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Dense coding in entangled states
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We consider the dense coding of entangled qubits shared between two parties, Alice and Bob. The efficiency
of classical information gain through quantum entangled qubits is also considered for the case of pairwise
entangled qubits and maximally entangled qubits. We conclude that using the pairwise entangled qubits can be
more efficient when two parties communicate whereas using the maximally entangled qubits can be more
efficient when theN parties communicate.
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The quantum entanglement state@1,2# is an important tool
distinguishing the quantum mechanics from the class
physics. In quantum information processing, there have b
some examples utilizing quantum entanglement featu
such as quantum dense coding@3#, quantum teleportation@4#,
and the compression of quantum information@5#. Here we
will focus on quantum dense coding. Classically, the capa
of a single bit through the classical channel cannot exc
one bit. However, if we use a pair of entangled qubits
tween Alice and Bob, then we can send two bits of class
information from Alice to Bob@3#. For this protocol, Alice
and Bob share a pair of entangled qubits in the Bell st
Alice performs one of the four 1-qubit unitary operatio
given by the identityI or the Pauli matrices (sx ,isy ,sz) on
her qubit. Each of four unitary operations maps the Bell st
to a different member of the four Bell states. Then Ali
sends her qubit to Bob. Bob can obtain the two bits of cl
sical information from the joint measurement on his qu
and her qubit. In this Brief Report we will extend quantu
dense coding to the multiqubit entanglement withN pairwise
qubits entangled and with maximally entangledN qubits
shared between Alice and Bob.

First, we consider the 2N qubits that are entangled pai
wise and shared between Alice and Bob. The qubits from
first to theNth belong to Alice and nextN qubits to Bob. The
first and the (N11)th qubits are made up Bell states, t
second and (N12)th qubits are made up Bell states, and
on. The total state is then written by

uc&5uc1&1,N11^ uc1&2,N12^ •••^ uc1&N,2N , ~1!

whereuc1& i , j51/A2(u00& i , j1u11& i , j ) is a Bell state and the
subindex (i , j ) denotes that the Bell state is made of thei th
qubit and thej th qubit. For dense coding Alice perform
unitary operation on her qubits. Each qubit has four poss
unitary operations including the identity or Pauli operato
and the total number of possible unitary operations isN.
Since these operations map the state~1! to the orthogonal
states composed by the tensor products of Bell bases
operations are independent. Then Alice can encode the
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sical 2N bits in her unitary operations. Alice sendsN qubits
to Bob and Bob reads out the classical 2N bits information
after performing a Bell measurement on each joint state
the two qubits.

Next, suppose Alice and Bob are sharing a maxima
entangled three qubits state~GHZ state!:

uc1&5
1

A2
~ u000&1u111&). ~2!

The first and the second qubit are with Alice and the th
with Bob. Alice applies one of the possible unitary oper
tions on her qubits. The unitary operations are the ten
products of identity and Pauli’s operators. Here 16 unita
operations are possible. These operators are to be applie
the first or the second qubits of the GHZ states:

uc1&5
1

A2
~ u000&1u111&),

uc2&5
1

A2
~ u000&2u111&),

uc3&5
1

A2
~ u100&1u011&),

uc4&5
1

A2
~ u100&2u011&), ~3!

uc5&5
1

A2
~ u010&1u101&),

uc6&5
1

A2
~ u010&2u101&),

uc7&5
1

A2
~ u110&1u001&),
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uc8&5
1

A2
~ u110&2u001&).

We need only eight unitary operators among 16 operat
tensor product operators of four operators (I , sx , isy , sz!
in the first qubit and two operators (sx , sz! in the second
qubit as

U05sz^ sz , U15I ^ sz ,

U25 isy^ sz , U35sx^ sz ,

U45I ^ sx , U55sz^ sx , ~4!

U65sx^ sx , U75 isy^ sx .

Then Alice has the eight unitary operators to map the s
~2! to the different GHZ states~3!. Alice appliesUi to her
qubits and sends these two qubits to Bob. Bob works a j
GHZ measurement distinguishing the eight GHZ states
cause of each orthogonal state. Then Bob extracts the t
bits of classical information after that measurement proce
ing. This fact show that the GHZ states shared between
parties give rise to the quantum dense coding.

Now let us extend to maximally entangledN11 qubits:

uc&5
1

A2
~ u00•••0&1u11•••1&). ~5!

Alice hasN qubits and Bob one qubit among the maxima
entangledN11 qubits. Alice intends to use this state to com
municate classical information by performing unitary ope
tions on the firstN qubits. It is possible to apply four possib
unitary operations chosen from the identity or the Pauli
erators on the first qubit. On the other hand, one can ap
only two possible unitary operations eithersx or sz on the
next qubits because the identity andisy cannot produce the
distinguished states. Then the number of the possible un
operations is 432323•••3252N11 and the number of
classical bits isN11.

Now let us compare the efficiency of the maximally e
tangled case with the pairwise entangled case. First we
02430
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sider the resource of the both cases. If we prepare the in
states, the pairwise entangled case requiresN Hadamard
gates andN CNOT gates to make up the entangled sta
because each single Bell state needs one Hadamard gat
one CNOT gate. If the operation times for the Hadama
gate and the CNOT gate areth and tc , respectively, the rate
of information gain in the pairwise entangled case is

r p5
2N

N~ th1tc!
~6!

bits per unit time. The case of the maximally entangled st
requires a Hadamard gate andN11 CNOT gates from the
initial state. The rate of information gain is

r m5
N11

th1Ntc
. ~7!

If we assume that both gates have the same time scal
operation, that isth5tc , then r p52N/2Ntc and r m5N
11/(N11)tc51/tc . Thus we can deduce that the pairwi
entangled case is more efficient. If we define efficiency
the rate per the number of qubit used, then the pairwise
tangled case is more efficient in largeN although the maxi-
mally entangled case requiresN11 qubits less than the pair
wise entangled case with 2N qubits.

This result is different from that of@6#. They considered
thatN11 users are sharing maximally entangled qubits, p
sessed one qubit by each user including Bob andN pairwise
entangled states, and possessed one particle by each
except Bob withN qubits. They concluded that the max
mally entangled state is definitely more efficient. Howev
our case shows that the pairwise entangled case is mor
ficient in the case of largeN. This describes that using th
pairwise entangled qubits can be more efficient when t
parties communicate whereas using the maximally entan
qubits can be more efficient when theN parties make com-
municate.
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