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Theorem for the beam-splitter entangler
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It has been conjectured that the entangled output state from a beam splitter requires nonclassicality in the
input state@M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Phys. Rev. A65, 032323~2002!#. Here we give a
proof for this conjecture.
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The beam splitter is one of the few quantum devices t
may act as an entangler. The entangler properties of a b
splitter have been studied in the past@2–5#. In particular,
Kim et al. @5# studied the entangler properties with ma
different input states, such as a Fock number state, a coh
state, a squeezed state, and mixed states in Gaussian fo
was conjectured there that, to obtain an entangled ou
state, a necessary condition is that the input state shoul
nonclassical. Unfortunately, there was no proof for this c
jecture in@5#. In this paper, we give a very simple proof o
this conjecture.

Consider a lossless beam splitter~see Fig. 1!. We can
distinguish the field modea and modeb by the different
propagation directions. Most generally, the properties o
beam-splitter operatorB̂ in the Schro¨dinger picture can be
summarized by the following equations~see, e.g., Ref.@1#!:

rout5B̂r inB̂21, ~1!

B̂†5B̂21, ~2!

B̂S â

b̂
D B̂215MBS â

b̂
D , ~3!

MB5S cosueif0 sinueif1

2sinue2 if1 cosue2 if0
D , ~4!

B̂u00&5u00&. ~5!

Herer in androut are the density operators for the input a
output states, respectively. Both of them are two-mode st
including modea and modeb. The elements in the matrix
MB are determined by the beam splitter itself,â,b̂ are the
annihilation operators for modea and modeb, respectively,
andu00& is the vacuum state for both modes. Equation~5! is
due to the simple fact of no input, no output. Without a
loss of generality, we can expressr in in theP representation
in the following form:

r in5E
2`

`

P~aa ,ab ,aa* ,ab* !uaa ,ab&^aa ,abud2aad2ab ,

~6!
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whereuaa ,ab& is a coherent state in two-mode Fock spa
i.e.,

uaa ,ab&5D̂ab~aa ,ab!u00& ~7!

and

D̂ab~aa ,ab!5eâ†aa2âaa* 1b̂†ab2b̂ab* . ~8!

If r in is a classical state, the distribution functio
P(aa ,ab ,aa* ,ab* ) must be non-negative definite in th
whole complex plane. In such a case, the ouput state is

rout5E
2`

`

P~aa ,ab ,aa* ,ab* !

3B̂uaa ,ab&^aa ,abuB̂21d2aad2ab , ~9!

which is equivalent to

rout5E
2`

`

P~aa ,ab ,aa* ,ab* !B̂D̂ab~aa ,ab!

3B̂21B̂u00&^00uB̂21B̂D̂abB̂
†. ~10!

FIG. 1. A schematic diagram for the beam-splitter operati
Both the input and the output are two-mode states. The diffe
modes are distinguished by the propagation direction of the fie
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From Eq.~5! we know thatB̂u00&^00uB̂215u00&^00u. By Eq.
~3! we can see that

B̂D̂ab~aa ,ab!B̂215D̂ab~aa8 ,ab8! ~11!

and

~aa8 ,ab8!5~aa ,ab!MB . ~12!

In short, the following equation can easily be obtained fro
Eqs.~3!–~5!:

B̂uaa ,ab&^aa ,abuB̂215uaa8 ,ab8&^aa8 ,ab8u. ~13!

Since detMB51, we have the following formula for the out
put state:

rout5E
2`

`

P~aa ,ab ,aa* ,ab* !uaa8 ,ab8&^aa8 ,ab8ud
2aa8d

2ab8 .

~14!

This is equivalent to

rout5E
2`

`

P8~aa ,ab ,aa* ,ab* !uaa ,ab&^aa ,abud2aad2ab ,

~15!

P8~aa ,ab ,aa* ,ab* !5P~aa9 ,ab9 ,aa9* ,ab9* !, ~16!

and

~aa9 ,ab9!5~aa9 ,ab9!MB
21 . ~17!

Since P(aa ,ab ,aa* ,ab* ) is non-negative, the functiona
P8(aa ,ab ,aa* ,ab* ) must also be non-negative. By the de
nition of separability, the staterout defined by Eq.~15! must
be separable. Therefore we have the following theorem.

Theorem.If the input state is a classical state, the outp
state of a beam splitter must be a separable state.

This is equivalent to saying that, in order to obtain
entangled output state, the nonclassicality of the input sta
a necessary condition. This theorem can be extended
more general situation in multimode Fock space. Let us c
sider the rotation operatorR̂ in n-mode Fock space. We hav

R̂LR̂215MRL, ~18!

where L5( ĉ1 ,ĉ2 , . . . ,ĉn)T, ĉi are the annihilation opera
tors of the i th mode, andMR is a n-dimensional unitary
matrix. By using the BCH formula
02430
t

is
a

n-

emne2m5n1@m,n#1
1

2!
†m,@m,n#‡1•••, ~19!

we have the following explicit formula for the operatorR̂:

R̂5exp~2L†ln MRL!. ~20!

Therefore we know that

R̂u00•••0&5u00•••0&. ~21!

Any classical multimode state in Fock space can be writ
in the following probabilistic distribution:

r5E
2`

`

P~a,a* !ua&^aud2a, ~22!

where ua&5ua1a2•••an& and P(a,a* ) is a non-negative
functional provided thatr is a classical state. Similarly to th
two-mode case, we can show that

r5E
2`

`

P8~a,a* !ua&^aud2a, ~23!

P8~a,a* !5P~a9,a9* ! ~24!

and

~a9!5~a!MR
21 . ~25!

Obviously, the funtionalP8(a,a* ) is non-negative. Thus we
draw the following conclusion in the multimode Fock spac
A classical density operator in multimode Fock space
separable under arbitrary rotation.

Although nonclassicality in the input state is a necess
condition, it is obviously not a sufficient condition for en
tanglement in the output state of a beam splitter. Sinc
beam-splitter operater is unitary, it is reversible. It w
shown in Ref.@5# that a nonclassical separable input sta
can be changed to an entangled state in the output. The
verse of such a process gives examples where, even th
the input state is nonclassical, the output could still be se
rable. Some specific examples are given in@6,7#.

Note added in proof. Recently we became aware of
related work@8# where the nonlocality and the nonclassica
ity property of light with the beam splitter is investigated.
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