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Laser-driven atoms in half-cavities
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The behavior of a two-level atom in a half-cavity, i.e., a cavity with one mirror, is studied within the
framework of a one-dimensional model with respect to spontaneous decay and resonance fluorescence. The
system under consideration corresponds to the setup of a recently performed expglinksuthneret al,
Nature(London 413, 495 (2001 ] where the influence of a mirror on a fluorescing single atom was revealed.

In the present work special attention is paid to the regime of large atom-mirror distances where intrinsic
memory effects can not longer be neglected. This is done with the help of delay-differential equations which
contain, for small atom-mirror distances, the Markovian limit with effective level shifts and decay rates leading

to the phenomenon of enhancement or inhibition of spontaneous decay. Several features are recovered beyond
an effective Markovian treatment, appearing in experimentally accessible quantities like the intensity or emis-
sion spectra of the scattered light.
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[. INTRODUCTION atom and the mirror can be set essentially to Z&tarkovian
limit). The situation is more complicated when the distance
The change in the behavior of atoms when the structure dbetween the atom and the mirror is large.
the “surrounding” field differs from that of free space is  In this paper we will, among other things, particularly
treated so far in innumerable works and is essentially theonsider this case, and it turns out that the dynamics of the
basic topic of cavity QED1-3]. Effects like modified decay atom can be described generally in terms of non-Markovian
rates of atoms in cavities were visible in various measure¢delay-differential equations. As we will see, the distance
ments[4—9]. In this case, the atoms couple irreversibly to abetween the atom and the mirror influences the atomic be-
large number of field modes and the problem can be treateldlavior essentially on two scales. On the one hand, there is a
within the framework of perturbation theory. This regime is large scale, i.e., whether the atom is located far away from
therefore known as “low@” or perturbative cavity QED the mirror or very close to the mirror. This scale can be
[10]. Another area of great importance is its counterpart, theneasured essentially by a dimensionless quahijtywhere
physics of “highQ” cavities, where the atoms interact I'gis given by the width of the field spectrufm the case of
strongly only with onglor a few) field modés). In this con-  vanishing laser intensity it is simply the atomic spontaneous
text, recent experiments include, e.g., the observation oémission ratpand the timer the light needs for a round trip
atom trajectories in cavities storing merely one photonbetween atom and mirror. On the other hand, the atomic
[11,12). Furthermore, among other things, effects caused byehavior varies also if the distance is changed on the scale of
the spatial structure of a field mode in a cavity have beeran optical wavelength, given by, . For example, in the
demonstrateil3,14. High-Q cavities serve also as a testing case of a small atom-mirror distancEyr<1) the equations
ground for fundamental quantum mechanical effects like enef motion become approximately Markovian and the well-
tanglement or decohereng#5,16. known phenomenon of enhanced or inhibited spontaneous
In addition to some considerations on the spontaneousmission(depending onw, 7) can be recovered. Thus, it is
decay of an excited two-level atom we will mainly focus in possible to describe the system by introducing effective
this paper on the problem of resonance fluorescence in spontaneous emission rates and level shifts. In general, how-
half-cavity, i.e., a cavity with one mirror, where we pay spe-ever, the retardation of the time argument in the equations of
cial attention to the position dependence of the atomic dymotion cannot be neglected. We will not consider in this
namics. To this end we will particularly consider a physicalpaper effects arising in the case of extremely small distances,
system which essentially coincides with the setup of a ret.e., of the order of wavelengths or smaller, between the atom
cently performed experimefl7]. Here, the radiation that is and the mirrof2,10,18-20.
emitted by a laser-cooled ion stored in a Paul trap is partly In connection with cavity QED, in the broadest sense, the
collimated by a lens and reflected back by a mirror to theabove mentioned delay-differential equations have appeared
atom. The intensity of the scattered light was measured as aready in some publications. These include, for example, the
function of the mirror position, leading to an oscillatory be- analytical treatments of Milonret al.[21] in which a single
havior of the photon counting rate, proving the existence oexcited quantum system coupled to an infinite set of equally
inhibited and enhanced spontaneous emission effects. In thipaced discrete levels was considered, a system which recalls
case, where the atom is relatively close to the mirror, thean atom in a cavity but without taking into account some
observed effects can in principle be explained by introducingosition dependent effects. The latter problem was discussed
some effective modifiedposition dependeptspontaneous in the framework of a one-dimensional model by Cook and
emission rates and level shifts. This can be done since thililonni [22] in the case of an excited atom in front of a
time the light needs to bounce back and forth between theartially reflecting wallmodeled as a collection of two-level
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atomg and in a Fabry-Ret resonator. This treatment is Az
closely related to our discussion of pure spontaneous decay (1-0)
since we will recover the same equation of motion. Another T
treatment of this problem was given by Feng and Ujihara
[23] by using an appropriate set of mode functions in order
to account for nonperfect mirror reflectivities. Dung and Uji-
hara[24] finally examined an atom in a three-dimensional
Fabry-Peot resonator. Although a delay-differential equation
was not explicitly formulated, retardation effects in the inter-
action of two atoms were also discussed256,26. A partly
numerical examination of an atom inside a spherical cavity
was given by Parker and Stroi@d7]. Numerical examina-
tions include furthermore the work of GieRehal.[28] and (')
of Buzek et al. [29], both treating an atom in #one-
dimensional cavity, whereas the latter also investigates the FIG. 1. Sketch of the physical system under consideration. The
presence of material media. The mentioned works have iradiation emitted by a two-level atom is partly reflecteth a leng
common that recurrences of the atomic population take plackack to the atom, which is modeled by an atom coupled to two
for large dimensions of the cavity; this is due to one-photonone-dimensional channels with a different mode strucfuraning
wave packets bouncing back and forth between the cavitgnd standing wave modes, respectiyely
walls. However, there is always only one excitation con-
tained in the system, making the problem accessible to angolid angle fractiore is reflected back to the atom. This is
lytical considerations. achieved by a lens that collimates the radiation before it is
In case of &nearjresonantly driven atom the dynamics of reflected 17]. The remaining emission is not affected by the
the system is more complicated since the number of excitamirror. Thus, it is reasonable to consider the coupling of the
tions increases continuously. The scattered radiation will b&tom to two reservoirgor “channels”) consisting of one-
reflected by the mirror and reinteract with its own source, thedimensional fields with standing wave field modes and run-
atom. This situation reminds us of a feedback problemning wave field modes, respective(gee Fig. 1, i.e., the
[30,31] where mostly the assumption of a negligible feed-Hamiltonian in rotating wave approximation reads
back time delay is made. However, the situation of large +
atom-mirror distances would correspond to a non-Markovian H=Ho—d(Ey(L)o+0oEy(L))
feedbacK32,33. _ At
This article is structured as follows. In Sec. Il we will d(Ez(0)o+ 0, EA0)), @
reconsider the problem of pure spontaneous decay of an e¥iith
cited atom in the presence of a mirror while in Sec. lll a
continuous laser excitation of the atom is incorporated into
our examination. We will discuss several limits including H0=ﬁw00+0_+f dkhwkaEaK+J dk# wblby,
low and higher laser intensities and small distances between
the atom and the mirror. Finally, a summary is given in Sec.
IV and qumbersome formulas and calculations are moved to El(Z):iJ' dk aysin(kz)a,, k>0,
Appendixes.
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Il. SPONTANEOUS EMISSION Ez(X)=if dk Beb,. ke, @

In this section we investigate the spontaneous emission of

an atom at rest in the presence of a mirror initially preparedandwk:|k|cl In contrast to a cavity, here, the mode density

in the excited state. We derive a non-Markovian equation oy the mirror channel is continuous since only one boundary
motion for this system. Although this derivation is related to .,nition has to be satisfied. The operatots and o are

the calculations if22] it is discussed here not only to intro- the usual raising and lowering operators of a two-level sys-

duce our notation but also to present entirely analytical resoy, with upper leve|e) and ground stattg), o =|e)(g|

sults, also with respect to spectral properties of the emitted. —|g)(el, andaE,bl,ak, andb, are creation and annihi-

light. Furthermore, it turns out that some calculation method?a;ion operators of a photon in theh mode of the different

can be transferred and some features of this system are "Shvironments. The dipole matrix elemehis assumed to be

gg\olired when we include laser excitation in our ConSIder'reaI and for the sake of simplicity we suppress the vectorial

character ofl andE. The exact form of the factors, and 3,
is of no importance here, we merely assume that they are
A. The model approximately constant in a frequency range of relevance
As already mentioned we examine an initially excited (usually they have a frequency dependenge- Jw, and
two-level atom with transition frequenay, in the presence B~ \/»,). In order to investigate the dynamics of the system
of a finite size mirror where the light emitted in a certain we make the Wigner-Weisskopf type ansatz
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ted. It should be stressed here that in this paper only dis-
|¢(t)>=be(t)|e,{0}1,{0}2)+f dk by (1)]g.{k}1 .{0}>) tances between the atom and the mirror are considered that
are much larger than an optical wavelength, i®gr>1,
which is in an optical frequency domain already the case for,
+ [ dktg, (01010}, (3 amchisinan optical frequency Y
Equation(5) yields finally the delay-differential equation
where|{0}) denotes the vacuum state of the radiation field
and |{k}) the state with exactly one photon in mokeWe : _ 7 Y oo _ B
will (|:{on}s>ider here an initially excited atom in the absence of De(t)= = 5 be() + o5 €%0be(t= D) O (1= 7). ©
any photon, i.e.b(0)=1 andby ,(0)=0. In contrast to the . o _ .
notation in Eq.(3), in the fO”OWing the amplitudes are al- Wher.e(t) is thg HeaV|§|de step function. The first term on
ways taken in a rotating frame, i.e., we make the substitythe right hand side of this equatlon corresponds to the usual
tions by(t)—bg(t)e 1@t and bf_:] k(t)—>bjg (tye 1o With free space exponential decay while the second term repre-

the help of the “essential states” contained in the above anSents the effect of the reflected radiation on the atom that was

satz it is possible to write down a closed set of equations ofMitted at timer before it interacts again with the atom.
motion for the amplitudes, which take the form Thus, the retarded argument of the excited state amplitude

directly indicates the memory effects that are inherent in the

_ . system. Furthermore, the second term is weighted with the
be(t)= —f dk gy Sir\(kL)e_'(“’k_“’O)‘bé,k(t) factor e, revealing that only a fraction of the emitted light is
reflected.
o w2 Equation (6) is a delay-differential equatiofi34] and
_f dk hee "oty (1), (49 since we will encounter in Sec. Ill B 2 and Sec. Il B 3 some
more complicated equations of this type we move a further
-1 _ ; i (wg— wo)t discussion of some general properties of equations of this
by, (1) =0k sin(kL)e be(t), (4b) kind to these sections.
bévk(t) - hkei(wk_w())tbe(t) (40 B. Discussion
with g,=ad/h andh,=pg,d/%. Using Laplace transformation and geometric series expan-

By formally integrating the last two equations and insert-sion Eq.(6) can easily be solved and one obtains
ing them into the first one we get

- 2)"
| : o bu(t)=3, TP e ORIt nrye i),
be(t)=—f dt’ be(t’)f dk @ sirP(kL)e' (=@t ~1) n=0 M -
0

3 tdt’ bt [ dk r2ei@i- oo - It should be mentioned that this expression can _also be ob-
0 o(t') hie tained by a direct Laplace transformation of the Sdimger
equation(4) [25].
B t , ) gt —1) The above solution reveals that the system dynamics has a
- VJOdt be(t") 8(t"—t)e “step” character which can be seen most easily if one di-
vides the time axis into intervals of lengthFort [ 0,7] the

Y(t,, ) ) sum consists only of one term, €xpy7/2), which coincides
+8§fodt be(t")[(t" —t+17) with the free space behavior of a decaying atom. The physi-
cal reason for that is that the atom requires at least the time
+8(t —t—r7)]e wolt’ ~1), (5)  thelight needs to get from the atom to the mirror and back to

the atom again in order to “see” the mirror. FOE[ 7,27]
Here, we introduced the free space spontaneous decay rat¢he amplitude consists of two terms,
which is split up into a partsy=mgg /c and (1-&)y
E47-rhﬁ0/c, corresponding to the coupling of the atom to the be(t)=e’(”z)‘+s%ei‘“ofe*(y’z)(t’ﬂ(t— 7), (8)
first and second channels. The quantitys the solid angle
fraction that is covered by the lens since it characterizes thgiving rise to an interference term in the probability of find-
fraction of radiation that is reflected. In the above equationsng the atom in the excited state. The second term is due to
we also introduced the time=2L/c the light needs for the the emitted radiation reflected back to the atom. The light the
distance atom-mirror-atom. Furthermore, in the first step ohtom emits right now arrives at the atom again at the begin-
Eq. (5), a Wigner-Weisskopf type approximation was madening of the third time interval where the sum in E)
based on the well-known fact that the relative variation ofincludes a further term, and so on.
g2, hZ (~w) is very slow in the domain where the double  The role of the interference terms in the excited state
integration in the first line of Eq(5) lead to appreciable probabilities strongly depends on the distance between the
values. Diverging terms connected with level shifts are omit-atom and the mirror, which can be measured by the quantity
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FIG. 2. Upper state population of an atom close to the mirror for  FIG. 3. Intensity of the field at different points of time for the
different exact positions, i.ewo7=2n7 (node and wy7=(2n parameters of Fig. 2. The atom is located at a néde, wyT
+1)7 (antinodg. The remaining parameters ase=0.4, y7=0.4. =2nw) atz=L.

Also indicated is the corresponding free space solutier0).

that can be seen in Fig.(@nd also in Fig. 5 beloywvould be
vr. If we consider again the second time interval it is easy tasignificantly higher than indicated in these figures. However,
see that the interference term is of orderwhile a further  for the sake of visibility, a rather small frequency is chosen
term is of order ¢/7)2, which can be neglected fopr<1  here. Due to the small distance between the aiocated at

(small distance Hence we get the expression z=L) and the mirrorlocated atz=0) the reflected light has
2 the possibility of interfering with the radiation which is still
[be(t)|*~e™ [1+ey(t—1)cofwoT)], te[7,27], emitted by the atom, leading to a standing wave pattern of
© the form ~sir?(k,2) that has, in the case of the example

where we guess the beginning of an exponential series. THY'OWN in Fig. 3, a node at the position of the atom, i.e., a
examination of the dynamics in this limit for larger times zero electric field. Due to this fact, further emission of radia-

based on Eq(7) is relatively complicated. It is more conve- tic_)n in this channe_:l is s_uppressed. Anot_her interesting fea_ture
nient to return to the delay-differential equati@). Since we ~ With respect to Fig. 3 is that the amplitude of the standing
are working in a rotating frame the amplitutie(t) varies ~Wave decreases' far<1 with increasing time, W'her(.eas th.e'
slowly on a time scale given by #/Thus, in the limityr<1,  ©N€rgy escapesin the other channel. .The situation is reminis-
we can make the approximation- +0 in the argument db,, cent of a cavity where the atom acts like a partially transmit-

in the second term on the right hand side of E§). and  tNg mirror. _ .
obtain the Markovian equation In the limit of large distances between atom and mirror

(i.e., yr>1) the sum(7) is dominated by the term with the

v highest power ofyr. Hence, we get in a time interval
| ~ 2P, t=7 [m7,(m+1)7]
B I 1o (s12)")2
— 5 (1-ee®Nb(t), t=7. |be(t) |2~ T) e MM (t—m7)2M. (12

This leads to the excited state probability We see that the atom is partially reexcited by the radiation

e N t<r which it has emitted before and that the exact positiuode
|be(t) ]2~ b (1)  orantinodgis not significant. This is illustrated in Fig. 4 and
e e V" t>7, Fig. 5 where we plot again the exact solution for the excited

_ state amplitude and the field intensity. The atom is placed in
with y= y(1— & cos(wg7)). The upper state population based
on the exact amplitud€7) in this limit is shown in Fig. 2. 1
The behavior of the curves coincides almost perfectly with 0.03
the predictions of Eq11): After a period of lengthr there is
an enhancement or inhibition of spontaneous decay depend-_
ing on the factor * & cos(wyr) which corresponds to the %, 0.5 0015 -
amplitude of a standing wave mode $ig at the position of -
the atom. In a node of the standing wave, spontaneous decay
is inhibited while in an antinode it is enhanced.

To get a more physical insight in this behavior the inten- 0 :
sity of the electric fielde; which is reflected by the mirror
depending on space and time is shown in Fig. 3. The deriva-
tion of an analytical expression fQEI(Z’t)E1(21t)> can be FIG. 4. Upper state population of an atom far away from the
found in Appendix A. In a realistic situation with regard to mirror and wgr=2n7. The remaining parameters ase=0.4, yr
the setup considered here the frequency of the oscillations 10. The inset is a vertical magnification.

t
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FIG. 5. Intensity of the field at different points of time for the o
parameters of Fig. 4. The atom is located agaiz=at. while the =5
inset is a vertical magnification.

a node of the standing wave and the inset in Fig. 5 is a
magnification in vertical direction of that part. We see that FIG. 6. Transient photon population in channel 2 depending on
interference between outgoing and incoming radiation iSrequency and time for a large distance between the fpdaced at
much weaker than in Fig. 3. an antinode, i.e.wo7=(2n+1)7] and the mirror. Further param-
In this context it is also interesting to take a look at theeters ares=0.4 andyr=10.
spectrum of the emitted ligtihere this means the probability
of finding a photon of frequency in the long time limiy.  The frequencies of the local minima in Fig. 6 and Fig. 7
This can easily be calculated by integrating Etp) and Eq.  coincide approximately with the frequencies of those stand-
(4c) and using Eq(7), which leads to ing wave modes which have an antinode at the position of
the atom. This means that the photon distribution in the sec-
ond channel, which has initially roughly the shape of a
Lorentzian(at the end of the time interv@0,7]; see Fig. 6,
is affected by the backreflected light in the first channel.
XGp(=[y/2+i(wp—w)](t=n7))O(t—n7) Here, the radiation components with the mentioned frequen-
(13) cies have a higher probability to be reabsorbed and emitted
again(perhaps in modes of other frequengieghis leads to
with a lower population of these modes.
If the atom is very close to the mirror we recognize that
Gn(s)=1Fi(n,n+1;s)—€?, (14 the differential equation Eq10) contains the complex phase
e'®0”, where the imaginary part of this factor can be inter-
preted as a level shift. This has consequences for the spec-
trum, which takes in this limit the form

VL sinwr2), j=1
?Sln(a)r ), = 1

[

Aj(w) » (eyl2)"

fonT ¢ n
vI2+i(wg—w) i=0 n! e (t=nr)

bl(w,t)=

where ;F;(n,m;X) is the confluent hypergeometric function
and

(@)= bj(@)*~ =5, 17)
AJ((,L))— (1_8)7 - (15) g 72/4+(w_w0)2
“on v 172
tinod d

The transient photon population of the second channel in the aminoce nose
case of a relatively large atom-mirror distance for an atom
placed in an antinode of the resonant standing wave fielox
mode is shown in Fig. 6. In the long time limit the spectra N%
take the form =
[bj(w)|?

B Af(w) 6 420246 6-4-207246

(Y218)[1— & cod wT) ]2+ [e(y/2)SiN 07) + 0 — wg]? (@-)v/n
(16) FIG. 7. Frequency dependent steady state photon population in

the case of a large distance between the atom and the mirror. The
Figure 7 shows the steady state photon population of thexact position of the atom is a nodedr=2n) or an antinode
channel parallel to the mirror for different atomic positions. [ wor=(2n+1)7], respectivelye=0.4, yr=10).
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where’y is defined in Eq(10) and 0008

0.007 | node

®o= ‘1’0_8% sin(wg7). (18 0.006 -

0.005 |
This expression can be derived with the help of ELD) _]C:‘; 0.004 |
(where we neglect the small contribution arising from the = Y 1
first time interval[0,7]) or with Eq. (16), using the fact that 0.003 /7 s slope
for yr<1 the trigonometric functions in the denominator of 0002 |/ antinode
Eqg. (16) vary very slowly on a frequency scale The form 0.001 N e St y
of this spectrum illustrates again first of all the behavior - T

shown in Fig. 2, i.e., the width of the Lorentzian is larger or 0 L L L L L L
smaller depending on whether the atom is placed in an anti-
node or a node of a standing wave &jaf. On the other
hand, the maXImum Of the fUﬂCtIOﬂ |S Sh'fted aCCOI’dIng to FIG. 8. Upper State population in the case of an atom far away
the imaginary part of the mentioned phase. The physical infrom the mirror (yr=20, £=0.4) and weak laser excitation(X,
terpretation of this shift is based on the fact that the atom=0.05y) for an atom placed in an antinodeashed line,w, 7
interacts with its own radiation. It corresponds to the energy=(2n+1)s, A=0], in a node(solid line, w,_ r=2nm, A=0), and

of the atomic dipole in the reflected electric field at a “slope” [dashed-dotted liney, 7=(2n—1/2)7r, A=—0.2y].
[2,10,19,20.

H =H-+V(t), (19
Ill. LASER EXCITATION .
with
The system discussed in the previous section was ame- 0
nable to an exact analytical treatment since the equations of _ VR0 it ot
motion decoupled by using a Wigner-Weisskémf Markov) V=4 2 (&% o_+e o) (20

type approximation. This reduced the problem essentially to

the solution of one equation describing only the atomic dy-and laser and Rabi frequeneay and(),, respectively. Tak-

namics. This was possible because the system containé@dg the ground state of the atom-field system as the initial

merely one excitation. The dynamics of the atom-field sysstate we get in first order perturbation thedgssuming a

tem becomes more complicated when we include a continuweak laser intensitythe excited state amplitude in a rotating

ous laser excitation of the atom. The number of photondrame

scattered by the atom into the two channels will permanently

increase and a part of them will be reflected back, interacting bL(t):eimLtiftdt/ <E|e—iH(t—t’)/hV(t/)eth/h|G>

again with the atom in addition to the laser light. The atom ¢ it Jo

starts now to emit a different kind of radiation which again

returns to the atom after some time, and so on. Thus we =i%Jtdt’ e iM'p (t") (21)

expect that an electric field is constituted with a complex 2 Jo e

structure. The behavior of the system reminds us of that of a

cascaded quantum syst¢B5—39, a formalism which deals with |[E)=|e,{0},,{0},), |G)=|g,{0},,{0},), and laser de-

with systems driven by nonclassical types of light and whichtuning A=wy—w_. The above expression is essentially

was applied in the theory of Markovian feedbd&4]. equivalent to the one-photon amplitude of Sec. Il B if the
The non-Markovian feedback contained in the system dislaser frequency, is replaced byw. Thus, we immediately

cussed here makes it difficult to solve the problem in anget

exact analytical way since it is not possible to establish a

o]

closed set of equations describing the dynamics of the atom L iQg (eyl2)" - N

as in the theory of Markovian resonance fluorescence. Thus be(t)= y+2iA zfo € H(t=n7)

we are restricted to approximative methods in the following

sections. XGp(—(y/2+iA)(t—n7))O(t—n7). (22

Examples of the excited state amplitude are shown in Fig.
8 for different positions of the atom, where the overall dis-

Using the results of Sec. Il we will, as a starting point, tance of the atom and the mirror is chosen to be quite large.
examine the influence of the laser for low intensities withinThe form of the curves has a direct interpretation. Since for
the framework of a time dependent perturbation theory. Herdpw laser intensities coherent light scattering dominates, the
as well as in the following sections, the effect of the laser isreflected radiation leads to a lower or higher “driving force”
included in our considerations with the help of the standardlepending on the position of the atom. The system has simi-
semiclassical model for atom-laser interaction in the rotatindarities with an atom that is driven by two lasers where the
wave approximation, i.e., the Hamiltonian now reads phase difference is controlled by the distance between atom

A. Perturbation theory
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a) b) ) d)

o (t+7-9)_(:-9)|G) —o_(t+7-R)o_(t-%_)|G) T o_(t+7-%R -r)o_(:-9)|G)

time 4 | T time 4 : T time 4 : 4T
| | | | |
| | | | |
| |
[ t | t
I I |a I |
| | _cQ | |
| \ T+T
| | | |
| | | |
| | |
S T S S
0 L A1) z 0o L z z 0 L zq z
c c c c c c c [4 c

FIG. 9. The four contributions to the second order intensity correlation function and the corresponding space-time diagrams. The
correlation function is the squared norm of the sum of these vectors. The atom is locat¢ldeatlietector is aty, and the distance between
them is denoted ady. It is assumed that the detection of the first and second photons takes place at arighhe- T, respectively. Thé®
symbol indicates the time of emission in the past relative to the detection times. The ordering of the opefdjarhanges ifT becomes
smaller thanr (dotted ling.

and mirror. Actually, the superimposed intensity of the laseroperators are given in Appendix A. This correlation function
changes after each round trip of the light, which leads to aorresponds to the probability of detecting a photon at time
transient upper state population as shown in Fig. 8. For ext+ T on condition that at timé¢ a first one was detectddee,
ample, if the atom is placed in a node the laser always intere.g.,[40]).

feres constructively with the “reflected” laser beam, giving  In the channel parallel to the mirror we get

rise to a higher population in the time intervphz,(n 2

+1)7] compared to the preceding one. This point will be G (tt+T)=(o (D)o (t+T)o _(t+T)o (1))

f.urt.her developeq in S_e.c. Il B2 where we reconsider the =||0'_U(t+T,t)0'_U(t,O)|G>||2. 26)
limit of low laser intensities.

The steady state population obtained from E2l) is By calculating the time evolutiot in first order perturba-

given by tion theory we obtain
(058 G(t,t+T)=|bg(t)[?|bs(T)[?, 2
Iim|b§(t)|2=~2 O~2 (23) 2 ( ) | e( )| | e( )| ( 7)
= yL+4A or in the long time limit
with modified decay rate and detuning 02
. lim G@(tt+T)==——|b5M2 (29
Y=y —ecodw 1)), (243 t—oo yit4A
- Y i.e., for yr>1 we have a behavior as shown in Fig. 8. This
A=A-ezsinw.7). (24b  can be interpreted as follows. After the detection of the first

photon the atom is in its ground state and has to be reexcited
The situation is similar to the Markovian limit of the previ- 29ain before it is able to emit a second photantibunch-
ous section, i.e., we have a pronounced dependence of tffe@)- The radiation which is emitted noithe second photon
atomic dynamics on the exact position of the atpeng. is split up into a part emitted into channel 2 and a part that is
node or antinode of a standing wave of the laser frequenc§Mitted into channel 1. I[f <7 the light which is(or will be)
sin(_2)]. The difference is that this fact still holds in the casefeflected in channel 1 is not able to reach the atom before the
of large atom-mirror distances. In the sense of Figs. 3 and §hoton detection in channel 2. Thus, we encounter, except
this is due to the fact that the interference ability of outgoingfor @ constant factor, the same behavior as in free space.
and reflected light does not depend on the distance since thgowever, if there is enough time for the radiation in channel

laser provides a continuous scattered light field. 1 to make a complete round trip, it is able to reinteract with
A further quantity that is of interest in this context is the the atom(in addition to the lasgy which leads to a higher or
the second order intensity correlation function, lower emission probability in channel 2.

An expression foG{?)(t,t+T) is derived in Appendix A
(E[(OE](t+ DE;(t+ TEj()) =|a;|*GI(1,t+T), (25  where we assumed that the atom is locatetiveerthe mir-
ror and the detector. It is written as the norm of a sum of four
where the index = 1,2 indicates which channel is considered states. These four contributiofi® a nonrotating frameare
and a;=(6j,—¢) yh/(2d). Expressions for the electric field shown in Figs. €8)-9(d) where each of these terms is con-
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nected to a different path leading to a coincidence detection 4.5
at timet andt+ T. The back action of the light on the atom 4
is included in the dynamics of the time dependent operators.
In principle the light has two possibilities to get to the detec-
tor: it takes either the direct way or the indirect way via the
mirror, which leads to four possibilities for a two-photon
detection amplitude indicated by the space-time diagrams in
Fig. 9. For the sake of clarity the arbitrary distance between

antinode

— N\

(2)( 00,00 +T)
[\*]
w

G
f

detector and aton,, is not set to zero, which is also indi- = 15 \‘.I,"Jslope T
cated in the time arguments of the operators. For calcula- 1 i
tions, however, we will always sat,=0. The time argu- ]

e ; S S 0.5 .
ments of the operators coincide with the emission time in the node
past relative td andt+ T, respectively. Note that a possibil- 0 ' ' ' ' '
ity that includes a reflection gives rise to a negative sign and ! 2 I o 7 o T
that the ordering of the operators in Figd9depends on the T
length of the delay interval. The four contributions will FIG. 10. Second order intensity correlation function for a
interfere since they remain indistinguishable when a coinciweakly driven atom({2,=0.05y, £=0.4) located at an antinode
dence signal occurs. [w 7=(2n+1)7], a “slope” [w 7=(2n—1/2)7], and a node

For weak laser intensities these quantities can be calciw 7=2nm) of the standing wave sik(z). The overall distance
lated using first order perturbation theory in a similar way agetween the atom and the mirror is assumed to be quite [grge
was done in the derivation of E427), which leads to an =20) while the laser is tuned to exact resonafge=0).
expression of fourth order i,

Within the framework of this perturbative treatment we

GO(t.t+T)=|b (T)bL(t) +eZ L7t (T)bL(t— can also calculate emission spectra without any effort, which

I )=lbe(T)bg(t)+e e(Tbe(t=7) turn out to be monochromatic. However, since the results
—ei“’LTblé(T+ r)bt(t— 7) coincide with those of Sec. Ill B 2 they are not quoted here.
—eUbg(|T-7)bg(t+s)P, (29

B. Modified optical Bloch equations

For further investigations it turns out that it is advan-
functions in this expression. In th f negative ar tageous to work in the Heisenberg picture. Like the ampli-
unctions S expression. € case ol negalive arguy jaq i the previous sections, in the following the atomic

gemlsl ':Eet (;ﬁrrespondll_?g dquantltles_t?avg to b? ?et t]? Zer9>perators and the mode operators are always represented
ecall that these amplitudes are written in a rotating frame, "~ rotating frame, ie.o —e “le  and a,, by
In the long time limit we have

—e 'edg, e '“p, . The Heisenberg equations of motion
for the operatorsy(t),

wheres=0 if T>7 ands=T— 7 if T<r. We omitted step

2
. 0 . .
lim G‘lz)(t,t+T)=~—2+4ZZ|2b;(T)cos(wLT)—bg(T+T) a(t) =g, sin(kL)o_(t)ei(@x @0t (31)

t—oo L

—bg(|T— 7). (30 b(t)=heo_(t)e'lexelt, (32

This function is shown in Fig. 10 for a relatively large Yi€!d after formally integrating and inserting into E@) and
atom-mirror distance. Several features are visible. First of al'Sing a similar derivation as in E) the electric field op-
G is not zero forT=0. Indeed, diagranta) and diagram  €"ator at the position of the atom,

(b) in Fig. 9 do not contribute to the detection probability in i

this case, which reflects the fact that after an emission pro- g(¢)— 4 —e g (t)—e€“g_(t—1)O(t—7)]
cess the atom is in its ground state and the probability am- 2d

plitude that it immediately emits a second photon is zero. On
the other hand, if the first photon is detectedd the atom is

in the lower statgthere is still the possibility that there is . _ .

radiation around caused by a prior gmission process which iVsV'th E()=E.(L,1) +Ex(01) and noise operators
represented by the remaining diagrams. Due to this fact the i%

value of G{) for T=0 differs from those for larger times Ny (t)= FJ dk g sin(kL)a,(0)e™ i,
where the “partial” antibunching effect of Figs(& and 9b)

decreases. FOF= 7 we have a similar situation concerning

+Ny(t)+Ny(1), (33

diagram(d) of Fig. 9, which does not contribute, i.e., a par- _ fj ot

tial antibunching effect, which leads again to a different No()= 7 | dkhd(0)e . (34
value of the detection probability compared to earlier or later

times. The second term on the right hand side of E2B),
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v h A suppose that it will give us also an estimation of this scale in
Ererf()=—1e5 aﬂf(t—T)e_"”L(t_T)@(t—7'), (35  the case ok+0. In Sec. Il B 3 it is shown that this condi-
tion also has some meaning in the frequency space. Thus, we
can be identified as the reflected part of the ele¢sturceé  can make again the approximatien-+0 in the arguments
field. Furthermore, we will need in some calculations theof the operators in E¢37), which leads to the equations
commutation relations of the noise operators and the

PR ! - )
atomic” operators fort’ <t, LI g T
; dt 2 2
[Nj(t),o (t’)JZSZfe*i“L(“%‘-
SR 2 d i1 J - ~) o,
—(o.)=—|5 il i),
X[o_(t—7),0_(t")] dt<0+> 2 (o) > (02)

XO(t—71)0(t' —t+7). (36) d _ -

o _ o G{T2 =100 ) ~(o N -N(o)+1), (39
Note that forj=1 this commutator is nonvanishing foft

<t<t’+7 (andt=17) in contrast to the Markovian case.
With the help of expressioi33), assuming again that all ™ ™ ~ ! .
field modes are initially in the vacuum state and keepin |mpl_|C|ty we set7=0 also in the arguments of the step
normal ordering of the photon creation and annihilation opJunctions[in contrast to Eq(10)], i.e., the difference in the

erators, it is straightforward to derive a set of modified opti-dynamics in the time intervl,7] and later is neglected. In
cal Bloch equation$OBES, any case, taking the difference into account would merely

lead to a(slightly) different initial condition for Eq.(38)
which would not alter the steady state results to be discussed

wherey, andA are defined by Eq(24). For the sake of

d Y. QO
gilo=—|ztiA (o )—i— (o0 )—(0-04)) here at all.
Thus, the equations have the form of the familiar OBEs
Y o with modified spontaneous emission rate and detuning. They
—858 L{or o o (t—7)) are rewritten as an inhomogeneous system of three differen-
tial equations wherer,=o,0_—o_o,, since it is more
—(o_o,0_(t—7))]O(t—17), convenient to perform steady state calculations in this repre-
sentation.
. Qp The steady state population of the upper state is easily
giloro)=i— (o) =(o-))=Hoso-) obtained by inverting a 83 matrix, which corresponds to
Eq. (38),
+8%[efi“’”{a'+(t—7')0'_> 2
(040 )ss =35 =5 (39
+e g, o (t— )]0 (t—1), Vi +205+44°

d d * d d Understood as a function df this is essentially a Lorentzian
a(cu):(&(a)) , a(o,cu}: - a<a'+a',>, (in t_he Ilmlt_ under conS|derat|c_)n, treating the trigono-
metric functions as constamtsvith maximum at A,

(37) . . ~> 3 : :
=¢g(yl2)sin(w_7) and widthw= vy +20Q§. Applying again
where we indicate for the sake of clarity only the retardedthe standing wave picture of Sec. Il B, we see that the shift
time arguments. As can be seen from these equations, tltd the maximum vanishes if the atom is located at a node or
nonlinear structure of the Heisenberg equations of motioran antinode of sing 7/2). In contrast to this, the width takes
leads to the appearance of correlation functions on the rights minimum or maximum values at these points. Indeed, we
hand side of Eq(37). Hence, the modified OBES87) cannot  get a maximum shift if the atom is placed exadigtweer
be considered as a closed set of equations. However, it isode and an antinode where the spontaneous emission rate is
convenient to take them as a starting point for approximativenot altered at all. In the limit discussed here the steady state
treatments. population is proportional to the measurable intensities

1. Small distance between atom and mirror (Markov limit) | 1~siP(w 712)(0 4 0_)ss, (40a

As in Sec. Il B we will first consider the limit of small I~ ) (40b)
distances between the atom and the mirror, iyesl. Fur- 27\T+ T /s
thermore, we require now that the intensity and the detuning 1o light emitted in channel 1 or 2, respectivésge Fig.
of the laser are not too high, which can be expressed by the; ;4 Appendix A Thus, a possible way to demonstrate
condition Q<1 with Q=+/QJ+A?. The latter defines a effects caused by the mirror is to measure the absorption
time scale on which the solution of the usual OBEs-0) spectrum of the atom, i.e., the intensity of the scattered light
varies appreciably in the high-intensity linfi#1], and we depending on the laser detuning. A further option would be
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0.03
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i 0.005 g . . e
, atom-mirror distance 0 o . - . - . e . - .
2nm 2@+Dr 2m+2)n  2m+3);m  2(a+d)w
@J Y
L FIG. 12. Excited state population depending on the distance
> between atom and mirror fak=0 (solid line) and A=+/2 (dashed
L 2z line) and a larger solid anglés=0.4). The global distance is as-

) sumed to be small while the laser intensity is we 0.1y).
FIG. 11. Sketch of the detector arrangement. A first detector y 8ot 0.1)

opposite to the mirrorg,>L) measures the intensity in the first
channel while a second detector measures the intehgitf the
light in the channel parallel to the mirror.

A=0, the two signals are anticorrelatéce., a minimum of
the I, signal coincides with a maximum of thg signa).
The existence of a level shift removes this coincidence in the
case of a finite detuningsee inset in Fig. D1 For higher
values ofe we can get deviations from a pure sinusoidal
behavior(see Fig. 12

the measurement of the intensityfor different positions of
the mirror(keepingA constan, i.e., for different values of,
which would lead to a periodic variation in the measured
intensity. This was don€for small global atom-mirror dis-
tance$ in [17], where the measurement scheme slightly dif-
fered from that discussed here since the system under con- Provided with Eq.(37), we can now also examine the
sideration was a three-level atdmHowever, the basic limit of small laser intensities in more detail. In this case
principle is the same and for effects discussed in this paper [@ssuming that the atom is initially in the ground statee

2. Low laser intensity

is sufficient to consider a two-level system. expects that the atomic operators are approximately uncorre-
If we assume that<1, Eq.(39) can be expanded to low- lated since coherent scattering processes dominate, i.e., we
est order in this parameter, can make substitutions of the type
QS V2 [+ an? (og(D)og (t")=(oq(t)){oq(t")). (42
(000 )ss~ | 1+ 26\ 2 codwLT=¢) |, After some rearrangements one gets
41
- © (o= Lria)ioy-i3n0)
—(o_)=—|z+I o_)— 1z Tg5),
with T=92+203+4A? and tarig)=2A/v. The presence of dt 2 2 ‘

the relatively small level shift leads to&dependent phase g .
shift ¢ with respect to the function cas(7) which corre- | N

sponds to the phase of the standing wavecsin@). The grlo+o-)=z (I ) =1 (1){0-) = y({o,0-)),
determination of this phase would, e.g., require the knowl- (43
edge of the exact distance between atom and mirror. This

difficulty could be avoided if one carries out a simultaneouswhere we introduced the quantity

measurement of, and |, since the phase of the latter is . -

dominated for smalle by the prefactor sfifw 72)=[1 () =Qo—ieye'(o_(t=7)0O(t—7). (44

—cos(, 7)]/2. This means that, if there is no level shift or With the help of the decorrelation assumpti@i®) we elimi-

nate the field degrees of freedom which are implicitly still
contained in Eq.(37) and get an equation for a reduced

1 . _ . .
In the experimen(17] the.A type three-level system was excited atomic system. This assumption is related to the fact that an
by two lasers where the mirror affected merely the radiation of one

transition. Thus, we have essentially a completéfyee space’) atom mma”y. in the ground St?‘te and Weakly eX.CIted by a
Markovian behavior concerning the radiation originated by thelaser approximately b?haves like a harmonic oscillator since
other transition. The intensities of the light at both of these frequen?z= L9+ 0]~ —1. With regard to Eq(43) we have to re-

cies were measured simultaneously and it is clear that, like the ligHR!@C€(0) by —1 and it can be showfsee Appendix Bthat

in channel 2, the intensity of the nonreflected light is also simply@ssumption{42) holds in this case if the system is initially in
proportional to the upper state population. For smalve have the ground state.

essentially the same oscillatory behavior whereas the expressions In any case, for the following discussion we keep the

for the amplitude and the phase shift of the oscillations are muctierm for a short time since the equations are more transparent
more complicated. in this form because the principal form of the OBE is con-
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served. Clearly the quantityI(t) can be interpreted as a
modified Rabi frequency, in particular, if we recall the form

PHYSICAL REVIEW A 66, 023816 (2002

Apart from this semiquantitative discussion it is worth-
while to study the equations of motidd3) in more detail.

of that part of the electric field operator which is due to theWe explicitly make now the replacemenis —c, o, —c'

reflection of the ligh{see Eq(35)], (Eef(t))=Eq(t)e 'L,
with a slowly varying amplitudé&(t). Thus, Eq(44) can be
written in the formlII(t) = Qg+ (2d/%)E(t), where the last

term coincides with the definition of a Rabi frequency. Let us

assume now thay=1 and that the atom is in the ground
state att=0. Then, the modified Rabi frequenc$4) has
approximately the shape of a “stair functiofjoing up and

down in general with mostly decreasing distance between
the single steps. This can be understood if we discuss the

time evolution of the system in time intervals of length
Betweent =0 andt= 7 Egs.(43) are the ordinary OBEs with
Rabi frequency), since the Heaviside function in E¢d4)
vanishes. The solution of the ordinary OBEs yields fbg
<y

T

<O,(t)>%m, tE[O,T], (45)

and thereforear,— — 1, wherec is a lowering operator of a
harmonic oscillator. The equations of motion then take the
form

Qo
2

d Y. .
a(c(t))—— §+|A (c(t))y+i

+8%eiw<c(t—r>>®(t—r>. (518

d t Qo t t
Fr{eTe()=—i—-(et)—(c" (1)~ »c'Heb)

+egle (el (t=n)o(b)

+e'eu(c(t)e(t—7))]0(t—7).  (51b

because the above expectation value is effectively constant

after a few radiative lifetimes <. According to this, in
the next time interva[ 7,27], the Rabi frequency takes the
form

Q=0g(1+ue“t”)  with u= (46)

ey
y+2iA°

In Appendix B it is shown that both(c(t)c(t))
=(c'(t))(c(t)) and also, as already mentioned, the two-time
correlation functions factorize if the atom is initially in the
ground state. Furthermore, it is proved that these statements
still hold in a steady state regime independently of the initial
state.

Now we have to solve again the ordinary OBEs, which leads Our task now is merely to solve E¢619 assuming an

to

!

10,
<U—(t)>~m, te[r2r7], (47)
giving rise to a new Rabi frequendyg in [27,37], and so
on. Thus, Eq.(43) takes in every time intervalnr,(n
+1)7],ne Ny, the form of ordinary OBEs with different
Rabi frequencie€){" defined by

QBH)ZQO+,(LeiwLTQ(()n71),

aP=q,, (48)

while the expectation value of the dipole operator in an “in-

termediate” steady statef. Fig. 8 is given by

afy

y+2iA°

(o)W~ te[nr,(n+1)7]. (49

The value forn—c of the recurrence relatiofd8) is the
limit of a geometric series or simply the fixed point of the
map, which is given by

Qo

Q(M)Z—.
0 1_[uelw|_7"

(50

and leads to a steady state populatidw o _)ss
~|087121(y?+4A?) which coincides exactly with expres-
sion (23) obtained from perturbation theory.

initially unexcited atom. This equation is a linear delay dif-
ferential equation, i.e., apart from the constant inhomogene-
ity, the type of equation that already appeared in Sec. Il. As
a matter of fact, this equation reduces in every time interval
[n7,(n+1)7] to an ordinary linear differential equation
(ODE) with a time dependent inhomogeneity, so for any
given initial state there exists a unique solution. In contrast to
initial value problems concerned with ODE’s, delay-
differential equations need an initiainction In our case this
initial function is defined due to the presence of the step
function, which yields in the first time intervad,7] an ODE
and is of course given by its solution. This initial function is
uniquely defined by the initial state and it replaces the quan-
tity (c(t—7)) in the equation of motion in the next time
interval [ 7,27], leading to an ODE with a time dependent
inhomogeneity. As initial value we take of course the solu-
tion of the ODE in the first interval d@t= 7 (which is justified
since it can be easily shown that the solutions of the type of
equations we consider here have to be continuodlise so-
lution in [7,27] provides us again with the functiong(t

— 7)) in [27,37] and an initial value. Continuing this proce-
dure, we see that we have to solve in every time interval
[n7,(n+1)7] an initial value problem of ODE and we can
apply all mathematical theorems which are concerned with
such equations. This “method of step34] can even yield
analytical solutions as we will see in Sec. Il B 3. Another
method of solving linear delay-differential equations is by
Laplace transformation as was done in the case of( i),
since in Laplace space the function with the retarded time

023816-11



U. DORNER AND P. ZOLLER PHYSICAL REVIEW A66, 023816 (2002

argument is simply replaced by the Laplace transform of thaibout higher-order correlation functions? A lack of the har-

function multiplied by an exponential function. monic oscillator model is surely that in general the operator
Thus, the solution of Eq43) is unique(for a given initial  c(t)? is not equal to zero in contrast to_(t)? so we cannot

statg whereas the behavior of the derivatives is more comnecessarily expect that, for example, the quantity

plicated. With respect to this, it can be easily shown that

(undgr certain conditions which are satisfied in our ):ai&?e GAMt+T)=(c't)cT(t+T)c(t+T)c(t)) (55

solution has at least continuous derivatives at=n7 and in

general the ¢+ 1)th derivative has a discontinuity. This fea- gives the correct result for—0. In fact it can be seen from

ture can be identified in Fig. 2, for instance, where we rec- . ) S
ognize a kink at=r. the results of Appendix B thas;*'(t,t+T) is in general not

In order to demonstrate the mentioned solution methot?qual to ze;lro forT=O¢,eJeust as |23t)h?htheory Otf Ord'ﬁﬁry
we will now derive the transient solution of the delay- resonance fluorescen¢see, e.9.[43)) the correct result is

differential equatior(518. The Laplace transform of the ex- obtained by perturbation theqry. . .

: . A further remarkable fact is that the harmonic oscillator
pectation valugc) takes the fornfassuming(c(0)) =0] model reproduces the result of the Wigner-Weisskopf theory
of Sec. Il where pure spontaneous decay was consideesd
Appendix B. At a first glance this seems to be surprising
iZ+&iz+ &+ a;—ae (7797 since the atom was initially in the excited state, ifer,)

(520 was far away from—1. On the other hand, we saw in Sec.
Il A that the state of the system is in this case always
with a;=—(y/2+iA), a,=s(y/2)e'“L", az=iQ0y/2, and confined to the subspace spanned by the vectors

a3 1

Le)(iz+§)=

£eR*. We get {1e,{0}1.0},).19.{K}1.{0}).]9.{0}1 {k}»)} (and |g,{0}s,
{0},) if one wants to start in a state different from the ex-
ag (> elZtot cited statg which leads to the fact that the noise terms of the
<C(t)>:§ﬁxdz iz+¢& Heisenberg equations still do not contribute to the modified
OBEs. Furthermore, the two-time correlation function takes
1 1 the form{o . (t")o_(t))=b (t")be(t) and thus the equation

X T — - of motion [from Eq. (37)] for the upper state probability is
1-ape” 7 (izt §+ ay) 12+ EF equal to Eq(51b) for vanishing laser intensity.

a3 < .
=2 ajelt-n 3. High laser intensity
27 71=0

" The examination of the system dynamics for larger values

«  glz(t=n7) 1 of Qg7 is more complicated since the incoherent nature of
X f dz TR PR (53 the scatteredand reflectegiradiation becomes important. In

o (iz+é+a) order to investigate the dynamics in this parameter regime
. o . . _we will assume in the following that is small so we can
The Fourier transformation in the last line of this expressionyeat the “reflected” part of Eq(37) as a perturbation. With
(see, e.g.[42]) leads finally to the result22) already ob-  the aim of obtaining a closed set of equations which contain
tained from perturbation theory and a closer inspection of only terms of first order irs we can calculate the two-time
confirms the result49). o . _ _ correlation functions in zeroth orderdepending on the ini-

_ The upper state popula'tlon In a stationary regime coiNtjg| state, which is a single-time expectation value, and rein-
cides therefore exactly with Eq23) which is the low-  gert the result into Eq37). To this end we can multiply the
intensity limit of Eq.(39). However, Eq(23) is also valid for Heisenberg equations of motion with, (t') from the left or
y>1. The intensities in a stationa.ry regime meqsured irb_(t/) from the right wheret’ <t , make use of the com-
channels 1 and 2, respectivelyee Fig. 1] take again the 1 iation relationg36), and calculate the expectation value.
form (409 which is due to the factorization property of the Tp¢ equations we get in this way now contain third order
two-time correlation functions. Using this fact, we can fur- .o relation functions which are, however, of orderand

thermpre easily calculate gmissjon spectra of the light scaty, ;s they are neglected. The solution bt — 7 is given by
tered in channel 1 or 2 which gives
Si(w)~siB(w 712)[(c)sd?8(w—w), (543 Co(tt=n=U(nC.(t—7t=7), (56)
Sy(w)~[(C)sd 20— w,). (54p  With
The fact that the spectra are monochromatic just expresses (o (1o (1))
again that coherent, elastic scattering processes are involved R (o) o, (1))
in the limit of low laser intensities. C.(t,t")= , , (57
It was already mentioned that the second order correlation (o (1o (Do (1)
functions factorize under certain circumstances but what (o (t")o_ (D)o, (1))
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! 0.6 T
(o (Do (1) o —
. (0. (Do () st
C_(t,t")= , (58 B
(o (Do _(H)o_(t)) s o 045
‘ i .
(o (Do (o (1)) e 03
~ 02
The matrix elements);;(7) of the evolution operatod () o1 b 0.44
=eM™ with '
0 1
B Z_iA . - % i% 0 1 : 27 31
2 2 2
) FIG. 13. An example of the upper state population fog
0 _ Z+iA =0 _;=0 =27, yr=>5, £=0.05, andA=0. Until t= 7 the behavior is the same
2 2 2 as that of free space. In the magnified paet ¢) the functions are
A= Q Q plotted for an atom in an antinodew(r=2nw), a node[w 7
—i 70 i70 -y 0 =(2n+1)7], and fore =0, i.e., no mirror(dashed ling
'QO i QO 0 1 —io T iw| 1| 1%
= 5 Y fa(7)= 5[ Upy(n) + et Uy(7)]. (66)

(59
) ) ] ) ) Obviously, Eq.(60) describes again a reduced atomic dy-
are obtained by solving the corresponding differential equaggmics but compared to the equation discussed in Sec.

tion. _ _ Il B 2 it is more complicated since we now have a coupled
_ By inserting the zeroth order two-time correlation func- gystem of four delay-differential equations. These equations
tions into Eq.(37) we get finally an equation which is of first 46 an extension of the ordinary OBEsghich are recovered
order ine, in thee—0 limit). We can apply the method of steps, which
yields the formal solution for timese [ m7,(m+ 1) 7],

S=ASb+eK(nN&t—nO(t—1), (60

. . m t ti—7
where we introduced the abbreviations S(t):U(t)S(O)JrnZl (EY)mU(t)fmrdtl J(m—l)fdtz
- — T -7 o
S(t)=[{o_(1)) (o, (1)) (o (Do_(1)){o_(t)o (1))], N J'tm dt,, B(t1)B(t,)- - - B(t,)S(0),
(61) r
K(7) (67)
y 0 Q 0 where B(t)=U"}(t)K(7)U(t— 7). The above expression
Efl(T) - 7f2(7) has a form similar to that of the excited state amplit(ti@).

In fact, Eq.(67) yields in the case of vanishing laser intensity

Yo Qo ,

0 =f1(7) i—f5(r) O
2 2 (e

(o (0 (0)=3, 2 codtwg(t-nn)”

Q Q
—igfs(n) im i) im0 n
0 o X e  Yt="72)@(t—n7), (68)
i70f3(r) —i7of§(r) —yfa(r) O . o
which is an acceptable approximation feyr<<1. Further-
(62) more, if we assume thagr<1, Q)7<1 so thatU(7)~1 and
7—+0 in the arguments o8, we recover Eq(38) of Sec.
with I B 1. A numerically calculated example of the transient
_ upper state population is shown in Fig. 13.
fi(r)=—€"LTUs1)—Us(7], (63 The steady state solution can be found by calculating the

eigenvector of the matribd,+cK(7) with eigenvalue 0.
, Y o, From the form of the matribdK(7) we expect that the laser
fa(7)=—€“t75~Us(7), (64 intensity[which is contained in the functiorfg(7)] will in-
0 fluence the decay rd® and driving forcés) in a steady state
. regime. In fact, we see in Fig. 14 that the difference between
fS(T):eiwa'_VUM(T), (65) the upper state popu_lati_on obtained from E(-Zﬁp_) and the
Qp results of Sec. Il B Xindicated by the dashed linesan be
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0.25%

S(0)=—— lim Re{{c, (1)b,())}. (73

W t—ow

TK

The usual expression including the Fourier transform of an

atomic two-time correlation function is obtainéexcept for

constant factopsby integrating Eq.(71) and inserting the

result in Eq.(73). Furthermore, corresponding to an operator

O we define its fluctuating padO=0O—(O), with the help

0 0025 005 0075 01 0125 015 0175 02 of which we can split the spectrum into a coherent and an
Yo incoherent component:

0% el

(6.0 )

-0.25%

FIG. 14. Excited state population deviation from the free space S(@) = Seo ) + Sipc( @)
value (¢=0) in the long time limit depending on the distance be-
tween atom and mirror foh=0, e=0.1. The laser intensity is taken with
to be rather strong(,=20y). The rapid oscillations have to be

regarded in a rather symbolic way; in a realistic situation the fre- Seor{( @) = 1 lim Re{(a, (t)){b,(t))} (749
quency would be much larger. Also indicated are the maximum and «© TK gy oo ©
minimum values(dashed lingsof the oscillations obtained by Eq.
(41). 1

S‘”C(w):m lim Re{{da, (t)5b,(t))}. (74b
significant. Furthermore, fof)y>vy, smalle, andA=0 the @t

upper state population approximately takes the form It is easy to see that the coherent part of the spectrum takes

2 the form

2
1+28% coq wo7)g( T)) (69)

QO
<U+ 0’7>ss% T

Scoh:<0'+>ss<0'7>555(w_wL)u (75

with T'=y2+ 202. This expression equals E6i1) obtained ~Where the stationary values are taken from €&g).

in the Markovian limit except for the functiog(7) which is In order to calculate _th.e incoherent component Of. the
given by spectrum we can use a similar method as in the derivation of

Eq. (60). It is possible to derive a set of equations for the
expectation values

[(So_(t) b, (1)), (o, (t)Sb, (1)), {Sa,(t) b, (1))]"
P(t), (76)

Qo

27 S|n(QoT)

1
+2e7 0
(70)

3
o(7)= e*B"”W( 7 Cog007) -

We see that there is a modulation in the steady state popula-
tion defined by the Rabi frequency. This function has zerowhich takes in a rotating frame the form
values in regimeg)ym=~ns independently ofwy7. Thus, a )
strong laser can, in a way, inhibit the inhibition or enhance-  B(t)=[—i(w—w )1+ A3]P(t)+ k[ o(t) + &l (t,7).
ment of spontaneous decay. (77)
We will consider now the spectrum of the emitted light in
the channel parallel to the mirror. For our purposes it turnd2etails of the calculation are given in Appendix C. The last
out to be advantageous to define an emission spectrum #grm in the above equation includes two-time correlation
terms of the mean photon number increbi§e) of that chan-  functions which are again calculated in zeroth ordeThis
nel in the long time limit, i.e., with the help of the differential Yields in the long time limit an expression of the form
equation(in a nonrotating frame . . R
Pss= _KwM_l[lo,ss+8|1(T)] (79)

. 2 .
b,=—iwb,+k,0_ with «,= \/; he, (7))  with

, M=—i(w—w)l+Az+ee (@ °UK(7). (79
we obtain

The atomic steady state expectation values which are con-
tained in this expression are given by the steady state solu-

tion of the delay OBE$60). From this the spectrur§,,. can
be calculated, whereas fer=0 we get the usual Mollow
spectrum44].

Examples obtained from E¢r8) are shown in Fig. 15 for
weak laser intensity and an atom at a node. The spectrum for
where we defined the spectrum vy7=0 in this figure is the Mollow result with a damping rate

lim N(t):nmﬁf dow (bl (t)b,(t))
(ot

t—oo

=(1—8)yf do S(w), (72
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[ o

3) unperturbed I,;o
o spectrum
é (not I<)1uan|:il:ai:ive) —>
S /\ sin?(wt/2)
£ \
s AJ\A .
=1 ol
§ »
=

b)

sin?(wr/2)

(m—(oL)/y

L 27 »l
FIG. 15. Incoherent emission spectra for various distances be- E o v
tween atom and mirror and weak laser intensit§,E 0.2y, °) /\J\\/\ sin®(w7/2)
A=0, £=0.15. The atom is always located in a node \

(o 7=2nmr).

(1—¢&)y. The structures arising at large distances resemble ¥ >
those of Fig. 6 and can be interpreted in a similar way. The ~, *— wL w

T

situation changes in case of higher laser intensities. Ex- T

amples are shown in Figs. & and 16b) for different val- £ 17 jjustration of the explanation for the different shapes
ues of 7 and different positions of the atom. We see that inof the emission specti@ee text for increasing values df o7. The
general the widths of the spectra vary and they are asymmegyryes in the figures correspond to the functiorf@mi2) for dif-
ric depending on the position of the atom. ferent values ofr. For larger atom-mirror distances the relative
This behavior can be understood at least on a qualitativgariation of this function in a regioii, (the width of the fluores-
level if we take into account that a measure of the coupling:ence triplet becomes significant and the Markov approximation is
strength of the atom to a field mode of frequengys given  no longer valid. The atom is placed at a node in this example.
by sirf(w7/2). This function varies in frequency space on a
scale 1#. Defining the quantity”,=2( + y, which approxi- mately gives the overall width of the triplet, we see that for
I'p7<1 (and which we take now as the criterion for small
. . T T T atom-mirror distancethe coupling is almost flat in the re-
gion where the spectrum differs from zdreee Fig. 17a)].
This situation corresponds to the Markovian limit discussed
in Sec. llI B 1. Thus, we obtain in good approximation the
usual Mollow spectrum with a modified spontaneous emis-
sion rate%y, . This is shown in Fig. 1&) for various posi-
tions of the atom. The level shif24b), which acts here as a
detuning in the case of the dashed line, is so small that this
curve cannot be distinguished from the Mollow spectrum
with decay ratey on the scale of the figure. For larger values
. . of 'y, but still y7<1, we have a situation like that shown in
Fig. 17b), where, as an example, an atom located at a node
of the standing wave stw/2) is chosen. For increasing
laser intensity, the sidebands move toward regions of higher
values of the coupling function leading to a higher damping
of, say, the corresponding levels in a dressed state picture
and thus to a broadening of the sidebad#h increasing
laser intensity untilQQy~ /7). For an atom placed at an
S antinode the behavior is simply the inverse. However, if the
atom is placed at a “slope,” e.g., the one on the right hand
(@-wp )y side of the node which was considered in Fig(t)7 the
FIG. 16. Emission spectra for an atom for higher laser intensi—speCtrum bec_:ome_s asymmemc since the transition respon-
ties (A=0, £=0.2). In (a) the quantityl’,7 is small (2o=37). The sible for the right S|de_band is more s_trongly damped than the
atom is placed in a nodésolid line, w_7=2nm, yr=0.0) at a  €ft one. Thus, the right sideband is broader than the left
slope[dashed linew, 7= (2n+1/2)m, yr=0.008, and in an anti- Sideband which is in accordance with the dashed line in Fig.
node[dotted line,w 7= (2n+ 1), yr=0.02. In (b) the laser in-  16(b) (for the sake of clarity, the dashed line in this figure is
tensity is higher (o=5my). Solid line, node positionyr=0.1.  displaced horizontally by a small amounThe casel’7
Dashed line, slope position;==0.1001. For visibility, this line is =1 is indicated in Fig. 1) leading to structures as in Fig.
horizontally displaced by a small amount. Dotted line, antinodel5 or Fig. 6.
position y7=0.1002. So far we have discussed the case of exact resonance

N

Intensity (arb. units)

b)

Intensity (arb. units)
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' ' ' ' ' inhibited spontaneous emission which can be interpreted as
a) an interference phenomenon of the outgoing and reflected
light pulse leading to a standing wave pattern in the field
intensity. If the atom is placed in an antinode of this standing
wave, spontaneous decay is enhanced while in a node it is
suppressed. For large distances this interference is no longer
X Y significant and the node-antinode location of the atom be-
AN . T . / comes less important. The emitted photon wave packet is
backreflected by the mirror, leading to a partial reexcitation
of the atom, which now starts to emit radiation, again and
S0 on.
b) In the case of an additional driving laser the situation is
more complex since the energy of the system increases con-
tinuously. Working in the Heisenberg picture, we derived a
set of equations which serves as a starting point for several
approximative treatments. In the limit of low laser intensities
we saw with the help of perturbation theory and a harmonic
. X , . oscillator model that the system behaves essentially like an
0 5 10 15 atom driven by two monochromatic lasers where the phase
(o) difference between the lasers is controlled by the atom-
mirror distance. The intensity of the reflected light at the
FIG. 18. Incoherent emission spectra for nonvanishing laser deposition of the atom depends on the intensity of the driving
tuning (A=10y, £=0.2,Q,=37y). (a) shows an atom very close to force on the atom at a preceding time, which leads in general
the mirror. The solid line corresponds to node positiors { to a different state population in every time interval
=2nm,y7=0.002), the dashed line to a slope positiba.7  [mr,(m+1)7] (converging to a steady state valughe
=(2n+1/2)w,y7=0.0023, and the dotted line to an antinode po- dominance of coherent scattering was confirmed by the
sition [ 7=(2n+1)m,y7=0.001. In (b) ['e7 is larger. Solid  monochromatic emission spectrum of the system. In this
line, w 7=2nm, y7r=0.15; dashed linew 7=(2n+1/2)m, yr  |imit we also gave a discussion of the second order intensity
=0.1505; dotted linew 7=(2n+1)m, y7=0.151. correlation function, which includes in the case of the field in
o i channel 1 an interference of different paths leading to a co-
(A=0) where the emission spectra are symmetric for an atonhcigence signal. This fact causes nontrivial structures in the
in a node or an antinode. This situation changes, in generakgrrelation function.
if we take a finite laser detuning. In case Bjr<1 the In the case of a higher laser intensity incoherent scattering
spectra are approximately identical to the usual Mollowhecomes more significant. However, for small solid angles
spectra with modified spontaneous emission fatend de- it js possible to derive a closed set of linear delay-differential
tuning A, i.e., they are approximately symmetric indepen-equations which represents an extension of the usual OBEs.
dent of the exact atomic position. Examples for this case ar& turned out that an intense laser field can significantly in-
shown in Fig. 18a). Note that the sideband positions for fluence the system if we compare it with the Markovian
an atom located at a slope are shifted toward the centrdimit, where it is possible to describe the system by OBEs
peak, which is due to the small frequency shifte side- with modified decay rate and transition frequency. With re-
band positions are approximately given byw, gard to the upper state population, for instance, the laser can
+JQ5+[A—ey/2 sin_7)]?). This situation differs from make the effect of the mirror disappear regardless of the
that when the distance between the atom and the mirror i€xact position of the atortnode or antinode Furthermore,
increased. Here, the spectra become asymmetric even wh#ie influence of a strong laser was revealed by the emission
the atom is located in a node or an antingslee Fig. 1&)]. spectra. Even if the widths of the three peaks of the spectrum
are each very small compared to the inverse delay tina
intense laser fieldor a high detuningcan “push” the side-
bands of the triplet toward regions of a higher or lower cou-
In this work we discussed the behavior of an atom in thepling of the corresponding transitions to the radiation field,
presence of a reflecting wall with regard to pure spontaneouleading to features like asymmetric spedsae alsd45]).
emission, i.e., the decay of an initially excited atom without A possible extension of the discussion presented in this
any laser excitation, and with regard to an additional con-article would be the inclusion of the motional degrees of
tinuous driving laser field. In the first case, the one-freedom of the atom. Assuming an atom in a harmonic trap,
dimensional model applied here can be solved exactly, leadas in the experimental realizatiph7], the reflected radiation
ing to a solution that directly reveals the retarded character okill have an appreciable effect on the center of mass motion
the system(photons bouncing back and forth between theof the ion. This can serve as a further probe for effects dis-
atom and the mirrgrvisible in the state population, the field cussed in this paper. In addition, collective effects of two
intensity, and thetransient photon spectrum. The limit of ions in the trap, like super- and subradiance, could be studied
small distances yields the usual behavior of enhanced andhen the image of one ion is projected onto the other. The
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effect of one atom on another one, mediated by radiatioThe first the second terms in square brackets of this expres-
over a large distance, is important for applications like quansion represent the outgoing light pulses to the right and the

tum communicatioj46].
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APPENDIX A: THE SCATTERED LIGHT FIELD

Here we will sketch the derivation of an expression for

the field intensity in the channel perpendicular to the mirror
which was used for the generation of Fig. 3 and Fig. 5. In

addition, we will give formulas for the electric field opera-

tors in the Heisenberg picture which are used in the discus-
sion of laser excitation, and an expression for the second

order correlation function which is needed to derive £§).
We use the coordinate system introduced in Fig. 1.

The intensity of the emitted light corresponding to Sec. |
is defined by

I(z,t)=(E"(z,t)E(z,1))
— (1) ENDED) ()

2
=|A(z,t)|2.

if dk ay sin(kz)bg (t)e oKt
(A1)
From Eq.(4) we see that

vih 1

t
—_ .l I a—iwgt! ’
A(z,t)= €5 27Tfodt e '“0 by(t")

X f dw eiw(t'ft)(ein/Z_ e*io)f/Z)(ein/C_ e*io)Z/C),
(A2)

where the frequency integral gives riseddunctions which

yield nonvanishing terms only in certain regions of space and

time,
LA L
=—g— — wQ
A(z,t) 2de
! Z T zZ T
iwg(z/lc—7/2) _ = o _ = -
X | e'wo be(t c+2 @(t c+2)
Z T ; Z T
- —iwg(zlc—1/2) -
XO| ——5|+e v be(t+c 2)
T T Z ’
X 6O t+E_§)®(§_E)_elwo(z/c+ﬂ2)
T zZ T
Xbe t___E)G)(t_E_E) . (A3)

o the one above, whera(z,t) has to be replaced by the
operatorE,(z,t) and the amplitud®, by o (andwg by w,

for a detuned lasg¢rApart from an additional noise term the
result coincides with EqA3). On condition that a photode-
tector is placed on the right-hand side of the at@h Fig.
11) at a positiornzy>L the second term in square brackets in
Eqg. (A3) does not contribute and one gets

e

d
(9o

yifi o
=—g— — wL(t dO/c)
E,(dg,t) €5 e c

i d
_eIwLTO.(t_ _O_ T)@(t_ %_ T)
c c
+Ny(do,1), (A%)
with
ih - .
Ny (do,t)= gf dk g, sink(do+L)]a,(0)e e«
(A5)

wheredy=2z7—L=2z,—c7/2 is the distance between the de-

tector and the atom. There are two different kinds of signal
arriving at the detector, one that takes its way directly and
one that takes the “loop way” over the mirror and therefore
needs a longer time.

If the conditions of Sec. Ill B 1 are satisfied, we can ap-
proximately calculate the intensity in channel 1 by neglect-
ing 7 in the arguments of the operators and the step function
to obtain

2
<EI<do,t>El<do,t>>=(¥) Sir?(w, 712)
o

which leads to expressio@09 if dg is set to zero.
For the sake of completeness we give here also the elec-
tric field in channel 2 since it is used for various calculations:

d

2)e-{r-

d
- do 0

c

)

(A6)

1- in
Ex(xt)= zs)yﬁefw
_ X X) [ X
% e'X/CU(t——)®(t__)®<_>
C C C
. X X X
—I—e_'X/CO', t+ -0 t+ — G)(—— +N2(X,t),
c c c
(AT)
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with Thus we have a linear inhomogeneous delay-differential
equation and its solution takes the form

if )
o000 = | kb0 0. (ag) W) =AD[4(0) +BO[F(0). (85

With the help of Eq(A4) one can easily find expressions for This vector has the form(t))|{0};.,{0},) where the non-
the intensity and the first order field correlation function in constant part is an element of the atomic Hilbert space. The
channel 1(the functions connected with channel 2 coincidecoefficients are given by
with those of standard Markovian thegry

Using Eq.(A4) and the commutation relation86) we

A(t) =2 i O )G — ag(t— )]t
also get an expression for the second order correlation func- aq h=o nh! " ! '

tion (25), (B6)
Gt t+T)=[[o_(t+To_()+o_(t+T—7r)o_(t—17) ® al
. B(t)= 2, —(t—n7)"e”«t="@(t—n7). (B7)
—e“Uo_(t+T)o_(t—17) n=o N!
€T o _(t+T-7)o_()]|G)]> These expressions can be found by Laplace transformation in

the way was demonstrated in EG3) [the functionG,, is
defined in Eq.(14)].

We set the arbitrary distand to zero and omitted the step ~ ©°Me expectation values of interest are

functions in this expression which is valid it 7 (if not, _ _

components with negative arguments are simply set to)zero (e(1)) = (¥ (1) =A(t) +B(t)(c(0)), (B8)
The effect of the nonvanishing commutator in E86) is to + _ 2
conserve time ordering in the last term of E49), i.e., the (c'e®)=[lrm)l

(A9)

time argument of the operator on the left-hand side is always =(cT(t)){c(t))+|B(1)|?][{c’(0)c(0))
greater than the right one. This is indicated by the symbol ;

7 . We see that folf < andT> 7 the operators have to be —(c(0)){(c(0))]. (B9)
exchanged.

From the above expressions it is immediately clear that

APPENDIX B: SOME FEATURES OF THE HARMONIC (cf(et)=(cf(t)c(t)), Vt>0, (B10
OSCILLATOR MODEL

. . . if (c'(0)c(0))=(c"(0))(c(0)), which is the case if and
_In qrder to derive an expression for the correlano'n fur‘C'only if the atom is initially in the ground state. In the long
tions in the harmonic oscillator model we start with the ge jimit this behavior is independent of the initial state,
Heisenberg equation of motion for the operatpr i.e., (cTc)ee=(Cc1)odC)es SiNCE Iin1 B(t)=0.

If we start in the ground state the harmonic oscillator
iD= ~aic(D)+ axc(t=n)O(t—7)+as model reproduces the resy2) gained from the perturba-
tion theory and a remarkable fact is that EB9) also repro-
id ot duces the solutiori7) obtained from the modified Wigner-
+ 5 € HINL(D) +Na(D)]. (B1)  weisskopf theory if we setrs=0 (no lasey so thatA(t)
=0 for allt and|¢)=|e).
The parameters; are defined in Sec. Ill B 2 and the noise ~ The two-time correlation functions take the form
operators are given by E¢34). Let us define a vector +
(e(t)e(t))=(W(t")|W¥(1))

PO=COIO), e [¥O)=cOlpO), () et) + B () BO(CTE(0))

—{c"(0))(c(0))], B11
where|#(0))=|¢,{0},,{0},) is the initial state of the sys- (' (O)c(0)] (B11)
tem. The state where the time order is irrelevant. We see again that this

quantity factorizes in special cases,
le)=alg)+ble), |a]*+|b|?=1 (B3)

cf(t)e))=(cT(t")Wc(t)) if =1g),
is an arbitrary state on the atomic space. Equatizi) pro- (e ety =(eit))e(t) le)=19)
vides us with an equation of motion for this vector, lim (cT(t+T)c(t))=(cNedC)ss, V |@). (B12)
t—o
d
E'W(t»: ~a| V() + o[ ¥ (1= 7)) O(t= 1)+ gl y(0)). In order to derive fourth order correlation functions we
(B4) proceed in a similar way. We define a vector
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|D(t))y=c(t)|¥(D)), (B13) T o %
| | | a K
®(0))=c(0)[W(t))=A(t)|¥(0)). (B14) _
ASl o Yy e ©9
For this vector we get again an equation of the faiBd) 2 2
where we replacéW¥ (t))—|®(t’)) and |(0))—|W(t)), —iQ Qg -y
which finally gives the fourth order correlation function ,
—(o-)
GA(t,t+T)=(cT(t)cT(t+T)c(t+T)c(t)) =] |D(t+T))|?, [t =| (cro)—(a)(o) | (ca
(819 20,0 o)

which leads to The components df(t,r) are given by

GEA(t,t+T)=|[A(H)A(t+T)+A(t+T)B(t)c(0)

__Z w7 _
FAOBATICO O, 19 DTz TCo mmElean (L,

and thus Io(t,7)=— %e_i“’LT[<U+(t— 7)6CY+{ah (t,7)],

GAtt+T)=(cTOct)NcTt+T)c(t+T)), .
2 Jmlebe)e ety I3(t,7)=ye "t[(o(t—7)6A)+(o_)h, (t,7)]

|(p>=|g>,t|imG(22)(t,t+T)=<CTC>§S, v [e). +yel L T(8Bo_(t— 7))+ (o )h_(t,7)],
(B17) (C5)
From Eq.(A9) we also obtain with
h_(t,7)=(6b,o_(t—7))el (L) c6
lim G@(t,t+T)=16 sif(w 72)(c'c)2, ¥ |o). (1) =(obyo-(t=1))e (€0
e hy(t,7)=(0o,(t=17)db,)e' L), (o)

(B18)

) _ _ o where only retarded time arguments are indicated. The quan-
This result is equal to the square of the intensity in the longities h.. can be calculated with the help of the Heisenberg

time limit in this channel. equations of motion fob,,. The result contains atomic two-
time correlation functions which have to be calculated again
APPENDIX C: CALCULATION OF THE SPECTRUM in zeroth ordere depending on the initial state, which is a

. . . .. single time expectation value. The calculation of the correla-
In this appendix a sketch of the derivation of the emissionon functions contained in EqC5) is analogous to the cal-
spectrum in the case of a higher laser intensity is outlined.;|ation done to derive the delay OBE&O): We multiply the
We will indicate in the following merely retarded time argu- Heisenberg equations of motion for the operat@8) once
ments. In order to get E477) and Eq.(78) we consider the  fom the left with o.(t') and once from the right with

operators o_(t") (t'<t) and keep only terms of first order i The
B six equations we get in this way now contain again atomic
SA=60_0b,=0a_b,+(o_)(b,)—b,(o-)—a_(b,), two-time correlation functions, which have to be calculated
as was done fon.. . Then we let— o0 and get an expression
oB=6o,6b,=0 b, +{o Wb, —b(o,)—0ca,(b,), of the form (78) with
8C= 60,00, = o b,+(0,){(b,) —b (T2 — b,). % (7 0 _ %2(7)
(C1 2 2
. R(r) = - Q
After transforming in a rotating framegA—e~2“L'SA; K(7) 0 Zf’l‘(r) i—2t5(n) |
SB— 8B, 5C—e 19U5C, o_—e lg_ b, —e i, 2 2
the Heisenberg equations of motion for these operators yield, —iQofa(7) iQof5(7) yEa(7)
after taking the expectation value EJ7), (C8)
B(t)=[—i(0—wg)l+Ag]P(t)+ x,lo(t) + £l (t,7), To(r)=—€“r7g,(), (C9)
(C2 ~ iy
fo(r)=— 55—€'""L"U%(7), (C10

whereP(t) is defined in Eq(76) and 20
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~ iy . g-(7) 0 (0 )ss (0 )ss
fa(r)=G5-e"“"g. (1), (C1D
* Q0 i g+(7') =U(T) 0 - <0'+>ss + <0'+>ss
_ 1 ) ) 92(7) -1 (02)ss (02)ss
fa(n=5le""Up(n)+er’Ui(n)],  (C12 (C13
The inhomogeneity,(7) in Eq.(78) is so lengthy that we do
and not quote it here.
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