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Laser-driven atoms in half-cavities

U. Dorner and P. Zoller
Institute for Theoretical Physics, Technikerstraße 25, A-6020 Innsbruck, Austria

~Received 28 March 2002; published 26 August 2002!

The behavior of a two-level atom in a half-cavity, i.e., a cavity with one mirror, is studied within the
framework of a one-dimensional model with respect to spontaneous decay and resonance fluorescence. The
system under consideration corresponds to the setup of a recently performed experiment@J. Eschneret al.,
Nature~London! 413, 495 ~2001!# where the influence of a mirror on a fluorescing single atom was revealed.
In the present work special attention is paid to the regime of large atom-mirror distances where intrinsic
memory effects can not longer be neglected. This is done with the help of delay-differential equations which
contain, for small atom-mirror distances, the Markovian limit with effective level shifts and decay rates leading
to the phenomenon of enhancement or inhibition of spontaneous decay. Several features are recovered beyond
an effective Markovian treatment, appearing in experimentally accessible quantities like the intensity or emis-
sion spectra of the scattered light.

DOI: 10.1103/PhysRevA.66.023816 PACS number~s!: 42.50.Ct, 42.50.Md, 32.80.2t, 32.70.Jz
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I. INTRODUCTION

The change in the behavior of atoms when the structur
the ‘‘surrounding’’ field differs from that of free space
treated so far in innumerable works and is essentially
basic topic of cavity QED@1–3#. Effects like modified decay
rates of atoms in cavities were visible in various measu
ments@4–9#. In this case, the atoms couple irreversibly to
large number of field modes and the problem can be tre
within the framework of perturbation theory. This regime
therefore known as ‘‘low-Q’’ or perturbative cavity QED
@10#. Another area of great importance is its counterpart,
physics of ‘‘high-Q’’ cavities, where the atoms interac
strongly only with one~or a few! field mode~s!. In this con-
text, recent experiments include, e.g., the observation
atom trajectories in cavities storing merely one pho
@11,12#. Furthermore, among other things, effects caused
the spatial structure of a field mode in a cavity have be
demonstrated@13,14#. High-Q cavities serve also as a testin
ground for fundamental quantum mechanical effects like
tanglement or decoherence@15,16#.

In addition to some considerations on the spontane
decay of an excited two-level atom we will mainly focus
this paper on the problem of resonance fluorescence
half-cavity, i.e., a cavity with one mirror, where we pay sp
cial attention to the position dependence of the atomic
namics. To this end we will particularly consider a physic
system which essentially coincides with the setup of a
cently performed experiment@17#. Here, the radiation that is
emitted by a laser-cooled ion stored in a Paul trap is pa
collimated by a lens and reflected back by a mirror to
atom. The intensity of the scattered light was measured
function of the mirror position, leading to an oscillatory b
havior of the photon counting rate, proving the existence
inhibited and enhanced spontaneous emission effects. In
case, where the atom is relatively close to the mirror,
observed effects can in principle be explained by introduc
some effective modified~position dependent! spontaneous
emission rates and level shifts. This can be done since
time the light needs to bounce back and forth between
1050-2947/2002/66~2!/023816~20!/$20.00 66 0238
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atom and the mirror can be set essentially to zero~Markovian
limit !. The situation is more complicated when the distan
between the atom and the mirror is large.

In this paper we will, among other things, particular
consider this case, and it turns out that the dynamics of
atom can be described generally in terms of non-Markov
~delay-differential! equations. As we will see, the distanc
between the atom and the mirror influences the atomic
havior essentially on two scales. On the one hand, there
large scale, i.e., whether the atom is located far away fr
the mirror or very close to the mirror. This scale can
measured essentially by a dimensionless quantityG0t where
G0 is given by the width of the field spectrum~in the case of
vanishing laser intensity it is simply the atomic spontaneo
emission rate! and the timet the light needs for a round trip
between atom and mirror. On the other hand, the ato
behavior varies also if the distance is changed on the sca
an optical wavelength, given byvLt. For example, in the
case of a small atom-mirror distance (G0t!1) the equations
of motion become approximately Markovian and the we
known phenomenon of enhanced or inhibited spontane
emission~depending onvLt) can be recovered. Thus, it i
possible to describe the system by introducing effect
spontaneous emission rates and level shifts. In general, h
ever, the retardation of the time argument in the equation
motion cannot be neglected. We will not consider in th
paper effects arising in the case of extremely small distan
i.e., of the order of wavelengths or smaller, between the a
and the mirror@2,10,18–20#.

In connection with cavity QED, in the broadest sense,
above mentioned delay-differential equations have appe
already in some publications. These include, for example,
analytical treatments of Milonniet al. @21# in which a single
excited quantum system coupled to an infinite set of equ
spaced discrete levels was considered, a system which re
an atom in a cavity but without taking into account som
position dependent effects. The latter problem was discus
in the framework of a one-dimensional model by Cook a
Milonni @22# in the case of an excited atom in front of
partially reflecting wall~modeled as a collection of two-leve
©2002 The American Physical Society16-1
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U. DORNER AND P. ZOLLER PHYSICAL REVIEW A66, 023816 ~2002!
atoms! and in a Fabry-Pe´rot resonator. This treatment i
closely related to our discussion of pure spontaneous de
since we will recover the same equation of motion. Anoth
treatment of this problem was given by Feng and Ujih
@23# by using an appropriate set of mode functions in or
to account for nonperfect mirror reflectivities. Dung and U
hara @24# finally examined an atom in a three-dimension
Fabry-Pe´rot resonator. Although a delay-differential equati
was not explicitly formulated, retardation effects in the int
action of two atoms were also discussed in@25,26#. A partly
numerical examination of an atom inside a spherical ca
was given by Parker and Stroud@27#. Numerical examina-
tions include furthermore the work of Gießenet al. @28# and
of Bužek et al. @29#, both treating an atom in a~one-
dimensional! cavity, whereas the latter also investigates
presence of material media. The mentioned works hav
common that recurrences of the atomic population take p
for large dimensions of the cavity; this is due to one-pho
wave packets bouncing back and forth between the ca
walls. However, there is always only one excitation co
tained in the system, making the problem accessible to a
lytical considerations.

In case of a~near-!resonantly driven atom the dynamics
the system is more complicated since the number of exc
tions increases continuously. The scattered radiation wil
reflected by the mirror and reinteract with its own source,
atom. This situation reminds us of a feedback probl
@30,31# where mostly the assumption of a negligible fee
back time delay is made. However, the situation of la
atom-mirror distances would correspond to a non-Markov
feedback@32,33#.

This article is structured as follows. In Sec. II we w
reconsider the problem of pure spontaneous decay of an
cited atom in the presence of a mirror while in Sec. III
continuous laser excitation of the atom is incorporated i
our examination. We will discuss several limits includin
low and higher laser intensities and small distances betw
the atom and the mirror. Finally, a summary is given in S
IV and cumbersome formulas and calculations are move
Appendixes.

II. SPONTANEOUS EMISSION

In this section we investigate the spontaneous emissio
an atom at rest in the presence of a mirror initially prepa
in the excited state. We derive a non-Markovian equation
motion for this system. Although this derivation is related
the calculations in@22# it is discussed here not only to intro
duce our notation but also to present entirely analytical
sults, also with respect to spectral properties of the emi
light. Furthermore, it turns out that some calculation meth
can be transferred and some features of this system ar
covered when we include laser excitation in our consid
ation.

A. The model

As already mentioned we examine an initially excit
two-level atom with transition frequencyv0 in the presence
of a finite size mirror where the light emitted in a certa
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solid angle fraction« is reflected back to the atom. This
achieved by a lens that collimates the radiation before i
reflected@17#. The remaining emission is not affected by th
mirror. Thus, it is reasonable to consider the coupling of
atom to two reservoirs~or ‘‘channels’’! consisting of one-
dimensional fields with standing wave field modes and r
ning wave field modes, respectively~see Fig. 1!, i.e., the
Hamiltonian in rotating wave approximation reads

H5H02d„E1
†~L !s21s1E1~L !…

2d„E2
†~0!s21s1E2~0!…, ~1!

with

H05\v0s1s21E dk \vkak
†ak1E dk \vkbk

†bk ,

E1~z!5 i E dk aksin~kz!ak , k.0,

E2~x!5 i E dk bke
ikxbk , kPR, ~2!

andvk5ukuc. In contrast to a cavity, here, the mode dens
of the mirror channel is continuous since only one bound
condition has to be satisfied. The operatorss1 and s2 are
the usual raising and lowering operators of a two-level s
tem with upper levelue& and ground stateug&, s15ue&^gu,
s25ug&^eu, andak

† ,bk
† ,ak , andbk are creation and annihi

lation operators of a photon in thekth mode of the different
environments. The dipole matrix elementd is assumed to be
real and for the sake of simplicity we suppress the vecto
character ofd andE. The exact form of the factorsak andbk
is of no importance here, we merely assume that they
approximately constant in a frequency range of releva
~usually they have a frequency dependenceak;Avk and
bk;Ank). In order to investigate the dynamics of the syste
we make the Wigner-Weisskopf type ansatz

FIG. 1. Sketch of the physical system under consideration.
radiation emitted by a two-level atom is partly reflected~via a lens!
back to the atom, which is modeled by an atom coupled to t
one-dimensional channels with a different mode structure~running
and standing wave modes, respectively!.
6-2
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LASER-DRIVEN ATOMS IN HALF-CAVITIES PHYSICAL REVIEW A 66, 023816 ~2002!
uc~ t !&5be~ t !ue,$0%1 ,$0%2&1E dk bg,k
1 ~ t !ug,$k%1 ,$0%2&

1E dk bg,k
2 ~ t !ug,$0%1 ,$k%2&, ~3!

where u$0%& denotes the vacuum state of the radiation fi
and u$k%& the state with exactly one photon in modek. We
will consider here an initially excited atom in the absence
any photon, i.e.,be(0)51 andbg,k

j (0)50. In contrast to the
notation in Eq.~3!, in the following the amplitudes are a
ways taken in a rotating frame, i.e., we make the subst
tions be(t)→be(t)e

2 iv0t and bg,k
j (t)→bg,k

j (t)e2 ivkt. With
the help of the ‘‘essential states’’ contained in the above
satz it is possible to write down a closed set of equations
motion for the amplitudes, which take the form

ḃe~ t !52E dk gk sin~kL!e2 i (vk2v0)tbg,k
1 ~ t !

2E dk hke
2 i (vk2v0)tbg,k

2 ~ t !, ~4a!

ḃg,k
1 ~ t !5gk sin~kL!ei (vk2v0)tbe~ t !, ~4b!

ḃg,k
2 ~ t !5hke

i (vk2v0)tbe~ t ! ~4c!

with gk[akd/\ andhk[bkd/\.
By formally integrating the last two equations and inse

ing them into the first one we get

ḃe~ t !52E
0

t

dt8 be~ t8!E dk gk
2 sin2~kL!ei (vk2v0)(t82t)

2E
0

t

dt8 be~ t8!E dk hk
2ei (vk2v0)(t82t)

52gE
0

t

dt be~ t8!d~ t82t !e2 iv0(t82t)

1«
g

2E0

t

dt8 be~ t8!@d~ t82t1t!

1d~ t82t2t!#e2 iv0(t82t). ~5!

Here, we introduced the free space spontaneous decay rg
which is split up into a part«g[pgk0

2 /c and (12«)g

[4phk0

2 /c, corresponding to the coupling of the atom to t

first and second channels. The quantity« is the solid angle
fraction that is covered by the lens since it characterizes
fraction of radiation that is reflected. In the above equatio
we also introduced the timet[2L/c the light needs for the
distance atom-mirror-atom. Furthermore, in the first step
Eq. ~5!, a Wigner-Weisskopf type approximation was ma
based on the well-known fact that the relative variation
gk

2 , hk
2 (;v) is very slow in the domain where the doub

integration in the first line of Eq.~5! lead to appreciable
values. Diverging terms connected with level shifts are om
02381
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ted. It should be stressed here that in this paper only
tances between the atom and the mirror are considered
are much larger than an optical wavelength, i.e.,v0t@1,
which is in an optical frequency domain already the case
say, a millimeter.

Equation~5! yields finally the delay-differential equation

ḃe~ t !52
g

2
be~ t !1«

g

2
eiv0tbe~ t2t!Q~ t2t!, ~6!

whereQ(t) is the Heaviside step function. The first term o
the right hand side of this equation corresponds to the u
free space exponential decay while the second term re
sents the effect of the reflected radiation on the atom that
emitted at timet before it interacts again with the atom
Thus, the retarded argument of the excited state amplit
directly indicates the memory effects that are inherent in
system. Furthermore, the second term is weighted with
factor «, revealing that only a fraction of the emitted light
reflected.

Equation ~6! is a delay-differential equation@34# and
since we will encounter in Sec. III B 2 and Sec. III B 3 som
more complicated equations of this type we move a furt
discussion of some general properties of equations of
kind to these sections.

B. Discussion

Using Laplace transformation and geometric series exp
sion Eq.~6! can easily be solved and one obtains

be~ t !5 (
n50

`
~«g/2!n

n!
eiv0nte2(g/2)(t2nt)~ t2nt!nQ~ t2nt!.

~7!

It should be mentioned that this expression can also be
tained by a direct Laplace transformation of the Schro¨dinger
equation~4! @25#.

The above solution reveals that the system dynamics h
‘‘step’’ character which can be seen most easily if one
vides the time axis into intervals of lengtht. For tP@0,t# the
sum consists only of one term, exp~2gt/2!, which coincides
with the free space behavior of a decaying atom. The ph
cal reason for that is that the atom requires at least the t
the light needs to get from the atom to the mirror and back
the atom again in order to ‘‘see’’ the mirror. FortP@t,2t#
the amplitude consists of two terms,

be~ t !5e2(g/2)t1«
g

2
eiv0te2(g/2)(t2t)~ t2t!, ~8!

giving rise to an interference term in the probability of fin
ing the atom in the excited state. The second term is du
the emitted radiation reflected back to the atom. The light
atom emits right now arrives at the atom again at the beg
ning of the third time interval where the sum in Eq.~7!
includes a further term, and so on.

The role of the interference terms in the excited st
probabilities strongly depends on the distance between
atom and the mirror, which can be measured by the quan
6-3
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U. DORNER AND P. ZOLLER PHYSICAL REVIEW A66, 023816 ~2002!
gt. If we consider again the second time interval it is easy
see that the interference term is of ordergt while a further
term is of order (gt)2, which can be neglected forgt!1
~small distance!. Hence we get the expression

ube~ t !u2'e2gt@11«g~ t2t!cos~v0t!#, tP@t,2t#,
~9!

where we guess the beginning of an exponential series.
examination of the dynamics in this limit for larger time
based on Eq.~7! is relatively complicated. It is more conve
nient to return to the delay-differential equation~6!. Since we
are working in a rotating frame the amplitudebe(t) varies
slowly on a time scale given by 1/g. Thus, in the limitgt!1,
we can make the approximationt→10 in the argument ofbe
in the second term on the right hand side of Eq.~6! and
obtain the Markovian equation

ḃe~ t !'H 2
g

2
be~ t !, t<t

2
g

2
~12«eiv0t!be~ t !, t.t.

~10!

This leads to the excited state probability

ube~ t !u2'H e2gt, t<t

e2gte2g̃(t2t), t.t,
~11!

with g̃5g„12« cos(v0t)…. The upper state population base
on the exact amplitude~7! in this limit is shown in Fig. 2.
The behavior of the curves coincides almost perfectly w
the predictions of Eq.~11!: After a period of lengtht there is
an enhancement or inhibition of spontaneous decay dep
ing on the factor 12« cos(v0t) which corresponds to the
amplitude of a standing wave mode sin(k0z) at the position of
the atom. In a node of the standing wave, spontaneous d
is inhibited while in an antinode it is enhanced.

To get a more physical insight in this behavior the inte
sity of the electric fieldE1 which is reflected by the mirro
depending on space and time is shown in Fig. 3. The der
tion of an analytical expression for^E1

†(z,t)E1(z,t)& can be
found in Appendix A. In a realistic situation with regard
the setup considered here the frequency of the oscillat

FIG. 2. Upper state population of an atom close to the mirror
different exact positions, i.e.,v0t52np ~node! and v0t5(2n
11)p ~antinode!. The remaining parameters are«50.4, gt50.4.
Also indicated is the corresponding free space solution~«50!.
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that can be seen in Fig. 3~and also in Fig. 5 below! would be
significantly higher than indicated in these figures. Howev
for the sake of visibility, a rather small frequency is chos
here. Due to the small distance between the atom~located at
z5L) and the mirror~located atz50) the reflected light has
the possibility of interfering with the radiation which is sti
emitted by the atom, leading to a standing wave pattern
the form ;sin2(k0z) that has, in the case of the examp
shown in Fig. 3, a node at the position of the atom, i.e.
zero electric field. Due to this fact, further emission of rad
tion in this channel is suppressed. Another interesting fea
with respect to Fig. 3 is that the amplitude of the stand
wave decreases for«,1 with increasing time, whereas th
energy escapes in the other channel. The situation is rem
cent of a cavity where the atom acts like a partially transm
ting mirror.

In the limit of large distances between atom and mir
~i.e., gt@1) the sum~7! is dominated by the term with the
highest power ofgt. Hence, we get in a time interva
@mt,(m11)t#

ube~ t !u2'S ~«g/2!m

m! D 2

e2g(t2mt)~ t2mt!2m. ~12!

We see that the atom is partially reexcited by the radiat
which it has emitted before and that the exact position~node
or antinode! is not significant. This is illustrated in Fig. 4 an
Fig. 5 where we plot again the exact solution for the exci
state amplitude and the field intensity. The atom is placed

r FIG. 3. Intensity of the field at different points of time for th
parameters of Fig. 2. The atom is located at a node~i.e., v0t
52np) at z5L.

FIG. 4. Upper state population of an atom far away from t
mirror and v0t52np. The remaining parameters are«50.4, gt
510. The inset is a vertical magnification.
6-4
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LASER-DRIVEN ATOMS IN HALF-CAVITIES PHYSICAL REVIEW A 66, 023816 ~2002!
a node of the standing wave and the inset in Fig. 5 i
magnification in vertical direction of that part. We see th
interference between outgoing and incoming radiation
much weaker than in Fig. 3.

In this context it is also interesting to take a look at t
spectrum of the emitted light~here this means the probabilit
of finding a photon of frequencyv in the long time limit!.
This can easily be calculated by integrating Eq.~4b! and Eq.
~4c! and using Eq.~7!, which leads to

bg
j ~v,t !5

Aj~v!

g/21 i ~v02v! (
n50

`
~«g/2!n

n!
eivnt~ t2nt!n

3Gn„2@g/21 i ~v02v!#~ t2nt!…Q~ t2nt!

~13!

with

Gn~s![ 1F1~n,n11;s!2es, ~14!

where 1F1(n,m;x) is the confluent hypergeometric functio
and

Aj~v![5A
«g

p
sin~vt/2!, j 51

A~12«!g

2p
, j 52.

~15!

The transient photon population of the second channel in
case of a relatively large atom-mirror distance for an at
placed in an antinode of the resonant standing wave fi
mode is shown in Fig. 6. In the long time limit the spec
take the form

ubg
j ~v!u2

5
Aj

2~v!

~g2/4!@12« cos~vt!#21@«~g/2!sin~vt!1v2v0#2
.

~16!

Figure 7 shows the steady state photon population of
channel parallel to the mirror for different atomic position

FIG. 5. Intensity of the field at different points of time for th
parameters of Fig. 4. The atom is located again atz5L while the
inset is a vertical magnification.
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The frequencies of the local minima in Fig. 6 and Fig.
coincide approximately with the frequencies of those sta
ing wave modes which have an antinode at the position
the atom. This means that the photon distribution in the s
ond channel, which has initially roughly the shape of
Lorentzian~at the end of the time interval@0,t#; see Fig. 6!,
is affected by the backreflected light in the first chann
Here, the radiation components with the mentioned frequ
cies have a higher probability to be reabsorbed and emi
again~perhaps in modes of other frequencies!. This leads to
a lower population of these modes.

If the atom is very close to the mirror we recognize th
the differential equation Eq.~10! contains the complex phas
eiv0t, where the imaginary part of this factor can be inte
preted as a level shift. This has consequences for the s
trum, which takes in this limit the form

ubg
2~v!u2;

1

g̃2/41~v2ṽ0!2
, ~17!

FIG. 6. Transient photon population in channel 2 depending
frequency and time for a large distance between the atom@placed at
an antinode, i.e.,v0t5(2n11)p# and the mirror. Further param
eters are«50.4 andgt510.

FIG. 7. Frequency dependent steady state photon populatio
the case of a large distance between the atom and the mirror.
exact position of the atom is a node (v0t52np) or an antinode
@v0t5(2n11)p#, respectively~«50.4, gt510!.
6-5
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U. DORNER AND P. ZOLLER PHYSICAL REVIEW A66, 023816 ~2002!
whereg̃ is defined in Eq.~10! and

ṽ0[v02«
g

2
sin~v0t!. ~18!

This expression can be derived with the help of Eq.~10!
~where we neglect the small contribution arising from t
first time interval@0,t#! or with Eq. ~16!, using the fact that
for gt!1 the trigonometric functions in the denominator
Eq. ~16! vary very slowly on a frequency scaleg. The form
of this spectrum illustrates again first of all the behav
shown in Fig. 2, i.e., the width of the Lorentzian is larger
smaller depending on whether the atom is placed in an a
node or a node of a standing wave sin(k0z). On the other
hand, the maximum of the function is shifted according
the imaginary part of the mentioned phase. The physical
terpretation of this shift is based on the fact that the at
interacts with its own radiation. It corresponds to the ene
of the atomic dipole in the reflected electric fie
@2,10,19,20#.

III. LASER EXCITATION

The system discussed in the previous section was a
nable to an exact analytical treatment since the equation
motion decoupled by using a Wigner-Weisskopf~or Markov!
type approximation. This reduced the problem essentially
the solution of one equation describing only the atomic
namics. This was possible because the system conta
merely one excitation. The dynamics of the atom-field s
tem becomes more complicated when we include a cont
ous laser excitation of the atom. The number of photo
scattered by the atom into the two channels will permane
increase and a part of them will be reflected back, interac
again with the atom in addition to the laser light. The ato
starts now to emit a different kind of radiation which aga
returns to the atom after some time, and so on. Thus
expect that an electric field is constituted with a comp
structure. The behavior of the system reminds us of that
cascaded quantum system@35–39#, a formalism which deals
with systems driven by nonclassical types of light and wh
was applied in the theory of Markovian feedback@31#.

The non-Markovian feedback contained in the system
cussed here makes it difficult to solve the problem in
exact analytical way since it is not possible to establis
closed set of equations describing the dynamics of the a
as in the theory of Markovian resonance fluorescence. T
we are restricted to approximative methods in the follow
sections.

A. Perturbation theory

Using the results of Sec. II we will, as a starting poin
examine the influence of the laser for low intensities with
the framework of a time dependent perturbation theory. H
as well as in the following sections, the effect of the lase
included in our considerations with the help of the stand
semiclassical model for atom-laser interaction in the rotat
wave approximation, i.e., the Hamiltonian now reads
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HL5H1V~ t !, ~19!

with

V~ t !52\
V0

2
~eivLts21e2 ivLts1! ~20!

and laser and Rabi frequencyvL andV0, respectively. Tak-
ing the ground state of the atom-field system as the ini
state we get in first order perturbation theory~assuming a
weak laser intensity! the excited state amplitude in a rotatin
frame

be
L~ t !5eivLt

1

i\E0

t

dt8 ^Eue2 iH (t2t8)/\V~ t8!eiHt /\uG&

5 i
V0

2 E
0

t

dt8 e2 iDt8be~ t8!, ~21!

with uE&[ue,$0%1 ,$0%2&, uG&[ug,$0%1 ,$0%2&, and laser de-
tuning D[v02vL . The above expression is essentia
equivalent to the one-photon amplitude of Sec. II B if t
laser frequencyvL is replaced byv. Thus, we immediately
get

be
L~ t !5

iV0

g12iD (
n50

`
~«g/2!n

n!
eivLnt~ t2nt!n

3Gn„2~g/21 iD!~ t2nt!…Q~ t2nt!. ~22!

Examples of the excited state amplitude are shown in F
8 for different positions of the atom, where the overall d
tance of the atom and the mirror is chosen to be quite la
The form of the curves has a direct interpretation. Since
low laser intensities coherent light scattering dominates,
reflected radiation leads to a lower or higher ‘‘driving force
depending on the position of the atom. The system has s
larities with an atom that is driven by two lasers where t
phase difference is controlled by the distance between a

FIG. 8. Upper state population in the case of an atom far aw
from the mirror ~gt520, «50.4! and weak laser excitation (V0

50.05g) for an atom placed in an antinode@dashed line,vLt
5(2n11)p, D50#, in a node~solid line, vLt52np, D50!, and
at a ‘‘slope’’ @dashed-dotted line,vLt5(2n21/2)p, D520.2g#.
6-6
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FIG. 9. The four contributions to the second order intensity correlation function and the corresponding space-time diagra
correlation function is the squared norm of the sum of these vectors. The atom is located atL, the detector is atz0, and the distance betwee
them is denoted asd0. It is assumed that the detection of the first and second photons takes place at a timet andt1T, respectively. Thed
symbol indicates the time of emission in the past relative to the detection times. The ordering of the operators in~d! changes ifT becomes
smaller thant ~dotted line!.
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and mirror. Actually, the superimposed intensity of the las
changes after each round trip of the light, which leads t
transient upper state population as shown in Fig. 8. For
ample, if the atom is placed in a node the laser always in
feres constructively with the ‘‘reflected’’ laser beam, givin
rise to a higher population in the time interval@nt,(n
11)t# compared to the preceding one. This point will
further developed in Sec. III B 2 where we reconsider
limit of low laser intensities.

The steady state population obtained from Eq.~21! is
given by

lim
t→`

ube
L~ t !u25

V0
2

g̃L
214D̃2

~23!

with modified decay rate and detuning

g̃L5g„12« cos~vLt!…, ~24a!

D̃5D2«
g

2
sin~vLt!. ~24b!

The situation is similar to the Markovian limit of the prev
ous section, i.e., we have a pronounced dependence o
atomic dynamics on the exact position of the atom@e.g.,
node or antinode of a standing wave of the laser freque
sin(kLz)#. The difference is that this fact still holds in the ca
of large atom-mirror distances. In the sense of Figs. 3 an
this is due to the fact that the interference ability of outgo
and reflected light does not depend on the distance since
laser provides a continuous scattered light field.

A further quantity that is of interest in this context is th
the second order intensity correlation function,

^Ej
†~ t !Ej

†~ t1T!Ej~ t1T!Ej~ t !&5ua j u4Gj
(2)~ t,t1T!, ~25!

where the indexj 51,2 indicates which channel is consider
anda j[(d j 22«)g\/(2d). Expressions for the electric fiel
02381
s
a
x-
r-

e

the

cy

5

he

operators are given in Appendix A. This correlation functi
corresponds to the probability of detecting a photon at ti
t1T on condition that at timet a first one was detected~see,
e.g.,@40#!.

In the channel parallel to the mirror we get

G2
(2)~ t,t1T!5^s1~ t !s1~ t1T!s2~ t1T!s2~ t !&

5is2U~ t1T,t !s2U~ t,0!uG&i2. ~26!

By calculating the time evolutionU in first order perturba-
tion theory we obtain

G2
(2)~ t,t1T!5ube

L~ t !u2ube
L~T!u2, ~27!

or in the long time limit

lim
t→`

G2
(2)~ t,t1T!5

V0
2

g̃L
214D̃2

ube
L~T!u2, ~28!

i.e., for gt@1 we have a behavior as shown in Fig. 8. Th
can be interpreted as follows. After the detection of the fi
photon the atom is in its ground state and has to be reexc
again before it is able to emit a second photon~antibunch-
ing!. The radiation which is emitted now~the second photon!
is split up into a part emitted into channel 2 and a part tha
emitted into channel 1. IfT,t the light which is~or will be!
reflected in channel 1 is not able to reach the atom before
photon detection in channel 2. Thus, we encounter, exc
for a constant factor, the same behavior as in free sp
However, if there is enough time for the radiation in chann
1 to make a complete round trip, it is able to reinteract w
the atom~in addition to the laser!, which leads to a higher o
lower emission probability in channel 2.

An expression forG1
(2)(t,t1T) is derived in Appendix A

where we assumed that the atom is locatedbetweenthe mir-
ror and the detector. It is written as the norm of a sum of fo
states. These four contributions~in a nonrotating frame! are
shown in Figs. 9~a!–9~d! where each of these terms is co
6-7
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nected to a different path leading to a coincidence detec
at time t and t1T. The back action of the light on the atom
is included in the dynamics of the time dependent operat
In principle the light has two possibilities to get to the dete
tor: it takes either the direct way or the indirect way via t
mirror, which leads to four possibilities for a two-photo
detection amplitude indicated by the space-time diagram
Fig. 9. For the sake of clarity the arbitrary distance betwe
detector and atom,d0, is not set to zero, which is also ind
cated in the time arguments of the operators. For calc
tions, however, we will always setd050. The time argu-
ments of the operators coincide with the emission time in
past relative tot andt1T, respectively. Note that a possibi
ity that includes a reflection gives rise to a negative sign
that the ordering of the operators in Fig. 9~d! depends on the
length of the delay intervalT. The four contributions will
interfere since they remain indistinguishable when a coin
dence signal occurs.

For weak laser intensities these quantities can be ca
lated using first order perturbation theory in a similar way
was done in the derivation of Eq.~27!, which leads to an
expression of fourth order inV0,

G1
(2)~ t,t1T!5 zbe

L~T!be
L~ t !1e2ivLtbe

L~T!be
L~ t2t!

2eivLtbe
L~T1t!be

L~ t2t!

2eivLtbe
L~ uT2tu!be

L~ t1s!z2, ~29!

wheres50 if T.t and s5T2t if T<t. We omitted step
functions in this expression. In the case of negative ar
ments the corresponding quantities have to be set to z
Recall that these amplitudes are written in a rotating fram
In the long time limit we have

lim
t→`

G1
(2)~ t,t1T!5

V0
2

g̃L
214D̃2

z2be
L~T!cos~vLt!2be

L~T1t!

2be
L~ uT2tu!z2. ~30!

This function is shown in Fig. 10 for a relatively larg
atom-mirror distance. Several features are visible. First o
G1

(2) is not zero forT50. Indeed, diagram~a! and diagram
~b! in Fig. 9 do not contribute to the detection probability
this case, which reflects the fact that after an emission p
cess the atom is in its ground state and the probability
plitude that it immediately emits a second photon is zero.
the other hand, if the first photon is detected~and the atom is
in the lower state! there is still the possibility that there i
radiation around caused by a prior emission process whic
represented by the remaining diagrams. Due to this fact
value of G1

(2) for T50 differs from those for larger time
where the ‘‘partial’’ antibunching effect of Figs. 9~a! and 9~b!
decreases. ForT5t we have a similar situation concernin
diagram~d! of Fig. 9, which does not contribute, i.e., a pa
tial antibunching effect, which leads again to a differe
value of the detection probability compared to earlier or la
times.
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Within the framework of this perturbative treatment w
can also calculate emission spectra without any effort, wh
turn out to be monochromatic. However, since the res
coincide with those of Sec. III B 2 they are not quoted he

B. Modified optical Bloch equations

For further investigations it turns out that it is adva
tageous to work in the Heisenberg picture. Like the amp
tudes in the previous sections, in the following the atom
operators and the mode operators are always represe
in a rotating frame, i.e.,s2→e2 ivLts2 and ak , bk
→e2 ivktak ,e2 ivktbk . The Heisenberg equations of motio
for the operatorsak(t),

ȧk~ t !5gk sin~kL!s2~ t !ei (vk2vL)t, ~31!

ḃk~ t !5hks2~ t !ei (vk2vL)t, ~32!

yield after formally integrating and inserting into Eq.~2! and
using a similar derivation as in Eq.~5! the electric field op-
erator at the position of the atom,

E~ t !5
g

2

i\

d
e2 ivLt@s2~ t !2«eivLts2~ t2t!Q~ t2t!#

1N1~ t !1N2~ t !, ~33!

with E(t)[E1(L,t)1E2(0,t) and noise operators

N1~ t !5
i\

d E dk gk sin~kL!ak~0!e2 ivkt,

N2~ t !5
i\

d E dk hkbk~0!e2 ivkt. ~34!

The second term on the right hand side of Eq.~33!,

FIG. 10. Second order intensity correlation function for
weakly driven atom~V050.05g, «50.4! located at an antinode
@vLt5(2n11)p#, a ‘‘slope’’ @vLt5(2n21/2)p#, and a node
(vLt52np) of the standing wave sin(kLz). The overall distance
between the atom and the mirror is assumed to be quite large~gt
520! while the laser is tuned to exact resonance~D50!.
6-8
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Eref ~ t ![2 i«
g

2

\

d
s2~ t2t!e2 ivL(t2t)Q~ t2t!, ~35!

can be identified as the reflected part of the electric~source!
field. Furthermore, we will need in some calculations t
commutation relations of the noise operators and
‘‘atomic’’ operators fort8<t,

@Nj~ t !,s2~ t8!#5«
g

2

i\

d
e2 ivL(t2t)d j 1

3@s2~ t2t!,s2~ t8!#

3Q~ t2t!Q~ t82t1t!. ~36!

Note that for j 51 this commutator is nonvanishing fort8
<t<t81t ~and t>t) in contrast to the Markovian case
With the help of expression~33!, assuming again that a
field modes are initially in the vacuum state and keep
normal ordering of the photon creation and annihilation o
erators, it is straightforward to derive a set of modified op
cal Bloch equations~OBEs!,

d

dt
^s2&52S g

2
1 iD D ^s2&2 i

V0

2
~^s1s2&2^s2s1&!

2«
g

2
eivLt@^s1s2s2~ t2t!&

2^s2s1s2~ t2t!&#Q~ t2t!,

d

dt
^s1s2&5 i

V0

2
~^s1&2^s2&!2g^s1s2&

1«
g

2
@e2 ivLt^s1~ t2t!s2&

1eivLt^s1s2~ t2t!&#Q~ t2t!,

d

dt
^s1&5S d

dt
^s2& D *

,
d

dt
^s2s1&52

d

dt
^s1s2&,

~37!

where we indicate for the sake of clarity only the retard
time arguments. As can be seen from these equations
nonlinear structure of the Heisenberg equations of mo
leads to the appearance of correlation functions on the r
hand side of Eq.~37!. Hence, the modified OBEs~37! cannot
be considered as a closed set of equations. However,
convenient to take them as a starting point for approxima
treatments.

1. Small distance between atom and mirror (Markov limit)

As in Sec. II B we will first consider the limit of smal
distances between the atom and the mirror, i.e.,gt!1. Fur-
thermore, we require now that the intensity and the detun
of the laser are not too high, which can be expressed by

condition Vt!1 with V[AV0
21D2. The latter defines a

time scale on which the solution of the usual OBEs~«50!
varies appreciably in the high-intensity limit@41#, and we
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suppose that it will give us also an estimation of this scale
the case of«Þ0. In Sec. III B 3 it is shown that this condi
tion also has some meaning in the frequency space. Thus
can make again the approximationt→10 in the arguments
of the operators in Eq.~37!, which leads to the equations

d

dt
^s2&52S g̃L

2
1 i D̃ D ^s2&2 i

V0

2
^sz&,

d

dt
^s1&52S g̃L

2
2 i D̃ D ^s1&1 i

V0

2
^sz&,

d

dt
^sz&5 iV0~^s1&2^s2&!2g̃L~^sz&11!, ~38!

where g̃L and D̃ are defined by Eq.~24!. For the sake of
simplicity we sett50 also in the arguments of the ste
functions@in contrast to Eq.~10!#, i.e., the difference in the
dynamics in the time interval@0,t# and later is neglected. In
any case, taking the difference into account would mer
lead to a~slightly! different initial condition for Eq.~38!
which would not alter the steady state results to be discus
here at all.

Thus, the equations have the form of the familiar OB
with modified spontaneous emission rate and detuning. T
are rewritten as an inhomogeneous system of three diffe
tial equations wheresz[s1s22s2s1 , since it is more
convenient to perform steady state calculations in this rep
sentation.

The steady state population of the upper state is ea
obtained by inverting a 333 matrix, which corresponds to
Eq. ~38!,

^s1s2&ss5
V0

2

g̃L
212V0

214D̃2
. ~39!

Understood as a function ofD this is essentially a Lorentzian
~in the limit under consideration, treating the trigon
metric functions as constants! with maximum at Dmax

5«(g/2)sin(vLt) and widthw5Ag̃L
212V0

2. Applying again
the standing wave picture of Sec. II B, we see that the s
of the maximum vanishes if the atom is located at a node
an antinode of sin(vLt/2). In contrast to this, the width take
its minimum or maximum values at these points. Indeed,
get a maximum shift if the atom is placed exactlybetweena
node and an antinode where the spontaneous emission r
not altered at all. In the limit discussed here the steady s
population is proportional to the measurable intensities

I 1;sin2~vLt/2!^s1s2&ss, ~40a!

I 2;^s1s2&ss ~40b!

of the light emitted in channel 1 or 2, respectively~see Fig.
11 and Appendix A!. Thus, a possible way to demonstra
effects caused by the mirror is to measure the absorp
spectrum of the atom, i.e., the intensity of the scattered li
depending on the laser detuning. A further option would
6-9
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U. DORNER AND P. ZOLLER PHYSICAL REVIEW A66, 023816 ~2002!
the measurement of the intensityI 2 for different positions of
the mirror~keepingD constant!, i.e., for different values oft,
which would lead to a periodic variation in the measur
intensity. This was done~for small global atom-mirror dis-
tances! in @17#, where the measurement scheme slightly d
fered from that discussed here since the system under
sideration was a three-level atom.1 However, the basic
principle is the same and for effects discussed in this pap
is sufficient to consider a two-level system.

If we assume that«!1, Eq.~39! can be expanded to low
est order in this parameter,

^s1s2&ss'
V0

2

G S 112«
g2

G
Ag214D2

g2
cos~vLt2w!D ,

~41!

with G[g212V0
214D2 and tan~w!52D/g. The presence o

the relatively small level shift leads to aD-dependent phas
shift w with respect to the function cos(vLt) which corre-
sponds to the phase of the standing wave sin(vLt/2). The
determination of this phase would, e.g., require the kno
edge of the exact distance between atom and mirror. T
difficulty could be avoided if one carries out a simultaneo
measurement ofI 2 and I 1 since the phase of the latter
dominated for small« by the prefactor sin2(vLt/2)5@1
2cos(vLt)#/2. This means that, if there is no level shift

1In the experiment@17# theL-type three-level system was excite
by two lasers where the mirror affected merely the radiation of
transition. Thus, we have essentially a completely~‘‘free space’’!
Markovian behavior concerning the radiation originated by
other transition. The intensities of the light at both of these frequ
cies were measured simultaneously and it is clear that, like the
in channel 2, the intensity of the nonreflected light is also sim
proportional to the upper state population. For small« we have
essentially the same oscillatory behavior whereas the expres
for the amplitude and the phase shift of the oscillations are m
more complicated.

FIG. 11. Sketch of the detector arrangement. A first detec
opposite to the mirror (z0.L) measures the intensityI 1 in the first
channel while a second detector measures the intensityI 2 of the
light in the channel parallel to the mirror.
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D50, the two signals are anticorrelated~i.e., a minimum of
the I 1 signal coincides with a maximum of theI 2 signal!.
The existence of a level shift removes this coincidence in
case of a finite detuning~see inset in Fig. 11!. For higher
values of« we can get deviations from a pure sinusoid
behavior~see Fig. 12!.

2. Low laser intensity

Provided with Eq.~37!, we can now also examine th
limit of small laser intensities in more detail. In this ca
~assuming that the atom is initially in the ground state! one
expects that the atomic operators are approximately unco
lated since coherent scattering processes dominate, i.e
can make substitutions of the type

^sq~ t !sq8~ t8!&'^sq~ t !&^sq8~ t8!&. ~42!

After some rearrangements one gets

d

dt
^s2&52S g

2
1 iD D ^s2&2 i

1

2
P~ t !^sz&,

d

dt
^s1s2&5

i

2
~P~ t !^s1&2P* ~ t !^s2&!2g~^s1s2&!,

~43!

where we introduced the quantity

P~ t !5V02 i«geivLt^s2~ t2t!&Q~ t2t!. ~44!

With the help of the decorrelation assumption~42! we elimi-
nate the field degrees of freedom which are implicitly s
contained in Eq.~37! and get an equation for a reduce
atomic system. This assumption is related to the fact tha
atom initially in the ground state and weakly excited by
laser approximately behaves like a harmonic oscillator si
sz5@s1 ,s2#'21. With regard to Eq.~43! we have to re-
place^sz& by 21 and it can be shown~see Appendix B! that
assumption~42! holds in this case if the system is initially i
the ground state.

In any case, for the following discussion we keep thesz
term for a short time since the equations are more transpa
in this form because the principal form of the OBE is co
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e
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ht
y

ns
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r

FIG. 12. Excited state population depending on the dista
between atom and mirror forD50 ~solid line! andD5g/2 ~dashed
line! and a larger solid angle~«50.4!. The global distance is as
sumed to be small while the laser intensity is weak (V050.1g).
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LASER-DRIVEN ATOMS IN HALF-CAVITIES PHYSICAL REVIEW A 66, 023816 ~2002!
served. Clearly the quantityP(t) can be interpreted as
modified Rabi frequency, in particular, if we recall the for
of that part of the electric field operator which is due to t
reflection of the light@see Eq.~35!#, ^Eref(t)&5E0(t)e2 ivLt,
with a slowly varying amplitudeE0(t). Thus, Eq.~44! can be
written in the formP(t)5V01(2d/\)E0(t), where the last
term coincides with the definition of a Rabi frequency. Let
assume now thatgt@1 and that the atom is in the groun
state att50. Then, the modified Rabi frequency~44! has
approximately the shape of a ‘‘stair function’’~going up and
down in general! with mostly decreasing distance betwe
the single steps. This can be understood if we discuss
time evolution of the system in time intervals of lengtht.
Betweent50 andt5t Eqs.~43! are the ordinary OBEs with
Rabi frequencyV0 since the Heaviside function in Eq.~44!
vanishes. The solution of the ordinary OBEs yields forV0
!g

^s2~ t !&'
iV0

g12iD
, tP@0,t#, ~45!

because the above expectation value is effectively cons
after a few radiative lifetimes 1/g!t. According to this, in
the next time interval@t,2t#, the Rabi frequency takes th
form

V085V0~11meivLt! with m[
«g

g12iD
. ~46!

Now we have to solve again the ordinary OBEs, which lea
to

^s2~ t !&'
iV08

g12iD
, tP@t,2t#, ~47!

giving rise to a new Rabi frequencyV09 in @2t,3t#, and so
on. Thus, Eq.~43! takes in every time interval@nt,(n
11)t#, nPN0, the form of ordinary OBEs with differen
Rabi frequenciesV0

(n) defined by

V0
(n)5V01meivLtV0

(n21) , V0
(0)5V0 , ~48!

while the expectation value of the dipole operator in an ‘‘
termediate’’ steady state~cf. Fig. 8! is given by

^s2& (n)'
V0

(n)

g12iD
, tP@nt,~n11!t#. ~49!

The value forn→` of the recurrence relation~48! is the
limit of a geometric series or simply the fixed point of th
map, which is given by

V0
(`)5

V0

12meivLt
, ~50!

and leads to a steady state population̂s1s2&ss

'uV0
(`)u2/(g214D2) which coincides exactly with expres

sion ~23! obtained from perturbation theory.
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Apart from this semiquantitative discussion it is wort
while to study the equations of motion~43! in more detail.
We explicitly make now the replacementss2→c, s1→c†

and thereforesz→21, wherec is a lowering operator of a
harmonic oscillator. The equations of motion then take
form

d

dt
^c~ t !&52S g

2
1 iD D ^c~ t !&1 i

V0

2

1«
g

2
eivLt^c~ t2t!&Q~ t2t!, ~51a!

d

dt
^c†~ t !c~ t !&52 i

V0

2
~^c~ t !&2^c†~ t !&!2g^c†~ t !c~ t !&

1«
g

2
@e2 ivLt^c†~ t2t!c~ t !&

1eivLt^c†~ t !c~ t2t!&#Q~ t2t!. ~51b!

In Appendix B it is shown that both^c†(t)c(t)&
5^c†(t)&^c(t)& and also, as already mentioned, the two-tim
correlation functions factorize if the atom is initially in th
ground state. Furthermore, it is proved that these statem
still hold in a steady state regime independently of the ini
state.

Our task now is merely to solve Eq.~51a! assuming an
initially unexcited atom. This equation is a linear delay d
ferential equation, i.e., apart from the constant inhomoge
ity, the type of equation that already appeared in Sec. II.
a matter of fact, this equation reduces in every time inter
@nt,(n11)t# to an ordinary linear differential equatio
~ODE! with a time dependent inhomogeneity, so for a
given initial state there exists a unique solution. In contras
initial value problems concerned with ODE’s, dela
differential equations need an initialfunction. In our case this
initial function is defined due to the presence of the s
function, which yields in the first time interval@0,t# an ODE
and is of course given by its solution. This initial function
uniquely defined by the initial state and it replaces the qu
tity ^c(t2t)& in the equation of motion in the next tim
interval @t,2t#, leading to an ODE with a time depende
inhomogeneity. As initial value we take of course the so
tion of the ODE in the first interval att5t ~which is justified
since it can be easily shown that the solutions of the type
equations we consider here have to be continuous!. The so-
lution in @t,2t# provides us again with the functionŝc(t
2t)& in @2t,3t# and an initial value. Continuing this proce
dure, we see that we have to solve in every time inter
@nt,(n11)t# an initial value problem of ODE and we ca
apply all mathematical theorems which are concerned w
such equations. This ‘‘method of steps’’@34# can even yield
analytical solutions as we will see in Sec. III B 3. Anoth
method of solving linear delay-differential equations is
Laplace transformation as was done in the case of Eq.~10!,
since in Laplace space the function with the retarded ti
6-11
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argument is simply replaced by the Laplace transform of t
function multiplied by an exponential function.

Thus, the solution of Eq.~43! is unique~for a given initial
state! whereas the behavior of the derivatives is more co
plicated. With respect to this, it can be easily shown t
~under certain conditions which are satisfied in our case! the
solution has at leastn continuous derivatives att5nt and in
general the (n11)th derivative has a discontinuity. This fea
ture can be identified in Fig. 2, for instance, where we r
ognize a kink att5t.

In order to demonstrate the mentioned solution meth
we will now derive the transient solution of the dela
differential equation~51a!. The Laplace transform of the ex
pectation valuêc& takes the form@assuminĝ c(0)&50#

L@^c~ t !&#~ iz1j!5
a3

iz1j

1

iz1j1a12a2e2( iz1j)t
,

~52!

with a1[2(g/21 iD), a2[«(g/2)eivLt, a3[ iV0/2, and
jPR1. We get

^c~ t !&5
a3

2pE2`

`

dz
e( iz1j)t

iz1j

3
1

12a2e2( iz1j)t/~ iz1j1a1!

1

iz1j1a1

5
a3

2p (
n50

`

a2
nei j(t2nt)

3E
2`

`

dz
eiz(t2nt)

iz1j

1

~ iz1j1a1!n11
. ~53!

The Fourier transformation in the last line of this express
~see, e.g.,@42#! leads finally to the result~22! already ob-
tained from perturbation theory and a closer inspection o
confirms the result~49!.

The upper state population in a stationary regime co
cides therefore exactly with Eq.~23! which is the low-
intensity limit of Eq.~39!. However, Eq.~23! is also valid for
gt@1. The intensities in a stationary regime measured
channels 1 and 2, respectively~see Fig. 11! take again the
form ~40a! which is due to the factorization property of th
two-time correlation functions. Using this fact, we can fu
thermore easily calculate emission spectra of the light s
tered in channel 1 or 2 which gives

S1~v!;sin2~vLt/2!u^c&ssu2d~v2vL!, ~54a!

S2~v!;u^c&ssu2d~v2vL!. ~54b!

The fact that the spectra are monochromatic just expre
again that coherent, elastic scattering processes are invo
in the limit of low laser intensities.

It was already mentioned that the second order correla
functions factorize under certain circumstances but w
02381
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about higher-order correlation functions? A lack of the h
monic oscillator model is surely that in general the opera
c(t)2 is not equal to zero in contrast tos2(t)2 so we cannot
necessarily expect that, for example, the quantity

G2
(2)~ t,t1T!5^c†~ t !c†~ t1T!c~ t1T!c~ t !& ~55!

gives the correct result forT→0. In fact it can be seen from
the results of Appendix B thatGj

(2)(t,t1T) is in general not
equal to zero forT50, just as in the theory of ordinary
resonance fluorescence~see, e.g.,@43#! the correct result is
obtained by perturbation theory.

A further remarkable fact is that the harmonic oscillat
model reproduces the result of the Wigner-Weisskopf the
of Sec. II where pure spontaneous decay was considered~see
Appendix B!. At a first glance this seems to be surprisin
since the atom was initially in the excited state, i.e.,^sz&
was far away from21. On the other hand, we saw in Se
II A that the state of the system is in this case alwa
confined to the subspace spanned by the vec
$ue,$0%1 ,$0%2&,ug,$k%1 ,$0%2&,ug,$0%1 ,$k%2&% ~and ug,$0%1 ,
$0%2& if one wants to start in a state different from the e
cited state! which leads to the fact that the noise terms of t
Heisenberg equations still do not contribute to the modifi
OBEs. Furthermore, the two-time correlation function tak
the form^s1(t8)s2(t)&5be* (t8)be(t) and thus the equation
of motion @from Eq. ~37!# for the upper state probability is
equal to Eq.~51b! for vanishing laser intensity.

3. High laser intensity

The examination of the system dynamics for larger valu
of V0t is more complicated since the incoherent nature
the scattered~and reflected! radiation becomes important. I
order to investigate the dynamics in this parameter reg
we will assume in the following that« is small so we can
treat the ‘‘reflected’’ part of Eq.~37! as a perturbation. With
the aim of obtaining a closed set of equations which cont
only terms of first order in« we can calculate the two-time
correlation functions in zeroth order« depending on the ini-
tial state, which is a single-time expectation value, and re
sert the result into Eq.~37!. To this end we can multiply the
Heisenberg equations of motion withs1(t8) from the left or
s2(t8) from the right wheret8<t , make use of the com
mutation relations~36!, and calculate the expectation valu
The equations we get in this way now contain third ord
correlation functions which are, however, of order«, and
thus they are neglected. The solution fort85t2t is given by

CW 6~ t,t2t!5U~t!CW 6~ t2t,t2t!, ~56!

with

CW 1~ t,t8![S ^s1~ t8!s2~ t !&

^s1~ t8!s1~ t !&

^s1~ t8!s1~ t !s2~ t !&

^s1~ t8!s2~ t !s1~ t !&

D , ~57!
6-12
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CW 2~ t,t8![S ^s2~ t !s2~ t8!&

^s1~ t !s2~ t8!&

^s1~ t !s2~ t !s2~ t8!&

^s2~ t !s1~ t !s2~ t8!&

D . ~58!

The matrix elementsUi j (t) of the evolution operatorU(t)
5eA4t with

A4[S 2
g

2
2 iD 0 2 i

V0

2
i
V0

2

0 2
g

2
1 iD i

V0

2
2 i

V0

2

2 i
V0

2
i
V0

2
2g 0

i
V0

2
2 i

V0

2
g 0

D
~59!

are obtained by solving the corresponding differential eq
tion.

By inserting the zeroth order two-time correlation fun
tions into Eq.~37! we get finally an equation which is of firs
order in«,

SẆ ~ t !5A4SW ~ t !1« K~t!SW ~ t2t!Q~ t2t!, ~60!

where we introduced the abbreviations

SW ~ t ![@^s2~ t !&,^s1~ t !&,^s1~ t !s2~ t !&,^s2~ t !s1~ t !&#T,

~61!

K~t!

[S g

2
f 1~t! 0 2 i

V0

2
f 2~t! 0

0
g

2
f 1* ~t! i

V0

2
f 2* ~t! 0

2 i
V0

2
f 3~t! i

V0

2
f 3* ~t! g f 4~t! 0

i
V0

2
f 3~t! 2 i

V0

2
f 3* ~t! 2g f 4~t! 0

D
~62!

with

f 1~t!52eivLt@U34~t!2U44~t!#, ~63!

f 2~t!52eivLt
2ig

V0
U31* ~t!, ~64!

f 3~t!5eivLt
ig

V0
U24~t!, ~65!
02381
-

f 4~t!5
1

2
@e2 ivLtU11~t!1eivLtU11* ~t!#. ~66!

Obviously, Eq.~60! describes again a reduced atomic d
namics but compared to the equation discussed in S
III B 2 it is more complicated since we now have a coupl
system of four delay-differential equations. These equati
are an extension of the ordinary OBEs~which are recovered
in the«→0 limit!. We can apply the method of steps, whic
yields the formal solution for timestP@mt,(m11)t#,

SW ~ t !5U~ t !SW ~0!1 (
n51

m

~«g!mU~ t !E
mt

t

dt1 E
(m21)t

t12t

dt2

3 . . . E
t

tm212t

dtm B~ t1!B~ t2!•••B~ tm!SW ~0!,

~67!

where B(t)[U21(t)K(t)U(t2t). The above expression
has a form similar to that of the excited state amplitude~10!.
In fact, Eq.~67! yields in the case of vanishing laser intens

^s1~ t !s2~ t !&5 (
n50

`
~«g!n

n!
cosn~v0t!~ t2nt!n

3e2g(t2nt/2)Q~ t2nt!, ~68!

which is an acceptable approximation for«gt!1. Further-
more, if we assume thatgt!1, Vt!1 so thatU(t)'1 and
t→10 in the arguments ofSW , we recover Eq.~38! of Sec.
III B 1. A numerically calculated example of the transie
upper state population is shown in Fig. 13.

The steady state solution can be found by calculating
eigenvector of the matrixA41«K(t) with eigenvalue 0.
From the form of the matrixK(t) we expect that the lase
intensity @which is contained in the functionsf j (t)# will in-
fluence the decay rate~s! and driving force~s! in a steady state
regime. In fact, we see in Fig. 14 that the difference betwe
the upper state population obtained from Eq.~60! and the
results of Sec. III B 1~indicated by the dashed lines! can be

FIG. 13. An example of the upper state population forV0

52g, gt55, «50.05, andD50. Until t5t the behavior is the same
as that of free space. In the magnified part (t>t) the functions are
plotted for an atom in an antinode (vLt52np), a node@vLt
5(2n11)p#, and for«50, i.e., no mirror~dashed line!.
6-13
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significant. Furthermore, forV0@g, small «, andD50 the
upper state population approximately takes the form

^s1s2&ss'
V0

2

G S 112«
g2

G
cos~v0t!g~t! D ~69!

with G[g212V0
2. This expression equals Eq.~41! obtained

in the Markovian limit except for the functiong(t) which is
given by

g~t!5e2(3/4)gtS 3

4
cos~V0t!2

V0

2g
sin~V0t! D1

1

4
e2(g/2)t.

~70!

We see that there is a modulation in the steady state pop
tion defined by the Rabi frequency. This function has z
values in regimesV0t'np independently ofv0t. Thus, a
strong laser can, in a way, inhibit the inhibition or enhan
ment of spontaneous decay.

We will consider now the spectrum of the emitted light
the channel parallel to the mirror. For our purposes it tu
out to be advantageous to define an emission spectrum
terms of the mean photon number increaseN(t) of that chan-
nel in the long time limit, i.e., with the help of the differentia
equation~in a nonrotating frame!

ḃv52 ivbv1kvs2 with kv[A2

c
hk , ~71!

we obtain

lim
t→`

Ṅ~ t !5 lim
t→`

]

]tE dv ^bv
† ~ t !bv~ t !&

5~12«!gE dv S~v!, ~72!

where we defined the spectrum

FIG. 14. Excited state population deviation from the free sp
value ~«50! in the long time limit depending on the distance b
tween atom and mirror forD50, «50.1. The laser intensity is take
to be rather strong (V0520g). The rapid oscillations have to b
regarded in a rather symbolic way; in a realistic situation the
quency would be much larger. Also indicated are the maximum
minimum values~dashed lines! of the oscillations obtained by Eq
~41!.
02381
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S~v![
1

pkv
lim
t→`

Re$^s1~ t !bv~ t !&%. ~73!

The usual expression including the Fourier transform of
atomic two-time correlation function is obtained~except for
constant factors! by integrating Eq.~71! and inserting the
result in Eq.~73!. Furthermore, corresponding to an opera
O we define its fluctuating partdO[O2^O&, with the help
of which we can split the spectrum into a coherent and
incoherent component:

S~v!5Scoh~v!1Sinc~v!

with

Scoh~v!5
1

pkv
lim
t→`

Re$^s1~ t !&^bv~ t !&%, ~74a!

Sinc~v!5
1

pkv
lim
t→`

Re$^ds1~ t !dbv~ t !&%. ~74b!

It is easy to see that the coherent part of the spectrum ta
the form

Scoh5^s1&sŝ s2&ssd~v2vL!, ~75!

where the stationary values are taken from Eq.~60!.
In order to calculate the incoherent component of

spectrum we can use a similar method as in the derivatio
Eq. ~60!. It is possible to derive a set of equations for t
expectation values

@^ds2~ t !dbv~ t !&, ^ds1~ t !dbv~ t !&, ^dsz~ t !dbv~ t !&#T

[PW ~ t !, ~76!

which takes in a rotating frame the form

PẆ ~ t !5@2 i ~v2vL!11A3#PW ~ t !1kv IW0~ t !1« IW~ t,t!.
~77!

Details of the calculation are given in Appendix C. The la
term in the above equation includes two-time correlat
functions which are again calculated in zeroth order«. This
yields in the long time limit an expression of the form

PW ss52kvM 21@ IW0,ss1« IW1~t!# ~78!

with

M52 i ~v2vL!11A31«e2 i (v2vL)tK̃~t!. ~79!

The atomic steady state expectation values which are c
tained in this expression are given by the steady state s
tion of the delay OBEs~60!. From this the spectrumSW inc can
be calculated, whereas for«50 we get the usual Mollow
spectrum@44#.

Examples obtained from Eq.~78! are shown in Fig. 15 for
weak laser intensity and an atom at a node. The spectrum
gt50 in this figure is the Mollow result with a damping ra

e

-
d
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~12«!g. The structures arising at large distances resem
those of Fig. 6 and can be interpreted in a similar way. T
situation changes in case of higher laser intensities.
amples are shown in Figs. 16~a! and 16~b! for different val-
ues oft and different positions of the atom. We see that
general the widths of the spectra vary and they are asym
ric depending on the position of the atom.

This behavior can be understood at least on a qualita
level if we take into account that a measure of the coupl
strength of the atom to a field mode of frequencyv is given
by sin2(vt/2). This function varies in frequency space on
scale 1/t. Defining the quantityG0[2V1g, which approxi-

FIG. 15. Incoherent emission spectra for various distances
tween atom and mirror and weak laser intensity (V050.2g,
D50, «50.15!. The atom is always located in a nod
(vLt52np).

FIG. 16. Emission spectra for an atom for higher laser inten
ties ~D50, «50.2!. In ~a! the quantityG0t is small (V053g). The
atom is placed in a node~solid line, vLt52np, gt50.01! at a
slope@dashed line,vLt5(2n11/2)p, gt50.005#, and in an anti-
node@dotted line,vLt5(2n11)p, gt50.02#. In ~b! the laser in-
tensity is higher (V055pg). Solid line, node position,gt50.1.
Dashed line, slope position,gt50.1001. For visibility, this line is
horizontally displaced by a small amount. Dotted line, antino
positiongt50.1002.
02381
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mately gives the overall width of the triplet, we see that f
G0t!1 ~and which we take now as the criterion for sma
atom-mirror distance! the coupling is almost flat in the re
gion where the spectrum differs from zero@see Fig. 17~a!#.
This situation corresponds to the Markovian limit discuss
in Sec. III B 1. Thus, we obtain in good approximation th
usual Mollow spectrum with a modified spontaneous em
sion rateg̃L . This is shown in Fig. 16~a! for various posi-
tions of the atom. The level shift~24b!, which acts here as a
detuning in the case of the dashed line, is so small that
curve cannot be distinguished from the Mollow spectru
with decay rateg on the scale of the figure. For larger valu
of G0t, but still gt!1, we have a situation like that shown i
Fig. 17~b!, where, as an example, an atom located at a n
of the standing wave sin2(vt/2) is chosen. For increasin
laser intensity, the sidebands move toward regions of hig
values of the coupling function leading to a higher damp
of, say, the corresponding levels in a dressed state pic
and thus to a broadening of the sidebands~with increasing
laser intensity untilV0'p/t). For an atom placed at a
antinode the behavior is simply the inverse. However, if
atom is placed at a ‘‘slope,’’ e.g., the one on the right ha
side of the node which was considered in Fig. 17~b!, the
spectrum becomes asymmetric since the transition res
sible for the right sideband is more strongly damped than
left one. Thus, the right sideband is broader than the
sideband which is in accordance with the dashed line in F
16~b! ~for the sake of clarity, the dashed line in this figure
displaced horizontally by a small amount!. The caseG0t
@1 is indicated in Fig. 17~c! leading to structures as in Fig
15 or Fig. 6.

So far we have discussed the case of exact reson

e-

i-

e

FIG. 17. Illustration of the explanation for the different shap
of the emission spectra~see text! for increasing values ofG0t. The
curves in the figures correspond to the function sin2(vt/2) for dif-
ferent values oft. For larger atom-mirror distances the relativ
variation of this function in a regionG0 ~the width of the fluores-
cence triplet! becomes significant and the Markov approximation
no longer valid. The atom is placed at a node in this example.
6-15
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~D50! where the emission spectra are symmetric for an a
in a node or an antinode. This situation changes, in gene
if we take a finite laser detuning. In case ofG0t!1 the
spectra are approximately identical to the usual Moll
spectra with modified spontaneous emission rateg̃L and de-
tuning D̃, i.e., they are approximately symmetric indepe
dent of the exact atomic position. Examples for this case
shown in Fig. 18~a!. Note that the sideband positions fo
an atom located at a slope are shifted toward the cen
peak, which is due to the small frequency shift„the side-
band positions are approximately given byvL

6AV0
21@D2«g/2 sin(vLt)#2

…. This situation differs from
that when the distance between the atom and the mirro
increased. Here, the spectra become asymmetric even w
the atom is located in a node or an antinode@see Fig. 18~b!#.

IV. SUMMARY

In this work we discussed the behavior of an atom in
presence of a reflecting wall with regard to pure spontane
emission, i.e., the decay of an initially excited atom witho
any laser excitation, and with regard to an additional c
tinuous driving laser field. In the first case, the on
dimensional model applied here can be solved exactly, le
ing to a solution that directly reveals the retarded characte
the system~photons bouncing back and forth between t
atom and the mirror! visible in the state population, the fiel
intensity, and the~transient! photon spectrum. The limit o
small distances yields the usual behavior of enhanced

FIG. 18. Incoherent emission spectra for nonvanishing laser
tuning ~D510g, «50.2, V053g). ~a! shows an atom very close t
the mirror. The solid line corresponds to node positions (vLt
52np,gt50.002), the dashed line to a slope position@vLt
5(2n11/2)p,gt50.0025#, and the dotted line to an antinode p
sition @vLt5(2n11)p,gt50.001#. In ~b! G0t is larger. Solid
line, vLt52np, gt50.15; dashed line,vLt5(2n11/2)p, gt
50.1505; dotted line,vLt5(2n11)p, gt50.151.
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inhibited spontaneous emission which can be interpreted
an interference phenomenon of the outgoing and reflec
light pulse leading to a standing wave pattern in the fi
intensity. If the atom is placed in an antinode of this stand
wave, spontaneous decay is enhanced while in a node
suppressed. For large distances this interference is no lo
significant and the node-antinode location of the atom
comes less important. The emitted photon wave packe
backreflected by the mirror, leading to a partial reexcitat
of the atom, which now starts to emit radiation, again a
so on.

In the case of an additional driving laser the situation
more complex since the energy of the system increases
tinuously. Working in the Heisenberg picture, we derived
set of equations which serves as a starting point for sev
approximative treatments. In the limit of low laser intensiti
we saw with the help of perturbation theory and a harmo
oscillator model that the system behaves essentially like
atom driven by two monochromatic lasers where the ph
difference between the lasers is controlled by the ato
mirror distance. The intensity of the reflected light at t
position of the atom depends on the intensity of the driv
force on the atom at a preceding time, which leads in gen
to a different state population in every time interv
@mt,(m11)t# ~converging to a steady state value!. The
dominance of coherent scattering was confirmed by
monochromatic emission spectrum of the system. In t
limit we also gave a discussion of the second order inten
correlation function, which includes in the case of the field
channel 1 an interference of different paths leading to a
incidence signal. This fact causes nontrivial structures in
correlation function.

In the case of a higher laser intensity incoherent scatte
becomes more significant. However, for small solid angle«
it is possible to derive a closed set of linear delay-differen
equations which represents an extension of the usual OB
It turned out that an intense laser field can significantly
fluence the system if we compare it with the Markovi
limit, where it is possible to describe the system by OB
with modified decay rate and transition frequency. With
gard to the upper state population, for instance, the laser
make the effect of the mirror disappear regardless of
exact position of the atom~node or antinode!. Furthermore,
the influence of a strong laser was revealed by the emis
spectra. Even if the widths of the three peaks of the spect
are each very small compared to the inverse delay timet, an
intense laser field~or a high detuning! can ‘‘push’’ the side-
bands of the triplet toward regions of a higher or lower co
pling of the corresponding transitions to the radiation fie
leading to features like asymmetric spectra~see also@45#!.

A possible extension of the discussion presented in
article would be the inclusion of the motional degrees
freedom of the atom. Assuming an atom in a harmonic tr
as in the experimental realization@17#, the reflected radiation
will have an appreciable effect on the center of mass mo
of the ion. This can serve as a further probe for effects d
cussed in this paper. In addition, collective effects of tw
ions in the trap, like super- and subradiance, could be stu
when the image of one ion is projected onto the other. T

e-
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effect of one atom on another one, mediated by radia
over a large distance, is important for applications like qu
tum communication@46#.
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APPENDIX A: THE SCATTERED LIGHT FIELD

Here we will sketch the derivation of an expression
the field intensity in the channel perpendicular to the mir
which was used for the generation of Fig. 3 and Fig. 5.
addition, we will give formulas for the electric field opera
tors in the Heisenberg picture which are used in the disc
sion of laser excitation, and an expression for the sec
order correlation function which is needed to derive Eq.~29!.
We use the coordinate system introduced in Fig. 1.

The intensity of the emitted light corresponding to Sec
is defined by

I ~z,t !5^E†~z,t !E~z,t !&

5^c~ t !uE†~z!E~z!uc~ t !&

5U i E dk ak sin~kz!bg,k
1 ~ t !e2 ivktU2

[uA~z,t !u2.

~A1!

From Eq.~4! we see that

A~z,t !52«
g

2

i\

d

1

2pE0

t

dt8 e2 iv0t8be~ t8!

3E dv eiv(t82t)~eivt/22e2 ivt/2!~eivz/c2e2 ivz/c!,

~A2!

where the frequency integral gives rise tod functions which
yield nonvanishing terms only in certain regions of space
time,

A~z,t !5«
g

2

i\

d
e2 iv0t

3Feiv0(z/c2t/2)beS t2
z

c
1

t

2DQS t2
z

c
1

t

2D
3QS z

c
2

t

2D1e2 iv0(z/c2t/2)beS t1
z

c
2

t

2D
3QS t1

z

c
2

t

2DQS t

2
2

z

cD2eiv0(z/c1t/2)

3beS t2
z

c
2

t

2DQS t2
z

c
2

t

2D G . ~A3!
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The first the second terms in square brackets of this exp
sion represent the outgoing light pulses to the right and
left side, respectively, while the last term provides us w
the reflected light pulse.

In the case of laser excitation the appropriate quantity
order to calculate the intensity is the electric field operato
the Heisenberg picture. Starting with the Heisenberg eq
tions ~31! and the definitions~2!, we use a similar derivation
to the one above, whereA(z,t) has to be replaced by th
operatorE1(z,t) and the amplitudebe by s2 ~andv0 by vL
for a detuned laser!. Apart from an additional noise term th
result coincides with Eq.~A3!. On condition that a photode
tector is placed on the right-hand side of the atom~cf. Fig.
11! at a positionz0.L the second term in square brackets
Eq. ~A3! does not contribute and one gets

E1~d0 ,t !5«
g

2

i\

d
e2 ivL(t2d0 /c)Fs2S t2

d0

c DQS t2
d0

c D
2eivLts2S t2

d0

c
2t DQS t2

d0

c
2t D G

1N1~d0 ,t !, ~A4!

with

N1~d0 ,t !5
i\

d E dk gk sin@k~d01L !#ak~0!e2 ivkt,

~A5!

whered05z02L5z02ct/2 is the distance between the d
tector and the atom. There are two different kinds of sig
arriving at the detector, one that takes its way directly a
one that takes the ‘‘loop way’’ over the mirror and therefo
needs a longer time.

If the conditions of Sec. III B 1 are satisfied, we can a
proximately calculate the intensity in channel 1 by negle
ing t in the arguments of the operators and the step func
to obtain

^E1
†~d0 ,t !E1~d0 ,t !&5S «g\

d D 2

sin2~vLt/2!

3 K s1S t2
d0

c Ds2S t2
d0

c D L ,

~A6!

which leads to expression~40a! if d0 is set to zero.
For the sake of completeness we give here also the e

tric field in channel 2 since it is used for various calculation

E2~x,t !5
~12«!g

2

i\

d
e2 ivLt

3Feix/cs2S t2
x

cDQS t2
x

cDQS x

cD
1e2 ix/cs2S t1

x

cDQS t1
x

cDQS 2
x

cD G1N2~x,t !,

~A7!
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with

N2~x,t !5
i\

d E dk hkbk~0!ei (kx2vkt). ~A8!

With the help of Eq.~A4! one can easily find expressions f
the intensity and the first order field correlation function
channel 1~the functions connected with channel 2 coinci
with those of standard Markovian theory!.

Using Eq. ~A4! and the commutation relations~36! we
also get an expression for the second order correlation fu
tion ~25!,

G1
(2)~ t,t1T!5i@s2~ t1T!s2~ t !1s2~ t1T2t!s2~ t2t!

2eivLts2~ t1T!s2~ t2t!

2eivLtT←s2~ t1T2t!s2~ t !# uG&i2.

~A9!

We set the arbitrary distanced0 to zero and omitted the ste
functions in this expression which is valid ift.t ~if not,
components with negative arguments are simply set to ze!.
The effect of the nonvanishing commutator in Eq.~36! is to
conserve time ordering in the last term of Eq.~A9!, i.e., the
time argument of the operator on the left-hand side is alw
greater than the right one. This is indicated by the sym
T←. We see that forT,t andT.t the operators have to b
exchanged.

APPENDIX B: SOME FEATURES OF THE HARMONIC
OSCILLATOR MODEL

In order to derive an expression for the correlation fun
tions in the harmonic oscillator model we start with t
Heisenberg equation of motion for the operatorc,

d

dt
c~ t !52a1c~ t !1a2c~ t2t!Q~ t2t!1a3

1
id

\
eivLt@N1~ t !1N2~ t !#. ~B1!

The parametersa i are defined in Sec. III B 2 and the nois
operators are given by Eq.~34!. Let us define a vector

uC~ t !&[c~ t !uc~0!&, i.e., uC~0!&5c~0!uc~0!&,
~B2!

where uc(0)&[uw,$0%1 ,$0%2& is the initial state of the sys
tem. The state

uw&5aug&1bue&, uau21ubu251 ~B3!

is an arbitrary state on the atomic space. Equation~B1! pro-
vides us with an equation of motion for this vector,

d

dt
uC~ t !&52a1uC~ t !&1a2uC~ t2t!&Q~ t2t!1a3uc~0!&.

~B4!
02381
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Thus we have a linear inhomogeneous delay-differen
equation and its solution takes the form

uC~ t !&5A~ t !uc~0!&1B~ t !uC~0!&. ~B5!

This vector has the formux(t)&u$0%1 ,$0%2& where the non-
constant part is an element of the atomic Hilbert space.
coefficients are given by

A~ t !5
a3

a1
(
n50

` a2
n

n!
~ t2nt!nGn@2a1~ t2nt!#Q~ t2t!,

~B6!

B~ t !5 (
n50

` a2
n

n!
~ t2nt!ne2a1(t2nt)Q~ t2nt!. ~B7!

These expressions can be found by Laplace transformatio
the way was demonstrated in Eq.~53! @the functionGn is
defined in Eq.~14!#.

Some expectation values of interest are

^c~ t !&5^c~0!uC~ t !&5A~ t !1B~ t !^c~0!&, ~B8!

^c†~ t !c~ t !&5iuC~ t !&i2

5^c†~ t !&^c~ t !&1uB~ t !u2@^c†~0!c~0!&

2^c†~0!&^c~0!&#. ~B9!

From the above expressions it is immediately clear that

^c†~ t !c~ t !&5^c†~ t !&^c~ t !&, ; t.0, ~B10!

if ^c†(0)c(0)&5^c†(0)&^c(0)&, which is the case if and
only if the atom is initially in the ground state. In the lon
time limit this behavior is independent of the initial stat
i.e., ^c†c&ss5^c†&sŝ c&ss since lim

t→`
B(t)50.

If we start in the ground state the harmonic oscilla
model reproduces the result~22! gained from the perturba
tion theory and a remarkable fact is that Eq.~B9! also repro-
duces the solution~7! obtained from the modified Wigner
Weisskopf theory if we seta350 ~no laser! so thatA(t)
50 for all t and uw&5ue&.

The two-time correlation functions take the form

^c†~ t8!c~ t !&5^C~ t8!uC~ t !&

5^c†~ t8!&^c~ t !&1B* ~ t8!B~ t !@^c†c~0!&

2^c†~0!&^c~0!&#, ~B11!

where the time order is irrelevant. We see again that
quantity factorizes in special cases,

^c†~ t8!c~ t !&5^c†~ t8!&^c~ t !& if uw&5ug&,

lim
t→`

^c†~ t1T!c~ t !&5^c†&sŝ c&ss, ; uw&. ~B12!

In order to derive fourth order correlation functions w
proceed in a similar way. We define a vector
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uF~ t8!&[c~ t8!uC~ t !&, ~B13!

uF~0!&5c~0!uC~ t !&5A~ t !uC~0!&. ~B14!

For this vector we get again an equation of the form~B4!
where we replaceuC(t)&→uF(t8)& and uc(0)&→uC(t)&,
which finally gives the fourth order correlation function

G2
(2)~ t,t1T!5^c†~ t !c†~ t1T!c~ t1T!c~ t !&5iuF~ t1T!&i2,

~B15!

which leads to

G2
(2)~ t,t1T!5i@A~ t !A~ t1T!1A~ t1T!B~ t !c~0!

1A~ t !B~ t1T!c~0!#uc~0!&i2, ~B16!

and thus

G2
(2)~ t,t1T!5^c†~ t !c~ t !&^c†~ t1T!c~ t1T!&,

uw&5ug&, lim
t→`

G2
(2)~ t,t1T!5^c†c&ss

2 , ; uw&.

~B17!

From Eq.~A9! we also obtain

lim
t→`

G1
(2)~ t,t1T!516 sin4~vLt/2!^c†c&ss

2 , ; uw&.

~B18!

This result is equal to the square of the intensity in the lo
time limit in this channel.

APPENDIX C: CALCULATION OF THE SPECTRUM

In this appendix a sketch of the derivation of the emiss
spectrum in the case of a higher laser intensity is outlin
We will indicate in the following merely retarded time arg
ments. In order to get Eq.~77! and Eq.~78! we consider the
operators

dA[ds2dbv5s2bv1^s2&^bv&2bv^s2&2s2^bv&,

dB[ds1dbv5s1bv1^s1&^bv&2bv^s1&2s1^bv&,

dC[dszdbv5szbv1^sz&^bv&2bv^sz&2sz^bv&.
~C1!

After transforming in a rotating frame,dA→e22ivLtdA;
dB→dB, dC→e2 ivLtdC, s2→e2 ivLts2 , bv→e2 ivtbv ,
the Heisenberg equations of motion for these operators y
after taking the expectation value Eq.~77!,

PẆ ~ t !5@2 i ~v2v0!11A3#PW ~ t !1kv IW0~ t !1« IW~ t,t!,

~C2!

wherePW (t) is defined in Eq.~76! and
02381
g

n
d.

ld,

A3[S 2
g

2
2 iD 0 2 i

V0

2

0 2
g

2
1 iD i

V0

2

2 iV0 iV0 2g

D , ~C3!

IW0~ t !5S 2^s2&2

^s1s2&2^s1&^s2&

22^s1s2&^s2&
D . ~C4!

The components ofI (t,t) are given by

I 1~ t,t!52
g

2
eivLt@^dCs2~ t2t!&1^sz&h2~ t,t!#,

I 2~ t,t!52
g

2
e2 ivLt@^s1~ t2t!dC&1^sz&h1~ t,t!#,

I 3~ t,t!5ge2 ivLt@^s1~ t2t!dA&1^s2&h1~ t,t!#

1geivLt@^dBs2~ t2t!&1^s1&h2~ t,t!#,

~C5!

with

h2~ t,t![^dbvs2~ t2t!&ei (vL2v)t, ~C6!

h1~ t,t![^s1~ t2t!dbv&ei (vL2v)t, ~C7!

where only retarded time arguments are indicated. The qu
tities h6 can be calculated with the help of the Heisenbe
equations of motion forbv . The result contains atomic two
time correlation functions which have to be calculated ag
in zeroth order« depending on the initial state, which is
single time expectation value. The calculation of the corre
tion functions contained in Eq.~C5! is analogous to the cal
culation done to derive the delay OBEs~60!: We multiply the
Heisenberg equations of motion for the operators~C1! once
from the left with s1(t8) and once from the right with
s2(t8) (t8<t) and keep only terms of first order in«. The
six equations we get in this way now contain again atom
two-time correlation functions, which have to be calculat
as was done forh6 . Then we lett→` and get an expressio
of the form ~78! with

K̃~t!5S g

2
f̃ 1~t! 0 2 i

V0

2
f̃ 2~t!

0
g

2
f̃ 1* ~t! i

V0

2
f̃ 2* ~t!

2 iV0 f̃ 3~t! iV0 f̃ 3* ~t! g f̃ 4~t!

D ,

~C8!

f̃ 1~t!52eivLtgz~t!, ~C9!

f̃ 2~t!52
ig

2V0
eivLtU31* ~t!, ~C10!
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f̃ 3~t!5
ig

V0
eivLtg1~t!, ~C11!

f̃ 4~t!5
1

2
@e2 ivLtU11~t!1eivLtU11* ~t!#, ~C12!
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S g2~t!

g1~t!

gz~t!
D 5U~t!F S 0

0

21
D 2S ^s2&ss

^s1&ss

^sz&ss

D G1S ^s2&ss

^s1&ss

^sz&ss

D .

~C13!

The inhomogeneityI 1(t) in Eq. ~78! is so lengthy that we do
not quote it here.
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