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Pulse compression by parametric beating with a prepared Raman coherence
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We present a general analysis for the interaction of a probe-laser radiation with a coherently prepared
molecular Raman medium. We describe a general formalism that includes dispersive effects, such as group
velocity and group-velocity dispersion~GVD!. When dispersion is negligible, the analysis is especially simple
and insightful. We show that molecular oscillations result in a modulated instantaneous susceptibility of the
medium. The effect of the time-varying susceptibility on a probe-laser pulse is twofold: the output frequency
becomes modulated because of the time-varying phase velocity, and the pulse shape becomes deformed be-
cause of the time-varying group velocity. We identify two mechanisms for pulse compression:~1! Frequency
chirping with subsequent pulse compression by normal linear GVD~possibly in the same medium! and ~2!
Compression due to the time-varying group velocity. We analyze various aspects of pulse compression in the
coherent Raman medium and derive conservation relations for this process. When we consider a probe-laser
pulse that is much shorter than the molecular oscillation period, we observe frequency chirping, compression,
or stretching of this pulse, depending on its relative timing with respect to the molecular oscillations. Based on
our analysis, we propose a method for selective compression or frequency conversion of single ultrashort
pulses.

DOI: 10.1103/PhysRevA.66.023813 PACS number~s!: 42.65.Re, 32.80.Qk, 42.50.Gy, 42.65.Sf
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I. INTRODUCTION

Generation of ultrashort pulses is a rapidly develop
and highly motivated field of optics@1#. Until recently the
shortest optical pulses were produced by solid-state Ti:s
phire laser systems. Pulses as short as 4.5 fs~just under two
optical cycles! were obtained by expanding the spectrum o
mode-locked laser by self-phase modulation in an opt
waveguide, and then compensating for group-velocity d
persion by diffraction grating and prism pairs@2#. The devel-
opment of solid-state femtosecond laser technology allow
time-resolved studies of chemical reactions and molec
dynamics@3#. Generation of even shorter pulses would e
tend the horizon of ultrafast measurements to the time s
of electronic motion@4#, but the progress seemed to be stu
at the few-femtosecond barrier for many years.

The year 2001 saw a breakthrough in ultrashort pulse g
eration in several directions simultaneously. Workers in
field of high-order harmonic generation have measured s
femtosecond pulses in the x-ray spectral region@5#. Impul-
sive Raman scattering has produced pulses as short as
in the near ultraviolet@6#. The adiabatic Raman techniqu
has been used to demonstrate collinear generation of a
spectrum of mutually coherent sidebands~spanning infrared,
visible, and UV regions! @7,8# that can synthesize pulses
short as one optical oscillation (;2 fs) @9#, and even sub-
cycle pulses. These different techniques can be considere
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complimentary to each other, as they provide ultrash
pulses with very different characteristics. High-order h
monic generation is a unique source of x-ray pulses, but
their very nature these pulses are difficult to control beca
of intrinsic problems of x-ray optics; besides the convers
efficiency into these pulses is very small~typically 1025)
@10#. On the other hand, the adiabatic Raman technique
lows 100% conversion@11# and produces a well-controlle
spectrum centered in the visible region. A disadvantage
the adiabatic technique is that it leads to trains of ma
pulses. In the original configuration@12,13# this technique
produces trains of pulses spaced by the molecular oscilla
period, which is as short as 11 fs for molecular vibrations
deuterium.

Several ideas have been put forward for generation
single subfemtosecond pulses by the Raman techniq
Early work on the dynamics of a single intense laser pulse
a Raman-active medium included predictions of 2p soliton
formation and subfemtosecond pulse compression@14#. Re-
cent experiments have shown that a weak probe pulse ca
compressed by molecular oscillations that are excited imp
sively by a strong pump pulse@6,15,16#. Kaloshaet al. have
suggested that molecular wave-packet revivals can prod
frequency chirp, which in turn would allow femtosecon
pulse compression by normal group-velocity dispers
~GVD! in a thin output window@17#. Bartels et al. have
demonstrated this possibility experimentally@18#. A disad-
vantage of the impulsive excitation method compared to
adiabatic technique is that the excitation level and the g
erated Raman coherence are several orders of magn
smaller. Therefore, the impulsive excitation method requi
strong pump intensity, for which nonlinear response of

-
-

©2002 The American Physical Society13-1



ve

in
t

ea
h

pr
f
e

th
a
s
ly
ho
e

er
u
n
ffi
in
n

io
s
it
e

f t

hi
ty
n
ti

n-

ifi
th

,
i

ve
fo
on
re

io
te
a
n
he
er
gt
he
th

o
g
a
tp

de-
m-
d to
tice,
a-

se a

of
es.

at-
me
sion
of a
en,
ec-

is-
m

lses

s to

ibe
we
ting
ins

eld
are

s
y

ly-

FAM LE KIEN, K. HAKUTA, AND A. V. SOKOLOV PHYSICAL REVIEW A 66, 023813 ~2002!
medium becomes substantial and ultimately limits the le
of excitation. There has been a proposal@19# to combine the
adiabatic technique with the impulsive technique. Accord
to this method, a short probe pulse can be compressed in
singlet, doublet, or triplet of subfemtosecond pulses by b
ing with an adiabatically prepared Raman coherence. T
method has the advantage of the adiabatic pumping in
ducing a large Raman coherence and the advantage o
impulsive excitation in reducing the number of pulses p
train.

In this paper we again consider the combination of
adiabatic and impulsive techniques. We perform an adiab
Raman excitation by two narrow-linewidth laser field
slightly detuned from the Raman resonance. We then app
single ultrashort pulse. We show that, when the pulse is s
compared to the molecular half-period, it can be stretch
compressed, or frequency converted. In essence, coh
molecular motion results in a time-varying instantaneo
susceptibility, which in turn causes variations in phase a
group velocities and produces a time-varying gain coe
cient. The use of the terminology such as the time-vary
susceptibility can be justified when dispersion is small a
the electronic response can be treated as instantaneous@20#.
Time-varying phase velocity leads to frequency modulat
and results in an up- or down-conversion of the probe-la
pulse, or in a pulse chirp, depending on the pulse timing w
respect to the molecular motion. Chirped pulses are then
ther stretched or compressed, depending on the sign o
chirp, by normal GVD, possibly in the same medium@12#.
The second mechanism for pulse compression or stretc
is the direct action of the time-varying group veloci
@19,16#. These mechanisms for frequency modulation a
pulse compression are reminiscent of self-phase modula
@21#, self-modulation of plasma wake fields@22#, and self-
steepening@23#, which are produced by self-induced nonli
ear susceptibility. Similar to self-steepening@23#, our second
mechanism comes into play when the time scale for sign
cant variations of susceptibility becomes comparable to
duration of an optical cycle.

It has been shown earlier@12,13# that, in a general case
with all dispersive effects included, the number of photons
the laser field interacting with a Raman system, is conser
In this paper we obtain additional conservation relations
the limit of negligible dispersion. We derive the conservati
of the area of a laser pulse interacting with coherently p
pared molecular oscillations@24#. This leads to a possibility
of increased energy accompanying frequency up-convers
In this situation, the energy added to the field is extrac
from the internal energy of the medium. We also find that,
the pulse length, frequency, amplitude, and energy cha
during the propagation in the medium, in addition to t
photon number and pulse area conservations, the numb
optical oscillations as well as the product of the pulse len
and the mean frequency are conserved. Even though t
conservation relations are derived in the idealized case,
are useful for the general analysis of the problem. Based
this analysis, we propose a method for generation of sin
subfemtosecond pulses. We suggest applying a pulse th
short compared to the molecular half-period. Then the ou
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will depend on the timing between the pulse and the in
pendently prepared molecular motion. In principle, this ti
ing can be controlled by phase locking among lasers use
prepare and to probe the molecular coherence. In prac
this would be a very challenging experimental task. Altern
tively one can assume random shot-to-shot timing, and u
sorting algorithm~based on spectral analysis! for the output
pulse selection.

Before we proceed, we note that there is a large history
ideas for short-pulse manipulation by the Raman techniqu
Ruhmanet al. have used impulsive stimulated Raman sc
tering to observe coherent molecular vibrations in the ti
domain, and discussed mechanisms for frequency conver
@25#. Imasaka and co-workers have observed generation
broad rotational Raman spectrum in molecular hydrog
and discussed the possibilities for phase locking of this sp
trum @26#. Kaplan and Shkolnikov have predicted the ex
tence of 2p Raman solitons with a phase-locked spectru
that Fourier transforms into a train of subfemtosecond pu
@27#. In other related work Kocharovskayaet al. have sug-
gested using a Raman medium inside a laser cavity so a
provide phase modulation to cause mode locking@28#.

The paper is organized as follows. In Sec. II we descr
the model and present the basic equations. In Sec. III
analyze the compression of a probe field due to the bea
with a prepared Raman coherence. Finally, Sec. IV conta
conclusions.

II. MODEL AND BASIC EQUATIONS

We consider the interaction of the electromagnetic fi
with a molecular medium whose levels and transitions
shown schematically in Fig. 1. Levelsj with energiesv j are
coupled to levela with energyva and levelb with energyvb
by electric dipole transitions. The transition between levela
and b is electric dipole forbidden. We allow an arbitrar

FIG. 1. Diagram of energy levels and transitions for the ana
sis. Levelsa and b are coupled with levelsj by the spectral com-
ponentsv andv2vm of the fields. The transition between levelsa
and b is electric dipole forbidden. The transitionsj↔a and j↔b
are far off one-photon resonance, and the transitiona↔b may be
off two-photon resonance by a detuningd.
3-2
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PULSE COMPRESSION BY PARAMETRIC BEATING . . . PHYSICAL REVIEW A66, 023813 ~2002!
number of levelsj and analyze the system by including a
possible components of the Raman spectrum. We ass
that the transitionsj↔a and j↔b are far off one-photon
resonance, the transitiona↔b may be off two-photon reso
nance by a detuningd, the field is linearly polarized, and th
propagation is one-dimensional, along thez direction.

In the dipole approximation, the Hamiltonian of the inte
action of the field with a molecule is given by

H5H01H int , ~1!

where

H05\vasaa1\vbsbb1(
j

\v js j j ~2!

and

H int52(
j

E~m jas ja1ma jsa j1m jbs jb1mb jsb j!. ~3!

Here s ik5u i &^ku are the operators for energy-level popu
tions (i 5k) and transition amplitudes (iÞk), E is the elec-
tric field, andm ja and m jb are the dipole moments of th
transitions j↔a and j↔b, respectively. For simplicity, we
assume thatma j andmb j are real parameters.

We introduce the notationv ik5v i2vk for the energy
difference between levelsi and k. We assume that the one
photon detuningsv ja, jb2v0 are large compared to the Ra
frequenciesm ja, jbE0 as well as to the two-photon detunin
d. Here,v0 andE0 are the characteristic values of the inp
frequency and input electric field, respectively. In this ca
the medium can be considered as an effective two-level
tem, with two levelsa and b, evolving slowly in time as
compared to the field. To consider the situation where
field may be a short pulse, we expressE as a Fourier integra

E5
1

2E2`

`

e2 ivtEvdv ~4!

with E2v5Ev* , that is, we take into account all spectr
components of the field.

A. Evolution of the medium state

We use the local coordinatesz andt5t2z/c. As shown
in Appendix A, under the far-off-resonance condition, t
density matrix of the medium state is governed by the eq
tions

]raa

]t
5 i ~Vabrba2Vbarab!1g1rbb ,

]rbb

]t
52 i ~Vabrba2Vbarab!2g1rbb ,

]rab

]t
5 i ~Vaa2Vbb1d1 ig2!rab1 iVab~rbb2raa!.

~5!
02381
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Here the Stark shiftsVaa and Vbb and the complex two-
photon Rabi frequenciesVab andVba are given by

Vaa5
1

8\E2`

` E
2`

`

dvdv8aaa
(v)EvEv8

* e2 i (v2v8)t,

Vbb5
1

8\E2`

` E
2`

`

dvdv8abb
(v)EvEv8

* e2 i (v2v8)t,

Vab5
1

8\E2`

` E
2`

`

dvdv8aab
(v)EvEv81vm

* e2 i (v2v8)t,

Vba5
1

8\E2`

` E
2`

`

dvdv8aba
(v)EvEv82vm

* e2 i (v2v8)t,

~6!

wherevm5vba2d is the modulation frequency. The coeffi
cientsa ik

(v) are the Raman polarizability matrix and are giv
by

aaa
(v)5

2

\ (
j

m ja
2

v ja2v
,

abb
(v)5

2

\ (
j

m jb
2

v jb2v
,

aab
(v)5

2

\ (
j

ma jm jb

v jb2v
,

aba
(v)5

2

\ (
j

mb jm ja

v ja2v
. ~7!

In Eqs.~5! we have added the phenomenological terms t
describe the population decay at a rateg1 and the coherence
decay at a rateg2.

Note that Eqs.~5! for the medium state have been deriv
previously for the case of discrete Raman sidebands@13,29#.
In the present case, the field spectrum is continuous and
slowly varying envelope approximation for the time depe
dence of the field is not used. Therefore, the Stark shifts
the two-photon Rabi frequencies are given in the form
integrals over the continuous variablev.

B. Propagation equation for the field in the frequency domain

We study the propagation of the field in the situati
where the change of the medium state is negligible. We m
the slowly varying envelope approximation for the spat
dependence of the field~the paraxial approximation!, that is,
we assume that the variation ofE with z at constantt occurs
only over distances much larger than an optical wavelen
In this case, the propagation of the field is, as shown
Appendix B, governed by the equation@13,29#
3-3
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]Ev

]z
5 i ~avraa1bvrbb!Ev1 igvrbaEv2vm

1 ihvrabEv1vm
. ~8!

The propagation coefficientsav and bv and the coupling
coefficientsgv andhv are given by

av5
N\

e0c
vav ,

bv5
N\

e0c
vbv ,

gv5
N\

e0c
vdv2vm

,

hv5
N\

e0c
vdv , ~9!

whereN is the molecular density. Here we have introduc
the notation

av5
1

4\
@aaa

(v)1aaa
(2v)#,

bv5
1

4\
@abb

(v)1abb
(2v)#,

dv5
1

4\
@aab

(v)1aba
(2v)#, ~10!

or, equivalently,

av5
1

2\2 (
j

S m ja
2

v j2va2v
1

m ja
2

v j2va1v D ,

bv5
1

2\2 (
j

S m jb
2

v j2vb2v
1

m jb
2

v j2vb1v D ,

dv5
1

2\2 (
j

S ma jm jb

v j2vb2v
1

ma jm jb

v j2va1v D . ~11!

Equation~8! is written in the frequency domain. When th
continuous frequencyv is replaced by discrete Raman sid
bandsvq , Eq. ~8! reduces to the propagation equation
Refs. @13,29#. Equation ~8! includes the dispersion in th
vicinity of each individual sideband as well as the dispers
from a sideband to another sideband in a multisideband s
trum. Note that, in the case where the medium state va
slowly in time, Eq.~8! can be used in conjunction with Eq
~5!, but the frequency componentEv becomes time-
dependent and, therefore, corresponds to a transient, sl
varying spectrum of the fieldE.
02381
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C. Propagation equation for the Raman sidebands

We consider the case where the spectrum of the fiel
concentrated in narrow vicinities of the sideband frequenc
vq5v01qvm . Hereq is an integer number andvq.0. We
represent the electric fieldE in the form

E5
1

2 (
q

~Eqe2 ivqt1Eq* eivqt!, ~12!

whereEq is the envelope of theqth sideband and is define
by

Eq5E
vq2vm/2

vq1vm/2

Eve2 i (v2vq)tdv. ~13!

For the sideband with the lowest frequency, the lower lim
of the integral on the right-hand side of Eq.~13! should be
replaced by zero.

For convenience we use the notation

f q5 f ~vq!, f q85
d f~v!

dv Uvq
, f q95

d2f ~v!

dv2 U
vq

, ~14!

wheref (v) can be any of the coefficientsav , bv , gv , hv ,
av , bv , anddv . We expand the coefficientsav , bv , gv ,
and hv in the vicinity of vq to the second order ofv2vq
with the help of the Taylor formula

f ~v!5 f q1 f q8~v2vq!1
1

2
f q9~v2vq!2. ~15!

We submit these expansions into the frequency-dom
propagation equation~8! and perform the integration from
vq2vm/2 to vq1vm/2. Then, we obtain the following
propagation equation for the sideband field envelopes:

]Eq

]z
5 i @~aqraa1bqrbb!Eq1gqrbaEq211hqrabEq11#

2F ~aq8raa1bq8rbb!
]Eq

]t
1gq8rba

]Eq21

]t

1hq8rab

]Eq11

]t G2
i

2 F ~aq9raa1bq9rbb!
]2Eq

]t2

1gq9rba

]2Eq21

]t2
1hq9rab

]2Eq11

]t2 G . ~16!

In Eq. ~16!, the terms proportional to the sideband amp
tudes describe the linear propagation of the individual si
bands and the Raman coupling between them. The te
containing the first-order time derivatives account for t
effect of the group velocities of the individual sidebands. T
terms containing the second-order time derivatives acco
for the effect of the group-velocity dispersion of the ind
vidual sidebands. Thus, Eq.~16! is beyond the standard
slowly varying envelope approximation, which neglects t
time derivatives of the sideband amplitudes. When we ap
3-4
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this approximation, the sideband propagation equation~16!
reduces to the slowly varying envelope equation

]Eq

]z
5 i @~aqraa1bqrbb!Eq1gqrbaEq211hqrabEq11#,

~17!

which was studied in Refs.@13,29#.

D. Propagation equation for the field in the time domain

We write the electric fieldE in the form

E5
1

2
~E1E* !, ~18!

where the positive-frequency field componentE is defined by

E5E
0

1`

Eve2 ivtdv5(
q

Eqe2 ivqt. ~19!

We assume that the propagation coefficientsav andbv and
the coupling coefficientsgv andhv vary slowly with v. We
use Eq.~15! to expandav andbv around the characteristi
input frequencyv0. Similarly, we expandgv andhv around
the anti-Stokes frequencyv1 and the Stokes frequencyv21,
respectively. We submit these expansions into the freque
domain propagation equation~8! and perform the integration
from 0 to 1`. Then, with the assumption thatEv50 for
uvu,vm , we obtain

]E
]z

5 i @Araa1Brbb1F~t!#E2@A1raa1B1rbb1F1~t!#
]E
]t

2
i

2
@A2raa1B2rbb1F2~t!#

]2E
]t2

, ~20!

where

F~t!5Krbae
2 ivmt1Qrabe

ivmt,

F1~t!5K1rbae
2 ivmt1Q1rabe

ivmt,

F2~t!5K2rbae
2 ivmt1Q2rabe

ivmt. ~21!

Here we have introduced the notation

A5a02v0a081
1

2
v0

2a09 ,

B5b02v0b081
1

2
v0

2b09 ,

K5g12v0g181
1

2
v0

2g19 ,

Q5h212v0h218 1
1

2
v0

2h219 , ~22!
02381
y-

A15a082v0a09 ,

B15b082v0b09 ,

K15g182v0g19 ,

Q15h218 2v0h219 , ~23!

and

A25a09 ,

B25b09 ,

K25g19 ,

Q25h219 . ~24!

In Eq. ~20!, the term containingE describes the phas
shift and the amplification or absorption. The term conta
ing the first-order time derivative describes the effect of
time-varying group velocity. The term containing the secon
order time derivative accounts for the effect of the tim
varying group-velocity dispersion. Note that the time-doma
propagation equation~20! for the field amplitudeE can also
be derived from Eq.~16! as well as Eq.~17! for the field
sidebandsEq if we expand the propagation coefficientsaq
and bq aroundv0 and expand the coupling coefficientsgq
andhq aroundv1 andv21, respectively.

We now use Eqs.~9! to rewrite Eqs.~22!, ~23!, and~24! in
terms of the dispersion coefficientsa0 and b0 and the cou-
pling coefficientsd0 andd21. The results are

A5
N\

2e0c
v0

3a09 ,

B5
N\

2e0c
v0

3b09 ,

K5
N\

e0c Fvmd02v0vmd081
v0

2~v01vm!

2
d09G ,

Q5
N\

e0c F2vmd211v0vmd218 1
v0

2~v02vm!

2
d219 G ,

~25!

A15
N\

e0c
~a02v0a082v0

2a09!,

B15
N\

e0c
~b02v0b082v0

2b09!,

K15
N\

e0c
@d02~v02vm!d082v0~v01vm!d09#,

Q15
N\

e0c
@d212~v01vm!d218 2v0~v02vm!d219 #,

~26!
3-5



w

ly

ion

of

n or
ing
-

e-
a-

s
d a
n
ity
eld

ium

.

n

FAM LE KIEN, K. HAKUTA, AND A. V. SOKOLOV PHYSICAL REVIEW A 66, 023813 ~2002!
and

A25
N\

e0c
~2a081v0a09!,

B25
N\

e0c
~2b081v0b09!,

K25
N\

e0c
@2d081~v01vm!d09#,

Q25
N\

e0c
@2d218 1~v02vm!d219 #. ~27!

Since the medium is far from resonance with the field,
may assume thataq@vqaq8@vq

2aq9 , bq@vqbq8@vq
2bq9 , and

dq@vqdq8@vq
2dq9 . With this assumption, we can keep on

the dominant terms on the right-hand side of Eqs.~25!, ~26!,
and ~27!. Then, we obtain

A5
N\

2e0c
v0

3a09 ,

B5
N\

2e0c
v0

3b09 ,

K52Q5
N\

e0c
vmd0 , ~28!

A15
N\

e0c
a0 ,

B15
N\

e0c
b0 ,

K15Q15
N\

e0c
d0 , ~29!

and

A252
N\

e0c
a08 ,

B252
N\

e0c
b08 ,

K25Q252
N\

e0c
d08 . ~30!

Hence, Eq.~20! reduces to
02381
e

]E
]z

5 i
N\

e0c F1

2
v0

3~a09raa1b09rbb!1vmd0~rbae
2 ivmt

2rabe
ivmt!GE2

N\

e0c
~a0raa1b0rbb1d0rbae

2 ivmt

1d0rabe
ivmt!

]E
]t

2 i
N\

e0c
~a08raa1b08rbb1d08rbae

2 ivmt

1d08rabe
ivmt!

]2E
]t2

. ~31!

Similar to the general time-domain propagation equat
~20!, the simplified off-resonant propagation equation~31!
also includes the effect of the dispersion on the scale
multiple sidebands. The coefficient of the term containingE
describes the phase shift per length and the amplificatio
absorption rate. The coefficients of the terms contain
]E/]t and ]2E/]t2 characterize the time-varying group ve
locity and the time-varying group-velocity dispersion, r
spectively. All these coefficients are modulated by the R
man coherence, that is, by the molecular oscillations.

III. MODULATION AND COMPRESSION OF A PROBE
FIELD BEATING WITH A PREPARED RAMAN

COHERENCE

A. Model and propagation equation in the case of zero
dispersion

We assume that the Raman coherencerab is established
adiabatically by using two long off-resonant driving field
@13,29#. After the Raman coherence is prepared, we sen
weak probe fieldE into the medium. When all dispersio
effects, except for the group velocity and the group-veloc
dispersion, are negligible, the propagation of the probe fi
is governed by Eq.~20!.

We consider the case where the dispersion of the med
is negligible, that is,aq5a0 , bq5b0 , dq5d0, and, conse-
quently, aq85bq85dq85aq95bq95dq950. In this case, Eqs
~25!, ~26!, and ~27! yield A5B5A25B25K25Q250, K
52Q5(N\/e0c)vmd0 , K15Q15(N\/e0c)d0 , A1
5(N\/e0c)a0, and B15(N\/e0c)b0. Hence, Eq.~20! for
the positive-frequency componentE leads to the following
equation for the probe fieldE @16,19#:

]E

]z
52

N\

e0c

]

]t
~a0raa1b0rbb1d0rbae

2 ivmt

1d0rabe
ivmt!E. ~32!

When we compare Eq.~32! with the reduced wave equatio

]E

]z
52

1

2e0c

]P

]t
, ~33!

we find that the instantaneous susceptibilityx5P/e0E of the
polarizationP to the probe fieldE is given by
3-6
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x5
2N\

e0
~a0raa1b0rbb1d0rbae

2 ivmt1d0rabe
ivmt!.

~34!

Note that this susceptibility is modulated in time by the p
pared Raman coherencerab at the Raman frequencyvm .

Using the definition~34! for the time-varying instanta
neous susceptibilityx, we can rewrite the propagation equ
tion ~32! in the form

]E

]z
52

1

2c

]x

]t
E2

1

2c
x

]E

]t
. ~35!

The coefficient (1/2c)]x/]t of the first term on the right-
hand side is proportional to the slope of the time-vary
susceptibilityx. This coefficient determines gain or absor
tion, depending on its sign. Meanwhile, the coefficientx/2c
of the second term on the right-hand side is the reciproca
the group velocity in the local time. Because of the abse
of dispersion, the group velocity is equal to the phase ve
ity.

In the coherence preparation step, with the assumption
large two-photon detuning, limited bandwidth, and negligib
dispersion, the medium follows an adiabatic eigenstate w
@13,29#

raa5cos2 u, rbb5sin2 u, ~36!

and

rab5ei (f02kz)sinu cosu. ~37!

Heref0 is the relative phase between the driving fields at
input, k is the phase shift per length of the prepared Ram
coherence and is given by

k5
N\

e0c
vm~a0raa1b0rbb!, ~38!

andu is determined by the equation

tan 2u5U 2Vab
(ext)

d1Vaa
(ext)2Vbb

(ext)Usgn~d!, ~39!

whereuuu<p/2. In Eq. ~39!, Vaa
(ext) andVbb

(ext) are the Stark
shifts andVab

(ext) is the two-photon Rabi frequency, produce
by the driving fields. We assume that the probe field is we
and short as compared to the driving fields so that the
dium state is mainly determined by the driving fields and
not substantially affected by the probe field.

B. Analytical solution and conservation relations

We now use the reduced local timeh5t2z/v1f/vm ,
wherev5vm /k andf5f01(p/2)sgn(d). Then, the propa-
gation equation~32! simplifies to

]E

]z
52

a

vm

]

]h
sin~vmh!E. ~40!
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Here we have introduced the coupling parameter

a5
2\

e0c
Nvmd0r0 , ~41!

wherer05usinu cosuu5urabu. The solution of Eq.~40! is @16#

E~z,h!5Ein~s!G~h!, ~42!

whereEin(s)5E(z50,s) is the input field, the input times is
determined from the output timeh by the equation

tan~vms/2!5e2aztan~vmh/2!, ~43!

and the functionG(h)5sin(vms)/sin(vmh) is given by@19#

G~h!5
1

eaz cos2
vmh

2
1e2az sin2

vmh

2

. ~44!

It follows from Eq. ~43! that

ds/dh5G~h!. ~45!

When the output timeh is close to a given timeh i , we find
from Eq. ~45! that the input times can be approximated as

s~h!5s~h i !1G~h i !~h2h i !. ~46!

Hence, for the input frequencyv0, the instantaneous fre
quencyvosc(h i) of the optical oscillations ofE in the vicin-
ity of the given timeh i is G(h i)v0, that is,

vosc~h!5G~h!v05
v0

eaz cos2
vmh

2
1e2az sin2

vmh

2

.

~47!

Equation~47! shows that the instantaneous oscillation fr
quencyvosc(h) is modulated in time.

According to Eqs.~42! and ~45!, the height and duration
of optical oscillations in the probe field are changed by
reciprocal factors E(z,h)/Ein(s)5G(h) and dh/ds
51/G(h), respectively. A consequence of these equation
the relation

E
h1

h2
E~z,h!dh5E

s1

s2
Ein~s!ds, ~48!

which means the conservation of the pulse area in any g
time interval (h1 ,h2).

Using Eqs.~42!, ~45!, and~47!, we can show that

ce0

2 E
h1

h2 E2~z,h!

\vosc~h!
dh5

ce0

2 E
s1

s2Ein
2 ~s!

\v0
ds. ~49!

The expression on the right-hand side of the above equa
is the number of photons in the input field, with the fr
quencyv0. The expression on the left-hand side is the nu
ber of photons in the output field, with the instantaneo
3-7
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frequencyvosc(h). Therefore, Eq.~49! describes the conser
vation of the photon number. This is a very general relat
that is always satisfied for Raman processes@12,13#.

It follows from Eqs.~45! and ~47! that

s22s15E
h1

h2
G~h!dh5E

h1

h2vosc~h!

v0
dh. ~50!

We define the mean frequency of oscillations in the ti
interval (h1 ,h2) by

v̄~h1 ,h2!5
1

h22h1
E

h1

h2
vosc~h!dh. ~51!

With this definition, Eq.~50! yields

v̄~h1 ,h2!~h22h1!5v0~s22s1!. ~52!

Equation~52! indicates that the product of the pulse leng
and the mean frequency is constant during the propaga
process. Furthermore, we haveE(z,h)50 if Ein(s)50 and
vice versa, that is, a zero of the input field at an input tims
leads to a zero of the output field at the corresponding ou
time h. Hence, the number of optical oscillations is co
served. This conservation is a simple consequence of
pulse reshaping described by Eq.~42!.

The above conservation relations are especially usefu
the analysis in the case where the pulse duration is m
shorter than the molecular period. While the photon num
conservation is very general, the other conservation relat
obtained by us are approximate and are seriously viola
when dispersion or nonadiabatic effects are substantial.

To get deeper insight into the solution~42!, we rewrite the
reduced propagation equation~40! as

]E

]z
52a cos~vmh!E2

a

vm
sin~vmh!

]E

]h
. ~53!

The coefficienta cos(vmh) of the first term on the right-hand
side is a time-varying gain or absorption rate, depending
its sign. The coefficient (a/vm)sin(vmh) of the second term
on the right-hand side is a measure of the time-varying gr
and phase velocities. The modulation in the amplitude of
solution ~42! is due to the first coefficient, and the modul
tion in the instantaneous oscillation frequency is due to
second coefficient. Both coefficients originate from the tim
varying susceptibilityx, given by Eq.~34!, which in terms of
the reduced local timeh takes the form

x5
2c

vm
@k1a sin~vmh!#. ~54!

The gain or absorption ratea cos(vmh) is determined by the
slope of the inversed time-varying group veloci
(a/vm)sin(vmh), or more exactly, by the slope of the time
varying susceptibilityx. This gain~absorption! is accompa-
nied by the increase~decrease! in the oscillation frequency
Since the photon number is conserved@Eq. ~49!#, this gain
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~absorption! is not the conventional gain~absorption!, in
which the photon number increases~decreases!.

In the particular case whereaz!1 and vm!v0,
we can neglect the first term on the right-hand side
Eq. ~53!. In this case, for the initial conditionEin(s)
5E 0

(in) cos(v0s), we find the approximate solution
E(z,h)5E 0

(in) cos@v0*0
hG(x)dx#, which shows frequency

chirping but no compression or stretching.

C. Frequency conversion and pulse compression due to the
time-varying susceptibility

For any fixed value ofz, the functionG has peaks and
dips at equidistant times

hn5~2n11!p/vm ~55!

and

hn21/252np/vm , ~56!

respectively. Forh5hn , we have cos(vmh/2)50 leading to
G5eaz.1. This value indicates a pulse compression in
vicinity of hn , with the compression factoreaz @16#. For h
5hn21/2, we have sin(vmh/2)50 leading toG5e2az,1.
This value indicates a pulse stretching in the vicinity
hn21/2. Compression and stretching, occurring sequentia
at hn and hn21/2, lead to the formation of a train of shor
pulses with separationTm52p/vm ~the Raman period! and
pulse lengthTme2az. The peak frequency and peak amp
tude of the pulses in the train grow witheaz. Such pulse
compression and stretching are due to the modulation of
gain-or-absorption coefficienta cos(vmh), which is the slope
of the time-varying susceptibilityx @see Eq.~54!#. Thus, the
time-varying susceptibility of the medium acts like a temp
ral grating that compresses and decompresses the pro
certain times.

Note that the generation of an almost periodic train
subfemtosecond pulses in multicascade stimulated Ra
scattering has been predicted by Kaplan and Shkolni
@27#. They have shown that Raman-active materials can s
port solitons consisting of a pump laser wave and ma
Raman-coupled components. Due to mode locking all th
soliton components propagate with the same group veloc
have the same amplitude shape, and fully overlap in time
space. The coherent interference of these mode-locked
quency components gives rise to a train of subfemtosec
pulses. We wish to point out that the work@27# implicitly
assumed phase matching among the Raman components
other method for generation of subfemtosecond soliton
based on the idea of electromagnetic bubbles@30#. According
to this method, unipolar, supershort, and intense nonosci
ing solitary pulses of electromagnetic radiation can be g
erated in a gas of two-level or classically nonlinear atoms
half-cycle pulses or short laser pulses. The key differe
between the short-solitary-pulse generation schemes@27,30#
and our scheme is that solitons are stationary waves
propagate over substantial distances with unchanged s
and length, while the train of short pulses formed in o
scheme is nonstationary, results from the beating of a w
3-8
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PULSE COMPRESSION BY PARAMETRIC BEATING . . . PHYSICAL REVIEW A66, 023813 ~2002!
probe with a prepared Raman coherence, and has a com
sion factor increasing with the propagation distance.

To see the relation between the modulation of the susc
tibility and the formation of a train of compressed pulses,
illustrate in Fig. 2 the compression of a probe pulse, cal
lated from Eq.~42! for az50.6 ~a! and 1.4~b!. The carrier
frequency, pulse width, and peak time of the input probe fi
are v055.2vm , T510Tm , and hp50, respectively. As
seen from the plots for the susceptibilityx and the function
G, the modulation ofx generates the comb structure ofG,
with peaks~dips! at the times corresponding to the steep
negative~positive! slopes ofx. This leads to the formation o
a train of compressed pulses and to the generation of
Raman sidebands~see the plots for the fieldE and for the
spectral intensityuEvu2). We observe periodic changes in th
oscillation frequency as the time increases. The spect
consists of sharp Raman sidebands, most of them are o
anti-Stokes region of frequency. When the factoraz is in-
creased, we observe an increase in the height and a dec
in the width of the pulses in the output train. Furthermo
we observe that the number of generated anti-Stokes s
bands increases quickly withaz while the number of Stokes
sidebands does not change substantially.

The periodic change in the optical oscillation frequency
E, observed in Fig. 2, is in agreement with Eq.~47! for

FIG. 2. Compression of a probe pulse, calculated from Eq.~42!
for az50.6 ~a! and 1.4~b!. The carrier frequency, pulse width, an
peak time of the input probe field arev055.2vm , T510Tm , and
hp50, respectively. The plots for the susceptibilityx as a function
of time show only the shape but not the exact magnitude of
function. The plots for the output fieldE and for the spectral inten
sity uEvu2 are normalized to the peak value of the input field.
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vosc(h). In particular, in the vicinity ofhn ~compression
region! or hn21/2 ~stretching region!, the input times is re-
lated to the output timeh as s5hn1eaz(h2hn) or s
5hn21/21e2az(h2hn21/2), respectively. And the fre-
quency of the field increases or decreases, respectively
the factoreaz.

When the durationT of the input fieldEin is long com-
pared to the Raman periodTm , the maximal and minimal
frequencies of the optical oscillations ofE are vmax5eazv0
andvmin5e2azv0, respectively. The oscillations at these fr
quencies generate the anti-Stokes and Stokes Raman
bands with the order numbers

qAS5~eaz21!
v0

vm
~57!

and

qS52~12e2az!
v0

vm
, ~58!

respectively. For increasingaz, the anti-Stokes sideband o
der qAS increases as (eaz21) while the Stokes sideband o
der qS changes slowly and tends to the limiting value
2v0 /vm ~see the plots for the spectral intensity in Fig. 2!.
In the particular case whereaz!1, we have

qAS52qS5
v0

vm
az5gz, ~59!

where

g5
v0

vm
a5

2\

e0c
Nv0d0r0 . ~60!

This result is in agreement with the estimate for the num
of lines generated by two driving fields in a medium wi
limited modulation bandwidth and zero dispersion@13#. It
should be emphasized here that the Raman sideband o
qAS and qS approximate but do not determine precisely t
actual size of the generated Raman spectrum.

When the durationT of the input fieldEin is much longer
than the Raman periodTm , the structure of the generate
pulse train is not sensitive to the timing of the input. How
ever, whenT is comparable to or smaller thanTm , the struc-
ture and number of pulses in the output depend on the r
tive position of the input peak timehp with respect tohn and
hn21/2. In particular, whenT is short compared toTm , the
output may be a single compressed or stretched pulse
deed, in this case, ifhp is in the vicinity ofhn (hn21/2), then
the probe pulse will be compressed~stretched! and the fre-
quency of the optical oscillations will increase~decrease!.

To see the sensitivity of the pulse shaping to the inject
time of the input, we illustrate in Fig. 3 the compression
stretching of a probe pulse that is short compared to
Raman period. The plots are calculated from Eq.~42! for the
injection timehp /Tm50 ~a!, 0.25 ~b!, 0.5 ~c!, and 0.75~d!.
The carrier frequency and pulse width of the input pro
field arev0515.2vm andT50.1Tm , respectively. The me-

is
3-9
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dium length and the prepared Raman coherence are such
az50.8. The dotted lines showG as a function of time. The
plots show that, when the input field is sent in at a tim
corresponding to a dip@Fig. 3~a!# or a peak@Fig. 3~c!# of the
function G, the output is stretched or compressed, the os
lation frequency decreases or increases, and the gene
output spectrum is confined in the region of Stokes or a
Stokes sidebands, respectively. Note that the output spec
is continuous because the input pulse is short and, there
its Fourier-transform limited width covers several Ram
sidebands. When the input is injected at a time between a
and a peak ofG @Figs. 3~b! and 3~d!#, the temporal behavio
of the output exhibits both compression~in the region near to
the peak ofG) and stretching~in the region near to the dip o
G), and the output spectrum is spread in both the Stokes
anti-Stokes regions.

D. Raman spectrum

We calculate the spectrum of the propagating probe fi
in the case where the input is a monochromatic field, giv
by

Ein~s!5E 0
(in) cos~v0s!, ~61!

and the input pulse lengthT is large compared to the Rama
period Tm . Using the formula@31# sinhx/(coshx2cost)51
12(n51

` e2nxcosnt for x.0, we can expand the functio
G(h) into a Fourier series as

G~h!5112(
n51

`

~21!ntanhnS az

2 D cos~nvmh!. ~62!

FIG. 3. Compression or stretching of a probe pulse that is s
compared to the Raman period. The plots are calculated from
~42! for the parameteraz50.8. The carrier frequency and puls
width of the input probe field arev0515.2vm andT50.1Tm , re-
spectively. The injection time ishp /Tm50 ~a!, 0.25 ~b!, 0.5 ~c!,
and 0.75~d!. The plots for the input field, output field, and outp
spectrum are normalized to the peak value of the input field.
dotted lines showG as a function of time. Note that the number
optical oscillations is the same for all time-domain plots.
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When we substitute this expansion into Eq.~45! for the input
time s and integrate the result, we obtain

s5h12(
n51

`
~21!n

nvm
tanhnS az

2 D sin~nvmh!. ~63!

Then, with the use of the generating function@31# ei j sin u

5(k52`
` Jk(j)eiku of the Bessel functionsJk , we can expand

the complex functioneiv0s in the form

eiv0s5eiv0h )
n51

`

(
k52`

`

~21!knJkF 2v0

nvm
tanhnS az

2 D G
3eiknvmh. ~64!

We use Eq.~64! to expand the expression~61! for the input
field Ein(s) into a Fourier series in terms of the output tim
h. We substitute the resultant expansion and the expan
~62! into Eq. ~42! for the output fieldE. Then, the sideband
Eq of the output fieldE5Re(qE qe2 ivqh is found to be

Eq5~21!qE 0
(in) (

l 52`

`

tanhu l uS az

2 D
3 (

$kn%q2 l
)
n51

`

JknF 2v0

nvm
tanhnS az

2 D G . ~65!

Here $kn%q2 l is a set of integerskn satisfying the condition
(n51

` knn5q2 l . Equation~65! shows that, in the case wher
the input pulse lengthT is large compared to the Rama
periodTm , the spectrum of the probe fieldE is discrete and
exhibits oscillations governed by the Bessel functions~see
the plots for the spectral intensity in Fig. 2!. When T is
comparable to or smaller thanTm , the spectrum of the en
velopeE 0

(in) with respect to the output timeh may cover two
or more Raman lines. In this case, the generated Raman
bands may have overlapping profiles, the discrete struc
of the Raman sidebands may be suppressed, and ther
the spectrum ofE may become continuous~see the plots for
the output spectrum in Fig. 3!.

We now show that the Bessel function solution obtain
earlier @13# for the Raman sidebands is a particular case
the general Bessel function series~65!. For this purpose we
consider the situation wherev0>vm and

tanhS az

2 D!1,
v0

vm
tanh2S az

2 D!1. ~66!

Then, using the propertyJk(0)5dk,0 , we find that the domi-
nant term on the right-hand side of Eq.~65! is the term with
l 5k25k35•••50 andk15q. Hence, we obtain

Eq5~21!qE 0
(in)JqF2v0

vm
tanhS az

2 D G . ~67!

Sincev0>vm , the conditions~66! lead to

rt
q.

e
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PULSE COMPRESSION BY PARAMETRIC BEATING . . . PHYSICAL REVIEW A66, 023813 ~2002!
az!Avm

v0
<1, ~68!

that is,

gz!Av0

vm
. ~69!

The condition~68! yieldseaz>1, that is, the pulse compres
sion is not strong. The condition~69! and Eq. ~59! give
qAS52qS!(v0 /vm)1/2, that is, the bandwidth of the gene
ated spectrum is limited by the value (v0 /vm)1/2.

When we use the approximation tanh(az/2)>az/2, Eq.
~67! reduces to the Bessel function solution@13#

Eq5~21!qE 0
(in)Jq~gz!. ~70!

The Fourier synthesis of these Raman sidebands yields
field E5E 0

(in) cos@v0h2gzsin(vmh)#, which is modulated in
frequency but is not compressed.

If we extend the above results for the case where the in
consists of two fields, atv0 and v21, then instead of Eq
~70! we will obtain

Eq5~21!qE 0
(in)Jq~gz!1~21!q11E21

(in)Jq11~gz!. ~71!

This expression is in full agreement with the earlier result
the sideband spectrum generated by two driving fields i
medium with limited modulation bandwidth and zero disp
sion @13#. The corresponding output field isE
5E 0

(in) cos@v0h2gzsin(vmh)#1E21
(in) cos@v21h2gzsin(vmh)#.

Thus, the analytical Bessel function solution@13# is valid
when the condition~69! or, equivalently, the condition~68! is
satisfied. Under these conditions, the bandwidth of the g
erated spectrum is limited@qAS52qS!(v0 /vm)1/2# and the
pulse compression by the time-varying group velocity is
strong (eaz>1).

E. Effect of group-velocity dispersion

In addition to the direct pulse compression by grou
velocity modulation, there is another mechanism: Pu
chirping, followed by GVD, can produce single-cycle puls
@13#. To study the effect of GVD on pulse compression,
perform numerical calculations for a realistic syste
namely, for molecular hydrogen with the fundamental vib
tional transitionQ1(0) at frequencyvm54149.7 cm21 and
with the solid-state densityN52.631022 cm23 @29,32#. We
use this high-density molecular hydrogen as a model of s
hydrogen. The characteristic property of the majority of m
lecular crystals including solid hydrogen is that the m
ecules in these solids retain their identity and that their
trinsic properties are modified only slightly by th
intermolecular interaction@32#. The advantages of solid hy
drogen as a Raman medium are that it has a high num
density, short medium length, small dephasing rate, large
herence length, and negligible phase mismatch@8,33#. In ad-
dition, the experiment with a solid can be performed
vacuum, without the need for intermediate windows, in or
to prevent chirping of the generated subfemtosecond pu
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The use of nanosecond pumping for the narrow vibratio
transition Q1(0) in solid hydrogen allows us to prepare
substantial coherence at low pump intensity, avoiding
counteraction of the Kerr effect and nonlinear dispersi
Furthermore, without the need for external phase compe
tion, the probe pulse can be compressed to a triplet, dou
or even singlet of subfemtosecond pulses@19#. Another ad-
vantage of solid hydrogen as a Raman medium is that,
pump-probe experiment for short-pulse generation, one
achieve beam separation at the output by using a smal
angle between the applied fields@34#, which does not affect
phase matching or beam overlap in the medium, since
crystal is thin.

We use the propagation equations~32! and ~31! to calcu-
late the temporal profiles of the probe field in the cases
zero and nonzero dispersion, respectively, and plot the res
in Figs. 4~a! and 4~b!, respectively. For the input probe fiel
we use a Gaussian pulse with a central wavelength of
nm (v0512 500 cm21), a pulse length of 10 fs, and a pea
time tp50. The medium state is calculated from Eqs.~36!
and~37! for the parametersu520.4 andf050, which cor-
respond to an antiphased state withraa50.85, rbb50.15,
andurabu50.36. The dispersion and coupling coefficients a
calculated from the dipole moments and level energies
parahydrogen @29# and are a052.4231027, b052.63
31027, andd055.5031028, in the SI units. The first-orde
derivatives of the dispersion and coupling coefficients w
respect to the frequency area0853.13310224, b0853.81
310224, andd0851.25310224, in the SI units. The second

FIG. 4. Comparison of the temporal profiles of a probe fie
calculated for the parameters of solid hydrogen with zero~a! and
nonzero~b! dispersion. The medium lengths arez520, 30, 40, and
50 mm ~see the labels in the plots on the right-hand side!. The
medium is prepared in an antiphased state withraa50.85, rbb

50.15, andurabu50.36. For the input field we use a pulse with
central wavelength of 800 nm, a pulse length of 10 fs, and a p
time tp50.
3-11
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order derivatives of the dispersion and coupling coefficie
with respect to the frequency area0951.41310239, b09
51.73310239, and d0955.07310240, in the SI units. We
show the temporal profiles of the field intensity calculat
for the medium lengthsz520, 30, 40, and 50mm ~see the
labels on the right-hand side of the figure!. These lengths
correspond to the valuesaz50.64, 0.95, 1.27, and 1.59, re
spectively, that is, to the compression factorseaz51.89,
2.60, 3.57, and 4.91, respectively.

Comparison between the plots in Figs. 4~a! and 4~b!
shows that the dispersion of the medium does not af
much pulse compression in the cases ofz520, 30, and
40 mm. In the case ofz550 mm, the dispersion improve
pulse compression by a factor of about 3. Additional nume
cal calculations for larger medium lengths show that, wh
the medium length is too large, for example, whenz
575 mm, the dispersion of the medium reduces pulse co
pression.

The optimal condition for pulse compression by GVD h
been derived earlier for the case where the direct comp
sion by group-velocity modulation is negligible@13#. Ac-
cording to them, the optimal compression may be obtai
when the relative group delayDtD corresponding to the gen
erated spectral bandwidthDv5vmax2vmin is equal to the
Raman half-periodTm/2. The reason is the following: if dis
persion is absent, different frequency components w
emerge at different times during a Raman half-period@see
Eq. ~47! for vosc(h) and see also the plots forE in Fig. 2#.
However, when GVD is present, the group delays of
frequency components are different from each other. If
difference of the group delays compensates the differenc
the dispersionless starting times, all the frequency com
nents of the field will emerge at the same time and w
interfere with each other. Then, pulse compression may
cur.

We extend this argument to include the effects of b
susceptibility modulation and GVD. We assume that
length of the input field is long compared to the Ram
period. In this case, the maximal and minimal oscillati
frequencies arevmax5eazv0 andvmin5e2azv0, respectively.
These values give the bandwidthDv52v0sinh(az). The
group-velocity dispersion, measured by the second-order
rivative k9(v) of the propagation constantk(v), is assumed
to be invariant and is estimated byk9(v0). From the coeffi-
cients of the terms in the general frequency-domain pro
gation equation~8! or, similarly, in the time-domain equatio
~20!, we find k9(v0)5(N\/e0c)@(2a081v0a09)raa1(2b08
1v0b09)rbb#. Keeping only the dominant terms yield
k9(v0)5(2N\/e0c)(a08raa1b08rbb), in agreement with the
coefficients of the terms in the simplified propagation eq
tion ~31!. Since the group delay of a frequency componen
determined bytD(v)5z/vg(v)5zk8(v), the relative group
delayDtD is approximated byDtD5k9(v0)Dvz. Hence, it
follows from the conditionDtD5Tm/2 that the medium
length L required for the optimal effect of GVD on puls
compression is determined by

L sinh~aL !5
p

2vmv0k9~v0!
. ~72!
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At this medium length, if the compression due to the destr
tive interference between the generated sidebands is
mum, the compression factorG, defined as the ratio of puls
separation to pulse width, is estimated to be equal to
number of sidebands@13#. We approximate this number b
qtotal5qAS2qS11, where the sideband ordersqAS and qS
are given by Eqs.~57! and~58!, respectively. Then, we hav

G5112~v0 /vm!sinh~aL !. ~73!

This factor corresponds to the optimal compression in
case where dispersion is present. If dispersion was abs
the compression factor would beG05eaL. The improvement
in compression due to GVD is measured by

D5
G

G0
5e2aLF112

v0

vm
sinh~aL !G . ~74!

If the optimal lengthL, which is obtained as the solutio
of Eq. ~72!, is small so thataL!1, we haveG051 andG
5D5112gL. If the relationv0 /vm@1 is well satisfied so
that, despite of the conditionaL!1, the parametergL
5aL(v0 /vm) is not small compared to unity, then the pul
compression due to GVD is substantial. The role of t
modulated susceptibility in this case is limited to the fr
quency modulation and to the determination of the times
which compression or stretching occurs. Note that the c
dition aL!1 leads toG5D!112(v0 /vm), that is, the
compression factorG is limited by the ratiov0 /vm . In other
words, in order to get a high compression factor, we nee
large ratiov0 /vm . The analysis of Ref.@13# corresponds to
this situation.

If the optimal lengthL is large so thataL@1, we find the
approximation D5v0 /vm . Then, in the case wher
v0 /vm@eaL, we haveD@G0, that is, the pulse compressio
caused by GVD is much stronger than that caused by
time-varying susceptibility. However, becauseG0@1 andG
5G0D, both mechanisms are substantial for pulse comp
sion in this case. In the opposite case wherev0 /vm!eaL,
we haveG0@D, that is, the magnitude of the pulse compre
sion factor caused by susceptibility modulation is mu
stronger than the additional factor caused by GVD. This s
ation corresponds to the plots for the case ofz550 mm in
Fig. 4, whereaz51.59, G054.91, andD5v0 /vm53.0.
For the parameters of this figure, the solution of Eq.~72! for
the optimal length isL552 mm.

The effect of GVD on pulse compression is limited by t
ratio v0 /vm . To illustrate a case where the ratiov0 /vm is
large and, consequently, the effect of GVD on pulse co
pression is strong, we plot in Fig. 5 the temporal profiles
a probe pulse with a central input wavelength of 400 nm
the cases of zero~a! and nonzero~b! dispersion. We choose
the medium lengthz535 mm (az51.21), at which the
pulse compression is most profound. All the other parame
are the same as for Fig. 4. As seen, the improvement fact
on the order ofv0 /vm56, larger than the correspondin
dispersionless compression factoreaz53.34. Note that, for
the parameters of Fig. 5, the solution of Eq.~72! for the
optimal length isL527 mm.
3-12
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PULSE COMPRESSION BY PARAMETRIC BEATING . . . PHYSICAL REVIEW A66, 023813 ~2002!
In this paper we consider the beating of a weak pro
pulse with an independently prepared molecular cohere
We neglect the effect of the modulated probe pulse on
molecular states. But we cannot discard the changes~pro-
duced by the molecular modulation! in the strong driving
fields, which prepare the coherence. For a collinear confi
ration, the parameteraz is the same for the probe and th
driving fields, and if the modulation is large enough to pr
duce significant changes in the probe pulse, it also produ
a large effect on the driving fields. Equation~38! for the
phase shift per length of the prepared coherencerab is an
important assumption. It is not automatically fulfilled eve
when dispersion is absent. This assumption says that e
the driving fields in a collinear configuration are not affect
significantly ~az is smaller or comparable to unity! or the
effect is compensated by a noncollinear beam propaga
geometry.

There are several particular cases where self-consis
analytical solutions are possible. In the case of small dis
sion and limited modulation bandwidth (az!1), the carrier
frequency is modulated but the wave-form envelope is
changed. As a result, the driving force on molecules~i.e., the
two-photon Rabi frequency! remains unaffected by the side
band generation@13#. Therefore, the Bessel function solutio
of Ref. @13# is self-consistent. Note that in this case the nu
ber of generated sidebands (;2gz) can still be very large if
v0@vm . Another example of self-consistent approaches
the interaction of a light field with a molecular medium is t
work on resonant nonadiabatic Raman scattering, which
dicts 2p soliton formation@14,27#.

The analytical solution derived in this paper is not se
consistent, and can be used only as a tool for qualita
studies. Exact numerical simulations are required for qua
tative treatments. We present in Fig. 6 the results of the
numerical calculations for the driving fields, the mediu
state, and the probe field. We drive a solid hydrogen med
with a length of 50mm by two Gaussian-shape pulse las
fields at frequencies of 28 169 cm21 ~355 nm in wave-

FIG. 5. Same as Fig. 4 except that for the calculations we
the input wavelength of 400 nm and the medium length of 35mm.
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length! and 24 019 cm21 ~416 nm in wavelength!. We
choose a two-photon detuningd/2p5250 MHz, at which
the conditions for the adiabatic coherence preparation
satisfied and a substantial amount of molecular cohere
can be produced@29#. The two driving fields have the sam
peak intensity of 109 W/cm2, the same peak timetp50, and
the same pulse length of 10 ns. The population and co
ence decay rates of the Raman transition areg1525
3103 s21 andg25107 s21, respectively. The medium stat
and the sidebands of the driving fields are calculated by s
ing the set of the density-matrix equations~5! and the propa-
gation equation~17!. We use a probe field with an inpu
pulse length of 10 fs, an input peak timetp50, and an input
central wavelength of 800 nm to beat with the molecu
coherence prepared by the driving fields. The plots for
probe field in Fig. 6 show that a broad spectrum and a s
stantial compression of the probe pulse are produced.

IV. CONCLUSIONS

We have studied the propagation of the field in a far-o
resonance Raman medium. We have derived the propaga
equations for the field in the frequency and time doma
without the use of the slowly varying envelope approxim

e

FIG. 6. Full numerical calculations for the normalized integrat
spectrum of the sidebands of the driving fields, for the medi
coherence prepared at the peak timetp50, for the normalized
probe output spectrum, and for the normalized probe output in
sity. We prepare a Raman coherence in a solid hydrogen med
with a length of 50mm by two Gaussian-shape pulse laser fie
with wavelengths of 355 and 416 nm. The two driving fields ha
the same peak intensity of 109 W/cm2, the same peak timetp50,
and the same pulse length of 10 ns. The two-photon detunin
d/2p5250 MHz. The prepared coherence modulates the
quency and compresses the length of the probe field with an in
pulse length of 10 fs, an input peak timetp50, and an input centra
wavelength of 800 nm.
3-13
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FAM LE KIEN, K. HAKUTA, AND A. V. SOKOLOV PHYSICAL REVIEW A 66, 023813 ~2002!
tion in time. We have analyzed various aspects of the co
pression of a short probe pulse beating with a prepared
man coherence. In the framework of a solvable model w
zero dispersion, we have derived analytical expressions
the probe field, the oscillation frequency, and the Ram
spectrum. We have shown that the modulated susceptib
determines the basic features and characteristics of the p
compression in the Raman medium, such as the time
which compression or stretching occurs, the periodic cha
in the oscillation frequency, the Bessel function nature of
Raman spectrum, and the asymmetric increase of the n
bers of Stokes and anti-Stokes sidebands. We have de
the conservation relations, such as the conservation of
pulse area, the conservation of the photon number, the
servation of the number of oscillations, and the conserva
of the product of the pulse length and the mean freque
We have performed numerical calculations using the par
eters of solid hydrogen, and have found that the dispersio
the medium improves the pulse compression. We have d
onstrated numerically the situations, where one of the
compression mechanisms, that is, the time-varying susc
bility and the GVD, is dominant compared to the other in t
determination of the compression factor. The criteria for
two regimes have been derived.

In this paper we have considered excitation of a sin
Raman transition, such that the resultant susceptibility mo
lation is purely sinusoidal. Our formalism can be generaliz
for the case of an arbitrary number of molecular states an
arbitrarily complex modulation, with extra terms include
into the propagation equations. Indeed, we can consider
complex molecular motion as a superposition of sinuso
Because the interaction with the weak probe pulse is pu
linear, contributions from different Raman transitions to t
susceptibility will simply add up. For example, our forma
ism can be applied to describe frequency modulation
pulse compression by rotational molecular wave pack
@17,18#. The conservation relations derived in this paper
the excitation of a single Raman transition will also be va
for more complex Raman excitations. The analysis w
prove useful for generation of single subfemtosecond
subcycle pulses.
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APPENDIX A: EVOLUTION OF THE MEDIUM STATE

We callCj , Ca , andCb the probability amplitudes of the
statesj, a, andb, respectively, in the interaction picture. W
introduce the transformation

cj5Cje
2 iv jat, ca5Ca , cb5Cbe2 idt, ~A1!

where d is the two-photon detuning andv ik5v i2vk the
energy difference of levelsi and k. It follows from the
Hamiltonian~1! and Eqs.~2! and~3! that the time evolution
of the medium state is governed by the equations
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]cj

]t
52 iv jacj1

i

\
E~m jaca1m jbcbe2 ivmt!, ~A2!

]ca

]t
5

i

\ (
j

Ema jcj , ~A3!

]cb

]t
52 idcb1

i

\ (
j

Emb jcje
ivmt. ~A4!

Herevm5vba2d is the modulation frequency.
We assume that the one-photon detuningsv ja, jb2v0 are

large compared to the Rabi frequenciesm ja, jbE0 as well as to
the two-photon detuningd. Here,v0 andE0 are the charac-
teristic values of the input frequency and electric field,
spectively. Due to this far-off-resonance condition, the m
dium state changes slowly in time.

We expresscj as

cj5E
2`

`

dve2 ivt~cjav1e2 ivmtcjbv!, ~A5!

and assume thatcjav andcjbveidt as well asca andcbeidt

are slowly varying functions oft. We substitute Eq.~A5!
into Eq. ~A2!, and set the time derivatives ofcjav andcjbv

equal to zero and2 idcjbv , respectively. Then, we find

cjav5
m jaEvca

2\~v ja2v!
,

cjbv5
m jbEvcb

2\~v jb2v!
. ~A6!

When Eqs.~A6! are introduced into Eq.~A5!, we obtain

cj5
1

2\E2`

`

dve2 ivtS m jaca

v ja2v
1e2 ivmt

m jbcb

v jb2v DEv .

~A7!

Equation ~A7! representscj in terms of ca and cb and is
justifiable insofar as the medium is far-off resonance with
field.

We use Eq.~A7! to eliminatecj from Eqs.~A3! and~A4!.
Then, we obtain@13#

]

]t Fca

cb
G5 i FVaa Vab

Vba Vbb2dGFca

cb
G , ~A8!

where the Stark shiftsVaa and Vbb and the complex two-
photon Rabi frequenciesVab andVba are given by Eqs.~6!.

To take into account the population decay at a rateg1 and
the coherence decay at a rateg2, we use the density matrix
of the medium state, which is defined byr ik5cick* . When
we use Eq.~A8! and add phenomenological decay terms,
obtain the density-matrix equations~5!.
3-14
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APPENDIX B: PROPAGATION OF THE FIELD

The propagation of the field is governed by the wa
equation

S ]2

]z2
2

1

c2

]2

]t2D E5m0

]2

]t2
P, ~B1!

where the polarization densityP is defined by

P5N(
j

^ma jsa j1mb jsb j1H.c.&. ~B2!

HereN is the molecular density. We use the local coordina
z andt5t2z/c. Equation~B1! then takes the form

S ]2

]z2
2

2

c

]2

]t]zD E5
1

e0c2

]2

]t2
P. ~B3!

We make the slowly varying envelope approximation for t
spatial dependence, that is, we assume that the variationE
with z at constantt occurs only over distances much larg
than an optical wavelength. In this case, the second-o
partial derivative inz can be neglected and, therefore, E
~B3! reduces to

]E

]z
52

1

2e0c

]P

]t
. ~B4!

We express the fieldE and the polarizationP as Fourier
integrals

E5
1

2E2`

`

e2 ivtEvdv ~B5!
pt
,

, S

.

h
nc
t,

n,
n-
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P5
1

2E2`

`

e2 ivtPvdv. ~B6!

Then, Eq.~B4! yields

]Ev

]z
5

iv

2e0c
Pv . ~B7!

We now express the polarization densityP, defined by Eq.
~B2!, in terms of the probability amplitudesci , defined by
Eq. ~A1!. Then, we have

P5N(
j

~ma jcjca* 1mb jcjcb* eivmt1c.c.!. ~B8!

When we substitute Eq.~A7! into Eq.~B8! and use the spec
tral expansion~B6!, we find

Pv52N\~avraaEv1bvrbbEv1dv2vm
rbaEv2vm

1dvrabEv1vm
!, ~B9!

where the coefficientsav , bv , and dv are given by Eqs.
~10!. In deriving the above expression we have used the
sumptions that the change in the medium state is slow
the two-photon detuning is small compared to the o
photon detunings. Finally, we insert Eq.~B9! into Eq. ~B7!.
Then, we obtain the frequency-domain propagation equa
~8!.
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