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Quantum-trajectory approach to stochastically induced quantum-interference effects
in coherently driven two-level atoms
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Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the
guantum-trajectory method. A method is developed for calculating the resonance fluorescence spectra from
numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can
unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is
responsible for quantum interference between the related transitions resulting in anomalous modifications of
the resonance fluorescence spectra.
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[. INTRODUCTION channels. In Ref[16], it was pointed out that these effects
can also occur in the case of a nonmonochromatic, e.g.,
Quantum interference is one of the most intriguing phePhase-diffusing laser field. Indeed, resonance fluorescence
nomena of quantum mechanics. Over the past decade sevepREctra with the phase-diffusing laser field have been calcu-
effects in atom-light interaction, which have their origin in !atéd by Zhouet al. [17], who obtained the same results as

guantum interference, have been predicted and demonstratg’ wiik et al. [16]. What in both cases appears essential for

experimentally[1]. Some characteristic examples are reduc9 servation of quantum interference and anomalous spectra
P : P s that the incoherent perturbatigeollisions or phase diffu-

tion and cancellation of absorptid2—6] and spontaneous  gjgn of the light field dominates over the Rabi oscillations.
emission [7-10], and narrow resonances in fluorescence These two examples raise an intriguing question, how can
[11,12. A prerequisite of quantum interference between the stochastic noise lead to stable time correlation resulting in
transition channels is the existence of some stable time couantum interference in two-level systems.

relation of the atomic system under consideration. A possible Quantum-trajectory methods are widely used powerful
way of achieving such correlation is the application of co-tools for treating the stochastic evolution of open quantum
herent coupling in a multilevel atomic system. Although Systemg§18-23. They can provide the solution of any mas-
some interference effects have also been found in two-levdf! equation that is of Lindblad forrfi24—-27. Moreover,

systems interacting with two light bearfis3], so far quan- individual quantum trajectories, as state evolutions condi-
' &oned on a particular sequence of observed events, make it

three-level svstems possible to reveal phase correlations in the given system.
I ystems. - h bati q h While resonance fluorescence spectra can be adequately
Generally, various incoherent perturbations destroy the,oqeled by the master equation, we find that the use of

phase correlation between the states involved in the interfegyantum trajectories provides more physical insight. Be-

ing transition pathways and the coherently induced quanturgides, this method allows one to study the stochastic evolu-
interference disappears. However, under special circumtion of the atomic system and, eventually, reveal the phase
stances, even incoherent perturbation can be responsible foorrelation of its dressed states. For that reason, in this paper
quantum interference. For example, quantum interferencee analyze in detail the system of stochastically perturbed

can appear in three-level systems due to collisions. Such efwo-level atoms applying both the master equation and the
fects are known as pressure-induced extra resonances agdantum-trajectory method to explain quantum-interference

have been studied in four-wave mixihy4,15. effects and the underlying physical processes.

Recently, in an experiment with coherently driven two-  The paper is organized as follows: In Sec. Il we introduce
level atoms, anomalous resonance fluorescence spectra wengr model for the system of a coherently driven and incoher-
found when the collisional relaxation rate exceeded the Ratently perturbed two-level atom. In Sec. Il the method of
frequency[16]. The spectra were of the form of a pressure-quantum trajectories is applied to the system and a method is
broadened line with a narrow, not collisionally broadeneddeveloped for calculating the spectrum from the simulation
dip. These results, unexpected in a collisionally perturbedesults. Section IV presents the numerical results for the
two-level system, were interpreted as a consequence of quagpectra and compares them with the analytical solution of the
tum interference between different dressed-state transitiomaster equation. In Sec. V the phase difference between the

dressed states of an atom is analyzed and the phase correla-
tion is revealed. It is shown that the phase correlation
*Present address: DESY Zeuthen, Platanenallee 6emerges as the noise magnitude increases and the related
D-15738 Zeuthen, Germany. quantum-interference effect is discussed.
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The system of incoherently perturbed and coherently 2
driven two-level atoms can be modeled in several ways. Here
we make a rather general assumption that the stochastic peindA = w,— w, is the laser detuning.
turbation is responsible for fluctuations of the atomic reso- The mean atomic HamiltoniafH ,, ) in the dressed-state
nance frequency that obeys the Gaussian statistics. In Paasis|1), [2) can be written as
ticular, such fluctuations may result from, e.g., elastic,
dephasing collisions. _

In our model the Hamiltonian of the strongly, coherently (Hau) =Ba|1)(1]+E2l2)(2], @

driven atom subjected to stochastic perturbation has the form h
where

IIl. THE MODEL 1 rGQ

HaL=%[wa(t) — 0 ]S+ 3hQ(S™ +S") (1)
E;,=F3hVO2+AZ
in the interaction picture, where,(t) = w,+ dw,(t) is the 12"
fluctuating atomic transition frequency, is the frequenc . .

9 quenc, d y The effect of incoherent perturbation on the pure states

. . " -
?rfethe;ta(.:)sr(ra]ir({l Iz;gﬁa?oarzl frgg#r?ggy, ﬁ]rﬁ,’[hi ' Z?(Sifedarestatecan be determined from the Lindblad fok&c) of the master

(le))—ground state|@)) basis, equation in Eq(4). The action of the operatordS? corre-
sponds to an event generated by the stochastic noise. Without
1/1 0 0 1 0 0 detuning, this operator generates transitions between the
sZ:—( ) St= ) and Sz( ) dressed stated) and|2),

210 -1 0 0 1 0
2
2\T1)=\T2), (8a)
We assume that the noise in the transition frequency satisfies
(Sw,(1) dwa(t))=2T 8(t—t"), 3) 2\T's92)=\T|1). (8b)

wherel” stands for the magnitude of the stochastic noise. If = Another way of observing the effect of the stochastic
the noise is due to collisions, this quantity is the collisionnoise is to transform the time-dependent Hamiltonian in the
rate between the atoms. This model can also describe theangevin equation into the dressed-state basis. This must be
system of two-level atoms driven by a laser field with fluc-done carefully since paramet€r in the definition of the
tuating phase, if the phase drift is neglec{éd]. In such  dressed states becomes time dependent in this case,
case,l’ represents the laser linewidth.

The time evolution of the system defined by the Hamil-

t_onian ir_1 Eq.(l) is described by the following mast_er equa- |1t)~|1)— % ﬁgwa(mz), (9a)
tion, taking into account also the spontaneous emission pro-
cesses:
1 |2,t) |2>+1 o Sw(1)|1) (9b)
b:ﬁ[<HAL>,P]+LP, 4) , 2 A2 7%
where to the first order indw,4(t). HamiltonianH 4, is diagonal in

the time-dependent dressed-state basis, thus
Lp:(Lp)sp+(LP)sta (5a)

Har=Eq|1t){(Lt|+Ep|2t)(2,t| ~E4|1)(1]
(Lp)s=r[—3(S'S p+pS'S)+Sps'], &) i '

1
(Lp)st:4r[_%(SZSZp+pSzSz)+SZpSz], (50) +E2|2><2|+ 5wa(t)§ﬁ(_|l><2|_|2><l|)

and(H,,) is the mean atomic Hamiltonian obtained by av- 1 E;
eraging over the stochastic noise of E8), and y is the +5“’a(t)§ A%+ QZ(|1><2|+|2><1|)
natural linewidth of the atom.

It is natural to introduce the dressed-state basis in which

Q
the atomic HamiltoniarH », is diagonal, :<HAL>_ﬁ5‘°a(t)W(MMHZXH)- (10
|1)=cos®|g)+sinO|e), (6a)
This also shows that the stochastic noise generates transi-
|2)=—sin®|g)+cosO|e), (6b)  tions between the dressed staftes and|2).
The master equation has the following form in the
where dressed-state basis:
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d I'02 T'AQ density operator at the given stochastic noise magnitude. In
qiP= | 20 Y|Pt 2 our simulationsN was ~5x 10°.
O°+A O +A Within dipole approximation the resonance fluorescence
A spectrumS(w) can be calculated as the real part of the two-
% + + ’ 1 time correlation function
(P21 P12) VW ( a)
1 FT(w)=tIimf exp—iwn)(ST(t+7)S7(t))d7, (12
d roa 274 f o il conit
—P12= or an arbitrary initial condition
dtP2" 025 277" 7y a2 Y
2 S(w)=ReT)(w), (13

’ A H 2 2
2 qrypr PN AT Y 2 wherew is the detuning of the emitted light from, . There
2 are different methods in the literature for obtaining the spec-
(11p  trum using a numerical simulatioi8,25,26. One kind of
them simulates not only the atom, but also the quantized
. electromagnetic field25]. Such methods seem to be exces-
where p,=p11—pzp, I'"=I'=y/4, andpay, p12, P21, P22 sjve when the field can be treated classically.
are the matrix el_ements of _the densﬂy operator in the The method presented by Dalibaet al. [18] simulates
dressed-state basis. The matrix elemestis the complex oy the atom, and obtains the spectrum by calculating two-
conjugate ofpy,, asp is Hermitian. For resonant excitation (ime averages and taking their Fourier transform. The com-
(A=0) the stochastic noise couples tfi§ and|2) states | iation time of this method increases a&t?, whereAt is
and increases the relaxation rate of the spgemponent. I ¢ time step of the simulation, because, for each time step,
this case the dressed states become independent of the Rail 5 ditional simulation is started to calculate the two-time
frequency, and Eq113 is uncoupled from Eq11b). Thisis  5yerages. That can be time consuming in the case when a
however not the case in the general, nonresonant case.  |arge number of quantum trajectories are simulated and small
time steps are used. This is the situation in our problem when
we simulate the system in the high-noise magnitude regime.
The question arises whether it is possible to develop a
@ethod that simulates only the atom, without the need of

—F'm(l)lz— p21),

IIl. NUMERICAL SIMULATION

In the system of coherently driven stochastically per-
turbed two-level atoms, quantum-interference effects can bstartin extra simulations for calculating the two-time aver-
seen in the resonance fluorescence sp¢t&A 7. The reso- 9 9

nance fluorescence can be described by transitions betwegﬁetﬁ' Izeflorvv, we t?”ﬁfly OIUII'lnl:’i t:e &Ssrengaisi?f Svlijlz pt))ropoie_d
appropriate dressed states of the atom. If spectral modificiFe od for spectrum caiculation. viore details € pu

tions are due to quantum interference, some time correlatio shed elsewhere.

should exist between the dressed states of the atom involve Letus conS|de.r a general two-level atom-field system. Let
in the interfering transition channels. p(t) be the density operator of the whole systefnan op-

For analyzing time correlations in a quantum system,eratOr in the thmﬁnger picture_ acting only on the atom,
guantum-trajectory methods are particularly appropriate‘."mdu(t) the unitary time-evolution operator. Then
These methods are based on the simulation of quantum tra-
jectories, which are individual realizations of the evolution
of the system conditioned on a particular sequence of ob-
served events. By tracking the time evolution of a single
guantum trajectory, the time correlations can be revealed.
We apply the quantum-trajectory method of Réf8] for
simulating the time evolution of the coherently driven, sto
chastically perturbed two-level atom. In this system, a singl
guantum-trajectory evolves coherently according to the _
Hamiltonian of Eq.(7), interrupted by incoherent gedanken TAP(D]=Tral Apa(V)]
measurements due to noise events and spontaneous emission. =TraA[A’(t)pa(0)],
The evolution of the density operator of the system is ob-
tained by averaging the density operators of the individualvherep(t) =Tr_p(t) is the reduced density operator of the
guantum trajectories. The resulting density operator is thatom.A’(t) depends also on the laser field. lR{(0) be a
solution of the master equation of E@). set of reduced density operators of the atom which form a
The accuracy of the simulation is limited by two factors: C-linear basis in the set of the operators acting on the atom.
the lengthAt of the time step and the numbét of the In the case of a two-level atom the basis consists of four
simulated quantum trajectoriest should be much less than elements. These basis elements may evolve also, their value
the characteristic time of any process in the systdishould  at timet is denoted byr;(t). Using this basis, any operatsr
be large enough to obtain the right ensemble averages for thbat acts on the atom can be written in the form

T Ap(t)]=TIAU(t)p(0)UT(1)]
=T U () AU(t)p(0)]
=TI A()p(0)],

_whereA(t) is the operatoA in the Heisenberg picture. One
gfan define a time-dependefvt(t) operator for which

(14
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In order to obtain operato®"’(7) from the simulation,
X=2 %Ri(0). (15  one needs to choose a basis consisting of density operators,
' according to Eq(15) and start independent simulations using
the elements of this basis as initial states. In our simulation,
we choose the density operators that in the dressed-state ba-
sis|1), |2) are

The coefficients can be expressed as

x=2 (T TIXR(0)], (16)
R . 10 11 —i
whereT;; =Tr[R;(0)R;(0)]. Matrix T is invertable since the R,(0)= . Ry(0)=%] . )
operatorsR;(0) form a basis and they are linearly indepen- 00 2[ 1 1

dent. Using Eqs(14)—(16), the following form can be de-
rived for theA’(t) operator:

1] 1 -1
R4(0)=§[_ } (22

A (O=3 (T HETIROR(O N (OR(0), (17 o1

(16) as operator using Eq(17) and record it for later use. After the

simulation has been completed, i.e., the tinh@s reached its
)\i(0)=(T‘1)ijTr[ARj(0)]. final valueT, the (_:orrelat|0n functl_on defined by E_@.Z) is
calculated numerically by evaluating the expression
Equation(14) holds for all density operatogs(0) with A’ (t)
of Eq. (17), T
M(w)=2 exp(—iwn)TrS"'(7)S (0)p(T)At,
TLADP(0)] =Ty A'(Dpa(0)]. (18 (@)= 2 e —ion TS (nS (0)p(T)

Having an operatoB(t) in the Heisenberg picture such that
B(0) acts only on the aton3(0)p(0) can be expressed as a o _
C-linear combination of density operators. The linearity of where the summation is done over all time steps between 0

(23)

the trace in Eq(18) yields and T and p(T) is the average of all fouR;(T) density
operators.
TI{A(t)B(0)p(0)]=Tr A’ (t)B(0)pa(0)]. (19 The advantage of this method is that there is no need to

start a new simulation in each time step, and it is sufficient to
For calculating two-time correlation functions of the form simulate only the atomic system for obtaining the spectra.
TrA(t)B(t")p(0), the above equation can be modified by

using the cyclic property of the trace,
IV. THE FLUORESCENCE SPECTRUM

TrAMB(t)p(0)=TrA(HU(-t")BO)U(t)U(-t') In order to check our numerical results, we compare them
/ / with the spectra calculated analytically. After determining the
Xp(t)U(t") . :
time evolution of the averages of the Block vector compo-
=TrU(t")A()U(—t")B(0)p(t") nents (S%(t)), (S*(t)), (S (t)), the quantum regression

_ , , theorem is used for expressing the two-time averggjg(t
=TrA(t—t")B(0)p(t’) +7)S7(t)) in Eq. (12) as a function of one-time averages
=Tra A’ (t—t")B(0)pa(t’), (20)  [28]. The Bloch equations are

wherepa(t’) is the reduced density operator in the Sehro _

dinger picture at time'. (SH(1)=—HS())+3IQ(S (1) ~(S" ()~ 37,
Let us apply the general expressions presented above to

the atomic operatorS* andS ™. Calculating the correlation

function, the quantity T8" (t+ 7)S™(t)p(0) should be de- L i , . . .

termined from the simulation. Using E€R0), (ST(1)= =S (1)) +(IA=2I'= 3 y)(S" (1)),

limTrS™(t+ 7S (t)p(0)=limTrS*(7)S™(0)p(t) ,
o - (S () =iQ(S())+(—i1A=2T = 3¥)(S"(1)).

=TraS"'(7)S™(0)pa(=).
(21)  After some calculation we obtain
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1 1
iQ(iw—iA+2F+§y (—EKg—KlKg)

(io+7y) (iw+2F+§y) +A? +Qz(iw+2F+§y
1, o 1 1 1,
+ 1 2 1 ’ (24)
(io+7y) iw+2F+§y) +A?|+0? iw+21"+§y)
|
where so=2i""+ivy, (29b)
1 142 2 1
>N 2l+5y) +A §a2+3F’7
Ki= 1 \2 , (259 At=i(22 — -
’y[ 2F+§y +A%|+02 2F+§y 2ia’(s,—s_)(is_+7y)
1 .
1 1 — 49T F-I—Zy +iya®(s,—s_)
E’)/IQ(IA—ZF—E’)/) _iQZ . " ,
K,= Tz ., (25b) 2i(s;—s_)a"(is_+vy)
_ 2 2 _
y[ 2F+27 +A%|+Q 2F+27) ) Q24 (4T + )y
0=
1 ) 1
P VIQiAr2T+ oy If [''<Q, the spectrum has the form
K3: 1 2 (25C)
Y 2F+§'y +A2 +QZ 2F+ 57) S( ) Aoso " ReA+w_RdA+Si)
w =
0’ +[Sol* " (w+JQZ—T'2)+T"2

For the special case of no detuning0), the correlation
function has the form ReA_w—ReA_s*) 30

+ 1
(0 Q2T 72+ T2

1
IY(w)= . .
w_2ilT+ } ) [i 02202 —4i T — a?)] showing that the centers of the two latter Lorentzians are
47 displaced by* JQ?—T'? relative to the laser frequency.
Together with the first Lorentzian at the laser frequency, they
X{(AT +y)[(a®+ %) 0% =204~ a*]-20° form the Mollow triplet[29].
+ w0 2a* =202 a?+ y?) | +iw[ (3y+4T") Q%2 In the other case whefi’>(}, all the Lorentzians are
centered at zero frequency, correspondingatp in the
—4T"a*—2y(20%- y*)Q2]}, (26)
0.7
where 06 |
a?=y2+ATy+Q% T'=T'+y, I'=T'-1y. £ 08¢
(27) 204}
. . L = 03¢
The correlation function of Eq26) can be split into the 2 02 |
sum of three functions: o -
01t l\Aumlezic
N A, AL A o Aravie .,
INw)= + + , (28) 3 2 A 0 1 2 3
®w—S, w—S. w—S o/
where FIG. 1. The resonance fluorescence spectrum for low noise
magnitude and strong laser field /(0 =0.2 andy/{)=0.05) in the
s.=il"+i\['2=02 (299 case of no detuning=0).
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FIG. 2. The resonance fluorescence spectrum for noise magni- FIG. 4. The width of the dip in the case of no detuning, i.e., the
tude comparable to Rabi frequency and strong laser fiEI{)(  value of|s_| shown fory/Q=0.05. WherT" increases, the width of

=1.1 andy/Q=0.05) in the case of no detuning €0). the dip approaches the natural linewidth
Schralinger picture, but one of them has a negative coeffinarrow dip on the side of the broadened part of the spectrum
cient, resulting in a dip in the spectrum. due to stochastic noise, and a narrow peak on the other side
For thel'’ > () case, one obtains the following expressionnext to the dip(Fig. 6).
for the spectrum: The analytical and numerical results are in very good
agreement as one can see in the presented figures, which
S(w)= A:iSy " A-s. n AoSo (31) positively verifies correctness of our numerical simulations.
w’+|s 2 w+[s_|? w’+|s|?’
o , V. PHASE CORRELATION AND QUANTUM
where A, s, and Aysy are always positive and\_s_ is INTERFERENCE

negative.

In the following we show our numerical results together The narrow dip in the spectrurin the case of a high
with the analytical spectra. Figure 1 presents the resonanagise magnitude, resonant excitatioand the asymmetric
fluorescence spectrum of the atom irradiated by a resonaano profile(in the case of large detuning and a high noise
(A=0), strong (2> v) laser field with low noise Q>I').  magnitude are signatures of quantum interference in the sto-
The spectrum exhibits a three-peak structure, but with a sugehastically perturbed system. The quantum interference
pressed and broadened central peak compared to the standarderges if long-time phase correlation exists between quan-
Mollow triplet. As the noise increases, the central peak distum states connected by different transition channels. As
appears and fol" nearly equal to), we get a two-peak seen in Sec. Il, the stochastic noise generates transitions be-
structure with a relatively broad dip, as depicted in Fig. 2.tween the dressed states. It would be interesting to check
When the noise magnitude is much larger than the Rabi frewhether this coupling has any effect on phase correlation
qguency, the dip becomes very narrow, as shown in Fig. 3between them.

The width of the dip is proportional to the value of the pa- The phase differencd ¢ between the dressed states is
rameter|s_| of Eq. (293, which approaches the natural line- defined as follows:

width y whenI''> (), as shown in Fig. 4. For large detuning _ _

(A>Q) and low noise [ <), a two-peak spectrum is ob- [D)=a;'"1[1)+a,e'??2), Ad=dr— 1, (32
tained with an asymmetric Fano-like structure at the center,

as depicted in Fig. 5. Increasing the noise magnitude th¥here|®) is a pure state of the atom, while) and|2) are
Fano-like peak transforms to an asymmetric Fano profile, &1€ dressed states defined in E(&a) and (6b). The phase

0.1 T 12 I " Numeric - |
0.09 | Numeric | . Analytic e
nnnnnnnnnnnnnn 1.4 L 4
= 0.08 1 2 4ol
g 0.07 S 11
g 0.06 1 g 08 |
% 0.05 | = 06
S 004t S 04!
B 003 | ® o2}
0.02 | J 0r
0.01 - . - - : -02 — : - - - - -
-6 -10 -5 0 5 10 15 6 4 2 0 2 4 6
o/Q w/Q

FIG. 3. The resonance fluorescence spectrum for high noise FIG. 5. The resonance fluorescence spectrum for low noise
magnitude and strong laser fieldf/((0=6 andy/()=0.05) in the  magnitude, strong laser field, and large detunihg(}=0.2, v/
case of no detuning=0), showing a narrow dip at the center of =0.05, andA/{)=3), showing a Fano-like structure at the driving
the spectrum. frequency.
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0.1 1
0.09 | 08|
7 008 06 |
5 8'82 I = 047
o . i % |
S, 005 g 02
= &) 0
Z 004}
D 003} 02}
0.02 Numeric -0.4 |
0.01 Anglytic === - - 06 —
45 10 5 0 5 10 20 15 -10 -5 0 5 10 15 20
/Q fol

FIG. 6. The resonance fluorescence spectrum for a high noise FIG. 8. Correlation function of cas¢(t) for low, medium, and
magnitude, strong laser field, and large detunihg(}=3, y/Q high noise magnitudes, in the case of no detuning and strong laser
=0.05, andA/Q =3), showing an asymmetric Fano profile at the field (I'/2 €{0.2,1.1,9, A=0, andy/Q=0.05).
driving frequency.

Rabi frequency. Rabi oscillations are rarely disrupted by
difference can be calculated straightforwardly from a singlenoise events, hence the phase difference is essentially lin-
quantum trajectory. It is found that the phase difference be€arly dependent on timeA ¢(t) =2Qt. Consequently, the
haves differently in the low and high noise magnitude re-shape of the phase difference as a function of time shows no

gimes. In Fig. 7a) the noise magnitude is much less than thestructure. When the noise magnitude increases, as depicted in
Fig. 7(b), the uniform shape changes to a picture showing

some structures of gaps appearing from time to time between
0 and 7 values of the phase difference. For a high noise
magnitudg Fig. 7(c)], the phase difference tends to stabilize
around values 0 and for some time intervals.

In order to characterize the observed phenomena quanti-
tatively, we introduce the correlation function of aoé by
the definition

Ceod 7)=C ft T:O[cosA ¢(t+7)—CcosA ¢]

X[ CcosA ¢(t) —cosA ¢]dt, (33

wherecosA¢ is the mean value of the cosine of the phase
difference for the simulated time interval ands a normal-
ization constant fixed by the conditid®,,{0)=1. The cor-
relation function of sim\¢(t) is defined similarly.

The C.o{7) function is shown in Fig. 8 for the same pa-
rameter values as those used in Figs)-#7(c). The qualita-
tive picture of emerging correlations as the noise magnitude
increases is now backed up by the widening of the correla-
tion functions. On the other hand, the correlation of the sine

1
0.8 r
0.6t
04
02

0
-0.2 ¢
800 1000 04

Csin(T)

-0.6 e —
_ ) 20 15 10 -5 0 5 10 15 20
FIG. 7. The phase difference between the dressed states in the &

case of resonant excitatiod &0): (a) for a low noise magnitude

(I'/Q2=0.2 andy/Q2=0.05); (b) for a noise magnitude comparable FIG. 9. Correlation function of siA¢(t) for low, medium, and

to the Rabi frequencyI{/Q)=1.1 andy/Q2=0.05); and(c) for a high noise magnitudes, in the case of no detuning and strong laser
high noise magnitudel{/2=5 and y/Q2=0.05). The initial state field (I'/Q {0.2,1.1,3, A=0, andy/Q=0.05). The figure shows
was the excited state) in these simulations. that sinA¢(t) becomes uncorrelated for higher noise magnitude.
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n-
37 Q=10 + ——
2t T/Q=3 x
1t Fitea o % FIG. 11. Different dressed-state transition channels for a coher-
0 — — ently driven and stochastically perturbed two-level atom.
1 2 3 45 6 7 8 9 10 11 12
Qs | pairs: |[1,n)—|2n—1)—|1n—1) and |[1,n)—|2,n)—|1n

—1) (or |2h)—|1n)—|2,n—1) and |2,n)—|1n—1)
n—|2.n—1)) that differ exclusively by time ordering between
collisional mixing and photon emissions. Photons emitted
along these channels are indistinguishable, so their interfer-
of the phase differenc&;(7) [defined similarly a.,{7)]  ence is possible. Due to opposite signs of the relevant matrix
tends towards a@-like shape when the noise increaseg. elements this interference is destructive and creates a dip in
9), so whenl" strongly exceed§), sinA¢(t) remains uncor- the line center. On the other hand, other emission channels
related. This means that the phase difference is locked tare not that equivalent, hence the corresponding photons can-
values 0 andr for some time intervals, though it spans a not interfere and contribute to nonzero intensity«st 0.
phase interval no less than'2 around these phase values. This interference is similar to that seen by Schragtal.

It is interesting that the widths of the correlation functions[30] in photon correlations of the well-resolved Mollow trip-

are related with the observed narrow dips in the spectra. Thigt components in the opposite limit whénr<(}.
full width at half of the maximum valu¢~WHM) is a good

measure of the widths a®.,{7), and|s_| as defined in Eq. VI. CONCLUSION

(299 describes well the spectral dip width. These two quan-
tities are presented in Fig. 10. The FWHM @f,,{7) is
roughly proportional to the reciprocal of the width of the dip

FIG. 10. The FWHM of the correlation functioB.,4{7) is plot-
ted against the reciprocal of the analytically calculated dip widtl
|s_|.

We have applied the quantum-trajectory method to the
system of two-level atoms strongly driven by a coherent light

) ) ield and perturbed by stochastic noise. We have developed a
in the spectrum across a wide range of parameter sets, so t

b d oh lation is indeed ible for th ethod for obtaining the resonance fluorescence spectra
observed phase correation IS Indeed responsible 1or the Nafr, 1, nymerical simulations. This method is especially ad-
rowness of the dip in the spectrum.

o . vantageous for physical systems, where the noise dominates
The stabilization of the phase difference between th g Py Y

. e dynamics, and one needs to simulate many quantum tra-
dr_essed states of the _stochastlcally_ perturb_ed and coheren ctories using small time steps. The simulation of a single
driven two-level atom Is the underlying _physma.l process tha uantum trajectory revealed that for a high noise magnitude
makes the quantum interference possible. This stabilizatio e phase difference between the dressed states tends to sta-
supports the following mteypretaﬂon first suggested for col ilize around fixed values. When calculating the resonance
lisional and phase noise-induced quantum-interference eﬁ

fects in resonance fluorescence spectrum in Fié. Reso uorescence spectra, narrow resonances as central dip and
P ’ . dispersive Fano-like profile occurred in the regime where the

nar)tc;edflgorescendce tOf a_ftron%ly drlvendt\t/\rllo-lfzv;(; atorfntrl] oise dominated the Rabi oscillations. These modifications
gml € dmt ctasga EI f[ans':|_|ons 1<:)Lwnt\1/var twe ad' er Ot q Bf the resonance fluorescence spectra are associated with the
ressed-state dounets. rigure SNOWS tWo adjacent dolzyijization of the dressed-state phases and stochastically

b_Iets and all possible spontaneous and noise-i_nduced tr"’m?rlfduced quantum interference between various emission
tions between the dressed-atom states. According to(Bgs. channels

and (10), noise events generate transitions between the
dressed stateld) and|2) and couple them as indicated by
double arrows in Fig. 11. As we have seen in the preceding
section, in the noise-dominated regime, i.e., when(), the This work was supported by the Research Fund of Hun-
phase difference between dressed doublets tends to stabiligary under Contract No. T034484 and by the Polish Com-
for some time intervals due to frequent noise events. Moremittee for Scientific ReseardiGrant No. 2PO3B 015 161t
over, according to Eq.31), the resonance frequencies of all was also a part of a general program of the National Labo-
fluorescence contributions are the same in this regimeratory of AMO Physics in TorunPoland(Grant No. PBZ/
Among several possible emission channels there are twkBN/032/P03/200L
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