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Wave functions of a time-dependent harmonic oscillator in a static magnetic field
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In this paper, we solve for the exact wave functions of a two-dimensional harmonic oscillator under the
influence of a static magnetic field. This is done through the use of the so-called Ermakov invariants, similarity
transformed so as to obtain a time-independent Schro¨dinger equation. In the same manner, time-dependent
eigenvalues are also computed. It is shown that previous results for the invariants are particular cases for the
ones found in this work.
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I. INTRODUCTION

The quantum-mechanical problem of finding exact wa
functions for time-dependent harmonic oscillators~TDHO!,
as well as for oscillatorlike systems, when related to n
linear, dynamical, coupled and time dependent Ermakov
tems, is based on the determination of linear and Hermi
operators, called Ermakov invariants. These operators
constants of motion, subjected to quantum-mechanical su
position laws derived from the Ermakov pair solution
which can be similarity transformed so as to establish a H
mitian operator, which plays the role of a time-independ
Schrödinger’s equation, whose eigenfunctions are exac
found. The Ermakov pairs are then, time-dependent, cou
differential equations, related through the invariants.

The same problem has been treated through path
grals, approximation methods, and transformation techniq
@1–14#, as well as through a different transformation tec
nique called de Broglie–Bohm hydrodynamic interpretat
@24#. A review of all these techniques can be found in R
@22# and others references therein. But as propagators
invariants better represent the dynamical evolution for th
kinds of systems, their relationships have also been es
lished. The case of a TDHO under the influence of an os
lating magnetic field has already been studied through p
integrals@5,7#, but apparently its description through Erm
kov invariants has not been established. In this work, ba
on what has been established for the application of exte
fields on Ermakov systems@3,8,11,12#, we first apply the
invariant technique on a TDHO under the influence o
staticmagnetic field, thus finding its eigenfunctions and p
mitting additional studies to be realized towards oscillat
magnetic and electromagnetic fields. The choice of a st
magnetic field is due to the specification of a time-depend
auxiliary equation, which embodies in its definition a gene
frequency of oscillation that is derived from time-depend
coefficients, which involves time derivatives. Since the m
netic field is considered to be static, its time derivative va
ishes and does not change the definition of the auxili
equation. In the same manner, the relationship betw
propagators and invariants found in this work can be es
lished further.

This work is divided in the following way. In Sec. II we
define the time-dependent Hamiltonian, the equations of
tion, the Ermakov-Pinney auxiliary equation, and the inva
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ants to be used. By using Hartley and Ray techniques, in S
III the invariant operator in one dimension only is similari
transformed so as to get a time-independent Schro¨dinger’s
equation and compute its eigenfunctions. The establishm
of the system energy is achieved altogether, where a ma
element is calculated. Finally, in Sec. IV we discuss parti
lar cases derived from the formalism. We show that, wh
the external field is ‘‘switched off,’’ previous cases studied
literature are readily recovered.

II. SCHRÖ DINGER EQUATION, EQUATIONS OF
MOTION, AND THE ERMAKOV SYSTEM

The Hamiltonian to be considered is the well-known o
in which a charged particle of massM (t) is moving in an
axially, symmetric, static magnetic field@5#

H~ t !5
1

2M ~ t !
P21

1

2
v̄cLz1

1

2
M ~ t !V2~ t !~x21y2!,

~2.1!

whereP is the linear momentum operator,v̄c5eB0 /M (t)c
is thecyclotronic frequencyof oscillation,Lz is the angular-
momentum operator in the axial direction, andV(t) is the
general frequency of oscillation given by@5#

V2~ t !5 1
4 v̄c

2~ t !1v2~ t !. ~2.2!

Equations~2.1! and ~2.2! are obtained by a choice of a sp
cific gauge A5(2yB0/2,xB0/2,0), which is a Coulomb
gauge, since“•A50.

The equations of motion are obtained through Heis
berg’s equation

Q̇5
1

i\
@Q,H~ t !#1

]Q

]t
, ~2.3!

whereQ is an operator andH is the Hamiltonian. For the
two dimensions considered in this paper, these equations
@22#

ẍ1S~ t !ẋ1v2x52v̄cẏ, ~2.4a!

ÿ1S~ t !ẏ1v2y5v̄cẋ, ~2.4b!
©2002 The American Physical Society03-1
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where S(t)5Ṁ /M is a time-dependent dissipationlike p
rameter. Although Eqs.~2.4! do not take in consideration th
general frequencyV(t), they represent the equations of m
tion of a nonlinear, coupled, damped, and two-dimensio
harmonic oscillator, whose damping factor isS(t). Together
with the Ermakov-Pinney equation@15–18#

s̈1S~ t !ṡ1sV25
k

s3M2 , ~2.5!

wherek is a constant ands is ac number, the whole system
is coupled through the operators~Ermakov invariants! @22#

I ~x,t !5
1

2 H kS x

s D 2

1~sPx2M ṡx!22
1

4
s2M2v̄c

2x2J ,

~2.6a!

I ~y,t !5
1

2 H kS y

s D 2

1~sPy2M ṡy!22
1

4
s2M2v̄c

2y2J ,

~2.6b!

where Px and Py are canonical conjugate momenta alo
the x andy directions.

III. HARTLEY AND RAY TRANSFORMATION
TECHNIQUE

Since Eqs.~2.6! satisfy Eq.~2.3!, with İ50, giving rise to
a solution of the Schro¨dinger’s equation@2#, they have con-
stant eigenvalues and satisfy altogether an eigenvalue e
tion

Ifn,m~x,y,t !5ln,mfn,m~x,y,t !, ~3.1!

wheren and m are quantum numbers representing, resp
tively, the principal and angular momentum of the partic
Applying an unitary transformation in Eq.~3.1!, such that

fn,m8 ~x,y,t !5Ufn,m~x,y,t !, ~3.2!

where the unitary operator is given by

U†5expF iM ~ t !

2\r
ṙ~x21y2!G , ~3.3!

Eq. ~3.1! is similarity transformed to

I 8fn,m8 ~x,y,t !5ln,mfn,m8 ~x,y,t !. ~3.4!

In Eqs.~2.6a! and ~2.6b! and in Eq.~3.4! I 8 is split into

I 85U@ I ~x,t !1I ~y,t !#U15I 8~x!1I 8~y! ~3.5!

in such a way that we may use separately Eqs.~2.6a! and
~2.6b!, now settings5k1/4r. After the transformations hav
been worked out, operatorI 8 becomes

I 85 2
\2

2
r2S ]2

]x2 1
]2

]y2D1r2
eB0

2c
Lz1

1

2 F S x

r D 2

1S y

r D 2G .
~3.6!
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Defining new variablesh5x/r and j5y/r, the eigenvalue
equation finally becomes

H 2
\2

2 S ]2

]h2 1
]2

]j2D1
1

2
~h21j2!1r2

eB0

2c
LzJ ^h,juwn,m&

5ln,m^h,juwn,m&, ~3.7!

where we have introduced

^x,y,tufn,m8 &5
1

r
^h,juwn,m&, ~3.8!

and where we have made use of the Dirac notation. T
factor 1/r gives that the normalization condition

E
2`

1`E
2`

1`

dx dŷ fn,m8 ux,y,t&^x,y,tufn,m8 &

5E
2`

1`E
2`

1`U ]~x,y!

]~h,j!
Udhdj

1

r2 ^wn,muh,j&^h,juwn,m&

51 ~3.9!

holds. Hereu](x,y)/](h,j)u is the Jacobian.
Now Eq. ~3.8! represents the Schro¨dinger equation for a

time-independent, two-dimensional, harmonic oscillator un
der the influence of a static magnetic field, whose solutio
are known. By using cylindrical coordinates, the solution
given by @22#

wn,m~r ,f!5expS 2
r 2

2\ D S 1

A\
D r umu

1F1

3S umu11

2
2g;UmU11;

r 2

\ Dexp~ imf!,

~3.10!

wherer is the radius,g is a parameter comprising the ene
gies due to the angular momentum and the harmonic mo
on the planexy, and 1F1 is Kummer’s hypergeometric func
tion of first kind. With the aid of Eqs.~3.8! and ~3.2!, the
formal solution of the problem is@19,22#

fn,m~r ,f!5
1

r

r umu

A\ umu
expF iM ~ t !

2\ S rṙ1
i

M ~ t ! D r 2G
3exp~ imf! 1F1S umu11

2
2g;umu11;

r 2

\ D ,

~3.11!

where

ln,m5~2n1umu11!\1r2
e\

2c
B0m ~3.12!

are the eigenvalues. Since the general solution of the Sc¨-
dinger equation is given by@2#
3-2
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c~x,y,t !5(
n,m

Cn,meian,m~ t !fn,m~x,y,t !, ~3.13!

whereCn,m are time-independent coefficients, the rest of
calculation is to compute the time-dependent phasean,m(t),
which with the aid of Eq.~3.11! will give the exact evolution
in time of the general wave function@21#.

The phase is calculated through@1,2#

ȧn,m~ t !5
1

\ K fn,mU i\ ]

]t
2H~ t !Ufn,mL . ~3.14!

Introducing *2`
1`*2`

1`dx dyux,y&^x,yu51 and using
^x,y,tufn,m&5U1^x,y,tufn,m8 &, Eq. ~3.14! becomes

\ȧn,m~ t !5E
2`

1`

dx dŷ fn,m8 ux,y,t&

3S i\U
]

]t
U12UH~ t !U1D ^x,y,tufn,m8 &.

~3.15!

At this point a change of variables must be made, and
introduction of a suitable scale transformation@22# will sup-
press the time dependence of the mass in Eq.~2.5! and
modify the unitary operator in Eq.~3.3!. But since in a prac-
tical meaning this will not change the picture, the recovery
original variables will lead to

\ȧn,m~ t !5E
2`

1`

dx dŷ fn,m8 ux,y,t&H i\
]

]t
1

i\

r
ṙ

1
i\

r
ṙS x

]

]x
1y

]

]yD2
I 8

Mr2J ^x,y,tufn,m8 &.

~3.16!

A new change of variables, by introducinĝx,y,tufn,m8 &
51/r^h,juwn,m& leads to

\ȧn,m~ t !5E
2`

1`

dh djr2
1

r
^wn,muh,j&H i\

]

]t
1

i\

r
ṙ

1
i\

r
ṙS h

]

]h
1j

]

]j D2
I 8

Mr2J 1

r
^h,juwn,m&.

~3.17!

Now we are free to use angular variables in Eq.~3.17!. The
final result is

\ȧn,m~ t !5
1

2p E
0

1`E
0

2p

r dr df^wn,mur ,f&H i\
]

]t
1

i\

r
ṙ

1
i\

r
ṙS r

]

]r D2
I 8

Mr2J ^r ,fuwn,m&. ~3.18!

Again in Eq.~3.18! we have introduced another Jacobian a
a factor of 1/A2p, so that the normalization condition hold
02410
e
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Now Eq. ~3.18! has the same one-dimensional form stu
ied by Hartley and Ray@3#, Pedrosa@16#, and Pedrosa, Serra
and Guedes@17#, whose final result, after integration wit
respect to time, is

an,m~ t !52~2n1umu11!E
0

t dt8

M ~ t8!r2~ t8!

2
eB0

2c
mE

0

t dt8

M ~ t8!
, ~3.19!

wherer(t) is the solution of the Eq.~2.5! with s5k1/4r,
n50,1,2, . . . andm50,61,62,63, . . . .

IV. SPECIAL CASES

As a final analytical extension, we now discuss the spe
cases derived from the considerations introduced above.
take in consideration three special cases.

No magnetic field. When the magnetic field is zero—or,
it is suddenly ‘‘switched off’’—we haveB050 andA50, in
such a way that the equations of motion become the sys
of equations~2.4a!, ~2.4b! without the coupling term. The
only change in Eq.~2.5! is due to the frequency. The invar
ants~2.6a!, ~2.6b! become a two-dimensional form, each o
similar to the one-dimensional form found by Pedrosa@16#
and Pedrosa, Serra, and Guedes@17#. Equation~3.7! is re-
duced to a form without the angular-momentum opera
whose solution is given by Eq.~3.11!, and that can be also
obtained by a suitable choice of another unitary opera
@23#, besides the one given by Eq.~3.3!. In this case, the
effect of suppressing the application of the magnetic field
the same as changing the reference frame. The eigenva
are the same as in Eq.~3.12!, without the second term.

One-dimensional case. For the one-dimensional cas
when there is no field, we can consider only thex dimension
of the problem. The Ermakov system becomes the o
dimensional case considered by Pedrosa@16# and Pedrosa,
Serra, and Guedes@17#. A common physical application o
this case is the calculation of coherent states@16,17#.

Constant mass, no magnetic field. In one dimension, the
Ermakov system is given by the case studied by Reid
Ray @11# and by Lutzky@12#. The case of a constant mas
and a static magnetic field does not make sense, due to g
considered, since irrespective of using Cartesian, cyllin
cal, or spherical coordinates, there will always be cros
terms involving coordinates and momenta operators, thus
tablishing a two-dimensional character only. A physical a
plication of this case can be seen in Refs.@14# and @20#,
where the quantum motion of a particle in the Paul trap
studied.

V. CONCLUSIONS AND SUGGESTIONS

A two-dimensional, time-dependent, harmonic oscilla
under the influence of a static, axially oriented, magne
field was studied using an Ermakov system, obtained thro
standard techniques, where we have solved for the w
3-3
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functions. Here the time-dependent parameters are the m
and the natural frequency of oscillation, thus consider
previous works by Pedrosa@16# and Pedrosa, Serra, an
Guedes@17#. In this case, the linear momentum of the pa
ticle is canonical conjugate, and the vector potentialA is
chosen in such a way that the magnetic field points out in
axial direction.

As suggestions, we firmly believe that a time-depend
S

ca
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magnetic field, namely,B5B(x,t), can be applied to the
present case, and the Ermakov invariants, as well as
eigenfunctions, can be established, thus giving rise to a fi
relationship between the invariants and its respective pro
gators. This relationship can be established through the
proach of Khandekar and Lawande@4#, and the results may
be compared to the ones found by Nassar@5# and Bassalo
et al. @7#.
ys.
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