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Quantization of constrained systems using the WKB approximation
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A general theory for solving the Hamilton-Jacobi partial differential equations for constrained Hamiltonian
systems is proposed. The quantization of constrained systems is then applied using the WKB approximation.
The constraints become conditions on the wave function to be satisfied in the semiclassical limit.
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I. INTRODUCTION

For a physical system whose phase space consists oN
degrees of freedom,q5(q1 , . . . ,qN); p5(p1 , . . . ,pN),
constraints appear when some relations exist between a
set of the coordinates and momenta. This means that som
the momenta are not independent. When this happens
Lagrangian of the system is called singular; otherwise i
called regular@1,2#.

It was Dirac@3,4# who first set up a formalism for treatin
singular systems and the constraints involved for the purp
of quantizing his field, with special emphasis on the grav
tional field.

Another powerful approach—the canonical—has been
veloped for investigating singular systems@5–7#. This hinges
on defining an equivalent Lagrangian in phase space whic
constructed by introducing generalized momenta. For sin
lar systems, however, these momenta are not indepen
because of the presence of constraints. The formulation
leads to a set of Hamilton-Jacobi partial differential equ
tions ~HJPDEs!, and the equations of motion are written
total differential equations of many variables.

The construction of HJPDEs for constrained Hamilton
systems is of prime importance. The Hamilton-Jacobi the
provides a bridge between classical and quantum mecha
The principal interest in this theory is based on the hope
it might provide some guidance concerning fields. In t
Brief Report we wish to extend the Hamilton-Jacobi form
lation to constrained dynamical systems and to quan
these systems using the WKB approximation.

II. THE HAMILTON-JACOBI FORMULATION

We shall first review briefly the formulation of th
Hamilton-Jacobi partial differential equations for constrain
systems. The starting point is a singular LagrangianL

5L(qi ,q̇i), i 51,2, . . . ,N, such that the rank of the Hessia
matrix is N2R, R,N. Hence the generalized momentapi ,
corresponding to the generalized coordinatesqi , are defined
as
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pa5
]L

]q̇a

, a51,2, . . . ,N2R, ~1!

pm5
]L

]q̇m

, m5N2R11, . . . ,N. ~2!

One can solve Eq.~1! for the velocitiesq̇a as

q̇a5wa~qi ,q̇m ,pa!. ~3!

Substituting Eq.~3! in Eq. ~2!, we get

Hm8 ~qi ,pi !5pm1Hm50, n5N2R11, . . . ,N, ~4!

which are called primary constraints@3,4#. Here and through-
out the Brief Report, Einstein’s summation rule for repea
indices is used.

Following @6,7#, the corresponding set of the HJPDEs c
be written as

Ha8 S qb ,qa ,pm5
]S

]qm
,pa5

]S

]qa
D50,

a,b50,N2R11, . . . ,N, ~5!

S(t,qa ,qm) being the Hamilton-Jacobi function.

III. THEORY FOR DETERMINING THE HAMILTON-
JACOBI FUNCTION

Under certain conditions it is possible to separate the v
ables in the Hamilton-Jacobi equations; the solution can t
always be reduced to quadratures@8,9#. In practice, the
Hamilton-Jacobi technique becomes a useful computatio
tool only when such a separation can be effected. In gene
a coordinateqi is said to be separable in the Hamilton-Jao
equations when Hamilton’s principal function can be sp
into two additive parts, one of which depends only on t
coordinate, whereas the second is entirely independent oqi .
Thus, we can guess a general solution for Eq.~5! in the form

S~qa ,qm ,t !5 f ~ t !1Wa~Ea ,qa!1 f m~qm!1A, ~6!
©2002 The American Physical Society01-1
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whereEa are the (N2R) constants of integration andA is
some other constant. Hereqm are treated as independent va
ables, just like the timet.

Once we have found the Hamilton-Jacobi functionS, the
equations of motion can be obtained in the manner of reg
systems, using the so-called canonical transformations@10#,
as follows:

la5
]S

]Ea
, ~7!

pi5
]S

]qi
, ~8!

wherela are constants that can be determined from the
tial conditions.

Equation~7! can be solved to furnishqa in terms ofla ,
Ea , qm , andt: qa5qa(la ,Ea ,qm ,t), and the momenta ca
be determined using Eq.~8!: pi5pi(la ,Ea ,qm ,t).

Two remarks are in order here. The first is that, if t
HamiltonianHm does not depend onpa , the separation of
variables will be straightforward. The second is that ifHm
depends onpa and H0 depends onqm , the separation of
variables will not be achieved directly. In this case a suita
change of variables that combineqa andqm should be intro-
duced. Then one can redefine the Lagrangian in terms o
new variables and restart the problem.

IV. THE WKB APPROXIMATION

It is well known that the Hamilton-Jacobi equation f
unconstrained systems leads naturally to a semiclassica
proximation, namely the WKB approximation, that is ve
successful in integrable problems and, since the early day
quantum mechanics, in determining the approximate spe
of bound-state problems for certain potentials@11,12#. We
shall see that this is applicable for constrained system
well.

The Schro¨dinger equation in one dimension for a sing
particle in a potentialV(q) reads

i\
]c~q,t !

]t
5F2

\2

2

]2

]q2
1V~q!Gc~q,t !. ~9!

We can rewrite this equation by usingc(q,t)
5exp@iS(q,t)/\# @12#:

2
]S

]t
c5F1

2 S ]S

]qD 2

2
i\

2

]2S

]q2
1VGc.

AssumingcÞ0, this leads to

2
]S

]t
5

1

2 S ]S

]qD 2

2
i\

2

]2S

]q2
1V. ~10!

Taking the formal limit \→0, we obtain the classica
Hamilton-Jacobi equation
02410
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2
]S

]t
5

1

2 S ]S

]qD 2

1V. ~11!

Thus, in this limit, quantum mechanics reduces to class
mechanics.

Next, consider the expansionS(q,t)5S01\S11\2S2
1•••. This is the so-called\ expansion or semiclassica
expansion. Substituting it into Eq.~10!, we find

2
]S0

]t
5

1

2 S ]S0

]q D 2

1V,

2
]S1

]t
5

1

2 F2 i
]2S0

]q2
12S ]S0

]q D S ]S1

]q D G , ~12!

and similarly for higher terms in\. The leading equation ha
only S0, and it is exactly the same as the Hamilton-Jac
equation. Once one has solved these equations starting
S0 ,S1 , . . . , one hassolved, in effect, for the wave function
c in terms of a systematic expansion in\.

The WKB approximation is used mostly for the time
independent case; in other words, for an eigenstate of en
E. Then the wave function has the ordinary time depende
e2 iEt/\. For one-dimensional problems, the Hamilton-Jac
functionS takes the formS(q,t)5S(q)2Et. Therefore only
S0 has the time dependenceS0(q,t)5S0(q)2Et, while
higher-order terms do not depend on time.

The lowest termS0 in Eq. ~12! satisfies the Hamilton-
Jacobi equation

E5
1

2 S ]S0

]q D 2

1V. ~13!

This differential equation can be solved immediately to yie

S0~q!56E A2@E2v~q8!#dq85E p~q8!dq8. ~14!

Once we knowS0, we can solve forS1. Starting from Eq.
~12! and using ]S1 /]t50, we find S1(q)5 ( i /2) lnp(q)
1const.

Therefore the general solution of the Schro¨dinger equa-
tion up to this order is

c~q,t !5
c

Ap~q!
expF6

i

\E A2@E2V~q8!#dq8Ge2 iEt/\;

the overall constantc is, of course, undetermined from th
analysis.

We have so far considered the one-dimensional probl
The transformation from the one-dimensional to t
N-dimensional case is achieved by expanding the wave fu
tion c as

c~qi ,t !5F)
i 51

N

c0i~qi !GeiS(qi ,t)/\, c0i~qi ![
1

Ap~qi !
.

For constrained systems, the rank of the Hessian matr
N2R. Thus, the wave functionc reduces to
1-2
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c~qa ,qm ,t !5F )
a51

N2R

c0a~qa!GeiS(qa ,qm ,t)/\. ~15!

This wave function represents our main result. It satisfies
following conditions:Ĥ08c50, Ĥm8 c50.

In passing, it is interesting to use the representation

c5A~qW ,t !expS iS~qW ,t !

\
D ,

which is simply the so-called Madelung transformation@13#.
Substituting back into the Schro¨dinger equation~9!, one can
split up the resulting equation into two real equations
separating the real and imaginary parts.

The real part leads to the equation

]S

]t
1

1

2m
~¹W S!21V2

\2

2m

¹2A

A
50.

This is the quantum Hamilton-Jacobi equation. In addition
the kinetic energy and the classical potentialV, the Hamil-
tonian contains another term, the well-known quantum
tential Q:

Q~qW ,t ![2
\2

2m

¹2A

A
.

For constrained systems, the quantum potential can
treated in the same manner as for regular systems. Cle
setting Q50, one gets back the classical Hamilton-Jac
equation. This means that the classical limit can be defi
as the case in which the quantum potential may be s
pressed.

On the other hand, the imaginary part gives the continu
equation

]A2

]t
1¹W •S A2

¹W S

m
D 50.

Here A2(qW ,t) is the probability density, and the expressi
inside the parentheses represents the standard definitio
the current density.

V. AN ILLUSTRATIVE EXAMPLE

Consider the following singular Lagrangian:

L5
1

2
~ q̇1

21q̇2
2!1q̇3

21~ q̇12q̇22q3!q̇312q11q21q3 .

~16!

The corresponding generalized momenta are

p15q̇11q̇3 , p25q̇22q̇3 ,

p35p12p22q352H3 . ~17!

Here the primary constraint is represented by the third eq
tion of ~17!.
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The Hamiltonian H0 is calculated asH05 1
2 (p1

21p2
2)

22q12q22q3 . The corresponding set of HJPDEs~5! reads

H085
]S

]t
1

1

2 F S ]S

]q1
D 2

1S ]S

]q2
D 2G22q12q22q350,

H385S ]S

]q3
D2S ]S

]q1
D1S ]S

]q2
D1q350. ~18!

These are two coupled partial differential equations.
To simplify the problem, let us change the var

ables according tou5q11q3 , v5q22q3 . Rewriting the
Hamiltonian and the HJPDEs in terms of these new variab
we have

H05
1

2
~pu

21pv
2!22u2v;

H085p01H05
]S

]t
1

1

2 F S ]S

]uD 2

1S ]S

]v D 2G22u2v

50, ~19!

H385p31H35S ]S

]q3
D1q350.

The Hamilton-Jacobi functionS @Eq. ~6!# can then be de-
termined by

S~u,v,q3 ,t !5 f ~ t !1W1~u,E1!1W2~v,E2!1 f 3~q3!1A.

~20!

Since the HamiltonianH0 is time independent, one can writ
f (t)52(E11E2)t.

The first equation of~19! can now be written as

2E12E21F1

2 S ]W1

]u D 2

22uG1F1

2 S ]W2

]v D 2

2vG50.

Separation of variables in this equation leads to

W1~u,E1!5E A2~E112u!du,

W2~v,E2!5E A2~E21v !dv.

From the second equation of~19!, one findsf 352 1
2 q3

2.
With these results, the Hamilton-Jacobi function becom

S52~E11E2!t1E A2~E112u!du

1E A2~E21v !dv2
1

2
q3

21A. ~21!

The solution for the generalized coordinates can be obta
from the transformation@Eq. ~7!#
1-3
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l15
]S

]E1
52t1E du

A2~E112u!
,

l25
]S

]E2
52t1E dv

A2~E21v !
.

These two equations can readily be solved to give

q152q32
E1

2
1t212l1t1l1

2,

q25q32E21
1

2
t21l2t1

1

2
l2

2 . ~22!

The other half of the equations of motion—the mome
pi—can be determined using Eq.~8!, after substituting the
results forq1 andq2. We then have

p15
]S

]q1
5A2~E112u!52t12l1 ,

p25
]S

]q2
5A2~E21v !5t1l2 , ~23!

p35
]S

]q3
5t2q312l12l2 .

One gets the same results using the canonical met
These results can also be obtained using Dirac’s approa

The wave function~15! for this example can be dete
mined as

c~u,v,q3 ,t !5c0u~u!c0v~v !eiS/\, ~24!

where

c0u~u!5
1

Apu

5@2~E112u!#21/4,

c0v~v !5
1

Apv

5@2~E21v !#21/4.
s

02410
a
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Now let us apply the HJPDEs~19! to the wave function
c, after representing them as operators:

H08c5F\

i

]

]t
2

\2

2 S ]2

]u2
1

]2

]v2D 22u2vGc,

H38c5F\i ]

]q3
1q3Gc. ~25!

After some algebra, we have

H08c5F2~E11E2!2
5\2

2
@2~E112u!#22

1
1

2
@2~E112u!#2

5\2

8
@2~E21v !#22

1
1

2
@2~E21v !#22u2vGc, ~26!

H38c5@2q31q3#c.

Taking the limit \→0 in Eq. ~26!, we get H08c[0, H38c
[0.

VI. CONCLUSION

This work has aimed at, first, shedding further light
constrained systems, especially on determining
Hamilton-Jacobi functionS; and, second, quantizing thes
systems using the WKB approximation.

The HJPDEs for constrained systems are obtained u
the canonical method@6,7#. In this work the Hamilton-Jacob
function S in configuration space is determined in the sa
manner as for regular systems. FindingS enables us to ge
the solutions of the equations of motion. These solutions
obtained in terms of the time and the coordinates that co
spond to dependent momenta; these are treated as inde
dent variables, just like the timet.

This is followed by determining a suitable wave functio
for constrained systems. The constraints become condit
on the wave function to be satisfied in the semiclassical lim
in addition to the Schro¨dinger equation.
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