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Pulse compression by parametric beating with a prepared Raman coherence
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We present a general analysis for the interaction of a probe-laser radiation with a coherently prepared
molecular Raman medium. We describe a general formalism that includes dispersive effects, such as group
velocity and group-velocity dispersid@®VD). When dispersion is negligible, the analysis is especially simple
and insightful. We show that molecular oscillations result in a modulated instantaneous susceptibility of the
medium. The effect of the time-varying susceptibility on a probe-laser pulse is twofold: the output frequency
becomes modulated because of the time-varying phase velocity, and the pulse shape becomes deformed be-
cause of the time-varying group velocity. We identify two mechanisms for pulse compregbidtiequency
chirping with subsequent pulse compression by normal linear GMi3sibly in the same mediynand (2)
Compression due to the time-varying group velocity. We analyze various aspects of pulse compression in the
coherent Raman medium and derive conservation relations for this process. When we consider a probe-laser
pulse that is much shorter than the molecular oscillation period, we observe frequency chirping, compression,
or stretching of this pulse, depending on its relative timing with respect to the molecular oscillations. Based on
our analysis, we propose a method for selective compression or frequency conversion of single ultrashort
pulses.
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[. INTRODUCTION complimentary to each other, as they provide ultrashort
pulses with very different characteristics. High-order har-
Generation of ultrashort pulses is a rapidly developingmonic generation is a unigue source of x-ray pulses, but by
and highly motivated field of optickl]. Until recently the their very nature these pulses are difficult to control because
shortest optical pulses were produced by solid-state Ti:sapf intrinsic problems of x-ray optics; besides the conversion
phire laser systems. Pulses as short as 4(fués under two  efficiency into these pulses is very sméypically 10 °)
optical cycleg were obtained by expanding the spectrum of a[10]. On the other hand, the adiabatic Raman technique al-
mode-locked laser by self-phase modulation in an opticalows 100% conversiofll] and produces a well-controlled
waveguide, and then compensating for group-velocity disspectrum centered in the visible region. A disadvantage of
persion by diffraction grating and prism paf&]. The devel- the adiabatic technique is that it leads to trains of many
opment of solid-state femtosecond laser technology allowegulses. In the original configuratiofi2,13 this technique
time-resolved studies of chemical reactions and moleculaproduces trains of pulses spaced by the molecular oscillation
dynamics[3]. Generation of even shorter pulses would ex-period, which is as short as 11 fs for molecular vibrations in
tend the horizon of ultrafast measurements to the time scalgeuterium.
of electronic motior{4], but the progress seemed to be stuck Several ideas have been put forward for generation of
at the few-femtosecond barrier for many years. single subfemtosecond pulses by the Raman techniques.
The year 2001 saw a breakthrough in ultrashort pulse gergarly work on the dynamics of a single intense laser pulse in
eration in several directions simultaneously. Workers in thea Raman-active medium included predictions ef Zoliton
field of high-order harmonic generation have measured sulfermation and subfemtosecond pulse compresEidih. Re-
femtosecond pulses in the x-ray spectral redibh Impul-  cent experiments have shown that a weak probe pulse can be
sive Raman scattering has produced pulses as short as 3.8ctsmpressed by molecular oscillations that are excited impul-
in the near ultraviolef6]. The adiabatic Raman technique sively by a strong pump puld6,15,16. Kaloshaet al. have
has been used to demonstrate collinear generation of a widsiggested that molecular wave-packet revivals can produce
spectrum of mutually coherent sidebaridpanning infrared, frequency chirp, which in turn would allow femtosecond
visible, and UV regions[7,8] that can synthesize pulses as pulse compression by normal group-velocity dispersion
short as one optical oscillation<2 fs) [9], and even sub- (GVD) in a thin output window[17]. Bartels et al. have
cycle pulses. These different techniques can be considered demonstrated this possibility experimentalli8]. A disad-
vantage of the impulsive excitation method compared to the
adiabatic technique is that the excitation level and the gen-
*On leave from Department of Physics, University of Hanoi, Ha-erated Raman coherence are several orders of magnitude
noi, Vietnam. Also at Institute of Physics, National Center for Natu-smaller. Therefore, the impulsive excitation method requires
ral Sciences and Technology, Hanoi, Vietnam. strong pump intensity, for which nonlinear response of the
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medium becomes substantial and ultimately limits the level

of excitation. There has been a propdd#] to combine the J
adiabatic technique with the impulsive technique. According
to this method, a short probe pulse can be compressed into a
singlet, doublet, or triplet of subfemtosecond pulses by beat-
ing with an adiabatically prepared Raman coherence. This
method has the advantage of the adiabatic pumping in pro-
ducing a large Raman coherence and the advantage of the B0y, o
impulsive excitation in reducing the number of pulses per

train.

In this paper we again consider the combination of the H I S
adiabatic and impulsive techniques. We perform an adiabatic
Raman excitation by two narrow-linewidth laser fields,
slightly detuned from the Raman resonance. We then apply a
single ultrashort pulse. We show that, when the pulse is short a
compared to the molecular half-period, it can be stretched,
compressed, or frequency converted. In essence, coherent FIG. 1. Diagram of energy Iev_els and_transitions for the analy-
molecular motion results in a time-varying instantaneousSs- Levelsa andb are coupled with levels by the spectral com-
susceptibility, which in turn causes variations in phase an@@néntsw andw—wy, of the fields. The transition between levels
group velocities and produces a time-varying gain Coeffi-andb is electric dipole forbidden. The transitiops-a and j«b
cient. The use of the terminology such as the time-varyin
susceptibility can be justified when dispersion is small an
the electronic response can be treated as instantaf20Lis ) o )
Time-varying phase velocity leads to frequency modulationVill depend on the timing between the pulse and the inde-
and results in an up- or down-conversion of the probe-lase!?e”dently prepared molecular motion. In principle, this tim-
pulse, or in a pulse chirp, depending on the pulse timing witi"d can be controlled by phase locking among lasers used to
respect to the molecular motion. Chirped pulses are then eRréPare and to probe the molecular coherence. In practice,
ther stretched or compressed, depending on the sign of tH8iS would be a very challenging experimental task. Alterna-
chirp, by normal GVD, possibly in the same medifir2]. tlvel_y one can assume random shot-to-shot timing, and use a
The second mechanism for pulse compression or stretchingPrting algorithm(based on spectral analysfer the output
is the direct action of the time-varying group velocity PulSe selection. _ _

[19,16. These mechanisms for frequency modulation and Before we proceed, we note_that there is a large h|st9ry of
pulse compression are reminiscent of self-phase modulatiof€as for short-pulse manipulation by the Raman techniques.
[21], self-modulation of plasma wake field&2], and self- Ru.hmanet al. have used impulsive stlmglatgd Ra}man sgat-
steepening23], which are produced by self-induced nonlin- terlng_to obse_rve coherent molt_acular vibrations in the tlm_e
ear susceptibility. Similar to self-steepenif2g], our second domain, and discussed mechanisms for frequency conversion
mechanism comes into play when the time scale for signifi[25]- Imasaka and co-workers have observed generation of a

cant variations of susceptibility becomes comparable to th&road rotational Raman spectrum in molecular hydrogen,
duration of an optical cycle. and discussed the possibilities for phase locking of this spec-

It has been shown earligl2,13 that, in a general case, trum [26]. Kaplan and Shkolnikov have predicted the exis-
with all dispersive effects included, the number of photons inf€nce of 2r Raman solitons with a phase-locked spectrum
the laser field interacting with a Raman system, is conservedhat Fourier transforms into a train of subfemtosecond pulses
In this paper we obtain additional conservation relations fo 271 In other related work Kocharqukaﬁi al. havg sug-
the limit of negligible dispersion. We derive the conservationdested using a Raman medium inside a laser cavity so as to
of the area of a laser pulse interacting with coherently preProvide phase modulation to cause mode locK2g. _
pared molecular oscillatiori®4]. This leads to a possibility The paper is organized as follows. In Sec. Il we describe
of increased energy accompanying frequency up-conversioff’® model and present the basic equations. In Sec. Ill we
In this situation, the energy added to the field is extractedn@lyze the compression of a probe field due to the beating
from the internal energy of the medium. We also find that, agVith @ prepared Raman coherence. Finally, Sec. IV contains
the pulse length, frequency, amplitude, and energy changePnclusions.
during the propagation in the medium, in addition to the
phqton nur_nbe_r and pulse area conservations, the number of IIl. MODEL AND BASIC EQUATIONS
optical oscillations as well as the product of the pulse length
and the mean frequency are conserved. Even though these We consider the interaction of the electromagnetic field
conservation relations are derived in the idealized case, theyith a molecular medium whose levels and transitions are
are useful for the general analysis of the problem. Based oshown schematically in Fig. 1. Levelsvith energiesw; are
this analysis, we propose a method for generation of singleoupled to leveh with energyw, and levelb with energywy,
subfemtosecond pulses. We suggest applying a pulse thatlxy electric dipole transitions. The transition between legels
short compared to the molecular half-period. Then the outpuand b is electric dipole forbidden. We allow an arbitrary

re far off one-photon resonance, and the transitienb may be
ff two-photon resonance by a detuniAg
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number of levelg and analyze the system by including all
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Here the Stark shift€),, and Q, and the complex two-

possible components of the Raman spectrum. We assunphoton Rabi frequencieQ,, and(},, are given by

that the transitiong«a and j«<b are far off one-photon
resonance, the transitiam—b may be off two-photon reso-
nance by a detuning, the field is linearly polarized, and the
propagation is one-dimensional, along thdirection.

In the dipole approximation, the Hamiltonian of the inter-
action of the field with a molecule is given by

H=Ho+Hiy, ()

where
Hozﬁwaoaa+ﬁwb0bb+z hwjoj; 2)
]
and

Hine= —; E(KjaTjat KajTajt KipTjnt pjob)). (3)

Here oy =|i)(k| are the operators for energy-level popula-
tions (i=Kk) and transition amplitudes €Kk), E is the elec-

1 © © ) ,
Qaa=8—hf_wJ_wdwdw’ag‘g)Esz,e_'(‘”_w )7
1 0 o ) ,
bezﬁfﬂo'ﬁwdwdw’af)“t’,)EwE:,ef'(’”*“’ )T,
1 0 o0 ) ,
Qab:_f f dwdw’a(a“l;)EwE*,+ e Hw-el)r
8h —ow J —w @ “m

1 o o0 o)
Onrgy || oot el e
(6)

wherew,,= wp,— § is the modulation frequency. The coeffi-
cientSaiﬂf’) are the Raman polarizability matrix and are given

by

tric field, and uj, and u;, are the dipole moments of the > 2
transitionsj«a and j« b, respectively. For simplicity, we al)=— > &,
assume thati,; and uy,; are real parameters. h T wpTo
We introduce the notatiomw;,= w;— wy for the energy

difference between leveisand k. We assume that the one- 2 u?

i _ ; (w) _ ib
photon detuning®;, ;, — o are large compared to the Rabi app =7 E . ,
frequenciesu;, j,Eo as well as to the two-photon detuning I @™ @
S. Here,wq andEq are the characteristic values of the input
frequency and input electric field, respectively. In this case, (@) 2 Majkip
the medium can be considered as an effective two-level sys- @Xab ~ 7 2 o'
tem, with two levelsa and b, evolving slowly in time as be
compared to the field. To consider the situation where the
field may be a short pulse, we exprésas a Fourier integral agw>:3 2 MbjMija )

8 h T wja—o’

(4)

1=

L[ e
- In Egs.(5) we have added the phenomenological terms that

, N ) , describe the population decay at a rateand the coherence

with E_,=EJ , that is, we take into account all spectral decay at a rates,.

components of the field. Note that Eqs(5) for the medium state have been derived

previously for the case of discrete Raman sidebgf@ds29.

In the present case, the field spectrum is continuous and the

We use the local coordinatesand r=t— z/c. As shown Slowly varying envelope approximation for the time depen-

in Appendix A, under the far-off-resonance condition thedence of the field is not used. Therefore, the Stark shifts and

density matrix of the medium state is governed by the equat’® two-photon Rabi frequencies are given in the form of
integrals over the continuous variahle

A. Evolution of the medium state

tions
IPaa . . . . . .
o =i (Qappoa— Qoapan) + Y1Pbb B. Propagation equation for the field in the frequency domain
We study the propagation of the field in the situation
J where the change of the medium state is negligible. We make
gbb: —i1(QapPra— LpaPab) — Y1Pbb the slowly varying e_nvelope approximatiqn fqr the s_patial
T dependence of the fielghe paraxial approximationthat is,
we assume that the variation Bfwith z at constant occurs
IPap . : . only over distances much larger than an optical wavelength.
gr ~ (Qaa= Qoo 0Fi72)paptiQap(pop~Paa)- In this case, the propagation of the field is, as shown in

(5)  Appendix B, governed by the equatipb3,29

023813-3



FAM LE KIEN, K. HAKUTA, AND A. V. SOKOLOV PHYSICAL REVIEW A 66, 023813(2002

JE,, C. Propagation equation for the Raman sidebands

0y i(@ypaat BuwPob)Eou™t ingbawawm

We consider the case where the spectrum of the field is
) concentrated in narrow vicinities of the sideband frequencies
+ 'thabEw+wm- (8) 0= wot quwn,. Hereq is an integer number and,>0. We
represent the electric field in the form
The propagation coefficienta, and 8, and the coupling

" . 1 _ _
coefficientsg,, andh,, are given by E— 5 ; (Eqe 0™+ EX elon"), (12)
N#A
awzg‘”aw* whereE, is the envelope of thgth sideband and is defined
by
N7 Wyt o2
szgwbw, Eq:f q i Ewefi(a)fa)q)‘rdw' (13)
wq—wm
_ﬁ d For the sideband with the lowest frequency, the lower limit
g“’_e ¢ @l ap of the integral on the right-hand side of Ed.3) should be
0
replaced by zero.
N% For convenience we use the notation
hw:E_dew! (9)
0

df(w)

, . d%f(w)
fqu(wq), fqzw P fr=

o 9 ge?

_ , (19
whereN is the molecular density. Here we have introduced

the notation

w

wheref(w) can be any of the coefficients,, 8,, 9., h,,,
a,, b,, andd,. We expand the coefficientg,, B, 9.,
andh,, in the vicinity of w, to the second order ab— v,
with the help of the Taylor formula

1 -
.=l + o),

l —w
b= Lo+ e

1
f(w)=fq+fc'](a)—a)q)+ Efg(w—wq)z. (15
d :i[a(wua(m)] (10) We submit these_ expansions into the .frequer_lcy-domain
@ 4ptab ba propagation equatiof8) and perform the integration from
wq— w2 10 wyt+w,/2. Then, we obtain the following
or, equivalently, propagation equation for the sideband field envelopes:
1 2 2 d q .
a =—— 2 Mia + Hia Ezl[(aqpaadl' ,qubb)Eq‘ngpbaqul'{'hqpaqu+l]
C 2 T \oj—wa—w  wj-w;to)’
’ ’ aEq ’ aEq_l
1 s Iu’sz - (aqpaa+ﬂqpbb)?+gqpba7
bw:%; (a)]—wb_w wj—a)b-l—w JE . 2
’ q+1 ! " ” d Eq
+hqpabT - 2 (aqpaa+ qubb) 972
1 MajMib MajMlib
dw_%z (a)]—wb 0 oj-0;to (D 2Eq_1 Y &qu+1

(16)

" J q
+gqpba?+ aPab™ 5

Equation(8) is written in the frequency domain. When the
continuous frequency is replaced by discrete Raman side-  In Eqg. (16), the terms proportional to the sideband ampli-
bandswg, Eg. (8) reduces to the propagation equation oftudes describe the linear propagation of the individual side-
Refs. [13,29. Equation(8) includes the dispersion in the bands and the Raman coupling between them. The terms
vicinity of each individual sideband as well as the dispersioncontaining the first-order time derivatives account for the
from a sideband to another sideband in a multisideband speeffect of the group velocities of the individual sidebands. The
trum. Note that, in the case where the medium state varieerms containing the second-order time derivatives account
slowly in time, Eq.(8) can be used in conjunction with Egs. for the effect of the group-velocity dispersion of the indi-
(5), but the frequency componenE, becomes time- vidual sidebands. Thus, Eq16) is beyond the standard
dependent and, therefore, corresponds to a transient, slowfowly varying envelope approximation, which neglects the
varying spectrum of the field. time derivatives of the sideband amplitudes. When we apply
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this approximation, the sideband propagation equatidi

) _ A= aj— wgay,
reduces to the slowly varying envelope equation

JEq B1=Bo—woBo.
oz =i[( AgPaa™t qubb) Eq+ gqpbaqul'*' hqpaqu+ 1l K,= gi_ wog{ ’
17)
which was studied in Ref$13,29. Qu=h"y = woh®y, 3
and
D. Proy.)agation equa'.[ion. for tr?e field in the time domain Aym a'é,
We write the electric fielE in the form
1 B,= ﬂ% )
E=§(£+£‘*), (18) =g
where the positive-frequency field componéns defined by Q,=h",. (24)
o N T CC R R bRl il

ing the first-order time derivative describes the effect of the
We assume that the propagation coefficiemfsand 8, and  time-varying group velocity. The term containing the second-
the coupling coefficientg, andh, vary slowly withw. We  order time derivative accounts for the effect of the time-
use Eq.(15) to expanda, and 8, around the characteristic varying group-velocity dispersion. Note that the time-domain
input frequencyw,. Similarly, we expandy,, andh, around propagation equatio(R0) for the field amplitudeS can also
the anti-Stokes frequenay, and the Stokes frequeney_,,  be derived from Eq(16) as well as Eq(17) for the field
respectively. We submit these expansions into the frequencysidebandsE, if we expand the propagation coefficientg
domain propagation equatid8) and perform the integration and g, aroundw, and expand the coupling coefficierdg
from O to +o. Then, with the assumption th&,=0 for andhy aroundw; andw 4, respectively.
|o|<wn,, we obtain We now use Eqg9) to rewrite Eqs(22), (23), and(24) in

terms of the dispersion coefficiendg andby and the cou-

i€ o€ pling coefficientsdy andd _;. The results are
— =i[Apaat Bpppt F(7)]E=[A1paat Bipppt Fal T)]E_

az A= N# 3.7
i Pz = 2ec V0%
~ 5[A2paat Boppyt Fa(m) ], (20)
aT
B Nﬁ 3
= _a) y
where 2¢pc 070
F(7)=Kppae ™ '“m+ Qpape' ", N7 . oh(wotop)
K= s wndo— wowndy+ —— .
—iwnT iwmT 0
F1(7)=K1ppa€ '“""+ Q1pap€' ™,
: . N7 , wé(wo—wm) ,
Fa(7)=Koppa€ ' “m"+ Qopap€' . (21) QZ% —opd_1+ wowmd—ﬁ‘f —1ls
Here we have introduced the notation (29
1 A= Nﬁ 2 2.1
A= ay— wga)+ Ew%ag, l_eoc(ao ®ofp ™ @ofo),
1 B NA (b by— wib}
’ ” 1=~ ~Bp= wobg™ wobg),
B=Bo— woBo+ 5“’(2)30: €oC
ﬁ ! n
Lo Ky=—~[do= (0o~ wm)do— wo(wot+ wm)do],
K:gl_w091+§wog1, 0
Nﬁ li n
1, lez[dfl_(a’o"i'wm)dfl_wO(wO_wm)dfl],
Q:h,l_ﬂ)ohll+_ﬂ)0hzl, (22) 0

2 (26)
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and d€ Nh

— =
0z GOC

1
3/ A " _
5 wp(@gPaat Doppp) T @mdo(ppa

|(L)mT

N7
A2=E—C(2aé+woag , . N# i
0 —Pab€ ™) S—Q(aopaa"' Doppbt doppa ™

_ ’ " i W 22 . N7 ’ ’ ’ —iwnT

B2—5(21304'“’0130 , +dopan€' ™ )a—T—l g(aopaa+ Popppt doppa ™
9%

Nﬁ ’ ”n +dl elme . 31

Ko= g1205+ (ot wm)dg), oPare ™). (31)

N7 Similar to the general time-domain propagation equation
Q,=—[2d" ;+(wo— wy)d” ,]. (27 (20), the simplified off-resonant propagation equati@1i)
€oC also includes the effect of the dispersion on the scale of
multiple sidebands. The coefficient of the term containing
Since the medium is far from resonance with the field, wedescribes the phase shift per length and the amplification or

2.1

may assume theaq>wqac’]>wqaq, bq>wqba>w§bg, and  absorption rate. The coefficients of the terms containing

dg> wqdg> wédg. With this assumption, we can keep only 9&/dr and 3£/ 972 characterize the time-varying group ve-
the dominant terms on the right-hand side of E@$), (26), locity and the time-varying group-velocity dispersion, re-
and(27). Then, we obtain spectively. All these coefficients are modulated by the Ra-
man coherence, that is, by the molecular oscillations.
_ N7 3.1
B 2e0C @08 11l. MODULATION AND COMPRESSION OF A PROBE
FIELD BEATING WITH A PREPARED RAMAN
COHERENCE
N7 3
B= 2€0C ®olo, A. Model and propagation equation in the case of zero
dispersion
N7 We assume that the Raman coherepggis established
K==Q=_~ondo, (28)  adiabatically by using two long off-resonant driving fields
0 [13,29. After the Raman coherence is prepared, we send a
weak probe fieldE into the medium. When all dispersion
A —&a effects, except for the group velocity and the group-velocity
1 e 70 dispersion, are negligible, the propagation of the probe field
is governed by Eq(20).
N We consider the case where the dispersion of the medium
B;=——bh,, is negligible, that isag=ag, bq=bg, dq=dy, and, conse-
€oC quently, ag=bg=dy=ag=bg=d;=0. In this case, Egs.
N#A :_Q:(Nﬁlfoc)wmdo, K]_:Ql:(Nﬁ/EoC)do, Al
Ki= 12%‘3‘0’ (29) =(N#/eqc)agy, and B;=(N#A/eqc)by. Hence, Eq.(20) for
the positive-frequency componeétleads to the following
and equation for the probe fielt [16,19:
9E N7 4 s
, 2 ec —-(Aopaat Popbb+doppa€ ™
AZZZRaO, .
° +dopape'“mE. (32
Bzzzﬁ by When we compare Eq32) with the reduced wave equation
oC
JE 1 0P 33
N# Fr P
Ko=Qp=2——dj. (30) Jz 2eqC IT
60C
we find that the instantaneous susceptibikity P/ eyE of the
Hence, Eq(20) reduces to polarizationP to the probe fielcE is given by
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2N7 » A Here we have introduced the coupling parameter
X= E—O(aopaa+ boppnt dophae ™ ™+ dopape' ™). -
(34) a=—Nwndgpo, (41
GOC

Note that this susceptibility is modulated in time by the pre- ) ) _
pared Raman coherenpg,, at the Raman frequenay,y,. wherepo=|sin 6cosé|=|py|. The solution of Eq(40) is[16]
Using the definition(34) for the time-varying instanta- _
neous susceptibility, we can rewrite the propagation equa- E(z,7)=Ein(s)G(7), (42
whereE;,(s)=E(z=0,s) is the input field, the input timsis

tion (32) in the form
1 ax _ 1 OE - determined from the output timg by the equation
9z  2cdr  2ct ot (35 tan wy,s/2) =e~ ““tan wy,n/2), (43)

The coefficient (1/2)dx/dr of the first term on the right- and the functiorG( ) = sin(wyS)/sin(wy7) is given by[19]
hand side is proportional to the slope of the time-varying
susceptibility y. This coefficient determines gain or absorp- 1

tion, depending on its sign. Meanwhile, the coefficigic G(m)= om7 ony (44)
of the second term on the right-hand side is the reciprocal of e’ COSZTﬂLe* 2 sir? 2
the group velocity in the local time. Because of the absence
of dispersion, the group velocity is equal to the phase veloc- |t follows from Eq. (43) that
ity.
In the coherence preparation step, with the assumptions of ds/dn=G(7). (45

large two-photon detuning, limited bandwidth, and negligible _ _ _ _ _
dispersion, the medium follows an adiabatic eigenstate wityvhen the output timey is close to a given time; , we find

[13,29 from Eq. (45) that the input times can be approximated as
Paa=C0S 0, ppp=Sirt 0, (36) s(n)=s(7)+G(n)(n—n). (46)
and Hence, for the input frequency,, the instantaneous fre-
quencyw,{ 7;) of the optical oscillations oE in the vicin-
Pab= ei(d’osz)sin 0 cosé. (37) |ty of the given time’)?i is G(??i)wo, that is,
Here ¢, is the relative phase between the driving fields at the _ _ Wy
input, « is the phase shift per length of the prepared Raman ~ @osd 7)=G(n)wo= omn omn’
coherence and is given by e’ co§T+e*“Z sir? 5
N (47)
o gwm(aopaﬁ Popo), 38) Equation (47) shows that the instantaneous oscillation fre-

_ _ _ guencyw,sd 7) iIs modulated in time.
and ¢ is determined by the equation According to Eqs(42) and(45), the height and duration
of optical oscillations in the probe field are changed by the

i reciprocal factors E(z,7)/Ei,(s)=G(5) and dy/ds
tan 26= (ext)_ ) (ext) sgn(é), (39 =1/G(#), respectively. A consequence of these equations is
S+Q507— Qg ‘
the relation
where|6|<#/2. In Eq.(39), Q&Y and (&Y are the Stark - 5
shifts anng‘i,X‘) is the two-photon Rabi frequency, produced J E(z,»)dnp= L Ein(s)ds, (48
71 1

by the driving fields. We assume that the probe field is weak

and short as compared to the driving fields so that the M&yhich means the conservation of the pulse area in any given
dium state is mainly determined by the driving fields and is b y9

) ) time interval (1, 7,).
not substantially affected by the probe field. Using Eqs.(42), (45), and(47), we can show that

B. Analytical solution and conservation relations ceg (72 E%(z,7) Ceg SZEﬁl(s)
We now use the reduced local timg=7—2/v+ ¢/ wy,, 2 )y hwosd ) =73 s, hag ds. 49
wherev = w,,/k and = ¢+ (7w/2)sgn(s). Then, the propa-
gation equatior{32) simplifies to The expression on the right-hand side of the above equation
is the number of photons in the input field, with the fre-
E: @ isin( )E (40) quencywg. The expression on the left-hand side is the num-
Jz wm I Omi)E ber of photons in the output field, with the instantaneous
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frequencyw,sd 7). Therefore, Eq(49) describes the conser- (absorption is not the conventional gairiabsorptio, in
vation of the photon number. This is a very general relationvhich the photon number increas@ecreases

that is always satisfied for Raman proceds%513. In the particular case wherexz<l and wp<wo,
It follows from Eqs.(45) and(47) that we can neglect the first term on the right-hand side of
Eqg. (53). In this case, for the initial conditiorE,(s)
7 72wosd 1) =&§" cosws), we find the approximate solution
S2=$1= Lle(wd": Ll—w d7. B0 E(z,5)=£lM cogwfIG(X)dx], which shows frequency

chirping but no compression or stretching.
We define the mean frequency of oscillations in the time
interval (n1,7,) by C. Frequency conversion and pulse compression due to the
time-varying susceptibility

o(71,7)= f zwosc( n)dn. (51) For any fixed value of, the functionG has peaks and
M2 N1ty dips at equidistant times
With this definition, Eq.(50) yields 7= (2n+1) 7 oy (55)
@(71,72) (12— 1) = wol(Sp~51). (59 and

Equation(52) indicates that the product of the pulse length =112~ 2N T/ O, (56

and the mean frequency is constant during the propagatiolré
process. Furthermore, we hai#z,7) =0 if Ein(S)=0 and 5 _qez 1 "his value indicates a pulse compression in the

vice versa, that is, a zero of the input field at an mput tene vicinity of 7, with the compression fact@®? [16]. For »

leads to a zero of the output field at the corresponding output. : _ : oz

time 5. Hence, the number of optical oscillations is con- . /n-12: W& have singy,7/2)=0 leading toG=e"*’<1.

serveg. This c’onservation is a sri)m le consequence of th-tghiS value indicates a pulse stretching in the vicinity of
: P q n—12- Compression and stretching, occurring sequentially

puﬁﬁerzsbfg?/%lr::%gse;ﬁ/r;%i?‘ tr)glaEEi%Zri.s are especially useful foft 7n 3Nd 7n-1p2, [€ad to the formation of a train of short
P y ulses with separatiom,,= 27/ w,, (the Raman perigdand

the analysis in the case where the pulse duration is much "z .
: . ulse lengthT e~ “*. The peak frequency and peak ampli-

shorter than the molecular period. While the photon numbe ude of the pulses in the train arow witfZ Such pulse

conservation is very general, the other conservation relations P g ’ b

obtained by us are approximate and are seriously violateaom)ress‘ion ar_1d stretchi_ng are due to the_ mc_)dulation of the
when dispersion or nonadiabatic effects are substantial. gain-or-absorption coefficient Cosuy), which is the slope

To get deeper insight into the solutiof?), we rewrite the c.)f the time-varying sg;qeptlblllty [seg Ea(54)]. _Thus, the
reduced propagation equatiéfo) as time-varying susceptibility of the medium acts like a tempo-
ral grating that compresses and decompresses the probe at

spectively. Fom= 7, , we have cos{,,7/2)=0 leading to

JE w JE certain times. _ o _
—=—acofwyn)E-——siNoyn)-—. (53) Note that the generation of an almost periodic train of
9z ®m an subfemtosecond pulses in multicascade stimulated Raman
. ) ) scattering has been predicted by Kaplan and Shkolnikov
The coefficientx cosfwy,7) of the first term on the right-hand [27] They have shown that Raman-active materials can sup-
side is a time-varying gain or absorption rate, depending Olhort solitons consisting of a pump laser wave and many
its sign. The coefficientd/ wp,)sin(wy7) of the second term  Raman-coupled components. Due to mode locking all these
on the right-hand side is a measure of the time-varying grougjiton components propagate with the same group velocity,
and phase velocities. The modulation in the amplitude of the,zye the same amplitude shape, and fully overlap in time and
solution (42) is due to the first coefficient, and the modula- snace. The coherent interference of these mode-locked fre-
tion in the instantaneous oscillation frequency is due to th%uency components gives rise to a train of subfemtosecond
second coefficient. Both coefficients originate from the time‘pulses. We wish to point out that the wofR7] implicitly
varying susceptibility, given by Eq.(34), which interms of  assumed phase matching among the Raman components. An-
the reduced local time; takes the form other method for generation of subfemtosecond solitons is
based on the idea of electromagnetic bubp8&s. According
to this method, unipolar, supershort, and intense nonoscillat-
ing solitary pulses of electromagnetic radiation can be gen-
erated in a gas of two-level or classically nonlinear atoms by
The gain or absorption rate cos,,7) is determined by the half-cycle pulses or short laser pulses. The key difference
slope of the inversed time-varying group velocity between the short-solitary-pulse generation sche@esQ
(el wmy)sin(wym), or more exactly, by the slope of the time- and our scheme is that solitons are stationary waves that
varying susceptibilityy. This gain(absorption is accompa- propagate over substantial distances with unchanged shape
nied by the increasé&ecreasgin the oscillation frequency. and length, while the train of short pulses formed in our
Since the photon number is consenfétd. (49)], this gain  scheme is nonstationary, results from the beating of a weak

2c )
x=_—[x+asinonn)]. (54)
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CY ®) wosd 7). In particular, in the vicinity ofz, (compression
region or 7,_4 (stretching regiop the input times is re-

2 /\/\/\/\/ /\/\/\/’\/ lated to the output timey as s=7,+e**(y—17,) or s
= Pn_1pt€ **(n—mn_1), respectively. And the fre-

quency of the field increases or decreases, respectively, by

az=0.6 az=14 the factore®”.
O 3 MM When the duratiorT of the input fieldEj, is long com-
0/\/\/\/\ pared to the Raman periofi,,, the maximal and minimal
4 frequencies of the optical oscillations Bf are w ma=€"wq

and wmin=€ ““w,, respectively. The oscillations at these fre-

& OA/W/\/\/\N‘/\/\/\AN\/\/\,W\A quencies generate the anti-Stokes and Stokes Raman side-

bands with the order numbers

1 w
Time n/Ty, Qas=(e**—1) — (57)
Wm
70
and
é Gs=—(1—e )2 (58
2 35 s wn’
5
§' respectively. For increasingz, the anti-Stokes sideband or-
“ 1 derg,s increases asef**—1) while the Stokes sideband or-
01— o ] der ggs changes slowly and tends to the limiting value
6 0 6 121824 6 0 6 1218 24 —wol vy, (see the plots for the spectral intensity in Fig. 2
Frequency (@-@,) /0, In the particular case wherez<1, we have
FIG. 2. Compression of a probe pulse, calculated from(&2). wg
for z=0.6 (a) and 1.4(b). The carrier frequency, pulse width, and qas™ — QS:w—aZZ YZ, (59

m

peak time of the input probe field atey=5.2w,,, T=10T,,, and

7p,=0, respectively. The plots for the susceptibiligyas a function where

of time show only the shape but not the exact magnitude of this

function. The plots for the output field and for the spectral inten- wo 2%

sity |E,|? are normalized to the peak value of the input field. y= —az—CNwodOpO. (60)
Wm €0

probe with a prepared Raman coherence, and has a compres-
sion factor increasing with the propagation distance. This result is in agreement with the estimate for the number

To see the relation between the modulation of the suscemf lines generated by two driving fields in a medium with
tibility and the formation of a train of compressed pulses, weimited modulation bandwidth and zero dispersic8]. It
illustrate in Fig. 2 the compression of a probe pulse, calcushould be emphasized here that the Raman sideband orders
lated from Eq.(42) for «z=0.6 (a) and 1.4(b). The carrier gas andqs approximate but do not determine precisely the
frequency, pulse width, and peak time of the input probe fieldactual size of the generated Raman spectrum.
are wo=5.20y,, T=10T,, and 7,=0, respectively. As When the duratiofM of the input fieldE;, is much longer
seen from the plots for the susceptibilityand the function than the Raman periodl,,, the structure of the generated
G, the modulation ofy generates the comb structure ®  pulse train is not sensitive to the timing of the input. How-
with peaks(dips) at the times corresponding to the steepestever, whenrl is comparable to or smaller thdn,, the struc-
negative(positive) slopes ofy. This leads to the formation of ture and number of pulses in the output depend on the rela-
a train of compressed pulses and to the generation of netive position of the input peak timg, with respect top, and
Raman sideband&ee the plots for the fiel@E and for the  7,_1,,. In particular, whenT is short compared t@,,, the
spectral intensityE |2). We observe periodic changes in the output may be a single compressed or stretched pulse. In-
oscillation frequency as the time increases. The spectrurdeed, in this case, ify, is in the vicinity of 7, (7,1, then
consists of sharp Raman sidebands, most of them are on tilee probe pulse will be compressésiretchedl and the fre-
anti-Stokes region of frequency. When the facitaris in-  quency of the optical oscillations will increaggecrease
creased, we observe an increase in the height and a decreaselo see the sensitivity of the pulse shaping to the injection
in the width of the pulses in the output train. Furthermore,time of the input, we illustrate in Fig. 3 the compression or
we observe that the number of generated anti-Stokes sidstretching of a probe pulse that is short compared to the
bands increases quickly witlaz while the number of Stokes Raman period. The plots are calculated from &) for the
sidebands does not change substantially. injection time 7,/T,=0 (a), 0.25(b), 0.5(c), and 0.75(d).

The periodic change in the optical oscillation frequency ofThe carrier frequency and pulse width of the input probe
E, observed in Fig. 2, is in agreement with E@7) for  field arewy=15.2w,, and T=0.1T,, respectively. The me-
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(@) (b) ©) « When we substitute this expansion into E4f) for the input
25 G time s and integrate the result, we obtain
1 N AN A A m
g (-1" az|
L s=p+2, tan| = |sinnwy,y). (63
e n=1 Nwny 2
25
g ool 4*7 4 _*ﬁ Then, with the use of the generating functifi] e'¢s"?
§" =E°k°:_ka(§)e'k(’ of the Bessel functiond,, we can expand
23— 1 4 % 1 4 % 1 o o 1 the complex functiore'“o® in the form
Time W/Tp
) : - ~ 2w az
0.03 gless=glwon[] D (—1)kng, “Otant| =
g n=1 k=—-—o n(i)m 2
0.02
5 o001 A X elknem7, (64)
0.00

.15 0 15 30 45 -15 0 15 30 45 -15 0 15 30 45 -15 0 15 30 45 . i
Frequency (- ) A0, We use Eq(64) to expand the expressidfl) for the input

field E;,(s) into a Fourier series in terms of the output time
FIG. 3. Compression or stretching of a probe pulse that is short). We substitute the resultant expansion and the expansion
compared to the Raman period. The plots are calculated from Eq62) into Eqg. (42) for the output fieldE. Then, the sideband

(42) for the parameterz=0.8. The carrier frequency and pulse &, of the output fieldE= ReEque"“’q’? is found to be
width of the input probe field arey=15.2w,, and T=0.1T,, re-

spectively. The injection time isy,/T,=0 (a), 0.25 (b), 0.5 (c),

and 0.75(d). The plots for the input field, output field, and output E,=(—1)9glm > tanh' a_Z)
spectrum are normalized to the peak value of the input field. The a == 2
dotted lines shovs as a function of time. Note that the number of "
optical oscillations is the same for all time-domain plots. 2w aZ
P P x > 1 3| —2tanit —H (65)
{kntg—1 n=1 "Nwm 2

dium length and the prepared Raman coherence are such that
«z=0.8. The dotted lines sho® as a function of time. The . . e .
plots show that, when the input field is sent in at a time|_|gre{kr‘}_q’I 's a set qf integers, saﬂsfymg the condition

: o . >, _,kon=g—1. Equation(65) shows that, in the case where
corresponding to a difFig. 3@] or a peal Fig. 3(c)] of the the inout bulse lenati is | d to the R
function G, the output is stretched or compressed, the oscil- € Input pulse fengthl 1S large compared 1o Iné Raman
lation frequency decreases or increases, and the generat@ npdTm, the spectrum of the probe fiefelis d|scret_e and
output spectrum is confined in the region of Stokes or anti<X ibits oscillations governed by. thl.a Be_ssel functlésgse
Stokes sidebands, respectively. Note that the output spectrupﬂe plots for the spectral intensity in Fig).2When T is
is continuous because the input pulse is short and, thereforg,)mpare}%e t'o or smaller thafy,, the §pectrum of the en-
its Fourier-transform limited width covers several RamanYS/OP&€0 ~ With respect to the output timg may cover two
sidebands. When the input is injected at a time between a diff Mmore Raman lines. In this case, the generated Raman side-
and a peak ofs [Figs. 3b) and 3d)], the temporal behavior ands may have overlapping profiles, the discrete structure
of the output exhibits both compressifin the region near to  ©f the Raman sidebands may be suppressed, and therefore
the peak ofG) and stretchingin the region near to the dip of 1€ SPECtrum o may become continuousee the plots for

G), and the output spectrum is spread in both the Stokes arfj€ utPut spectrum in Fig.)3 , , _
anti-Stokes regions. We now show that the Bessel function solution obtained

earlier[13] for the Raman sidebands is a particular case of
the general Bessel function seri@b). For this purpose we
consider the situation where,=w,, and

We calculate the spectrum of the propagating probe field

in the case where the input is a monochromatic field, given az wo
by tanl‘( ? <1, w—tanf?
m

Ein(s)=E5" cod wos), (61)

D. Raman spectrum

aZ)
5 |<1. (66)

Then, using the propert(0)= dy o, we find that the domi-
and the input pulse lengfhiis large compared to the Raman nant term on the right-hand side of E5) is the term with
period T,,. Using the formulg31] sinhx/(coshx—cost)=1  |=k,=ks=---=0 andk;=q. Hence, we obtain
+23,_,e ™cosnt for x>0, we can expand the function

G(#) into a Fourier series as az

. 2(1)0
Eq=(— 1)“58”>Jq[w—mtanr(—

. (67)

az
7) codnwyy). (62

G(n)=1+2 —1)"tanH’
() ngl =D Since wy= wy,, the conditiong66) lead to
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= @ ®)
az< w—os 1, (68) without dispersion with dispersion
4
2z=20 ym
that is, 2 M M
0 :

wo
BZAS o (69)

m z=30 ypm

. b

The condition(68) yieldse**=1, that is, the pulse compres-
sion is not strong. The conditiof69) and Eg.(59) give
Oas= — 0s<(wq/wm)Y?, that is, the bandwidth of the gener-
ated spectrum is limited by the value{/wmy) >

When we use the approximation tanal2)= «z/2, Eq.
(67) reduces to the Bessel function solutiidr8]

—
s

-~

Normalized field intensity
3
?
=

r
F—

4= (—=1)GMI4(v2). (70 % 2=50 ym
The Fourier synthesis of these Raman sidebands yields the 13 l
field E=£U" cog wen— yzsin(wy7)], which is modulated in 0 . i R d
frequency but is not compressed. O
If we extend the above results for the case where the input Local time Tt [fs]

consists of two fields, abvy and w_1, then instead of Eq.

(70) we will obtain FIG. 4. Comparison of the temporal profiles of a probe field

calculated for the parameters of solid hydrogen with zZ@ycand
Eq=(— 1)qg(()in)3q( yz)+(—1)9* lg(_iﬂl)JqH( yz). (71)  nonzero(b) dispersion. The medium lengths are 20, 30, 40, and
50 um (see the labels in the plots on the right-hand sidée
This expression is in full agreement with the earlier result formedium is prepared in an antiphased state with=0.85, pyp,
the sideband spectrum generated by two driving fields in & 0.15, and pas|=0.36. For the input field we use a pulse with a
medium with limited modulation bandwidth and zero disper-central wavelength of 800 nm, a pulse length of 10 fs, and a peak
sion [13]. The corresponding output field isE  tme7,=0.

_ ¢(in) _ : in) _ ;
Eo cogwor yzsm(wmn)]+£(,1 Cogw_177— yZSiN(wm7)]. The use of nanosecond pumping for the narrow vibrational

Thus, the analytical Bessel function solutiph3] is valid » . .
2 . | ) transition Q4(0) in solid hydrogen allows us to prepare a
when the conditiori69) or, equivalently, the conditio(68) is substantial coherence at low pump intensity, avoiding the

satisfied. Under these conditions, the bandwidth of the gen: : : : :
R ’ nteraction of the Kerr eff nd nonlinear dispersion.
erated spectrum is limitgdjps= — qs<(wo/wm)*?] and the counteraction of the Kerr effect and nonlinear dispersio

. : ) o Furthermore, without the need for external phase compensa-
pulse corr;pressmn by the time-varying group velocity is nOttion the probe pulse can be compressed to a triplet, doublet
strong @**=1). ' ' '

or even singlet of subfemtosecond pul$#8]. Another ad-
vantage of solid hydrogen as a Raman medium is that, in a
E. Effect of group-velocity dispersion pump-probe experiment for short-pulse generation, one can
In addition to the direct pulse compression by group-achieve beam separation at the output by using a small tilt
velocity modulation, there is another mechanism: Pulséngle between the applied fielf34], which does not affect
chirping, followed by GVD, can produce single-cycle pulsesPhase matching or beam overlap in the medium, since the
[13]. To study the effect of GVD on pulse compression, wecrystal is thin.
perform numerical calculations for a realistic system, We use the propagation equatioid®) and(31) to calcu-
namely, for molecular hydrogen with the fundamental vibra-late the temporal profiles of the probe field in the cases of
tional transitionQ,(0) at frequencyw,,=4149.7 cm*and  Z€ro and nonzero dispersion, respectively, and plot the results
with the solid-state density=2.6x 10?2 cm 3[29,32. We in Figs. 4a) and 4b), respectively. For the input probe field
use this high-density molecular hydrogen as a model of solijve use a Gaussian pulse with a central wavelength of 800
hydrogen. The characteristic property of the majority of mo-NM (wo=12500 cm ), a pulse length of 10 fs, and a peak
lecular crystals including solid hydrogen is that the mol-time 7,=0. The medium state is calculated from E(36)
ecules in these solids retain their identity and that their in2nd(37) for the parameterg= — 0.4 and¢,=0, which cor-
trinsic properties are modified only slightly by the respond to an antiphased state wijth,=0.85, ppp=0.15,
intermolecular interactiof32]. The advantages of solid hy- and|p,p| =0.36. The dispersion and coupling coefficients are
drogen as a Raman medium are that it has a high numb@&glculated from the dipole moments and level energies of
density, short medium length, small dephasing rate, large cg®arahydrogen[29] and are ay=2.42<10"7, b,=2.63
herence length, and negligible phase mism&&83. In ad- X 10/, andd,=5.50x 108, in the SI units. The first-order
dition, the experiment with a solid can be performed inderivatives of the dispersion and coupling coefficients with
vacuum, without the need for intermediate windows, in orderrespect to the frequency ar@)=3.13x10 2% b(=3.81
to prevent chirping of the generated subfemtosecond pulsex 10™24 anddj=1.25x 10 % in the Sl units. The second-
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order derivatives of the dispersion and coupling coefficientdAt this medium length, if the compression due to the destruc-
with respect to the frequency araj=1.41x102° bj tive interference between the generated sidebands is opti-
=1.73x10 %, and dj=5.07x10“°, in the Sl units. We mum, the compression factbr, defined as the ratio of pulse
show the temporal profiles of the field intensity calculatedseparation to pulse width, is estimated to be equal to the
for the medium lengthg=20, 30, 40, and 50um (see the number of sidebandgl3]. We approximate this number by
labels on the right-hand side of the figur&hese lengths Q= 0das—ds+ 1, where the sideband ordegs s and gg
correspond to the valuesz=0.64, 0.95, 1.27, and 1.59, re- are given by Eqs(57) and(58), respectively. Then, we have
spectively, that is, to the compression fact@¥=1.89,
2.60, 3.57, and 4.91, respectively. '=1+2(wo/wy)sinh(al). (73
Comparison between the plots in Figsiadand 4b)
shows that the dispersion of the medium does not affecThis factor corresponds to the optimal compression in the
much pulse compression in the caseszef20, 30, and case where dispersion is present. If dispersion was absent,

40 pm. In the case oz=50 um, the dispersion improves the compression factor would i = e*-. The improvement
pulse compression by a factor of about 3. Additional numeriin compression due to GVD is measured by
cal calculations for larger medium lengths show that, when

the medium length is too large, for example, when T wo
=75 um, the dispersion of the medium reduces pulse com- D=—=e 1+2—sinNal)|. (74
pression. Lo “m

The optimal condition for pulse compression by GVD has . I . .
been dePived earlier for thepcase wheFr)e the dire){:t compres- If the optl_mal lengthl, which is obtained as the solution
sion by group-velocity modulation is negligibf@3]. Ac-  °f Ed- (72), is small so thazL <1, we havel',=1 andl’
cording to them, the optimal compression may be obtained D =1+27L. If the relationw,/wy>1 is well satisfied so
when the relative group delayry corresponding to the gen- that, despite of the conditiomL <1, the parameteryL
erated spectral bandwidth w= w u— o, is equal to the =aL(w0/_wm) is not small co_mpared to unity, then the pulse
Raman half-period /2. The reason is the following: if dis- COMPression due to GVD is substantial. The role of the
persion is absent, different frequency components wilmodulated susc_eptlblhty in this case is I!mlted to the fre-
emerge at different times during a Raman half-pefisge ~ 9UeNcy modulatl_on and to the_ determination of the times at
Eq. (47) for we.(7) and see also the plots f& in Fig. 2J. which compression or stretching occurs. Note that the con-

However, when GVD is present, the group delays of thedition aL<1 leads toI'=D<1+2(wo/wp), that is, the
frequency components are different from each other. If th&Ompression factar is limited by the ratiawo/wp,. In other
difference of the group delays compensates the difference ¢¥rds, in order to get a high compression factor, we need a
the dispersionless starting times, all the frequency compd@rge ratiowo/wn,. The analysis of Re{.13] corresponds to
nents of the field will emerge at the same time and willthis situation. . .
interfere with each other. Then, pulse compression may oc- !f the optimal lengtiL is large so thatrL>1, we find the
cur. approximation D=wy/wy,. Then, in the case where
We extend this argument to include the effects of both@o!@m>€“", we haveD>T, that is, the pulse compression
susceptibility modulation and GVD. We assume that thec@used by GVD is much stronger than that caused by the
length of the input field is long compared to the Ramantime-varying susceptibility. However, becaubg>1 andI
period. In this case, the maximal and minimal oscillation=1"0D, both mechanisms are substantial for pulse compres-
frequencies are a—e%w, and ;=€ “Zw,, respectively.  sion in this case. In the opposite case whegg w,<e,
These values give the bandwidtho=2wgsinh(z). The  We havel'(>D, that is, the magnitude of the pulse compres-
group-velocity dispersion, measured by the second-order d&ion factor caused by susceptibility modulation is much
rivative k”(w) of the propagation constakfw), is assumed Stronger than the additional factor caused by GVD. Th|_s situ-
to be invariant and is estimated k§/(w,). From the coeffi- ~ation corresponds to the plots for the casesf50 um in
cients of the terms in the general frequency-domain propafid- 4, whereaz=1.59, I';=4.91, andD = wo/wn=3.0.
gation equatiori8) or, similarly, in the time-domain equation For the parameters of this figure, the solution of Et) for
(20), we find K"(wo)=(Nfi/eoC)[ (2a)+ woal)paat(2by  the optimal length id =52 nm. o
+wobl)pyy]. Keeping only the dominant terms yields The effect of GVD on pulse compression is limited by the

" ; , . : tio wo/w . To illustrate a case where the raiig /o, is
K" (wg) =(2N%/eoc) (appaat boppp), In agreement with the ra 07 %m m
coefficients of the terms in the simplified propagation equa-Iarge and, consequently, the efiect of GVD on pulse com-

tion (31). Since the group delay of a frequency component ispression Is stron.g, we plot in.Fig. 5 the temporal profiles (.)f
dete(rmi)ned byrD(w)gz z/Sg(w)ZZk'(w) qthe re)llative %roup a probe pulse with a central input wavelength of 400 nm in

delayA 7 is approximated by o=k’ (wo) A wz. Hence, it the cases of zer@) and nonzerdb) dispersion. We choose

fllows from the condiiondo=T,y2 that the medium 1% TR SR C A Ot e S merers
length L required for the optimal effect of GVD on pulse P b P : P

A : are the same as for Fig. 4. As seen, the improvement factor is
compression is determined by on the order ofwy/w,=6, larger than the corresponding
. dispersionless compression factf*=3.34. Note that, for
LsinNal)= ———. (72) the parameters of Fig. 5, the solution of E@2) for the

20mwok’(wo) optimal length isL=27 um.
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FIG. 5. Same as Fig. 4 except that for the calculations we use 0.0/ 0/
the input wavelength of 400 nm and the medium length of3%. 4 0 3 16 2 2 12 2
Frequency (0-@,) /@ Local time 7 [f5]

In this paper we consider the beating of a weak probe
We neglect the effect of the modulated probe pulse on th&pectrum of the sidebands of the _drlvmg fields, for the r_ned|um
molecular states. But we cannot discard the chariges- coherence prepared at the peak tm‘;;e:O,_for the normallze_d
duced by the molecular modulatioin the strong driving probe output spectrum, and for the nor.mallzed. probe output |ntgn-
fields, which prepare the coherence. For a collinear configug'h: W prepare a Raman coherence in a solid hydrogen medium
ration, the parametewz is the same for the probe and the with a length of 50 um by two Gaussian-shape pulse laser fields

driving field d if th dulation is | ht with wavelengths of 355 and 416 nm. The two driving fields have
fiving Tields, and It the modulation 1S farge enougn 1o pro-y,, o5 me peak intensity of 10W/cn?, the same peak time,=0,

duce significant changes in the probe pulse, it also produceg j ihe same pulse length of 10 ns. The two-photon detuning is
a large eﬁect on the driving fields. Equati¢@g) for the 8/2r=—50 MHz. The prepared coherence modulates the fre-
phase shift per length of the prepared coherengeis an  guency and compresses the length of the probe field with an input
important assumption. It is not automatically fulfilled even pyise length of 10 fs, an input peak timg=0, and an input central
when dispersion is absent. This assumption says that eith@javelength of 800 nm.

the driving fields in a collinear configuration are not affected

significantly (az is smaller or comparable to unjtyr the length and 24019 cm! (416 nm in wavelength We
effect is compensated by a noncollinear beam propagatioghgose a two-photon detuningi2z=—50 MHz, at which
geometry. ) . the conditions for the adiabatic coherence preparation are
There are several particular cases where self-consiste@ptisfied and a substantial amount of molecular coherence
analytical solutions are possible. In the case of small dispersan pe producef29]. The two driving fields have the same
sion and limited modulation bandwidtlxg<1), the carrier peak intensity of 19 W/cn?, the same peak time,=0, and
frequency is modulated but the wave-form envelope is Unihe same pulse length of 10 ns. The population and coher-
changed. As a result, the driving force on molecules, the  ence decay rates of the Raman transition are=25
two-photon Rabi frequengyremains unaffected by the side- w103 51 andy,=107 s, respectively. The medium state
band generatiofL3]. Therefore, the Bessel function solution 54 the sidebands of the driving fields are calculated by solv-
of Ref.[13] is self-consistent. Note that in this case the NUM-ing the set of the density-matrix equatioi® and the propa-
ber of generated sidebands 2yz) can st_|II be very large if gation equation(17). We use a probe field with an input
wo>wp, . Another example of self-consistent approaches ulse length of 10 fs, an input peak timg=0, and an input
the interaction of a light field with a molecular medium is the central wavelength of 800 nm to beat with the molecular
work on resonant nonadiabatic Raman scattering, which presoherence prepared by the driving fields. The plots for the
dicts 27 soliton formation[14,27. probe field in Fig. 6 show that a broad spectrum and a sub-

The analytical solution derived in this paper is not self-gtantial compression of the probe pulse are produced.
consistent, and can be used only as a tool for qualitative

studies. Exact numerical simulations are required for quanti-

tative treatments. We present in Fig. 6 the results of the full IV CONCLUSIONS

numerical calculations for the driving fields, the medium We have studied the propagation of the field in a far-off-
state, and the probe field. We drive a solid hydrogen mediumesonance Raman medium. We have derived the propagation
with a length of 50 um by two Gaussian-shape pulse laserequations for the field in the frequency and time domains
fields at frequencies of 28169 crh (355 nm in wave- without the use of the slowly varying envelope approxima-
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tion in time. We have analyzed various aspects of the com- Jc;
pression of a short probe pulse beating with a prepared Ra- ar
man coherence. In the framework of a solvable model with
zero dispersion, we have derived analytical expressions for 5 _
the probe field, the oscillation frequency, and the Raman Ca |

P quency g; EftaiC; . (A3)

: i -
= —i0jaCj+ E(pjaCat pipCoe” ™), (A2)

spectrum. We have shown that the modulated susceptibility ar
determines the basic features and characteristics of the pulse
compression in the Raman medium, such as the times at Jc i
which compression or stretching occurs, the periodic change o SCp+ — > E iub;C;j e “mr, (A4)
in the oscillation frequency, the Bessel function nature of the T h 7]
Raman spectrum, and the asymmetric increase of the num-
bers of Stokes and anti-Stokes sidebands. We have derivédtere w,,= wp,— 6 is the modulation frequency.
the conservation relations, such as the conservation of the We assume that the one-photon detuniags;, — v, are
pulse area, the conservation of the photon number, the comarge compared to the Rabi frequencigg ;,Eq as well as to
servation of the number of oscillations, and the conservatioithe two-photon detuning. Here,w, andE, are the charac-
of the product of the pulse length and the mean frequencyeristic values of the input frequency and electric field, re-
We have performed numerical calculations using the paramspectively. Due to this far-off-resonance condition, the me-
eters of solid hydrogen, and have found that the dispersion afium state changes slowly in time.
the medium improves the pulse compression. We have dem- We expresg; as
onstrated numerically the situations, where one of the two
compression mechanisms, that is, the time-varying suscepti- o _ .
bility and the GVD, is dominant compared to the other in the Ccj= f dwe '“7(Cjau,te M Cjp,), (AS)
determination of the compression factor. The criteria for the o
two regimes have been derived. i 57

In this paper we have considered excitation of a singlé®Nd assume thaf,, andc;,,e'°" as well asc, andc,e
Raman transition, such that the resultant susceptibility modu@'® Slowly varying functions of. We substitute Eq(AS)
lation is purely sinusoidal. Our formalism can be generalized™© Ed. (A2), and set the time derivatives of,,, andcyp,,
for the case of an arbitrary number of molecular states and a@dual to zero and-iscyy,, , respectively. Then, we find
arbitrarily complex modulation, with extra terms included
into the propagation equations. Indeed, we can consider any _ pjaEuCa
complex molecular motion as a superposition of sinusoids. Ciaw_zﬁ(wja—w)’
Because the interaction with the weak probe pulse is purely
linear, contributions from different Raman transitions to the

e . X ,LL'bEwa

susceptibility will simply add up. For example, our formal- Cjbw:J—_ (A6)
ism can be applied to describe frequency modulation and 2h(wjp— o)
pulse compression by rotational molecular wave packets
[17,18. The conservation relations derived in this paper forWhen Egs(A6) are introduced into EqAS5), we obtain
the excitation of a single Raman transition will also be valid

io7

for more complex Raman excitations. The analysis will 1 (= i MiaCa » MibCh
prove useful for generation of single subfemtosecond and Ci=57 | dwe '’ +ertom” Eo-
2h ) —w Wja— 0jp—®
subcycle pulses. (A7)
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APPENDIX A: EVOLUTION OF THE MEDIUM STATE c

a
We callC;, C,, andC,, the probability amplitudes of the : (A8)
stateg, a, andb, respectively, in the interaction picture. We

introduce the transformation

d | Cq
aT Cp

_i[ﬂaa Qab
Qpa Qpp— 9

Ch

where the Stark shift§),, and Q,, and the complex two-
C; :Cje_i“’jaT, c,=C,, Cp=Cpe ", (A1)  Pphoton Rabi frequencieQ,, and()y, are given by Eqs(6).

To take into account the population decay at a ngtand
where § is the two-photon detuning and;,= w;— w, the  the coherence decay at a ratg, we use the density matrix
energy difference of level$ and k. It follows from the of the medium state, which is defined py,=c;cy . When
Hamiltonian(1) and Eqgs(2) and(3) that the time evolution we use Eq(A8) and add phenomenological decay terms, we
of the medium state is governed by the equations obtain the density-matrix equatio(s).
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APPENDIX B: PROPAGATION OF THE FIELD and
The propagation of the field is governed by the wave
; 1=
equation P= Ef e P, dw. (B6)
r oL E= ” P (B1)
9% c? at? ~Ho a2’ Then, Eq.(B4) yields
where the polarization densi®y is defined by JE, iw
a9z :2600 Po B7)

We now express the polarization dendftydefined by Eq.
HereN is the molecular density. We use the local coordinate¢B2), in terms of the probability amplitudes, defined by

z and 7=t—z/c. Equation(B1) then takes the form Eqg. (Al). Then, we have
? 2 9 1 2 . .
2 ¢ araz E= _eoczﬁp' (B3) P:N; (KajCiCh + ppiciCie'n™+c.c).  (BY)

We make the slowly varying envelope approximation for theW
spatial dependence, that is, we assume that the variatibn of
with z at constantr occurs only over distances much larger
than an optical wavelength. In this case, the second-order
partial derivative inz can be neglected and, therefore, Eq.
(B3) reduces to

hen we substitute EqA7) into Eq.(B8) and use the spec-
tral expansionB6), we find

Pw: 2Nh(awpaaEw+ bwpbbEw+ dw—wmpbaE

+dwpabEw+wm)v (Bg)

9E 1 9P
9z 2eyC It

(B4) where the coefficients,,, b,, andd, are given by Egs.

_ o . (10). In deriving the above expression we have used the as-
We express the fiel& and the polarizatiorP as Fourier  sumptions that the change in the medium state is slow and
integrals the two-photon detuning is small compared to the one-
. photon detunings. Finally, we insert E@9) into Eq. (B7).
E= _f e “E, dw (B5) ;I'8r;en, we obtain the frequency-domain propagation equation
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