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Wave functions of a time-dependent harmonic oscillator in a static magnetic field
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In this paper, we solve for the exact wave functions of a two-dimensional harmonic oscillator under the
influence of a static magnetic field. This is done through the use of the so-called Ermakov invariants, similarity
transformed so as to obtain a time-independent Stihger equation. In the same manner, time-dependent
eigenvalues are also computed. It is shown that previous results for the invariants are particular cases for the
ones found in this work.
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[. INTRODUCTION ants to be used. By using Hartley and Ray techniques, in Sec.
Il the invariant operator in one dimension only is similarity

The quantum-mechanical problem of finding exact waveiransformed so as to get a time-independent Stihger’s
functions for time-dependent harmonic oscillat6FOHO), equation and compute its eigenfunctions. The establishment
as well as for oscillatorlike systems, when related to nonof the system energy is achieved altogether, where a matrix
linear, dynamical, coupled and time dependent Ermakov systlement is calculated. Finally, in Sec. IV we discuss particu-
tems, is based on the determination of linear and Hermitiatg! cases derived from the formalism. We show that, when
operators, called Ermakov invariants. These operators afée external field is “switched off,” previous cases studied in
constants of motion, subjected to quantum-mechanical supelterature are readily recovered.
position laws derived from the Ermakov pair solutions,
which can be similarity transformed so as to establish a Her- Il. SCHRODINGER EQUATION, EQUATIONS OF
mitian operator, which plays the role of a time-independent MOTION, AND THE ERMAKOV SYSTEM
Schralinger’s equation, whose eigenfunctions are exactly o _ )
found. The Ermakov pairs are then, time-dependent, coupled The Hamiltonian to be considered is the well-known one
differential equations, related through the invariants. in which a charged particle of madé(t) is moving in an

The same problem has been treated through path intéXially, symmetric, static magnetic fie[§]
grals, approximation methods, and transformation techniques L L .
[1-14], as well as through a different transformation tech- _ 5, t— 2 2, o
nique called de Broglie—Bohm hydrodynamic interpretation H(t)= 2M(t) Pt §w°L2+ EM(UQ (HO+YD,
[24]. A review of all these techniques can be found in Ref. (2.1
[22] and others references therein. But as propagators and
invariants better represent the dynamical evolution for thesevhereP is the linear momentum operatas.=eB,/M(t)c
kinds of systems, their relationships have also been estalis the cyclotronic frequencyf oscillation, L, is the angular-
lished. The case of a TDHO under the influence of an oscilmomentum operator in the axial direction, afdt) is the
lating magnetic field has already been studied through patheneral frequency of oscillation given b§]
integrals[5,7], but apparently its description through Erma-
kov invariants has not be_en established. Ir_1 thi_s work, based Q2(t)= %Eg(t)+w2(t). (2.2
on what has been established for the application of external

fields on Ermakov systemt3,8,11,13, we first apply the = Equations(2.1) and (2.2) are obtained by a choice of a spe-
invariant technique on a TDHO under the influence of agjfic gauge A= (—yBy/2xB,/2,0), which is a Coulomb
static magnetic field, thus finding its eigenfunctions and Pergauge, sincd - A=0.

mitting additional studies to be realized towards oscillating™ e equations of motion are obtained through Heisen-
magnetic and electromagnetic fields. The choice of a stati‘;,erg:S equation

magnetic field is due to the specification of a time-dependent

auxiliary equation, which embodies in its definition a general 1 JQ

frequency of oscillation that is derived from time-dependent Q== [QH{)]+—, (2.3
coefficients, which involves time derivatives. Since the mag- i at

netic field is considered to be static, its time derivative van- i ) o

ishes and does not change the definition of the auxiliary?hereQ is an operator and is the Hamiltonian. For the
equation. In the same manner, the relationship betweelvo dimensions considered in this paper, these equations are
propagators and invariants found in this work can be estad22]

lished further.

This work is divided in the following way. In Sec. Il we K+ (DX + 0x=—wY, (2.4a
define the time-dependent Hamiltonian, the equations of mo-
tion, the Ermakov-Pinney auxiliary equation, and the invari- Y+3(1) Y+ 0’y=wX, (2.4b
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where 3 (t)=M/M is a time-dependent dissipationlike pa- Defining new variables;=x/p and{=y/p, the eigenvalue
rameter. Although Eqg2.4) do not take in consideration the equation finally becomes

general frequency)(t), they represent the equations of mo- n2 | g2 P

tion of a nonlinear, coupled, damped, and two—dlmensmnal[ _ _( )+ Z (P +§2)+p ey §|¢n )

harmonic oscillator, whose damping factoi§t). Together 2 \an? r9§2
with the Ermakov-Pinney equatidd5-18
v ed :)\n,m<7/a§|(Pn,m>1 (3.7
k
T+3(t)o+ aﬂzzw, (2.5  where we have introduced
g

. . 1
wherek is a constant and is ac number, the whole system XYt dhm=—(m&enm, (3.9
is coupled through the operatai§rmakov invariants[22] ' p

1( /x\2 1 and where we have made use of the Dirac notation. The
I(x,t)= E[k(; +(oTL,— Mox)?— ZazMzaixz} , factor 1p gives that the normalization condition
(2.69

fj:f:dx dY( b mlX, Y, (XY, t b m)

2 1
+(oll,—May)?— ZazmzwﬁyZ}

(2.6b J J .

wherell, andIl, are canonical conjugate momenta along

I( t)—lik(x
Y2 [N oy 1
3.8 dy 5p2<<Pn,m| 7,7, €l en m)

the x andy directions. (3.9
holds. Hergd(x,y)/d(n,&)| is the Jacobian.
lll. HARTLEY AND RAY TRANSFORMATION Now Eg. (3.8 represents the Schiimger equation for a
TECHNIQUE time-independenttwo-dimensional, harmonic oscillator un-

. . o L der the influence of a static magnetic field, whose solutions
Slnqe Egs(2.6 sa.tllsfy qu.(2.3), W'.th |=0, giving rise to are known. By using cylindrical coordinates, the solution is
a solution of the Schdinger’s equatiori2], they have con- .
given by[22]

stant eigenvalues and satisfy altogether an eigenvalue equ
tion

r2\( 1
| yIml

| (%Y =N by, 3.1 #nnlf #)= ex"( Zﬁ) &
wheren and m are quantum numbers representing, respec- |m|+1 _ r2
tively, the principal and angular momentum of the particle. X\ = nm+1l5 expimg),
Applying an unitary transformation in E¢3.1), such that (3.10

Ly, tH=U X,Y,1), 3.2 ) , . .
Pnm(%Y:1)=Unm(xy.) 32 wherer is the radius,y is a parameter comprising the ener-

where the unitary operator is given by gies due to the angular momentum and the harmonic motion

on the plany, and ;F; is Kummer’s hypergeometric func-
tion of first kind. With the aid of Eqs(3.8) and (3.2), the
(3.9  formal solution of the problem i19,22)

iM (1) .
UT=eXF{ 2% p(X2+y?) |,

Eq. (3.1) is similarity transformed to 1 rim iM(t) [ . [

9@3 Y bnm(r, @)= WGX n PP+W r2

1" dh m(X,Y,1) =N mébp m(X,Y,1). (3.9
_ [m|+1 r?
In Egs.(2.6a and(2.6b) and in Eq.(3.4) |’ is split into xexpime) Fy| —5—- y;|m|+1;% :
I"=UlI(x,D+1(y, DU =1"00+1'(y) (3.9 (3.11)
in such a way that we may use separately E§69 and  where
(2.6b), now settingo = kl’ . After the transformations have
eh

been worked out, operatcbf becomes An,m=(2n+|m|+l)ﬁ+p22—c Bom (3.12

e ﬁzzﬂz 9? eBOL 1[(x\2 [y\?

ARy 2| +p* 2c “73llL) o)) are the eigenvalues. Since the general solution of the Schro

(3.6) dinger equation is given bj2]
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P(xy,t)=2, CprenmVe (xy,t), (3.13
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Now Eq.(3.18 has the same one-dimensional form stud-
ied by Hartley and Raj3], Pedros&16], and Pedrosa, Serra,
and Guede$17], whose final result, after integration with

whereC, ,, are time-independent coefficients, the rest of the/ ©SPECt 10 time, is

calculation is to compute the time-dependent phasg(t),

which with the aid of Eq(3.11) will give the exact evolution

in time of the general wave functid21].
The phase is calculated throufh 2]

) 1 o d
an,m(t):£<¢n,m |ﬁa_H(t)’¢n,m>- (3.19

Introducing  [TZfTZdx dyx,y)(x,y|=1 and
%Y t . m=U"(X,y,t| ¢} ), Eq.(3.14 becomes

using

+oo
hina(0)= | Oxay(gh oy

g
X muﬁu*—UH(t)U+ %Yt h m)-

(3.195

t dt’
an’m(t) = (2n+ |m| + l) fom
eBy t dt’
—Em Om, (319)

where p(t) is the solution of the Eq(2.5) with o=k%p,
n=0,1,2 ... andm=0,£1,£2,+3,... .

IV. SPECIAL CASES

As a final analytical extension, we now discuss the special
cases derived from the considerations introduced above. We
take in consideration three special cases.

No magnetic fieldWhen the magnetic field is zero—or, if
it is suddenly “switched off"—we have3,=0 andA=0, in
such a way that the equations of motion become the system

At this point a change of variables must be made, and thef equations(2.43, (2.4b without the coupling term. The

introduction of a suitable scale transformat{@2] will sup-
press the time dependence of the mass in @f) and

modify the unitary operator in E¢3.3). But since in a prac-

only change in Eq(2.5) is due to the frequency. The invari-
ants(2.63, (2.6b become a two-dimensional form, each one
similar to the one-dimensional form found by Pedrp$6]

tical meaning this will not change the picture, the recovery ofand Pedrosa, Serra, and Guef&g]. Equation(3.7) is re-

original variables will lead to
. +oo , o ih.
hian m(t)= f_ dx dy( ¢y, mlX,Y,t) 'ﬁﬁ‘L P

ih [ o d I ,
+Fp x5+yw _M_pz <X,ylt|¢n,m>'
(3.16

A new change of variables, by introducing,y,t| ¢, )
=1p(n,&l¢nm) leads to

_ b 1 o ih
han,m(t)zf_wdndgp ;(‘Pn,m|77a§> |ﬁﬁ+7p

Iﬁ( 9 0’») 1" 11
+Fp 775]-1—5(9—% _M_p2 ;<77a§|€0n,m>'
(3.17

Now we are free to use angular variables in E217). The
final result is

. 1 (+> (2= 9 ih,
hann(= 5= | | rdrdatennlr. )| in g+

I ’

+—p|r— _M_p2]<rv¢|‘9n,m>- (3.18

if d
p oar

duced to a form without the angular-momentum operator,
whose solution is given by Eq3.11), and that can be also
obtained by a suitable choice of another unitary operator
[23], besides the one given by E(B.3). In this case, the
effect of suppressing the application of the magnetic field is
the same as changing the reference frame. The eigenvalues
are the same as in E(.12, without the second term.

One-dimensional caseFor the one-dimensional case
when there is no field, we can consider only ih&imension
of the problem. The Ermakov system becomes the one-
dimensional case considered by Pedrfsd] and Pedrosa,
Serra, and Guedd4.7]. A common physical application of
this case is the calculation of coherent stdteg17].

Constant mass, no magnetic field one dimension, the
Ermakov system is given by the case studied by Reid and
Ray [11] and by Lutzky[12]. The case of a constant mass
and a static magnetic field does not make sense, due to gauge
considered, since irrespective of using Cartesian, cyllindri-
cal, or spherical coordinates, there will always be crossed
terms involving coordinates and momenta operators, thus es-
tablishing a two-dimensional character only. A physical ap-
plication of this case can be seen in Rdf$4] and [20],
where the quantum motion of a particle in the Paul trap is
studied.

V. CONCLUSIONS AND SUGGESTIONS

A two-dimensional, time-dependent, harmonic oscillator
under the influence of a static, axially oriented, magnetic

Again in Eq.(3.18 we have introduced another Jacobian andfield was studied using an Ermakov system, obtained through
a factor of 14/2r, so that the normalization condition holds. standard techniques, where we have solved for the wave
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functions. Here the time-dependent parameters are the maggagnetic field, namelyB=B(x,t), can be applied to the
and the natural frequency of oscillation, thus consideringpresent case, and the Ermakov invariants, as well as its
previous works by Pedrosgl6] and Pedrosa, Serra, and eigenfunctions, can be established, thus giving rise to a final
Gueded 17]. In this case, the linear momentum of the par-relationship between the invariants and its respective propa-
ticle is canonical conjugate, and the vector potenfials  gators. This relationship can be established through the ap-
chosen in such a way that the magnetic field points out in aproach of Khandekar and Lawan{i], and the results may
axial direction. be compared to the ones found by Nagd&drand Bassalo
As suggestions, we firmly believe that a time-dependengt al. [7].
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