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Quantum-trajectory approach to stochastically induced quantum-interference effects
in coherently driven two-level atoms
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Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the
quantum-trajectory method. A method is developed for calculating the resonance fluorescence spectra from
numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can
unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is
responsible for quantum interference between the related transitions resulting in anomalous modifications of
the resonance fluorescence spectra.
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I. INTRODUCTION

Quantum interference is one of the most intriguing ph
nomena of quantum mechanics. Over the past decade se
effects in atom-light interaction, which have their origin
quantum interference, have been predicted and demonst
experimentally@1#. Some characteristic examples are red
tion and cancellation of absorption@2–6# and spontaneou
emission @7–10#, and narrow resonances in fluorescen
@11,12#. A prerequisite of quantum interference between
transition channels is the existence of some stable time
relation of the atomic system under consideration. A poss
way of achieving such correlation is the application of c
herent coupling in a multilevel atomic system. Althoug
some interference effects have also been found in two-le
systems interacting with two light beams@13#, so far quan-
tum interference has been observed exclusively in at l
three-level systems.

Generally, various incoherent perturbations destroy
phase correlation between the states involved in the inte
ing transition pathways and the coherently induced quan
interference disappears. However, under special circ
stances, even incoherent perturbation can be responsibl
quantum interference. For example, quantum interfere
can appear in three-level systems due to collisions. Such
fects are known as pressure-induced extra resonances
have been studied in four-wave mixing@14,15#.

Recently, in an experiment with coherently driven tw
level atoms, anomalous resonance fluorescence spectra
found when the collisional relaxation rate exceeded the R
frequency@16#. The spectra were of the form of a pressu
broadened line with a narrow, not collisionally broaden
dip. These results, unexpected in a collisionally perturb
two-level system, were interpreted as a consequence of q
tum interference between different dressed-state trans
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channels. In Ref.@16#, it was pointed out that these effec
can also occur in the case of a nonmonochromatic, e
phase-diffusing laser field. Indeed, resonance fluoresce
spectra with the phase-diffusing laser field have been ca
lated by Zhouet al. @17#, who obtained the same results
Gawlik et al. @16#. What in both cases appears essential
observation of quantum interference and anomalous spe
is that the incoherent perturbation~collisions or phase diffu-
sion of the light field! dominates over the Rabi oscillations

These two examples raise an intriguing question, how
a stochastic noise lead to stable time correlation resultin
quantum interference in two-level systems.

Quantum-trajectory methods are widely used power
tools for treating the stochastic evolution of open quant
systems@18–23#. They can provide the solution of any ma
ter equation that is of Lindblad form@24–27#. Moreover,
individual quantum trajectories, as state evolutions con
tioned on a particular sequence of observed events, ma
possible to reveal phase correlations in the given system

While resonance fluorescence spectra can be adequ
modeled by the master equation, we find that the use
quantum trajectories provides more physical insight. B
sides, this method allows one to study the stochastic ev
tion of the atomic system and, eventually, reveal the ph
correlation of its dressed states. For that reason, in this p
we analyze in detail the system of stochastically perturb
two-level atoms applying both the master equation and
quantum-trajectory method to explain quantum-interfere
effects and the underlying physical processes.

The paper is organized as follows: In Sec. II we introdu
our model for the system of a coherently driven and incoh
ently perturbed two-level atom. In Sec. III the method
quantum trajectories is applied to the system and a metho
developed for calculating the spectrum from the simulat
results. Section IV presents the numerical results for
spectra and compares them with the analytical solution of
master equation. In Sec. V the phase difference between
dressed states of an atom is analyzed and the phase co
tion is revealed. It is shown that the phase correlat
emerges as the noise magnitude increases and the re
quantum-interference effect is discussed.
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II. THE MODEL

The system of incoherently perturbed and coheren
driven two-level atoms can be modeled in several ways. H
we make a rather general assumption that the stochastic
turbation is responsible for fluctuations of the atomic re
nance frequency that obeys the Gaussian statistics. In
ticular, such fluctuations may result from, e.g., elas
dephasing collisions.

In our model the Hamiltonian of the strongly, coheren
driven atom subjected to stochastic perturbation has the f

HAL5\@va~ t !2vL#Sz1 1
2 \V~S21S1! ~1!

in the interaction picture, whereva(t)5va1dva(t) is the
fluctuating atomic transition frequency,vL is the frequency
of the laser,V is the Rabi frequency, andSz, S1, andS2 are
the atomic operators defined in the excited st
(ue&) –ground state (ug&) basis,

Sz5
1

2S 1 0

0 21D , S15S 0 1

0 0D , and S25S 0 0

1 0D .

~2!

We assume that the noise in the transition frequency sati

^dva~ t !dva~ t8!&52Gd~ t2t8!, ~3!

whereG stands for the magnitude of the stochastic noise
the noise is due to collisions, this quantity is the collisi
rate between the atoms. This model can also describe
system of two-level atoms driven by a laser field with flu
tuating phase, if the phase drift is neglected@17#. In such
case,G represents the laser linewidth.

The time evolution of the system defined by the Ham
tonian in Eq.~1! is described by the following master equ
tion, taking into account also the spontaneous emission
cesses:

ṙ5
1

i\
@^HAL&,r#1Lr, ~4!

where

Lr5~Lr!sp1~Lr!st, ~5a!

~Lr!sp5g@2 1
2 ~S1S2r1rS1S2!1S2rS1#, ~5b!

~Lr!st54G@2 1
2 ~SzSzr1rSzSz!1SzrSz#, ~5c!

and ^HAL& is the mean atomic Hamiltonian obtained by a
eraging over the stochastic noise of Eq.~3!, and g is the
natural linewidth of the atom.

It is natural to introduce the dressed-state basis in wh
the atomic HamiltonianHAL is diagonal,

u1&5cosQug&1sinQue&, ~6a!

u2&52sinQug&1cosQue&, ~6b!

where
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andD5va2vL is the laser detuning.
The mean atomic Hamiltonian̂HAL& in the dressed-state

basisu1&, u2& can be written as

^HAL&5E1u1&^1u1E2u2&^2u, ~7!

where

E1,257 1
2 \AV21D2.

The effect of incoherent perturbation on the pure sta
can be determined from the Lindblad form~5c! of the master
equation in Eq.~4!. The action of the operator 2AGSz corre-
sponds to an event generated by the stochastic noise. Wit
detuning, this operator generates transitions between
dressed statesu1& and u2&,

2AGSzu1&5AGu2&, ~8a!

2AGSzu2&5AGu1&. ~8b!

Another way of observing the effect of the stochas
noise is to transform the time-dependent Hamiltonian in
Langevin equation into the dressed-state basis. This mus
done carefully since parameterQ in the definition of the
dressed states becomes time dependent in this case,

u1,t&'u1&2
1

2

V

D21V2 dva~ t !u2&, ~9a!

u2,t&'u2&1
1

2

V

D21V2 dva~ t !u1& ~9b!

to the first order indva(t). HamiltonianHAL is diagonal in
the time-dependent dressed-state basis, thus

HAL5E1u1,t&^1,tu1E2u2,t&^2,tu'E1u1&^1u

1E2u2&^2u1dva~ t !
1

2

E1V

D21V2 ~2u1&^2u2u2&^1u!

1dva~ t !
1

2

E2V

D21V2 ~ u1&^2u1u2&^1u!

5^HAL&2\dva~ t !
V

AV21D2
~ u1&^2u1u2&^1u!. ~10!

This also shows that the stochastic noise generates tra
tions between the dressed statesu1& and u2&.

The master equation has the following form in th
dressed-state basis:
1-2
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d

dt
rz52S 2

G8V2

V21D2
1g D rz12

G8DV

V21D2

3~r211r12!1g
D

AV21D2
, ~11a!

d

dt
r125

G8VD

V21D2
rz1

1

2
gV

AV21D2

2S 2G8
D2

V21D2 1 iAV21D21g D r12

2G8
V2

V21D2 ~r122r21!, ~11b!

where rz5r112r22, G85G2g/4, andr11, r12, r21, r22
are the matrix elements of the density operator in
dressed-state basis. The matrix elementr21 is the complex
conjugate ofr12, asr is Hermitian. For resonant excitatio
(D50) the stochastic noise couples theu1& and u2& states
and increases the relaxation rate of the spin-z component. In
this case the dressed states become independent of the
frequency, and Eq.~11a! is uncoupled from Eq.~11b!. This is
however not the case in the general, nonresonant case.

III. NUMERICAL SIMULATION

In the system of coherently driven stochastically p
turbed two-level atoms, quantum-interference effects can
seen in the resonance fluorescence spectra@16,17#. The reso-
nance fluorescence can be described by transitions betw
appropriate dressed states of the atom. If spectral modi
tions are due to quantum interference, some time correla
should exist between the dressed states of the atom invo
in the interfering transition channels.

For analyzing time correlations in a quantum syste
quantum-trajectory methods are particularly appropria
These methods are based on the simulation of quantum
jectories, which are individual realizations of the evoluti
of the system conditioned on a particular sequence of
served events. By tracking the time evolution of a sin
quantum trajectory, the time correlations can be revealed

We apply the quantum-trajectory method of Ref.@18# for
simulating the time evolution of the coherently driven, s
chastically perturbed two-level atom. In this system, a sin
quantum-trajectory evolves coherently according to
Hamiltonian of Eq.~7!, interrupted by incoherent gedanke
measurements due to noise events and spontaneous emi
The evolution of the density operator of the system is
tained by averaging the density operators of the individ
quantum trajectories. The resulting density operator is
solution of the master equation of Eq.~4!.

The accuracy of the simulation is limited by two factor
the lengthDt of the time step and the numberN of the
simulated quantum trajectories.Dt should be much less tha
the characteristic time of any process in the system.N should
be large enough to obtain the right ensemble averages fo
02382
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density operator at the given stochastic noise magnitude
our simulationsN was'53105.

Within dipole approximation the resonance fluorescen
spectrumS(v) can be calculated as the real part of the tw
time correlation function

G1
N~v!5 lim

t→`
E

0

`

exp~2 ivt!^S1~ t1t!S2~ t !&dt, ~12!

for an arbitrary initial condition

S~v!5ReG1
N~v!, ~13!

wherev is the detuning of the emitted light fromvL . There
are different methods in the literature for obtaining the sp
trum using a numerical simulation@18,25,26#. One kind of
them simulates not only the atom, but also the quanti
electromagnetic field@25#. Such methods seem to be exce
sive when the field can be treated classically.

The method presented by Dalibardet al. @18# simulates
only the atom, and obtains the spectrum by calculating tw
time averages and taking their Fourier transform. The co
putation time of this method increases as 1/Dt2, whereDt is
the time step of the simulation, because, for each time s
an additional simulation is started to calculate the two-ti
averages. That can be time consuming in the case wh
large number of quantum trajectories are simulated and s
time steps are used. This is the situation in our problem w
we simulate the system in the high-noise magnitude regi

The question arises whether it is possible to develo
method that simulates only the atom, without the need
starting extra simulations for calculating the two-time av
ages. Below, we briefly outline the essentials of our propo
method for spectrum calculation. More details will be pu
lished elsewhere.

Let us consider a general two-level atom-field system.
r(t) be the density operator of the whole system,A an op-
erator in the Schro¨dinger picture acting only on the atom
andU(t) the unitary time-evolution operator. Then

Tr@Ar~ t !#5Tr@AU~ t !r~0!U†~ t !#

5Tr@U†~ t !AU~ t !r~0!#

5Tr@A~ t !r~0!#,

whereA(t) is the operatorA in the Heisenberg picture. On
can define a time-dependentA8(t) operator for which

Tr@Ar~ t !#5TrA@ArA~ t !#

5TrA@A8~ t !rA~0!#, ~14!

whererA(t)5TrLr(t) is the reduced density operator of th
atom.A8(t) depends also on the laser field. LetRi(0) be a
set of reduced density operators of the atom which form
C-linear basis in the set of the operators acting on the at
In the case of a two-level atom the basis consists of f
elements. These basis elements may evolve also, their v
at timet is denoted byRi(t). Using this basis, any operatorX
that acts on the atom can be written in the form
1-3
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X5(
i

xiRi~0!. ~15!

The coefficients can be expressed as

xi5(
j

~T21! i j Tr@XRj~0!#, ~16!

whereTi j 5Tr@Ri(0)Rj (0)#. Matrix T is invertable since the
operatorsRi(0) form a basis and they are linearly indepe
dent. Using Eqs.~14!–~16!, the following form can be de-
rived for theA8(t) operator:

A8~ t !5(
ik

~T21! jkTr@Rk~ t !Ri~0!#l i~0!Rj~0!, ~17!

wherel i(0) is expressed by the atomic operatorA using Eq.
~16! as

l i~0!5~T21! i j Tr@ARj~0!#.

Equation~14! holds for all density operatorsr(0) with A8(t)
of Eq. ~17!,

Tr@A~ t !r~0!#5TrA@A8~ t !rA~0!#. ~18!

Having an operatorB(t) in the Heisenberg picture such th
B(0) acts only on the atom,B(0)r(0) can be expressed as
C-linear combination of density operators. The linearity
the trace in Eq.~18! yields

Tr@A~ t !B~0!r~0!#5Tr@A8~ t !B~0!rA~0!#. ~19!

For calculating two-time correlation functions of the for
Tr A(t)B(t8)r(0), the above equation can be modified b
using the cyclic property of the trace,

Tr A~ t !B~ t8!r~0!5Tr A~ t !U~2t8!B~0!U~ t8!U~2t8!

3r~ t8!U~ t8!

5Tr U~ t8!A~ t !U~2t8!B~0!r~ t8!

5Tr A~ t2t8!B~0!r~ t8!

5TrA A8~ t2t8!B~0!rA~ t8!, ~20!

whererA(t8) is the reduced density operator in the Sch¨-
dinger picture at timet8.

Let us apply the general expressions presented abov
the atomic operatorsS1 andS2. Calculating the correlation
function, the quantity TrS1(t1t)S2(t)r(0) should be de-
termined from the simulation. Using Eq.~20!,

lim
t→`

Tr S1~ t1t!S2~ t !r~0!5 lim
t→`

Tr S1~t!S2~0!r~ t !

5TrA S18~t!S2~0!rA~`!.

~21!
02382
-

f

to

In order to obtain operatorS18(t) from the simulation,
one needs to choose a basis consisting of density opera
according to Eq.~15! and start independent simulations usi
the elements of this basis as initial states. In our simulat
we choose the density operators that in the dressed-stat
sis u1&, u2& are

R1~0!5F1 0

0 0G , R3~0!5
1

2 F1 2 i

i 1G ,

R2~0!5
1

2 F1 1

1 1G , R4~0!5
1

2 F 1 21

21 1G . ~22!

For all time steps of the simulation we calculate theS18(t)
operator using Eq.~17! and record it for later use. After the
simulation has been completed, i.e., the timet has reached its
final valueT, the correlation function defined by Eq.~12! is
calculated numerically by evaluating the expression

G1
N~v!5 (

t50

T

exp~2 ivt!Tr S18~t!S2~0!r~T!Dt,

~23!

where the summation is done over all time steps betwee
and T and r(T) is the average of all fourRi(T) density
operators.

The advantage of this method is that there is no need
start a new simulation in each time step, and it is sufficien
simulate only the atomic system for obtaining the spectra

IV. THE FLUORESCENCE SPECTRUM

In order to check our numerical results, we compare th
with the spectra calculated analytically. After determining t
time evolution of the averages of the Block vector comp
nents ^Sz(t)&, ^S1(t)&, ^S2(t)&, the quantum regressio
theorem is used for expressing the two-time average^S1(t
1t)S2(t)& in Eq. ~12! as a function of one-time average
@28#. The Bloch equations are

^Sz~̇ t !&52g^Sz~ t !&1 1
2 iV~^S2~ t !&2^S1~ t !&!2 1

2 g,

^S1~̇ t !&52 iV^Sz~ t !&1~ iD22G2 1
2 g!^S1~ t !&,

^S2~̇ t !&5 iV^Sz~ t !&1~2 iD22G2 1
2 g!^S2~ t !&.

After some calculation we obtain
1-4
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G1
N~v!5

iVS iv2 iD12G1
1

2
g D S 2

1

2
K32K1K3D

~ iv1g!F S iv12G1
1

2
g D 2

1D2G1V2S iv12G1
1

2
g D

1

F1

2
V21~ iv1g!S iv2 iD12G1

1

2
g D G S 1

2
1K12K2K3D1

1

2
V2~2K3K3!

~ iv1g!F S iv12G1
1

2
g D 2

1D2G1V2S iv12G1
1

2
g D , ~24!
are
.
ey

ise
where

K15

1

2
gF S 2G1

1

2
g D 2

1D2G
gF S 2G1

1

2
g D 2

1D2G1V2S 2G1
1

2
g D , ~25a!

K25

1

2
g iVS iD22G2

1

2
g D

gF S 2G1
1

2
g D 2

1D2G1V2S 2G1
1

2
g D , ~25b!

K35

1

2
g iVS iD12G1

1

2
g D

gF S 2G1
1

2
g D 2

1D2G1V2S 2G1
1

2
g D . ~25c!

For the special case of no detuning (D50), the correlation
function has the form

G1
N~v!5

1

Fv22i S G1
1

4
g D G@ ia2~2v224ivG92a2!#

3$~4G1g!@~a21g2!V222V42a4#22V6

1v2@2a422V2~a21g2!#1 iv@~3g14G9!V2a2

24G9a422g~2V22g2!V2#%, ~26!

where

a25g214Gg1V2, G95G81g, G85G2 1
4 g.

~27!

The correlation function of Eq.~26! can be split into the
sum of three functions:

G1
N~v!5

A1

v2s1
1

A2

v2s2
1

A0

v2s0
, ~28!

where

s65 iG96 iAG822V2, ~29a!
02382
s052iG81 ig, ~29b!

A65 iV2

1

2
a213G8g

2ia2~s12s2!~ is21g!

2 iV2

24g2G9S G1
1

4
g D6 iga2~s12s2!

2i ~s12s2!a4~ is21g!
,

A052 i
V21~4G1g!g

2a2 .

If G8,V, the spectrum has the form

S~v!5
A0s0

v21us0u2
1

ReA1v2Re~A1s1* !

~v1AV22G82!1G92

1
ReA2v2Re~A2s2* !

~v2AV22G82!1G92
, ~30!

showing that the centers of the two latter Lorentzians
displaced by6AV22G82 relative to the laser frequency
Together with the first Lorentzian at the laser frequency, th
form the Mollow triplet @29#.

In the other case whenG8.V, all the Lorentzians are
centered at zero frequency, corresponding tovL in the

FIG. 1. The resonance fluorescence spectrum for low no
magnitude and strong laser field (G/V50.2 andg/V50.05) in the
case of no detuning (D50).
1-5
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Schrödinger picture, but one of them has a negative coe
cient, resulting in a dip in the spectrum.

For theG8.V case, one obtains the following expressi
for the spectrum:

S~v!5
A1s1

v21us1u2
1

A2s2

v21us2u21
A0s0

v21us0u2
, ~31!

where A1s1 and A0s0 are always positive andA2s2 is
negative.

In the following we show our numerical results togeth
with the analytical spectra. Figure 1 presents the resona
fluorescence spectrum of the atom irradiated by a reso
(D50), strong (V@g) laser field with low noise (V.G).
The spectrum exhibits a three-peak structure, but with a s
pressed and broadened central peak compared to the sta
Mollow triplet. As the noise increases, the central peak d
appears and forG nearly equal toV, we get a two-peak
structure with a relatively broad dip, as depicted in Fig.
When the noise magnitude is much larger than the Rabi
quency, the dip becomes very narrow, as shown in Fig
The width of the dip is proportional to the value of the p
rameterus2u of Eq. ~29a!, which approaches the natural line
width g whenG8@V, as shown in Fig. 4. For large detunin
(D@V) and low noise (G!V), a two-peak spectrum is ob
tained with an asymmetric Fano-like structure at the cen
as depicted in Fig. 5. Increasing the noise magnitude
Fano-like peak transforms to an asymmetric Fano profile

FIG. 2. The resonance fluorescence spectrum for noise ma
tude comparable to Rabi frequency and strong laser field (G/V
51.1 andg/V50.05) in the case of no detuning (D50).

FIG. 3. The resonance fluorescence spectrum for high n
magnitude and strong laser field (G/V56 andg/V50.05) in the
case of no detuning (D50), showing a narrow dip at the center o
the spectrum.
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narrow dip on the side of the broadened part of the spect
due to stochastic noise, and a narrow peak on the other
next to the dip~Fig. 6!.

The analytical and numerical results are in very go
agreement as one can see in the presented figures, w
positively verifies correctness of our numerical simulation

V. PHASE CORRELATION AND QUANTUM
INTERFERENCE

The narrow dip in the spectrum~in the case of a high
noise magnitude, resonant excitation! and the asymmetric
Fano profile~in the case of large detuning and a high no
magnitude! are signatures of quantum interference in the s
chastically perturbed system. The quantum interfere
emerges if long-time phase correlation exists between qu
tum states connected by different transition channels.
seen in Sec. II, the stochastic noise generates transitions
tween the dressed states. It would be interesting to ch
whether this coupling has any effect on phase correla
between them.

The phase differenceDf between the dressed states
defined as follows:

uF&5a1eif1u1&1a2eif2u2&, Df5f22f1 , ~32!

whereuF& is a pure state of the atom, whileu1& and u2& are
the dressed states defined in Eqs.~6a! and ~6b!. The phase

ni-

se

FIG. 4. The width of the dip in the case of no detuning, i.e., t
value ofus2u shown forg/V50.05. WhenG increases, the width of
the dip approaches the natural linewidthg.

FIG. 5. The resonance fluorescence spectrum for low no
magnitude, strong laser field, and large detuning (G/V50.2, g/V
50.05, andD/V53), showing a Fano-like structure at the drivin
frequency.
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difference can be calculated straightforwardly from a sin
quantum trajectory. It is found that the phase difference
haves differently in the low and high noise magnitude
gimes. In Fig. 7~a! the noise magnitude is much less than t

FIG. 6. The resonance fluorescence spectrum for a high n
magnitude, strong laser field, and large detuning (G/V53, g/V
50.05, andD/V53), showing an asymmetric Fano profile at th
driving frequency.

FIG. 7. The phase difference between the dressed states i
case of resonant excitation (D50): ~a! for a low noise magnitude
(G/V50.2 andg/V50.05); ~b! for a noise magnitude comparab
to the Rabi frequency (G/V51.1 andg/V50.05); and~c! for a
high noise magnitude (G/V55 andg/V50.05). The initial state
was the excited stateue& in these simulations.
02382
e
-

-

Rabi frequency. Rabi oscillations are rarely disrupted
noise events, hence the phase difference is essentially
early dependent on time:Df(t)52Vt. Consequently, the
shape of the phase difference as a function of time show
structure. When the noise magnitude increases, as depict
Fig. 7~b!, the uniform shape changes to a picture show
some structures of gaps appearing from time to time betw
0 and p values of the phase difference. For a high no
magnitude@Fig. 7~c!#, the phase difference tends to stabili
around values 0 andp for some time intervals.

In order to characterize the observed phenomena qua
tatively, we introduce the correlation function of cosDf by
the definition

Ccos~t!5cE
t50

T

@cosDf~ t1t!2cosDf#

3@cosDf~ t !2cosDf#dt, ~33!

wherecosDf is the mean value of the cosine of the pha
difference for the simulated time interval andc is a normal-
ization constant fixed by the conditionCcos(0)51. The cor-
relation function of sinDf(t) is defined similarly.

The Ccos(t) function is shown in Fig. 8 for the same pa
rameter values as those used in Figs. 7~a!–7~c!. The qualita-
tive picture of emerging correlations as the noise magnit
increases is now backed up by the widening of the corre
tion functions. On the other hand, the correlation of the s

se

the

FIG. 8. Correlation function of cosDf(t) for low, medium, and
high noise magnitudes, in the case of no detuning and strong l
field (G/VP$0.2,1.1,5%, D50, andg/V50.05).

FIG. 9. Correlation function of sinDf(t) for low, medium, and
high noise magnitudes, in the case of no detuning and strong l
field (G/VP$0.2,1.1,5%, D50, andg/V50.05). The figure shows
that sinDf(t) becomes uncorrelated for higher noise magnitude
1-7
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of the phase difference,Csin(t) @defined similarly asCcos(t)#
tends towards ad-like shape when the noise increases~Fig.
9!, so whenG strongly exceedsV, sinDf(t) remains uncor-
related. This means that the phase difference is locke
values 0 andp for some time intervals, though it spans
phase interval no less thanp/2 around these phase values

It is interesting that the widths of the correlation functio
are related with the observed narrow dips in the spectra.
full width at half of the maximum value~FWHM! is a good
measure of the widths ofCcos(t), andus2u as defined in Eq.
~29a! describes well the spectral dip width. These two qu
tities are presented in Fig. 10. The FWHM ofCcos(t) is
roughly proportional to the reciprocal of the width of the d
in the spectrum across a wide range of parameter sets, s
observed phase correlation is indeed responsible for the
rowness of the dip in the spectrum.

The stabilization of the phase difference between
dressed states of the stochastically perturbed and coher
driven two-level atom is the underlying physical process t
makes the quantum interference possible. This stabiliza
supports the following interpretation first suggested for c
lisional and phase noise-induced quantum-interference
fects in resonance fluorescence spectrum in Ref.@16#. Reso-
nance fluorescence of a strongly driven two-level atom
emitted in cascade transitions downward the ladder of
dressed-state doublets. Figure 11 shows two adjacent
blets and all possible spontaneous and noise-induced tr
tions between the dressed-atom states. According to Eqs~8!
and ~10!, noise events generate transitions between
dressed statesu1& and u2& and couple them as indicated b
double arrows in Fig. 11. As we have seen in the preced
section, in the noise-dominated regime, i.e., whenG.V, the
phase difference between dressed doublets tends to sta
for some time intervals due to frequent noise events. Mo
over, according to Eq.~31!, the resonance frequencies of a
fluorescence contributions are the same in this regi
Among several possible emission channels there are

FIG. 10. The FWHM of the correlation functionCcos(t) is plot-
ted against the reciprocal of the analytically calculated dip wi
us2u.
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pairs: u1,n&→u2,n21&→u1,n21& and u1,n&→u2,n&→u1,n
21& ~or u2,n&→u1,n&→u2,n21& and u2,n&→u1,n21&
→u2,n21&) that differ exclusively by time ordering betwee
collisional mixing and photon emissions. Photons emit
along these channels are indistinguishable, so their inte
ence is possible. Due to opposite signs of the relevant ma
elements this interference is destructive and creates a d
the line center. On the other hand, other emission chan
are not that equivalent, hence the corresponding photons
not interfere and contribute to nonzero intensity atv50.
This interference is similar to that seen by Schramaet al.
@30# in photon correlations of the well-resolved Mollow trip
let components in the opposite limit whenG,V.

VI. CONCLUSION

We have applied the quantum-trajectory method to
system of two-level atoms strongly driven by a coherent lig
field and perturbed by stochastic noise. We have develop
method for obtaining the resonance fluorescence spe
from numerical simulations. This method is especially a
vantageous for physical systems, where the noise domin
the dynamics, and one needs to simulate many quantum
jectories using small time steps. The simulation of a sin
quantum trajectory revealed that for a high noise magnit
the phase difference between the dressed states tends t
bilize around fixed values. When calculating the resona
fluorescence spectra, narrow resonances as central dip
dispersive Fano-like profile occurred in the regime where
noise dominated the Rabi oscillations. These modificati
of the resonance fluorescence spectra are associated wit
stabilization of the dressed-state phases and stochasti
induced quantum interference between various emiss
channels.
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