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Theorem for the beam-splitter entangler
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It has been conjectured that the entangled output state from a beam splitter requires nonclassicality in the
input statd M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Phys. Rev6B, 032323(2002]. Here we give a
proof for this conjecture.
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The beam splitter is one of the few quantum devices thawvhere|a,, @) is a coherent state in two-mode Fock space,
may act as an entangler. The entangler properties of a beane.,
splitter have been studied in the pa&t5|. In particular, .
Kim et al. [5] studied the entangler properties with many |@a,ap)=Dap(@s,ap)|00) )
different input states, such as a Fock number state, a coherent
state, a squeezed state, and mixed states in Gaussian formand
was conjectured there that, to obtain an entangled output . -
state, a necessary condition is that the input state should be Dap( @y, ap) =€
nonclassical. Unfortunately, there was no proof for this con- ) ) S )
jecture in[5]. In this paper, we give a very simple proof of I pin is a classical state, the distribution function
this conjecture. P(aas,ap,ak ,ap) must be non-negative definite in the
Consider a lossless beam splitteee Fig. 1 We can whole complex plane. In such a case, the ouput state is
distinguish the field mode and modeb by the different .
propagation direction§. Most gengrally, the properties of a pout:f P(ay,ap,at ,af)
beam-splitter operatoB in the Schrdinger picture can be *
summarized by the following equatiofsee, e.g., Ref1]):

aaféa;JrBTabflh)a;_ (8)

X Blag, ap)(aq, ap|B 1d?a,d?ay, 9
_p R—1
Pout=BpinB "7, @ which is equivalent to
éf:é_l, (2) - * K \AR
Pout™ | P(aa,ap, a3 ,a;)BDap(aqg, ap)
B : B 1=Mg . ) X B~1B|00)(00B~BD,,B". (10)
cosge'®  singe'é1 A output b
B\ —singe %1 cospe %0’ @
B|00)=100). (5)

Here p;, andp,,; are the density operators for the input and
output states, respectively. Both of them are two-mode states input a
including modea and modeb. The elements in the matrix output a

Mg are determined by the beam splitter itselfp are the
annihilation operators for mode and modeb, respectively,
and|00) is the vacuum state for both modes. Equatibnis
due to the simple fact of no input, no output. Without any
loss of generality, we can express in the P representation
in the following form: A inputb

Y
Y

o0
Pin:f P(oza,ab,a; !ag)laa’ab><0‘ava’b|d2aad2ab!
—o0

(6)

FIG. 1. A schematic diagram for the beam-splitter operation.
Both the input and the output are two-mode states. The different
*Email address: wang@qci.jst.go.jp modes are distinguished by the propagation direction of the field.
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BRIEF REPORTS

From Eq.(5) we know that3|00)(00/B~*=|00)(00. By Eq.
(3) we can see that

BDap(aq,ap)B =Dy al,ap) (11)
and

(e, ap)=(aq, ap)Mg. 12

In short, the following equation can easily be obtained from

Egs.(3)—(5):
(13

Blag, ap){aa, ap|B™ =] oy, ap)(af, al.

Since deMg=1, we have the following formula for the out-
put state:

[ee]

pour= | Plaaan, % ap s ap) (s aflPajeey.

(14
This is equivalent to

o]
Pout= f_ P'(ay,ap ,a; !ag)laa aab><aa ,ab|d2aad2ab,

(19

P'(aq,ap,03 ,a5) =P(a},ap, 03" at*),  (16)
and

(ag,af)=(ag,ap)Mg". (17)

Since P(a,,ap,a) ,af) is non-negative, the functional
P'(aa,ap,a) ,ap) must also be non-negative. By the defi-
nition of separability, the state,,; defined by Eq(15) must
be separable. Therefore we have the following theorem.

Theoremlf the input state is a classical state, the output

state of a beam splitter must be a separable state.

This is equivalent to saying that, in order to obtain an
entangled output state, the nonclassicality of the input state
a necessary condition. This theorem can be extended to
more general situation in multimode Fock space. Let us co

sider the rotation operatcfi in n-mode Fock space. We have

RAR 1=MgA, (18)
where A=(c;,Cs, ... .Cc,)T, C; are the annihilation opera-
tors of theith mode, andMy is a n-dimensional unitary
matrix. By using the BCH formula

n-
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1
efve F=v+[u,v]+ 5[#-[#-7/]]4' e (19

we have the following explicit formula for the operat@r

R=exp—ATINnMgA). (20)
Therefore we know that
R|00- - -0)=|00-: - - 0). (22)

Any classical multimode state in Fock space can be written
in the following probabilistic distribution:

p= J'icP(a,a*)|a/)(a|d2a, (22

where |@)=|a1a;- - - @,) and P(a,a*) is a non-negative
functional provided thap is a classical state. Similarly to the
two-mode case, we can show that

pZJx P (a,a*)|a)(a|d’a, (23
P(a,a*)=P(d,a"*) (24

and
(@)=(a)Mg". (25

Obviously, the funtionaP’ (e, @*) is non-negative. Thus we
draw the following conclusion in the multimode Fock space:
A classical density operator in multimode Fock space is
separable under arbitrary rotation.

Although nonclassicality in the input state is a necessary
condition, it is obviously not a sufficient condition for en-
tanglement in the output state of a beam splitter. Since a
beam-splitter operater is unitary, it is reversible. It was
shown in Ref.[5] that a nonclassical separable input state
can be changed to an entangled state in the output. The in-
Verse of such a process gives examples where, even though
tAe input state is nonclassical, the output could still be sepa-
rable. Some specific examples are given@rv].

Note added in proofRecently we became aware of a
related work[8] where the nonlocality and the nonclassical-
ity property of light with the beam splitter is investigated.
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