers
known, so quantum mechanics provides a truly novel so
tion.

Most papers on quantum game theory use a partic
quantization scheme, developed in Ref.@4#. We argue that for
that type of game the quantum solutions found neither
quantum mechanical, nor solve the classical game. To s
this, we will take the example from@4#, the quantized Pris-
oner’s Dilemma, but the conclusions will hold for any gam
that is quantized in the same way. We pick Ref.@4# simply
because it is the first paper where a general quantiza
procedure for games is constructed.

Consider a two-player game between Alice and B
where each has two moves available, denoted byC ~cooper-
ate or confess! andD ~defect or deny!. The payout matrix is

Alice/Bob C D

C ~3,3! ~0,5!

D ~5,0! ~1,1!
~1!

The dilemma is this: (D,D) is the dominant equilibrium
~neither player can profit from aunilateral change!, but both
players would prefer (C,C). All we need to know about the
actual quantization procedure is the following: Alice a
Bob indicate their choices by performing a certain operat
on a qubit. The two qubits given to them are in an entang
state~otherwise, the quantum version is no different from t
classical game!. Alice and Bob still have choicesC and D
corresponding to the classical decisions to confess or d
However, there are more choices available to them. In p
ticular, there is a move, call itQ, that is in essence a supe
position of confessing and denying. The payout matrix
cluding Q can be constructed from Eq.~17! of Ref. @5#,
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Alice/Bob C D Q

C ~3,3! ~0,5! ~1,1!

D ~5,0! ~1,1! ~0,5!

Q ~1,1! ~5,0! ~3,3!
~2!

The entries where both Alice and Bob chooseC or D remain
the same, so that the classical version is represented
subgame. However, the solution (D,D) is clearly no longer
an equilibrium point since each player can do better byuni-
laterally switching toQ. In fact, (Q,Q) is the solution of the
new game defined by the payout matrix~2!. In words, the
moveQ has the following effect. If one party appliesQ and
the other uses one of the two classical choicesC or D then
the payout is as if the other player had made the other c
sical choiceD or C. Thus the other player’s classical choic
can be changed by choosing the moveQ. If both players
chooseQ then the payout is as if both players confessed

Neither the above description of the moveQ nor the pay-
out matrix~2! is quantum mechanical. So the essence of
quantized Prisoner’s Dilemma is captured completely b
classical game. As noted in@4#, there is a straightforward bu
inefficient classical model of the full quantum game that co
sists of writing down all quantum operations and wave fun
tions. Since efficiency does not play a role in the Prisone
Dilemma, this is in principle a valid model too.

The solution thus found solves~2!, but to what extent
does it solve the original game~1!? One clearly always need
new rules of some sort to find a new quantum solution t
particular given problem. In the case of factoring there i
genuine problem that is solved; it just so happens that
may formulate it as a game. Games, however, are define
their rules, and if you change the rules, you change the ga
One should check whether the problem underlying the ga
if there is such a problem, reasonably allows such change
rules. In the Prisoner’s Dilemma, for example, it seems to
counter to the spirit of the game to have an attorney or
terrogater be helpful to the prisoners and give them an
tangled state.

In general, for any two-person game defined by its pay
matrix, the quantization procedure of@4# gives rise to a new
game, which may or may not have new solutions in the fo
of movesQA ,QB for Alice and Bob. That game can be rep
resented by a classical game by simply including the n
moves in a new payout matrix. But, again, it is a new ga
that is constructed and solved, not the original class
game.
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A side issue is to what extent the quantization proced
of @4# blurs the contrast between cooperative and nonco
erative games. In noncooperative games players are no
lowed to communicate, cannot enter binding agreeme
and, importantly, cannot usecorrelated random variables.
However, by giving the players an entangled quantum st
one allows them in principle to make use of correlatio
present in such a state, violating the spirit of a noncoope
tive game. Moreover, when comparing quantum and class
versions of a game one should of course not turn a non
operative classical game into an explicitly cooperative qu
tum version. For instance, the solution to the quantum v
sion of the three-person Prisoner’s Dilemma given in@6# is
valid only if the players enter a binding agreement to acc
one of the three players to win in ana priori symmetric
game.

To end on a positive note, quantum game theory can
interesting and useful. One just has to be careful when c
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paring quantum games to classical games. For example,
if for a certain cooperative game one can reach the sa
solutions both classically and quantum mechanically, a n
trivial question is how much communication between t
players is needed to achieve these solutions@7#. Another type
of quantum game worth investigating is one that explo
nonclassical correlations in entangled states, such as t
that violate Bell inequalities. In the games discussed h
nonlocal correlations did not play a role, in spite of the pre
ence of entangled states, since in the end the various qu
are transported to one location where the final measurem
is performed. In more complicated and truly nonlocal gam
though, those correlations may play a role.

We thank S. Benjamin, J. Eisert, P. Hayden, M. Lewe
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Chris Fuchs, who does agree.
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