PHYSICAL REVIEW A 66, 024101 (2002
Quantization of constrained systems using the WKB approximation
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A general theory for solving the Hamilton-Jacobi partial differential equations for constrained Hamiltonian
systems is proposed. The quantization of constrained systems is then applied using the WKB approximation.
The constraints become conditions on the wave function to be satisfied in the semiclassical limit.
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I. INTRODUCTION oL
p.=—, a=12,...N—-R, (1)
For a physical system whose phase space consistdlof 2 99a
degrees of freedomg=(qq,....an); P=(P1:---,PN)s
constraints appear when some relations exist between a sub- JL
set of the coordinates and momenta. This means that some of Pu=""» wm=N-R+1,...N. 2

the momenta are not independent. When this happens, the 9

Lagrangian of the system is called singular; otherwise it is
called regulaf1,2].
It was Dirac[3,4] who first set up a formalism for treating

One can solve Eq(1) for the velocitiesq, as

singular systems and the constraints involved for the purpose Ga=Wa(0 qﬂ Pa). 3
of quantizing his field, with special emphasis on the gravita- o _
tional field. Substituting Eq(3) in Eq. (2), we get
Another powerful approach—the canonical—has been de- )
veloped for investigating singular systefs-7]. This hinges H,(di,pi)=p,tH,=0, »=N-R+1,...N, (4

on defining an equivalent Lagrangian in phase space which is

constructed by introducing generalized momenta. For singuhich are called primary constrair{t3,4]. Here and through-
lar systems, however, these momenta are not independe®@t the Brief Report, Einstein’s summation rule for repeated
because of the presence of constraints. The formulation theRdices is used.

leads to a set of Hamilton-Jacobi partial differential equa- Following[6,7], the corresponding set of the HJIPDEs can
tions (HJPDES, and the equations of motion are written as be written as

total differential equations of many variables.

The construction of HIPDEs for constrained Hamiltonian H _ JS _ JS -0
systems is of prime importance. The Hamilton-Jacobi theory @ qﬁ’qa’p“_@’pa_a_qa -
provides a bridge between classical and quantum mechanics.
The principal interest in this theory is based on the hope that a,B=0N—R+1,... N, (5)

it might provide some guidance concerning fields. In this
Brief Report we wish to extend the Hamilton-Jacobi formu—s(t,qa,qﬂ) being the Hamilton-Jacobi function.
lation to constrained dynamical systems and to quantize

these systems using the WKB approximation. lIl. THEORY FOR DETERMINING THE HAMILTON-

JACOBI FUNCTION

Il. THE HAMILTON-JACOBI FORMULATION Under certain conditions it is possible to separate the vari-
i _ _ . ables in the Hamilton-Jacobi equations; the solution can then
We shall first review briefly the formulation of the always be reduced to quadraturf®9]. In practice, the
Hamilton-Jacobi partial differential equations for constrainedy 5 miiton-Jacobi technique becomes a useful computational
systems. The starting point is a singular Lagranglan (o] only when such a separation can be effected. In general,
=L(q;,qi), i=1,2,... N, such that the rank of the Hessian a coordinatey; is said to be separable in the Hamilton-Jaobi
matrix isN—R, R<N. Hence the generalized momeqta  equations when Hamilton’s principal function can be split
corresponding to the generalized coordinajesare defined into two additive parts, one of which depends only on the
as coordinate, whereas the second is entirely independemt of
Thus, we can guess a general solution for Gin the form

*Email address: eqab@mutah.edu.jo S(0a,0, 1) =f(1) + W,(E4,02) +f,.(0,) +A, (6)
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some other constant. Hegg are treated as independent vari- Tt 2 % (11
ables, just like the time.
Once we have found the Hamilton-Jacobi funct®rthe  Thus, in this limit, quantum mechanics reduces to classical

equations of motion can be obtained in the manner of regulaghechanics.

whereE, are the N—R) constants of integration andl is S 1(&8)2

systems, using the so-called canonical transformatfih@k Next, consider the expansioB(q,t)=S,+#%S;+%3%S,
as follows: +.... This is the so-calledi expansion or semiclassical
45 expansion. Substituting it into E¢10), we find
NG, 7 -5 1(‘950) +V
ot aq '
s ® ,
Pi=-—,
s ] _(9_8123[_ ﬁ.,.z(ﬁ)((y_sl) (12)
ot 2 99> dq )\ dq
where\ , are constants that can be determined from the ini-
tial conditions. and similarly for higher terms ifi. The leading equation has
Equation(7) can be solved to furnish, in terms ofA,,  only Sy, and it is exactly the same as the Hamilton-Jacobi
Ea, 0., andt: g,=0a(Na,E4,0,,t), and the momenta can equation. Once one has solved these equations starting from
be determined using E@8): p;=pi(Na,Ea,q,.1). Sy,S1, - - ., One hasolved, in effect, for the wave function

Two remarks are in order here. The first is that, if they in terms of a systematic expansionin
HamiltonianH,, does not depend op,, the separation of The WKB approximation is used mostly for the time-
variables will be straightforward. The second is thatlif independent case; in other words, for an eigenstate of energy
depends orp, and Hy depends org,,, the separation of E. Then the wave function has the ordinary time dependence
variables will not be achieved dlrectly In this case a suitablee™ """, For one-dimensional problems, the Hamilton-Jacobi
change of variables that combing andq, should be intro- functlonStakes the forn(q,t) = S(q) — Et. Therefore only
duced. Then one can redefine the Lagrangian in terms of thg, has the time dependencg,(q,t)=Sy(q)—Et, while

new variables and restart the problem. higher-order terms do not depend on time.
The lowest termS, in Eq. (12) satisfies the Hamilton-
IV. THE WKB APPROXIMATION Jacobi equation
It is well known that the Hamilton-Jacobi equation for 0780
unconstrained systems leads naturally to a semiclassical ap- E= aq +V. (13

proximation, namely the WKB approximation, that is very
successful in integrable problems and, since the early days dhis differential equation can be solved immediately to yield
guantum mechanics, in determining the approximate spectra

of bound-state problems for certain potentigld,12. We :+J' PTE—o(a)d ,:f Nda'. (14
shall see that this is applicable for constrained systems as Sola) == [E-v(@")]dq p(a’)da’. (14
well.

Once we knowS,, we can solve folS;. Starting from Eq.

T hial o . ion § inal
e Schrdinger equation in one dimension for a single (12) and using 95, /ot—0, we find Sy(q)= (i/2) Inp()

particle in a potentiaV(q) reads

+const.
J(a1) 2 g2 Therefore the general solution of the Sdatirger equa-
3 at' =5 —+V(q) P(q,t). (9)  tion up to this order is
a9

We can rewrite this equation by usingy(q,t) P(a,t)= \/— F{ sz[E V(q')]dq’ |e”"EV;
=exdiS(q,t)/A] [12]: p(a

the overall constant is, of course, undetermined from this

JS 1(4S\? ih 4°S analysis.
w1215 T2 e VY We have so far considered the one-dimensional problem.
d The transformation from the one-dimensional to the
Assumingy#0, this leads to N-dlmenS|onaI case is achieved by expanding the wave func-
tion ¢ as
S 1 as)z i aZS+V 10 N 1
——=5|l=] 5 5tV )= (q) | 'St v ()= _
at 2 Jq 2 aqz df(ch ) |1:[1 1//O|(Q|) lﬂo|(q|) p(ql)
Taking the formal limitZ—0, we obtain the classical For constrained systems, the rank of the Hessian matrix is
Hamilton-Jacobi equation N—R. Thus, the wave functiog reduces to
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N-R

Qs Adu 4= { aE[l $oa(da)

. The HamiltonianH, is calculated asHq=%(pi+ p3)
e'Sda.au Vi (15)  —2q,—q,—qs. The corresponding set of HIPDES reads

2 2
This wave function represents our main result. It satisfies the H('):&_S+ E[(ﬁ) + (a_s) —~20;—0,—03=0,
following conditions:Hy%=0, H/,=0. ot 2190, 992
In passing, it is interesting to use the representation
H’—<§S> (aS +(as +03=0 (18
¥ 1aqs J0, ZeP) ="

- iS(q,t

¢=A(q,t>exp< “ )).
These are two coupled partial differential equations.
which is simply the so-called Madelung transformatjas). To simplify the problem, let us change the vari-
Substituting back into the Schiimger equation(9), one can  ables according tai=q;+0dsz, v=0,—0z. Rewriting the
split up the resulting equation into two real equations byHamiltonian and the HIPDEs in terms of these new variables
separating the real and imaginary parts. we have
The real part leads to the equation

1
S 1 - 12 V2A Ho=5 (Pi+p;) —2u—v;
at+2m(vs) +V om A =0.
dS\? [ 4S)\?

This is the quantum Hamilton-Jacobi equation. In addition to Ho=po+Ho= (%) +(5)
the kinetic energy and the classical potentalthe Hamil-
tonian contains another term, the well-known quantum po- =0, (19
tential Q:

S 1

E"Pz —2u—v

)
- h? V2A H;=ps+H =<— +03=0.
QA== 5= —— TP gy %

The Hamilton-Jacobi functio8 [Eq. (6)] can then be de-

For constrained systems, the quantum potential can be
rmined by

treated in the same manner as for regular systems. Clearlgf

setting Q=0, one gets back the classical Hamilton-Jacobi _
equation. This means that the classical limit can be defined S0 Ge, =0T Wi (U,By)+Wo(v,Bo) +15(qs) +A.

as the case in which the quantum potential may be sup- (20)
pressed. o , . Since the Hamiltoniali,, is time independent, one can write
On the other hand, the imaginary part gives the contlnwtyf(t) — —(E,+E)t.
equation The first equation o0f19) can now be written as
aAze(ﬁs) 1/ oW, |2 1(oW,\2
—+V.|A>—]|=0. _E.— d (it —1 272 =
at m El E2+ 2 au ) ul+ 2( v ) [ 0.
Here A%(q,t) is the probability density, and the expression Separation of variables in this equation leads to
inside the parentheses represents the standard definition of
the current density.
Wl(u,E1)= J’ \ 2(E1+ ZU)dU,
V. AN ILLUSTRATIVE EXAMPLE
Consider the following singular Lagrangian: WZ(U,EZ)ZJ V2(Ep+v)du.
1. . . ) : )
L= §(CI§+CI§)+Q:§+(Q1—QZ—Q3)Q3+ 20+ 02+ 0. From the second equation ¢f9), one findsf;= —1q2.
(16) With these results, the Hamilton-Jacobi function becomes
The corresponding generalized momenta are o —(E1+E2)t+J 2(E,+ 20du
P1=0:1+03, P2=02—0a, 1
+f V2(Ep,+v)dv— =g3+A. (22)
P3=P1—P2—03= —Hs. 17 2 2

Here the primary constraint is represented by the third equaFhe solution for the generalized coordinates can be obtained
tion of (17). from the transformatiofiEq. (7)]
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Ny

du
t+ | —,
V2(E1+2u)

. 0S _ H_J’ dv
20K, V2(Ey+v)

These two equations can readily be solved to give

E,

G=—0— +124+ 2N t+ 23,

1, 1,
Q2ZQ3_E2+ Et +)\2t+_)\2

5 (22

The other half of the equations of motion—the momenta
pi—can be determined using E(B), after substituting the

results forq; andqg,. We then have

4S
Pi=7g = V2(E +2u)=2t+2),

1
(23

)
p2=H=\/2(E2+v)=t+)\2,
2

S
= =t—(3+ 2\, \,.
P3 s ds 17 A2
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Now let us apply the HIPDE4 9) to the wave function
i, after representing them as operators:

(25

After some algebra, we have
, 5#2 .
Hoy=| —(E1+Ey— 7[2(E1+ 2u)]

1 5#2 -
+ 5[2(El+ 2u)]— ?[Z(Ez—i-v)] 2

+%[2(E2+v)]—2u—v U, (26)

Hay=[—0as+0qs]y.

Taking the limitA—0 in Eq. (26), we getH,¢=0, Hi¢
=0.

VI. CONCLUSION

This work has aimed at, first, shedding further light on

One gets the same results using the canonical methogonstrained —systems, especially on determining the
These results can also be obtained using Dirac’s approachHamilton-Jacobi functior§§ and, second, quantizing these

The wave function(15) for this example can be deter-

mined as
P(U,v,03,t) = ou(U) o, (v) 'S, (24

where

ou(u) = i=[2(E1+ 2u)] 7,
Vpu

You(v)= ——==[2(E;+v)]"**

%| =
<

systems using the WKB approximation.

The HJPDEs for constrained systems are obtained using
the canonical metholb,7]. In this work the Hamilton-Jacobi
function Sin configuration space is determined in the same
manner as for regular systems. FindiSgnables us to get
the solutions of the equations of motion. These solutions are
obtained in terms of the time and the coordinates that corre-
spond to dependent momenta; these are treated as indepen-
dent variables, just like the time

This is followed by determining a suitable wave function
for constrained systems. The constraints become conditions
on the wave function to be satisfied in the semiclassical limit,
in addition to the Schinger equation.
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