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Dynamical Casimir effect in a leaky cavity at finite temperature
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The phenomenon of particle creation within an almost resonantly vibrating cavity with losses is investigated
for the example of a massless scalar field at finite temperature. A leaky cavity is designed via the insertion of
a dispersive mirror into a larger ideal cavifthe reservoir. In the case of parametric resonance the rotating
wave approximation allows for the construction of an effective Hamiltonian. The number of produced particles
is then calculated using response theory as well as a nonperturbative approach. In addition, we study the
associated master equation and briefly discuss the effects of detuning. The exponential growth of the particle
numbers and the strong enhancement at finite temperatures found earlier for ideal cavities turn out to be
essentially preserved. The relevance of the results for experimental tests of quantum radiation via the dynami-
cal Casimir effect is addressed. Furthermore, the generalization to the electromagnetic field is outlined.
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[. INTRODUCTION quantum radiation using the dynamical Casimir effect ap-
pears to be rather simple—provided the cavity is vibrating at
Since the pioneering work of Casinjit] the phenomena resonance for a sufficiently long period of time. However,
of quantum field theory under the influence of external con+this point of view is too naive since neither ideal cavities
ditions have attracted the interest of many authors, see, e.gxist nor is it possible to match the external frequency to the
[2]. The original prediction by Casimir, i.e., the attractive fundamental eigenfrequency of the cavity with arbitrary pre-
force generated between two perfectly conducting mirrorgision. Consequently, it is essential to include effects of leaks
placed in the vacuum, has been verified in different experias well as effects of detuning, see also R&g].
mental setups with relatively high precisif8]. However, its Investigations concerning effects of losses have been per-
dynamic counterpart with nonstationary boundary conditiongormed, for example, in Ref13] in 1+1 space-time dimen-
inducing interesting effects such as the creation of particlesions based on conformal mapping methods as developed in
out of the vacuum has not yet been observed rigorously in &ef. [14]. However, these considerations aaepriori re-
corresponding experiment. The observation of quantum rastricted to H#1 dimensions and cannot be obviously gener-
diation could provide a substantial test of the foundations otlized to higher dimensions. In+3L dimensions the charac-
quantum field theory and thus be of special relevance. Gerter of the mechanism generating quantum radiation—e.g.,
erally we understand the term quantum radiation to denotéhe resonance conditions—differs drastically from t{ie
the conversion of virtual quantum fluctuations into real par-+1)-dimensional situation.
ticles due to external disturbances. For the special case of the More realistic[ (3+ 1)-dimensional cavities were consid-
external disturbances being moving mirrors this phenomenosred in Ref[15] where the effects of losses were taken into
is known as the dynamical Casimir effect. account by virtue of a master equation ansatz. However, this
These striking effects have been investigated by severahaster equation had not been derived starting from first prin-
authors, for an overview see, e.g., R¢&4] and references ciples. It has already been noted in REf5] that the em-
therein. We will focus on the effect of particle creation ployed ansatz is adequate for a stationary cavity—but not
within a constructed—resonantly vibrating—Ileaky cavity. necessarily for a dynamic one. In addition, most papers did
This case is of special importance for an experimental verinot include temperature effects—which may contribute sig-
fication of the dynamical Casimir effect since the generatiomificantly to an experiment. It has been shown in R&fthat
of particles is enhanced drastically by resonance effects. Enfer an ideal cavity the effect of particle production at finite
ploying different methods and approaches it has already beeemperature is enhanced by several orders of magnitude in
shown for ideal cavitiegsee, e.g., Ref5]) that under reso- comparison with the pure vacuum contribution.
nance conditionsi.e., when one of the boundaries performs In this paper we will adopt the canonical approach that
harmonic oscillations at twice the frequency of one of thehas proven to be general, successful, and is—in addition—
eigenmodes of the cavitythe phenomenon of parametric also capable of including temperature effects. However, the
resonancesee, e.g., Refl6]) will occur. In the case of an aforementioned approach still lacks a generalization for sys-
ideal cavity(i.e., one with perfectly reflecting mirror¢hisis ~ tems with losses. We are aiming at providing a remedy in
known to lead to an exponential growth of the resonancehis field[16].
mode particle occupation numbers, cf. R¢&7-11. This paper is organized as follows: In Sec. Il we present a
In view of this prediction an experimental observation of model system and derive the effective Hamiltonian for the
resonance case. In Sec. Il we will calculate the number of
created patrticles in the cavity after one of the walls has per-
*Electronic address: schaller@theory.phy.tu-dresden.de formed resonant oscillations by means of response theory. In
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FIG. 1. Model of a leaky cavity. A large ideal cavity is split up
by a dispersive mirror into a leaky cavity and a reservoir. The left
(ideal wall of the cavity is vibrating.

FIG. 2. Diagram of thex dependence of the used potential.

see also Fig. 2. The parameterepresents the transmittance

Sec. IV we will derive and solve the associated master equéf the internal mirror, whose reflection and transmission am-
tion and show consistency with the results obtained in Sed?litudes are determined 4%8]

[ll. In Sec. V a nonperturbative approach is presented and )

compared with the other results. We derive a threshold R Iy w

condition—valid for leaky cavities—for a possible detuning wtiy’ Cwtiy

from the fundamental resonance in Sec. VI . We shall close

with a summary, a discussion, a conclusion, and an outlookNote that the general procedure presented in this article is
Throughout this paper natural units given by-c=Kkg independent of the particular form of the potential—the

@

=1 will be used. aforementioned one has just been chosen for convenience.
For a more realistic scenario one could apply square-well or
Il. GENERAL FORMALISM Gaussian potentials. In a realistic experiment where one
_ would want to create photons instead of scalar particles a
A. The leaky cavity dispersive mirror could be realized using a thin dielectric

We want to investigate the effects of a nonideal cavity inslab with a very high dielectric constant. Such a mirror could
view of the dynamical Casimir effect. For that purpose wethen be approximated by a space-dependent permittivity
have to construct a suitable model system. One simple wag(x) =1+ ad(x). This will be addressed in Sec. XB.
to do that is to insert a dispersive mirror into an ideal cavity
while keeping all other walls perfectly reflecting. Thereby B. Hamiltonian
two leaky cavities are formed. Particles in the left imperfect
cavity are now able to penetrate into the right larger tbr
reservoij. For reasons of simplicity we consider a rectangu
lar cavity as depicted in Fig. 1. The setup in Fig. 1 is not
new idea. A similar—but static—system has already bee
treated in Refs[17,18. However, here, in addition, the left
wall is moving with a prescribed trajectory during the time 1
interval [0,T]. For ideal cavities this is known to lead to a L= —(o'?#CID)(MCD)—VCI)Z. 3
squeezing of the vacuum state which causes the creation of 2
particles inside the cavity, see, e.g., Ré&f.

Note that we are assuming a finite reservoir with a dis
crete spectrum instead of an infinite one leading to a con
tinuum of modes. Since, in an experimental setup, the vibrat="
ing cavity will most likely be surrounded by walls, etc.

(imposing gddllt]onal boundary conditionghis assumption D)= Q(f ,(r;1), ()
should be justified. m

Assuming a surrounding perfectly reflecting wall is a first
idealization of the real situation. However, in order to mini-into a complete and orthonormal set of functiohgr;t)
mize the error obtained by this procedure the experimengatisfying
could be designed in this way, see also Fig. 8 in Sec. IX
below. 3w
The ideal mirrors can be simulated by infinitely high po- f drfL (rOf(rt)=24,,, ®)
tential walls inducing Dirichlet boundary conditions. For the
additional dispersive mirror we use tldetype model poten-
tial proposed in Refd19,20 > D, sn=8r—r1), (6)

M

Throughout this article we will use the notation of Ref.
_[21] where the particle production in an ideal vibrating cav-
ity was calculated—for a more general treatment see, e.g.,

ef. [22]. We consider a massless and neutral scalar field
coupled to an external potential:

_The perfect mirrors can be incorporated by imposing the cor-
responding boundary condition dn. By expanding the field

_ yoé(x—b) if a(t)<x<c,
VixH= 0 otherwise @ {2V—A}fﬂ(r;t)=Qi(t)fﬂ(r;t), @)
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one can reach a more convenient form suitable for doingsh. The derivation of the eigenfunctiofs(r,t) andM ,,(t)
calculations. Sincé is a real field, we can choose the §gt  will be treated in the following section.

to be real. Note that the time dependence of eigenfunctions

and eigenfrequency is solely induced by the moving bound- C. Eigenmodes

ary. Inserting this expansion into E) transforms the La-

grangian into[21] As has already been mentioned, we want to find a set of

functions satisfying {2V(r;t)—A}fﬂ(r;t)zﬂi(t)fﬂ(r;t).
1 ) 1 Any time dependence can only be induced by the moving
LZJ d3r£=§ > Q%— > > 05(1HQ% boundaries. At first we will just consider the spatial depen-
K’ a dence, i.e., the stationary problem. The differential equation
) 1 can be treated using the separation ansdtz(r)
+> QuM L, (HQ,+ 5 > QuM (DM, (DQ,, =f,(rpf,(r), wheref,(r)) depends only on the coordi-
~ e nate parallel to the wall velocity anfd,(r,) is dependent on
(8)  the perpendicular coordinates. For the special case of our
model system this mearis,(r)=f (x)f’(y)f}(2) leading

whereM ,,(t) is an antisymmetric matrix given by to the trivialy andz dependence of the eigenfunctions

of

M V=fd3r—”(r;t)fy(r;t). 9 VPN e LY y_Mm
" ot f.(y) VAyS' Ay Y| 4 v (16)

This matrix describes the coupling strength between two dif- > N N
ferent modes. We introduce the canonical conjugated mo- 2(2)= [ Z il —2— 2 0Z=_=2 (17)

menta M AZ AZ ' M AZ !

L with Ay and Az denoting the dimensions of the cavity and
Pu:-_:Qu+ > QM (). (100  the frequencies relating via

9Qu ’ Q2=(0%)2+(0Y)%+(0%)? 18
p= Q)7+ (Q)7+(Q))" (18)

Furthermore, we apply the usual Legendre transform to a o ) . )
Hamiltonian representation and perform the quantizationThe remaining differential equation reads

This yields
Y {298(x=b) = 20 =(Q)H5(x), (19
~ 1 . 1 . « A . o .
A== P2+=> 020%+> P,M,,0,. (11  Wwhere the Dirichlet boundary conditions coming from the
257 w25 Rt s R perfect mirrors on either side can be satisfied by the ansatz
The above Hamiltonian can be subclassified into LMsir{Q’;(x—a)] if a<x<b,
PN ~ “ X - ; X(~_ ;
H:HO+H,S+HV, (12) 7.(x) RysinQ,(c—=x)] if b<x<c,
0 elsewhere.
where the single Hamiltonians are given by (20
1 , 1 0 rn The eigenfunctions have to obey the continuity conditions
~ R ”a
Ho=3 2 PLt5 2 (2)%Q;, (13 [19]
fr.(x1b)—f7(xTb)=0, (21
e 1 ~
S_ 2 2
H'_E% A% 1 O 10y T by =29 (b 22
x XIP) = —~(XTb) =2, (b), (22)
HY=2 P,M,(1)Q,. (15)  where the latter can be obtained via integration. These con-
wy ditions can be combined to an eigenvalue equatiorﬂpr
The deviationAQ2(t) = 0% (1) — (Q2%)? denotes the differ- y
ence of the (squared time-dependent eigenfrequencies - —X=cot[QfL(b—a)]+cot[QfL(c—b)]=— —.
Q3(t) from the unperturbed one€)()2. The first termH, is Qy ” 23

the Hamiltonian of harmonic oscillators. The remaining
terms will further on be called squeezing interaction Hamil-Though there is no obvious analytical solution of this equa-
tonian and velocity interaction Hamiltonian. We want to tion, a numerical solution can always be obtained for given
point out that in the case of a static systemhere the eigen-  cavity parametersa,b,c,y}. However, via introducing the
functionsf,, and eigenfrequencie@,, are constant in time  dimensionless perturbation parametgf=Q%/y it is also
the complete interaction Hamiltonid = H>+H) will van-  possible to obtain an approximate analytical solution. Note
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20 X
n=nu=—", (25)
~ 15F — k':ft-domin'ated mode | 7
5, o pEhCdomingtes mode to which all others are evidently related vig,= Q%/Q} 7.
o Note that this distinction between the classes of eigenfunc-
-§ Lof o —— 1 tions is applicable only for small values af
E //’ \\\ ] Consequently, the eigenfunctions can be labeled by multi-
S o5l P Y | ind[ces m=(ny,ny,n,,r/l): three quantum numberns, , ,
S I N eN,, and a flagr/l denoting the clasgright- or left-
Vs N dominated, respectivelyf the eigenfunction. Now we want
00 m=== S N b to consider the effect of one moving boundary. It is taken
into account by substitutinga—a(t) everywhere in the
at) b X ¢ eigenmodes and -frequencies. Thereby a time dependence of

the eigenfunctions as well as of the eigenfrequencies is in-
FIG. 3. lllustration of the lowest left- and right-dominated troduced. This induces a nonvanishing coupling matrix
eigenmodes ,(x) for 7;,,=0.1. M,.(t) as well as the frequency deviatiohQ’(t). For
small oscillations of the boundary
that this parameter is smajl, <1 in the limit of the internal .
mirror being nearly perfectly reflecting. Since the trigono- a(t)=ap+e(b—ap)sin(wt) (26)
metric functions are very sensitive to small frequency varia-
tions one can solve the equation using a series expansion
7, - Itis obvious that if the right-hand side goes-te~ one
of the addends or even both can become relevant. This de- _ of _
pends on the ratiob(—a)/(c—b) and its inverse both of MW(t)=a(t)f d3ra—“(r;t)fv(r;t)=a(t)mw(t).
which are assumed to be noninteger numbers in the follow- a 5
ing nonperturbative calculations implying that only one of @7
the addends is dominating. Accordingly, eXpanding arounq’he geometry factormﬁy(t) is approximate'y constant

the poles of one addend one yields a polynomial that can bﬁyw(t)=m,w+ O(e) in this case. Consequently, one is led
solved forQ)* as a series expansion #),<1. Depending on to

the chosen addend one obtains two sets of approximate .
eigenfrequencies M, (t)=m,a(t)+O(e?). (28)

ith a small amplitudes<1 it will be useful to separate the
Ime dependence using

N 1 Since the time-dependence of the right-dominated modes is
less complicated than that of the left-dominated ones, it is
advantageous to exploit the antisymmetryMf , which also
1 c—b) , . implies an antisymmetry ah,,, . For the following calcula-
+m00f( nxwﬁ) Tn, 1T O 1), tions the coupling of the lowest left-dominated moge
=(1,1,1]) to some right-dominated one=(n,,n,,n,,r)
will be of special relevance. Theandz integrations simply

X

nx,lzm_mnnx,l

Qf = Ny 1 generate Kronecker symbols and therefore the geometry fac-
nrTc—b  2(c—b) Tr tor results as
1 b—a) , 3 c af}
* 4(c— b)CO s ””x’f+o( "I, i) My, =~ 51’ny51’n2fa dxf, da
(24)
P ( l)n b—aﬂﬁ r
n(—1)™\/——

which constitute a determining polynomial for; . Note that Ly TN c—b 0 )
the indexu = (n,,1/r) is a multi-index, where andr stand = b—al /p_az 17107
for left-dominated and right-dominated, respectively. How- (c—b)sin( ”xWTb n;f b -1
ever, it can be shown easily that the quality of the lin@ar ¢ ¢
7) approximation suffices already for moderate values of =0(7n). (29)

=50. The insertion of Eq(24) into the ansat£20) leads to

two classes of eigenfunctions: left-dominated and right- : -

dominated, respectively. The differences between those are D. Canonical quantization

clearly discernible in Fig. 3. Aiming at the calculation of possible particle creation ef-
In order to avoid the confusion arising from a set of per-fects (expectation values of particle number operatarss

turbation parametessy,,} we will introduce the fundamental convenient to introduce the creation and annihilation opera-

one via tors
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. 1 . . Evidently, this would imply that is close to the identity. On
a,(t)y= \/=0[02Qﬂ(t)+iP#(t)], (30 the other hand, in order to make an experimental verification
20, of quantum radiation feasible, the time-evolution operator
§hou|d deviate significantly from the identity. Therefore a
different approximation needs to be found. For the case of
[é (t),a‘r(t)]: 5 parametric resonance this may be accomplished via applying
" the rotating-wave approximatiqiRWA), see, e.g.,5,23,24.
Within this scenario the left boundary performs harmonic
oscillations obeyin@(t) =ay+ e(b—ag)sin(wt) with the di-
mensionless amplitudg5] e<1 and the external vibration
frequencyw during the time intervdl0,T]. This also implies
an oscillating time dependence of the frequency deviation
and coupling matrix

obeying the usual bosonic equal time commutation relation

[a,(1),a,(t)]=0,
[al(t),al(t)]=0. (31)

These operators diagonalize the free Hamiltonian

l:IO:Z

o

(32

0°lal(Ha (t)+1
m\ “u Iz 2

00 .
AQL(1) =20, —~E(b—ag)esin(wt) + O(?), (37)
0

The following calculations will most conveniently be done in )
the interaction picture where the dynamics of an observable M, (t)=m,,(b—ay)wecogwt)+O(e), (39

is governed byHo: see also Sec. Il C. Together with the trivial time dependence

dy P of the ladder operator§35) in the interaction picture this
) (33)  enables us to perform the RWA. Expanding the time evolu-
explicit tion operator(36) into an infinite series one can treat the

=i[H -
dt [ 0> ] ( ot

time-ordering terms in the following way: In analogy to
For reasons of generality and to include finite-temperature

effects we describe the state of a quantum system by a sta- TTEEOVE (1)T1= 0O (t,—tOTHL (1) . FL (t
tistical operator whose dynamics is determined by the von LHt)H(t)] (= tlHi(t2) Hi(t)]

Neumann equation +H,(t)H,(t,) (39
_A_ TR 34 one can rewrite all these terms to yield a multiple product of
dt I[H.p]. (34) Hamiltonians without time-ordering and terms involving

commutators with Heaviside step functions. In the resonance

Note that this equation without any explicit time dependencease, i.e., whera=20° the terms with commutators can

~ M
(dpl 9t) expicit l€@dS t0 @n unitary time evolution, see also Ref.yield nothing but strongly oscillating integranfis], as can

[5] and Sec. IV. also be seen by Fourier-expanding the involved Hamilto-
In this picture the time dependence of the creation andhians. With the duration of the perturbation being sufficiently
annihilation operators turns out to be long, i.e., withwT>1, the contribution of these terms to Eq.
A A e (36) will be comparably small. As a consequence, time
aM(t)=aMe"“ﬂt. (35 ordering can be neglected to all orders within the RWA.

The remaining integrals—without time ordering—
However, this trivial time dependence gives rise to the posfactorize and can be resummed to yield an effective time-
sibility of parametric resonance which enhances the chancesg,olution operator
to verify the effect of particle creation experimentally.
Further-on we will denote the initial creation and annihila- Uer(T,00=exp —iHLT), RWA, (40)

tion operators bya,(0)=a, . Note that in this picture the o _ o
particle number operatd¥,=a’a, is time independent for where the effective interaction Hamiltonian

all modes. -

H'eﬁTzf [H3(t)+HY(H)]dt, RWA, (41)
E. Rotating-wave approximation 0

In the interaction picture the time-evolution operator isstill has to be calculated. The above time integration involves
given by many oscillating terms. Again, with the duration of the vi-
T bration being sufficiently longT>1, i.e., after many oscil-
U(T,O)=§{exr{—if [AS)+AY(t)dt|,  (36) lations, the time-integrated interaction Hamiltonian can be
0 approximated in the following way: Since the time average
A of purely oscillating terms is rather small compared to that of
where 7; denotes time ordering. If the interaction Hamil- constant contributions we may neglect the former ones. As a

tonianH, leads to small corrections, the usual procedure is td’eSU“ in the series expansion of the time-evolution operator
apply perturbatlon theory via expanding the exponentlaIU(T 0) only those terms where the oscillation of the ladder
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O 00 L
Hlv:'E S | /Q—’gmwew(b—aO)COS(wt)[aL(t)az(t)
wv

kept. Strictly speaking, in the above equation terms of v

O(€'(wT)?) are neglected by the RWA if>J holds. The
terms withJ=K—i.e., exactly the terms in which the oscil-
lations of the creation and annihilation operat¢d$) are
compensated by the external time dependeﬂnﬁ(t) and
M ,,(t)—will be kept. (Note that terms withJ<K do not
occur)

The general squeezing interaction Hamiltonian reads

90°

7, €0~ a0)si@(@,)%(1)+(a,)*()

as g 1
A —g 5
+a,(Hal(t)+al(t)a,(t)]+0(e). (42)

Accordingly, within the RWA only the terms fulfilling the
squeezing resonance conditiofsee also, e.g., Refs.
[5,15,26,27),

=209, (43)

will be kept. In generalu can also be a right-dominated

mode, but note that in this case the effective squeezing

Hamiltonian would be oD(%?), since according to Eq24)
the right-dominated eigenfrequencies do not depend(on
up to O(#n). Therefore we will restrict ourselves to left-
dominated modeg. and among those in particular to the

lowest one, i.e., as commonly done we consider the case %

fundamental resonance

0=209,=207. (44)

From now on this mode will be abbreviated by the index
=(1,1,1]) throughout this publication. Consequently, by vir-
tue of

1(T . [
—f sin(wt)e*'“'dt=*

7/, 7 RWA, (45)

an effective squeezing Hamiltonian can be derived,

Ag=id@D?=(a)?], (46)
where¢ is given by
1 [aO)\?
¢= —eﬂo(— (47)
4"t QE

+al(Ha,(t)—a,(al(t)—a,(t)a,(t)]+O(e?).
(48)

However, the occurrence of intermode couplings now results
in a different resonance conditiqeee also Refg5,26])
0=[0%+07. (49)
Depending on the frequency spectrum of the cavity under
consideration this resonance condition might be fulfilled by

several pairgcv, but here we will assume for simplicity that
only one such pair exists. Though in any case via

1 (T

7,
an effective-velocity Hamiltonian can be derived, the follow-
ing two major distinctions should be made.

(a) @ coupling wzngmg. In this case one yields an
effective-velocity Hamiltonian given by

e
2 VoS

hich is a nondiagonal multimode squeezing Hamiltonian.
ote that if one wants to fulfill squeezing and velocity reso-
nance conditions simultaneously @2=w=09+09), the
number of possible combinations reduces significantly, since
then the velocity resonance condition cannot be fulfilled by
two distinct left-dominated modes. For reasons of brevity we
do not consider this case here.

(b) © coupling ©=05-09%. Here the resulting
effective-velocity Hamiltonian does not resemble a squeez-
ing but a hopping operator

0] [
507 Voo
QZ Ql

This coupling is of special interest since if one does not insist
on simultaneously fulfilling both resonance conditions—
parametric resonance might perhaps still be induced by
lower external frequencies=05—09<20° whose gen-
eration would be simpler in an experiment, see also Sec. V C.
In the case of simultaneously fulfilling both conditions sev-
eral combinations may arise.

(1) The frequencied)? both belong to either right- or
left-dominated modes. In Ref7] it has been shown that for
an ideal cavity with special dimensions, e.g., a cubic one, a

) 1
coq wt)e*'“tdt= > RWA, (50)

NP
Myzew(b—ag)(a;a;,—2a1ay),

. i
Hézg

(51)

N A At
Myew(b—ag)(a;a,—2a1a;).

(52

. i
H&=§

ObviouslyHZ; is a generator for a squeezing operator for thestrong intermode coupling can occur. In that case a much

model, with ¢ being the squeezing parameter.

smaller exponential particle creation rate has been found.

The same procedure can be applied for the velocity interTherefore in view of an experimental verification this case is

action Hamiltonian that reads in the vibration case

counterproductive and not considered here. Instead we pro-
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pose a cavity with transcendental ratios of the dimensionfied: In the rotating-wave approximation in Sec. Il E the in-
such that there is no resonant inter-mode coupling of similarteraction Hamiltonian simplified to

dominated modes. In any case such a coupling would cer- A A . N

tainly require large quantum numbers of the involved modes. Heg=1 g[(al)z—(a,_)z]Jr iX[a[aR—a,_aL], (57

(2) The frequencﬁg represents a right-dominated mode
and Q% some left-dominated mode, respectively. The lowestvhich implies for the time-evolution operator
possible right-dominated frequen@zzﬂg would then be R A
obtained whem29=0?. As an example, this case will be Ue(T,0)=exp(—iHeT),  RWA. (58)
considered here. We want to stress that the used methods aI[ﬁ . . :
nevertheless applicable to any possible combination of coul '€ Whole expression for computing the expectation value of
plings. an operator now becomes much simpler,

Note that the situation would be completely different in
1+1 space-time dimensions where—due to the equidistant
spectrum—the velocity term always contributes, see, e.g.,
Refs.[5,8-10,28—-30 The coupling right-dominated mode
fulfilling an,ny,nz,r=3QE will further-on be denoted with

the indexR=(n,,ny,n,,r). Accordingly, in our consider-
ations the velocity Hamiltonian reads

(Y(T))= Tr{Yex;{—l H +Heff)T]po

xexd +i(H3+HY)T]), RWA, (59

but since the correctiofZT is not small in the case of
interest, the above expression is still not practical for apply-
ing perturbation theory. Exploiting the smallness of the ve-
locity Hamiltonian it will prove useful to separate the two

with exd —i(AS+HAY) rl=exp —iASMa(7), (60

SL AT
Her=ix(alar—aLag), (33 Hamiltonians. This can be achieved with the ansatz
(b—ag)m (54) with o being an auxiliary operator. Differentiation with re-
oTLR spect tor yields a differential equation that can be solved for

o using the initial conditions-(0)=1. Introducing the pa-

be(i)n(g che vilogt{ ({Jarz)arrEeter (I)f trIIEe (gg’)s]tetmf ”Sin;ge rameter ordering’ in analogy to time orderingZ) the so-
=0(eQ?m_ g €Q?7) [see also Eq it follows | oo for o 1 the f
that /&= 0(n)<1 in the limiting case of a nearly perfectly ''"0" fof ¢ ¢an be castinto the form
T ~
exp(—ifo Hgﬁ(r)df) :

reflecting mirror[31]. This hopping operator is consistent R ~
with the visual picture of a semitransparent mirror. o(T)="1,
F. Response theory Here the squeezed effective velocity Hamiltonian has been
We assume our system to be initially in a state of thermaintroduced,
equilibrium that can be described by the canonical ensemble
A . exp(—pBHy)
p(t_o)_po_Tr{exp(—,BI:I N (59 which is now dependent on the parameteFurther we shall
0 denote squeezed operators by calligraphic letters. By insert-

with B denoting the initial inverse temperature. The expec- ing the above equations into the expectation vdk, one

obtains
tation value of an explicitly time-independent operatoat
timet=T is given by

=—EQO

(61)

HY(7)=exp(+iH S HYy exp(—iH 7). (62)

~ ~ T}\
(Y(T))=Tr[ y(T)TTexp( —i fo Hgﬁ(rl)drl)po
-

(Y(T))= Tr{Yp(T)} Tr(YTexp( f |(t1)dtl)

T
xﬁexp(ﬂ fo HYq(1,)d 7y } RWA. (63)
xTTeXp<+|f (15 dtz)] (56)
0 Please note that in this representation also the observables
R are squeezed,
WhereT;r denotes the antichronological operatanti time
ordering—for a more involved discussion, see, e.g., Ref. MMy =exp(+iHZT)Y exp—iHZT), (64)

[5].

If the interaction Hamiltonian represented a small correcbut here using the physical perturbation timé/Ne will refer
tion, one could expand the time-evolution operator into ato this picture as the squeezing interaction picture. Unfortu-
perturbation series yielding a series expansion(f¢T)).  nately, the parameter ordering is reintroduced by this proce-
However, for the resonance case this procedure is not justdure but as the advantage of these manipulations we are now
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able to expand the expectation vald4T)) into a perturba- NL(T)=é(T)NLST(T)=é(T)éI§T(T)§(T)éLé*(T)
tion series with powers df-{‘efﬁ. Keeping only terms to sec-

- e 1 .
ond order one finds ~[1+2 sinf(2¢T)Ja[a, + 5 sin4¢T)[(a])?

(Y(T)=Te{I(T) po}+Tr[3)(T)[po, fdnHeﬁ(n) } +(ay)2]+sinkR(2£T). (70)

- A A A For brevity we will denote the hyperbolic functions by
+Tr[ ) f d7yHen(71) po f A7, Mgl m]

C(T)=cosh2£T),
1
—ETr[ WTT, f dr HYe( 1) f dryH ff(TZ)pO] S(T)=sinh(2£T) (71)

S PN Ay gy throughout this paper.
- ETf[ y(T)PoTTJ dTlHeff(Tl)f droHer( Tz)]
B. Expectation values

"V \3
+O((Her)*), (65 Since we are mainly interested in the phenomenon of

quantum radiation and thus in the calculation of the cavity
particle content after a tim@ when the disturbance has
ended. Due to the dynamical disturbance the system leaves
the thermodynamic equilibrium, see also Ré&f. The qua-

lll. THE QUADRATIC RESPONSE dratic response of the expectation value of the particle num-

A. Squeezing ber operator can be calculated via substitufihg N in Eq.

According to the results of Sec. II F in the squeezing in-(69)- However, since the initial statistical operatpg in-
teraction picture both particle number operator and thevolves arbitrarily high powers ifily, it is practical to rewrite
effective-velocity Hamiltonian have to be squeezed. Thethe expression obtained from E@5). Utilizing the invari-
squeezing operator ance of the trace under cyclic permutation and the property

of time ordering,

which is now a practical expression for calculating expecta-
tion values.

S(7)=exp(+iHgm) =exp &l(a)’~(a))’]r)  (66) S A SR
{A),B(t)}+ =A(DB(t") +B(t")A(t)
implies the following well-known transformation rulésee,

e.g., Ref[32): =TMAMB)]+TTAMBE)], (72
bL()=58(r)a,S'(r)=a, cosh2ér)+a) singﬂ’(fm E:hoi\?exr?igﬁtﬁ{ci)?gvalue of interest can be cast into the more
b/ (r)=8(n)a]S'(r)=a] cosh2¢£7) +a, sinh2&7), - (N(T))=Tr{ﬁ/(T)f>0}+TrHif dTlﬂ\e/ﬂ(Tl)iﬂ/(T)};’O]

which can also be envisaged as a Bogoliubov transformation +Trr laof droHen(72) N(T)J d7iHen(71)

of the ladder operators. Due to the commutation relations

(31) modes other than the fundamental resonance rhate 1.
not affected by squeezing. Inserting the above expressions 590[ f dTlHeﬁ(Tl)J dryHgi(m2), N(T)}
into the effective-velocity Hamiltoniait53) one can easily
derive its squeezed counterpart +O((HY®). (73
HY(7)=S(1)HYS'(7) This form is now suitable for evaluating the traces since all
L commutators only concern a finite humber of creation or
=chosr(2§r)[a[aR—aLaE] annihilation operators. Thus the quadratic response can be
o brought in relation with the initial particle contents of the
+iysinh(2¢7)[a ag—alak]. (690 cavity (Bose-Einstein distributions

Note that the squeezed effective-velocity Hamiltonian is now o
dependent on the parameterand that it is still of O(y) ND=Tr{a/a po}= S0 (74
=0(7), which justifies a perturbationlike treatment. emi-1

The same can be done for the particle number operators

where again only the fundamental resonance mbie

=a/a, is affected,

NR=Tr{akarpo} = % : (79)
efRr—1
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where stands for the initial inverse temperature of the sys-Again the linear answer is vanishing. Fgre=0 there would
tem. These mean occupation numbers incorporate the whotet be any created particles in the reservoir due to the dy-
temperature dependence of the quantum radiation—as longamical Casimir effect corresponding to a perfect internal
as the back reaction of the field on the moving mirror can bamirror.

neglected. As we shall show later, the lowest-order tesm (It is remarkable that the coefficient ®? in (Ng(T))

=0) is in agreement with the results of an ideal cavity, asequals the coefficient dfi in (N, (T)). As we shall see in
was considered, for example, in Reff§,7]. Also, sinceHY;  Sec. V B, this feature is preserved to all ordersyin

contains only odd powers of creation and annihilation opera-
tors for a single mode, the linear response vanishes. Gener-
ally, every trace involving an odd power of ladder operators
vanishes and\ as well asp, do only contain even powers. In this section it is our aim to derive the associated master
Hence the last trace in Eq73) constitutes the quadratic equation for an effective statistical operator accounting for
answer. In contrast to an ideal cavity the terms with timethe left leaky subcavity or left-dominated modes, respec-
ordering are here especially important since they will betively. So far (3+1)-dimensional vibrating leaky cavities

IV. THE MASTER EQUATION APPROACH

found to produce leading-order terms. have only been treated in different setups—see, EB3g§l—
where the vibrating mirror is understood as(quantized
C. Particle creation harmonic oscillator coupled to the cavity fidlithe reservoir

Using the squeezed operato®9) and (70) it is now  OF with master equations adequate rather for stationary
straightforward to compute the commutators and the tracedyStems—see, e.g., Refl5]. It was assumed in Ref15]
in the expectation valué73). As a result one finds for par- that these master equations could also be applied when one
ticles in the fundamental resonance made of the boundaries was moving. The possibility of limitations
to that procedure as well as the need faigorous deriva-

(NU(T))=SAT)+[1+2S8*T)IN? tion of the master equation for resonantly excited systems
have already been expressed in R&g]. We want to derive
X2 ) such an equation starting from first principles. As a test we
+ 4_52[3C (T)=2C(T)—1-2£T8(2T)] will also solve the obtained master equation and recalculate
the quadratic answer for the left mode particles to compare
X2 with the previous results of Sec. Il C. To obtain a master
+ 4—52[46‘2(T)—ZC(T)—2—4§TS(2T)]NE equation we will closely follow the derivation given in Ref.
[32].
X2
+ 4_52[26 Z(T)_ ZC(T)]Ng"' O( 773)- (76) A. Derivation of a master equation

Throughout this section we will deploy the squeezing in-
As was anticipated, the lowest-order ter$*(T)+[1 teraction picture where not only the time dependence in-
+25%(T)INE Is in agreement with the results obtained in g,ceq by, but also the dependence resulting frét; is
Ref.[5] for an ideal cavity. The linear responéie 7) van-  getermining the operator time evolution. This procedure has
ishes. It might be of interest that the leading teffi®&(2T)  4ready been proposed in Sec. IIF. In this picture the time

in the quadratic answer stem from the time ordering which iSyyo1ytion of the statistical operator is governed by a modified
therefore very important. One can see that at long disturyon Neumann equation

bance timesT these leading terms show the failure of the

guadratic approximation since the particle number would be- 5’3(0 ) . o

come negative at some point. This is due to the fact that Eq. e —'[Hveﬁ(t),p(t)]= —iL(t)p(t). (78
(73) is a perturbation series iff,HY;(t)dt which will always

become large at some timE This problem can only be . . . N
solved by including all orders imy, see also Sec. V. The above equation defines the action of the Liouvillian su-

Of course Eq(73) can also be applied to the correspond—pefopefamf@ on p (see also Ref[34]). By defining the
ing coupling right-dominated mod@vhose particle number projection super operatdp via
operator is invariant under squeezinghere one finds

0o X, BY = pr(0) Trr{ ¥} (79
(NR(T))=Ng+ 4—§2[20 (T)—2¢(T)+1]

for all observablesY, where Tk means taking the trace
2 0 solely over the right dominated modes we can introduce a
[2C7(T) = 2C(T)IN. reduced density operator accounting for the left-dominated
modes only,

X2

+ —_
482

2

X 0 3
—[—2C(T)+2]Ng+O . 7 ~ ~

+4§2[ (D +2]Ng+O(77). (77 pL()=Tre{p(t)}. (80)
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By combining the above equations it can be sh¢@2j that

the dynamics of the full statistical operatoiis governed by
the Zwanzig master equation

Aaﬁ(t)_ T QO ta ’ T\ QL+ VN (t! ’
P =BV Oil(t,t )(1—P)L(t")Pp(t")dt
—iPL)A(t,0(1—-P)p(0) —iPLM)Pp(1),
(81
where
~ ~ t ~
u(t,t')zexp( —i(1—q3)f S(t”)dt”) (82)
t!

PHYSICAL REVIEW A66, 023812 (2002

(a) Born approximationSince£=O(7) one can approxi-
mate the reduced time-evolution operator \igt,t')=1
+0(7). This neglects terms aD(%°) if inserted into Eq.
(87) and yields

IPp(t)
o :—mmfs(t )Pp(t)dt' +0(7°). (88)
By employing the reduced density operatos, (t)

=Trr{p(t)} one can equivalently write

apy(t)
ot

~ t/\ ~ ~
_TrR{ £(1) foﬁ(t')PR(O)PL(t’)dt,} +0(7°).
(89

is the reduced time-evolution superoperator. The Zwanzid his equation governs the time evolution of the effective

master equation is exact to all orders snbut usually too

complicated to be solved. However, assuming an initial ther-

mal equilibrium state and taking into account that initially j
our system and reservoir do not inter@ab correlationg it
can be simplified considerably:
(1) In analogy to the argumentation concerning the van-
ishing of the linear response in Sec. IlI B it follows that
Tral Henpr(0)} =0, (83)
since Y contains only odd angg(0) only even powers of

the creation and annihilation operators for the m&dé his
can equivalently be written as

BEOPp(t)=0. (84)
(2) In our setup the initially stationary systefstationary
walls) does not permit interactions between system and re

ervoir, since bottM ,,(to) andAQ?(t,) will vanish. Conse-

qguently, assuming thermal equilibrium, system and reservoir

initially constitute independent subsystems that cannot b
correlated, i.e., the initial statistical operator of the cavity
modes factorizes

statistical operatop, accounting for the left cavity.
(b) Markov approximationThe retardation in Eq(89),

i.e., the occurrence qf (t'), complicates the calculation of
p.(t). Iterative application of Eq(89) implies thatp, (t’)

pL(t)+O(772) Accordingly, we apply the Markov ap-
proximation, which is also known ashort memory approxi-

mation simply by replacmg)L(t )—>p|_(t) on the right-hand

side. Sincell=0(7) we thereby neglect terms &f( %) and
obtain the Born-Markov master equation

fokl) __ TrR[ ftf:(t)ﬁ(t’)ﬁa(o)h(wdt’} +O(7°),
ot 0

(90)

thus having maintained the level of accuracy.
Using the definition of the Liouville operatog in Eq.

{78) one can equivalently write

apu(t)

+
o Trg

. Hei(D)pr(0)pL (1) f Hyg(t)dt! }

~ t/\ ~ ~
- TVR[ Her(t) fOH\e/ﬁ(t,)dtIPR(O)PL(t)} +H.c.

po=p(0)=pL(0)®pg(0), (85 +0( 7]3)_ (92)
hence one find$with TrR{f)R}zl) Finally, having evaluated both traces and after having per-
formed thet’ integrations with the aid of Eq69), one ob-
(1—§3)f>(0):0. (86)  tains the following master equation:
These assumptions yield a simplified Zwanzig master 7pL(t)
equation P Y g J ot =fy(t)[2a]p (t)a —a.alp () —pL(Daya/]
IPp(t) +f(O[2a p (ha] —ala p (1) —p(D)ala]
S :—ma)f (L) &) Bp(t)dt, (87 N
+fs(t)[a p(t)a +a p(t)a]

which is exact but still too complicated to be solved.
In order to gain a solvable equation, below we apply fur-
ther approximations.

—f40[(@))2p (1) +pL(t)(a)?]

—f5(t)[(a)2p () +pL(D)(@))Z]+O(7%), (92
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where the functiong;(t) are given by B. Approximate solution of the master equation
2 So far we have neglected terms @f »°). The functions
fi(t)= ;—S(t){C(t)(ZNEpL 1)— N%— 1}, f(t) are already oD(#%?) which makes it possible to main-
§ tain the level of accuracy by applying the additional approxi-
2 mation p,(t)~p. (0) on the right-hand side of Eq92),

fo(t)= X—S(t){C(t)(ZN%Jr 1)— Ng}, whic_h cquld also bg envisageq as an additional Markov_ ap-

2¢ proximation. Accordingly, one is now able to yield a solution
2 for p, ,

_X 2 200y 0
fa(t) 25{6 () +S=(t)—C(t)}(2Ng+ 1), 5T =0 (0)

2 Atz A _ A~ ats _ - A At

Fo(t)= ;—g{[cz(t%l—é‘z(t)—C(t)]Ng+Cz(t)—C(t)}, +Fi(T[2a.p (0)a —a,a p(0)—pL(0)a a ]

+Fa(T)[2a,pL(0)a] —ala p(0)—pL(0)a/a, ]
2 ~ ~ ~ ~ ~ ~

fo(t)= ;—g{[cz(t)JrSz(t)—C(t)]NngSZ(t)}. (93 +F3(T)[a]pL(0)a] +a p (0)a ] —Fy(T)

X[(a])?pL(0)+p,(0)(a,)?
Via averaging over the degrees of freedom of the reservoir L@ (0)+p(0)(@)]

and by applying the Born-Markov approximation we have _F5(T)[(éL)2;)L(O)+;)L(O)(éb2]
now rigorously derived a differential equation for an effec- .
tive statistical operato,?sL(t) accounting for the leaky cavity. +0(7°), (98)

This effective statistical operator obeys a nonunitary time . T . . . -
evolution (changing entropy There are several possibilities Wit Fi(T) =/ofi(t)dt. Given this effective statistical opera-
to check the obtained master equation: As the simplest tes{@r for the leaky cavity one is now able to calculate the

one can verify that the time evolution presenj@s] the number of created particles in all left-dominated modes.
hermiticity and the trace q?ﬁ Note that for considering the right-dominated modes one
L.

SN L would have to derive a statistical operator for the reservoir.
A better indication for a correct master equation is the fact P

that if one takes the limit of no squeezing, i.e., in this cou-

pling £—0, the resulting equation corresponds to a harmonic C. Particle creation

oscillator coupled to a thermal bath: With Since we were working in the squeezing interaction
picture—where the observables have to be squeezed—the
;imofl(t)=X2tNo : (94 expectation value of the particle number operator reads
fm ()= 2t (NO+ 1), (95 (NL(T)=Tr{NL(T)p(T)}. (99)
£-0 Left-dominated modes other than the fundamental resonance
] modelL are trivial to solve: Due to the commutation relations
é'i':)fi=3,4y5(t)=0v (96) (31) their ladder operators commute with those of the reso-

nance mode.. This implies (due to the invariance of the
trace under cyclic permutationthat all higher-order traces
must vanish and one just yields the trivial result of their
initial occupation numbers. Inserting the approximate re-

one arrives at a simplified equation

~ o 0
% = yD%[ZéEEJLéL—éLéEﬁL—f)LéLét] duced density operator obtained in E§8) as well as\
into the above equation, one can see immediately that zeroth
Ng+1 o and first order iny agree with the previous results but show-
+yDT[ZaLpLaE—aIaLpL—pLaIaL]+O(7;3). ing this for the second order is a bit tedious. After some

algebra one finally finds a complete agreement that the pre-
(97)  vious result found in Eq(76) of Sec. IlIC, thus giving a

) . ~strong indication for the validity of our master equation
Apart from the time dependence of the damping coefficientyithin the RWA approach.

Yo=2x°t, the above equation is exactly the well-known
master equation for a harmonic oscillator coupled to a ther-
mal bath, see, e.g., Rf36].

The time dependence QID is a remnant of the dynamic In Ref. [14] the effects of losses are taken into account by
master equation describing the time-dependent system in tiegeneralized version of the simple master equation ansatz
unphysical limité— 0. However, in order to have a stronger 4G
indication for the correctness of our ansatz we want to solve T T T T S o
the master equatiof®2) explicitly. gt e HI T[Zapa’r—a*ap—pa*a]. (100

D. Comparison with other results
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However, as we have observed in the previous calculationsn contrast to the previous sections, here the full time depen-

this master equation does not adequately describe the leaknce is shifted back on the operatér Since Y can be
cavity under consideration. o expressed using creation and annihilation operators and due
(@) Itis restricted to the case where the initial state of theto unjtarity of the time-evolution operator, one just has to

reservoir is just the vacuum state and therefore does not iffind a solution for the full time dependence of the ladder
clude temperature effects. This has been taken into accouBperators which is given by

in Ref.[15].
(b) In addition, even the master equation for an harmonic éU(T):e+iﬁLﬁTéUe—iﬁ'eﬁT_ (103
oscillator in a thermal batf36],
~ - The above expression requires special care to evaluate, since

dp A AN I N A~ . . .
—=i[p,H]+ —yD[Zana—aa*p—paaT] HLﬁ is not a pure squeezing generator. In our considerations
at 2 Y ) o T
the effective interaction Hamiltonian is time-independent,
n+1 o which does not necessarily hold in general. To preserve gen-
+ TyD[ZapaT— a'ap—pa'a], (101)  erality we will therefore introduce an auxiliary parameter

while keeping the timé fixed. This enables us to write

cannot be assumed to describe the system correctly. Even if
one identifies the HamiltoniaH in the above equation with

the effective sque_ezing _Hamiltoni&mesﬁ, this master equa- Obviously we are interested ig.g(-r)zag(,_«}:l)_ To this
tion goes along with serious problems since the Markov apend we define a four-dimensional column vectsee also

proximation is not justified anymore. This complication re- Ref. [7]),
flects the inherent dynamic character of our system. As we

ao—( 19) _ e-lel LﬁTﬂéa_e— iI:ILﬁTﬁ. (104)

have shown in Sec. IV A the complete master equation re- a ()
sembles the above equation only in the limit of no squeezing R é’[(f})
¢—0—see Eq(97)—and even then with a time-dependent x(9)=| . . (105
damping constanyp, . . ar(%)
Instead, the complete master equat{®g) displays more k()

similarities to one in a squeezed thermal bath where one has

to replace the parameters by time-dependent functions. A%inceﬂ'ﬁ does not depend off, one finds

cordingly, the dynamical system under consideration is de- €

scribed properly only by an explicitly time-dependent master dx

equation. = =IT[Hep, X(9)]=TAX(9), (106)
Potential limitations to Eq(100 have already been an- do - -

ticipated in Ref[15].
whereA is a number-valued 4 by 4 matrix acting BnThis
V. THE NONPERTURBATIVE APPROACH form can always be reached if the effective Hamiltonian is
_ _ guadratic: The commutation relatiori31) lead to a linear
The previous results in Secs. Il C and IV C have not beercombination of creation and annihilation operators that can
able to explain the behavior of the system in the limit of aalways be written as a number-valued ma#iacting onx.
long-lasting disturbance. The leading-order teF$(2T) in  gjnceA is independent of the solution is obtained via
Eq. (76) has a negative sign that would lead to negative -
particle numbers for large disturbance tinTesThis problem

can only be solved by including all orders i In this sec- X(9)=expAT#)x(0) (1079
tion we present a nonperturbative approach within the RWA nd hence

which enables a convenient calculation of expectation valueé1

by using computer algebra systefi$]. As a further advan- ):((1):qu€\_|_)):((0): L_J(T)>:<(0). (108

tage, we want to mention that it can in principle be general-
ized in a straightforward way to the case of more than jus

two coupling modes as was assumed in Sec. I E. tl'hus the whole problem reduces to a calculation of the time-

evolution matrix U(T)=exp(AT). In the present case the

A. Time evolution structure ofH ¢ in Eq. (57) implies a very simple form oA,
Application of the RVYA in Sec. IIAE yielded the effective 0 26 y O
time-evolution operatot) ;4= exp(—iHLT) with the effec- 26 0 0 y
tive interaction Hamiltoniar{(57). We want to calculate the A= (109
expectation value of an observabfe B -x 0 00
0O —-x 0O

<Y(T)> — Tr{Qe*il:lLﬁT;)OeJriI:iLﬁT}:Tr{eJril:lLﬁT?e*”:lleﬁT;)O}. - -
(102 The four eigenvalues oA are given by
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A= E+HVE— X2 =x,(T)X,(T) andNg(T)=X4(T)X5(T) can be calculated sim-
ply by insertion ofx(T). After evaluation of the remaining

e |22 -

Aa=¢— V¢ ' traces containing only the initial creation and annihilation
_ 722 operatorsx;(0) one finds the full response function to be a

€t Ve ' combination of matrix elements &f(T),
Ng=—E—VE— 2 110
STENEX MO T = (Ui Usdog) + (Ui Us o (ND)
For reasons of brevity we shall omit the full listing of the

Y g +(U13U s+ U10U 53 (NR) (111

matrix U(T)=exp(AT)—it can easily be calculated using

some computer algebra system. Note that the exponentiaind

matrix U(T) is positive definite for allT and thus will not 0
= - NR(T))= (U4 Uzt Uz4U3) + (U Uzt U4 U3 (N

exhibit the problems associated with the extrapolation of the (NR(T))=(UaUsot Usdlag) + (Ul s+ UaiUs)(NL)

used approximations of Secs. Ill and IV beyond their range +(UggUgut U43U34)<N%>_ (112
of validity. In order to calculate expectation values one just
needs the matrix elements &f(T). This becomes evident B. Particle creation

considering the time evolution of the new annihilation and With the full knowledge ofU we are now in a position to

creation  operators x(T)=U(T)x(0), ie. x(T) state the full response function of the particle number opera-
—24 1U.,(T)XJ(O) Therefore the expectation values of par- tor. Having inserted the matrix elementsWfinto Eq. (111)

t|cIe number operators of the resonance modggT) one finds after performing some S|mpI|f|cat|ons

<NL(T)>—4(§2 {fcosFEZT(%Hfz DI+ VE— X1+ Ecosti2T(é— V& — X)) [ VE—x7]
—2x%costi2TE]—2(&2— x*)}
No

2(52 {SCOSVEZT(H VE— X E+VE -

+£cost 2T (- VE2— x?)1[ é— V&2 — x2]— x? cosi 2T £][cosh 2T /&2 — x?) + 11}

0

2(52 {X cosh 2T ][ cosh2T VE2— x?) —1]}. (113

This result is valid to all orders i/ or 5, respectively. To show consistency with the results obtained in Sec. Il C and Sec.
IV C we expanded the above expression aroyhé=0 up to second order and found complete agreement with( ).
However, even for large values gf £=1/2 the quadratic approximation is a rather good one—provided that the duration of
the disturbancd is not extremely large—as one can see in Fig. 4.

Doing the same calculations for the corresponding right-dominated mode one finds as a result,

1
(Ne(T))= 3, {E costizT(e+ VE— X6 VE - xT+ Ecos2T(6— V2= x) [ 6+ V€ — x*] - 2¢” cosli2T¢]

4(¢
—2(8- x>}
NO
2(52 {x cosh2T&][cosh2TVéE2— %) —1]}
0
2(52 {SCOSWZT(HVS2 OIE—VE— X1+ Ecosh2T (- VE8 = X)) [E+VE— X*]
— x2 cosh2T¢][cosH 2T V&%= x?) + 1]}, (114
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FIG. 4. Particle creation in the fundamental resonance mgde OF|G' 5. Fz)artlcle creation in the right resonance madde for
for N9=1000, N3=100, =1 Hz, andy=0.5 Hz. An exponen- NL=1000,Ng=100, ¢&=1 Hz, andy=0.5 Hz. The lowest order
tial growth is found in all cases. result just corresponds to a constant initial particle number. Gener-
ally the particle creation in the reservoir is a much smaller effect

. . than in the leaky system, see also Fig. 4.
where the remarkable agreement of coefficientsN@f in Yy g

(N.) and ofN? in (Ng) as was already noticed in Sec. IlI C _ _
is preserved for all orders ip. These terms fit the classical ~ NOté that withy/¢=0(z) this also leads to an upper
picture of particle transportation through the leaky mem-bound for the internal mirror transmittanag above which
brane where the particle flux is proportional to the number(corresponding to a highly transparent mijrone finds os-
ofparticles on the other side. Again, expanding aroyhg  Cillations that correspond to intermode coupling rather than
=0 up to second order yields exact agreement with(£g. 0 System-reservoir coupling. From another perspective this
Accordingly, also outside the leaky cavity particles are pro-Phenomenon could also be envisaged as follows: Starting
duced due to the dynamical Casimir effect, see also Fig. 5With an ideal cavity whose original dimensions do not permit
Note that at least the quadratic answer is necessary to treffiermode coupling, one can insert a highly transparent mir-
particle creation effects outside the leaky cavity. The asfor (#>1). This mirror in turn detunes the ideal cavity in
sumption is still valid that the finite-temperature correctionsSuch a way that it now permits intermode couplings as well.
will enhance the pure vacuum phenomenon of particle pro- It is remarkable that in Fig. 6 the phase of the two modes

duction by several orders of magnitud&or a direct com- is shifted: Wher(N, (T)) is at its maximum, theqNg(T)) is -
parison see Fig. 7 in Sec. VI)I. at its minimum and vice versa. This fits nicely with the pic-

ture of mode hopping mediated by the intermode coupling
One even observes a decrease in the particle number In the
C. Further remarks mode for small times. When defining an effective tempera-
We have derived a complete solution for the effective in-ture[5] this would correspond to an effective cooling of the
teraction Hamiltonian57), which is valid to all orders in L mode. An extreme case of this consideration would be the
x!£=0(7). As an illustration, we consider a case outsidelimit of no squeezing, i.e.{=0. This would correspond to
our initial intentions wherey/¢ also assumes large values, the possibility(see also Sec. Il Eof not fulfilling the squeez-
e.g., x/é=1. In this case the arguments of the hyperbolicing but the velocity resonance condition. Performing the
functions in Egs(113) and (114 will receive an imaginary limit £—0 everywhere in Eqs(113) and (114 one would
part. The arising imaginary parts ¢N(T)) cancel out as find pure oscillations of the particle numbers and no expo-
they have to becaudd is a physical observable. Thus one nential growth at all. This case is therefore counterproductive
finds that if the velocity parametey exceeds the critical for an experimental verification. Note, however, that this is

value y= ¢ the particle occupation number of the resonancedr:ﬁerenlt_ for thelcaTe 3@ couplmhg. The (I:on_S|ster?cy with
modes versus the vibration time will exhibit oscillations. Of ("€ earlier results leads us to the conclusion that our ap-

course, for the case of a nearly perfectly reflecting mirrofProach was justified and the full response function should
inside this scenario is completely unrealistic since thyé# describe the rate of particle production correctly within the

=0(»n) will be relatively small. However, this case is not at RWA. .

all academic: If the labdR stood for a left-dominated mode, Please T‘Ote that the _descrlbed procedure also holds for
which is the case we excluded from our considerations so f Ic;.rlff thaﬂ Just two couplmgd_n_]odes.. i one gas, ??gEnogesf

and whose equivalent for ideal cavities has been considerdd'""Ing the resonance conditions given in Sec. Il E, the for-

in Ref. [7], x/¢ may very well become large, sinag, 5 g1al(|js_,m St.'” TOIdSt an%fone Wll'lh have tct’. def'r;i a
would then be 0O(1). n-dimensional vectox. course them creation an

Similar oscillations of the particle number were also @nnihilation operators of these resonance modes will be con-

found in the case of strong intermode coupling in an ideafained in the Hamiltonian and therefore alkaas well asU
cavity [7]. will be 2n by 2n matrices. The calculations will simply be-
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30000 - T T T , I : multiple scale analysi€MSA) as proposed in Ref7] to our
- 1 scenario of a leaky cavity, see als6]. For this purpose we

250001 - restrict to the results, since the steps in R¢#37] can
I I strictly be followed—see also the Appendix. The main dif-
20000 ference in these considerations is that we use the eigenfunc-
N tion system of Sec. Il C instead of those of an ideal cavity
15000 and that we assume the additional deviatjbh6)—see also
I Ref. [37].
10000 In analogy to Sec. V A, one obtains a matl_fd( governing
5000 the time evolution of the ladder operators,
! a
% 05 ] 15 2 -
At
T[s) ) al
- . . X'= : (117)
FIG. 6. Oscillations of the particle number in the resonance - aR/\/g
modes N, and N for N°=1000, N3=100, £&=1 Hz, and x
=11 Hz a;/\/§
come more involved but can certainly be performed, e.g., byrhe creation of quanta will only be exponential—and thus
means of computer algebra systems. noticeable if at least one of the eigenvalues of the matrix,
VI. DETUNING A’
So far we have assumed an exact fulfilment of the reso- 0
. : X . . ; iQ 2
nance conditions, i.e., the vibration of the left cavity wall did Lo ¢ \/§X 0
match exactly twice the fundamental resonance frequency 2¢ —iQE& 0 \/§X
Q7. However, in real situations one will of course have to ~ 00 '
. o ) i - 0 iQ(36—A 0
deal with deviations from this desired external frequency X/\/§ L( )
since it will not be possible to match it with arbitrary preci- 0 —X/\/§ 0 —iQ‘L’(sa—A)

sion. In addition, the back reaction of the created quanta
might cause the external vibration frequency to change. does have a positive real part. Note that the slight disagree-
Consequently, we will now discuss the detuned situament between the above matrix and the one given in Ref.
tion—where w assumes slightly off-resonant values. For a[37] is caused by the usage of a different phase (sin instead
review of detuning effects see, e.g., R§%11,15,37. It has  of cos). With the abbreviations
been shown in the literature that there exist threshold values
for 'ghe def[uning, above which the exponential creation of L{=8§2—4X2+12(98)26A—2(QE)ZA2—20(QE)252
particles disappears.
Unfortunately the RWA used in our previous consider- 4
ations cannot simply be generalized to this situation. For a
slight deviation from the resonance conditions in E@sl)
and(49) the terms with time ordering—see Sec. l[E—are no V=1 16£%(£2— x?) +B64(O0)? 7 £2+ x*+ (Q])?6°]
longer negligible in this way. 0N2 A 2r e £2 ) 002 2 024 2
We will consider slightly off-resonant situations, where +(QL)AT8E +4x"+ 520 )76%+ () "A7]
the external vibration frequency does not match the funda- 0\2 5 2 0\2 2 05242
mental resonance exactly, ~A(QD)7OA[1267+ 8x "+ 24(Q2 )67+ 3(2)"A"],
(118
=200(1+6), 11
@ L ) (119 the eigenvalues of the above matrix reatl [7,37])
where 6 denotes a smal(dimensionless deviation 6<1.
However, if one considers such a variance it is only conse- 1
quent to including a possible discrepancy of the coupling >x=t§v1ﬁ2ﬁ2. (119
resonance as well, cf37]
As a consistency check we may sétA=0, where the
Q%:QE(:H-A), (116 eigenvalues reduce to the ones given in Ed.0. On the
other hand, fory=0 one recovers the usual result of pure
where A<1 denotes the deviation of the coupling right- squeezing in an ideal cavity = * \/454—92,_52.
dominated mode from thé&-coupling resonance condition Note that in contrast to Ref$7,37] the intermode cou-
with the fundamental resonance mode. We will adapt theling and thus the parametegr is very small y<<¢. This
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enables us to expand the quantifieand) into powers ofy. 50000 o, o .
The condition for a real eigenvaldé+ 2\ V>0 reads T i et
10000 L——_T=300K .
]
482+ 02 5A - 402 52 ]
OPP<agi-2————————————*+0(xY. 30000 § H
4¢&°—Q76°+ Q7 (36—A) N | H /
(120 L ; p 1
20000 4 of o
Sincey is supposed to be smagli<¢ one obtains a signifi- I /
cant contribution only if $~A and also in this case merely 100001 / =
in the immediate vicinity of the critical value &= Q4. . &
Consequently, the presence of an internal mirror of moderate 0 L einzznt =i
quality does not drastically modify the threshold 0 0.005 ,19-‘[’;] 0.015 0.02
1 Qf 2 FIG. 7. Comparison of particle production in the fundamental
5<§ 5| € (121 resonance mode at finite temperature and without temperature ef-
Qp fects. At room temperature800 K) the initial occupation numbers

) ) ) ) result in NE: 240 anng: 80. Accordingly, squeezing and velocity
for exponential particle creation. However, we would like t0 parameters are given k=150 Hz andy=2 mHz. At room tem-
emphasize that the shifts of the eigenfrequencies of the caywerature the particle number reaches significant values much faster.
ity due to the partly permeable internal wall must be taken

into account, see also Sec. IX below. sustain the external oscillations over an interval of several
milliseconds. At room temperature @#300 K one finds
VIl. SUMMARY the initial particle occupation numbers to b ~240 and

We have considered a massless scalar quantum field irNRmSO' Using the above values the squeezing parameter is

side a leaky cavity modeled by means of a dispersive mirrold€termined to b&~150 Hz. _ _

For the case of the lossy cavity vibrating at twice the funda- AS the quality factoiQ of a resonator is defined ¢88]
mental resonance frequency, we derived an effective Hamil-

tonian using the rotating-wave approximation. Within the

framework of response theory the magnitude of particle cre- Q=2m i
ation due to the dynamical Casimir effect was calculated. (energy loss per period
Furthermore, we deduced the corresponding master equation

via applying the Born-Markov approximation. We found a gne finds as a classical estimate yields for our system
discrepancy to the master equations used so(dae Ref.
[15]) to describe oscillating leaky cavities. We also applied a
nonperturbative approach for the explicit calculation of the
time evolution starting from the effective Hamiltonian. All Q=——=27
these methods were found to lead to consistent results. In 7]
addition, the effects of a detuned external vibration fre-

quency need to be taken into account. T denotes the transmission amplitude through the internal

It turned out that for the case of moderately low transmis-gispersive mirror ang was defined in Sec. Il. AssumingQ@
sion coefficientgor sufficient quality factorsthe rate of cre-  actor of Q~1C [14] (and references thergirihis would
ated particles is almost the same as for ideal cavities. Thgnnly for the corresponding perturbation parameter
squeezing of the fundamental resonance mode as well as th—eﬂf/y=0(10*4). With these values, a reasonable velocity
strong enhancement of particle production due to the dy: arameter could be given by~2 mHz.

namical Casimir effect are preserved in the presence of trans- The particle content of the leaky cavity is depicted in
parent mirrors. Fig. 7.

(energy in cavity

(122

2

o) . (123

772

VIIl. DISCUSSION

In order to illustrate reasonable magnitudes let us specify
the relevant parameters: A cavity with a typical size/of
=1 cm would have a fundamental resonance frequency of >
98%150 GHz, i.e., the corresponding coupling right-
dominated mode must have a frequency of alf@fit=30"
~450 GHz. According to Ref.15] we assume a dimension- FIG. 8. Sketch of a vibrating cavity enclosed by a larger one.
less vibration amplitude~10"8. Consequently, in order to This configuration may facilitate the experimental verification of
create a significant amount of particles one would have tahe dynamical Casimir effect inside the smaller cavity.

detector
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IX. CONCLUSION Typically the spacing between two neighboring right-

. . . I dominated modes is dD(1/L), i.e., the inverse of the char-
According to the above considerations it is necessary Qcteristic length of the reservoir. On the other hand, the

vibrate several milliseconds in order to produce measurablﬁlidth of the resonance peak is 6 1/T). Consequently, if
effects. As already stated, a cavity at finite temperature mighghe duration of the disturban@e(1 mg exceeds the cha}ac—
even be advantageous—provided the cavity is still nearlyq istic length of the reservoitwhich is the case fol
ideal at its characteristic thermal wavelength. However, even- 105 ) thenn is certainly small enough.

after only one millisecond (fOperiods a classical estimate
based on a quality factor dp=10° would indicate drastic
energy losses. On the other hand, our calculations based on a ) ) )
complete quantum treatment show that the effects of losses SO far, we have considered a noninteracting, massless,
are almost negligible compared to the rate of particle cre@nd neL!traI scalar field. The next lste.p could b_e to extend the
ation as long ag;<1. This leads to the conclusion that lower calculations to the electromagnetic field. In this case several

cavity quality factors than proposed [15], e.g.,Q=1¢°  new difficulties arise. o , ,

[implying 7=0(10"3)] would already completely suffice to (_l) The b_o!mdaW conditions cannot just S|mp_ly be de-
justify our approximationg16]. Such quality factors are Scribed by Dirichletor Neumaniconditions. Especially for
within the reach of the current experimental status. Of coursdovVing 'walls th?'.r form will be more complicated due to
our calculations are based on the assumption that the larg&MPere’s law(mixing of E andB). -

cavity—including both the reservoir and the leaky cavity—is  (2) AS the electromagnetic field is a gauge theory, one has
perfectly conducting. The error made by this presumption idC €liminate the unphysical degrees of freedom in order to
of O(Q2) and therefore certainly negligible. Consequently,qu?mt'ze it. _Agaln, for dynamic external conditions this re-
the experimental verification of the dynamical Casimir effectdUires special care, see, e.g., R@b].

could be facilitated by a configuration where the vibrating. (3) The d|frerer_1t polarizations o_f photons needto b? taken
cavity is enclosed by a slightly larger one as is demonstratef!lC account, which are of special interest concerning the

o - ; o Ifillment of the resonance conditions.
in Fig. 8. A further important resuftL6] of our investigations ' . ) .
is the shift of the cavity eigenfrequencié@4) of O(7) According to Ref.[38] the eigenmodes of the stationary

=0(10 ), which needs to be taken into account in order tocav?t_y can be divided if“o .TE and TM ”‘Od?s- For several
make an experimental observation of quantum radiation feac_gwnes(rectangular, cyImdncaI, spherigahe elgenfrquen-
sible. cies are well-known. This enables one to determine the
squeezing part of the interaction Hamiltonian.

In order to deduce the velocity Hamiltonian it will be
necessary to find an appropriate model for the dispersive
mirror. This can be achieved by using a thin dielectric slab
A. Multimode Coupling with a high permittivity: e(x)=1+ y5(x). As has been

. shown for a stationary system in R¢fL7] this leads to a
In Sec. IIE we assumed that only one of the rlght-Similar eigenvalue equation as E@3).

dominated modes fulfills the resonance condition for the ve-""c "o =0 i o6 e created field quanta some detect-

lr?(;:\;\t/)évgﬁnyrl]tgnrlsgérl\f).i’r i);&\l/(ii[tly tz\év(?omg(sjelzra:eer C&Léplsdéclifr’]ing device will have to be placed inside the cavity, e.g., an
' Y ger, b tom. However, the detector will always influence the cre-

between different levels of its spectrum decreases so th% ed field as well. A simple approach for the modeling of a

eventually more than just one right-dominated mode begin t?wo-level system has been provided|[it0,2d. In addition,

couplg—at Iea;t within_the range of detuning. In this case th?he nonadiabatic parametric modulation of the atomic Lamb
effective-velocity Hamiltonian would constitute a sum of shift—as has been considered [#0]—must be taken into

single two-mode coupling Hamiltonians as the one in Eq'account, since it will cause excitations of the atom as well.

fSS)V;b%;sgcgggs::/geéoirndgere;tirzlggécmc\)/dg&t.hgz, L?e:((:j.ratic Note that the induced quantum field will also excite the
nswer i moletel Hici gﬁtf r .n bl’ val q 6t internal degrees of freedom of the cavity mirrors—an alter-

answer 1S completely sutlicient for reasonable valueg 4 nate description of losses should therefore also take the en-

Inserting the aforementioned sum of Hamiltonians into the

. . . —ergy dissipation of the losses within the mirrors into account,
guadratic answer one observes that the mixing terms vamsglee e.g., Ref41]

Since the effective velocity Hamiltonian only contains odd Future work combining all these effects is of immense

powers of the creation and an_nlh_llat|on operators per mOdei‘mportance regarding experiments on quantum radiation us-
one can only obtain a nonvanishing trace if it involves two;

: .~ ing the dynamical Casimir effect.
operators of the sam@ight) mode. Therefore the quadratic 9 y
answer also decomposes into a sum of contributions each
accounting for one right-dominated mode. Hence we expect

the general structure dfN_(T)) to persist—just substitute  The authors are indebted to A. Calogeracos for fruitful
x*—=x? in the leading contribution39]. In order to en-  discussions. R.S. acknowledges financial support by the Al-
sure the applicability of the perturbative treatment the numexander von Humboldt foundation and by the NSERC. The
ber n of coupling right-dominated modes has to be smallauthors acknowledge financial support by BMBF, DFG, and
enough to satisfi® x?/ £2~ny?/ £2<1. GSI.

B. Electromagnetic field

X. OUTLOOK
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APPENDIX: MULTIPLE SCALE ANALYSIS Qﬁn)(t)-i-(QE)ZQ(kn)(t)
Starting with the Lagrangiaf3) it is straightforward to aQO
show that the field operator fulfills a modified wave equation - _ (n)
200 —— aL, Lyesin(Qt)QyV(t)
{O+2V(r;t)}e(r,t)=0. (A1)

—02sin( Q1) > g QM(t)
J

If one now follows[7] by introducing ladder operators via _
the expansion +2e0 cos{Qt)z gka,-(n)(t)
i

2
e(r,Hy=> alu,(r,t)+H.c., (A2) +eO(f) +0(€%). (A7)

This equation completely resembles the one found in Ref.
[7]. Note, however, that we have to use the shifted eigenfre-
where quencies and the eigenfunctions for leaky cavities. An ap-
proximate solution—for a more detailed discussion see Ref.
[7]—can be obtained via introducing a new time scale

Up(r,t<0)= fn(r)e—iﬂﬁt' (A3) = et and inserting the formal expansion
QA (1)=Q(t, 1)+ Q" (t,7)+0(e?)  (A8)
B with the unknown function®{"®? into Eq. (A7). Finally,
A1 t>0)= )f(r:t), (A4) . )
one has to sort in powers @f To lowest order one finds a

free harmonic oscillator that can be solved by

one can derive a time evolution equation for the coefficients

(MOt 7= AM( 7 et BM( 7)o i
Qg(1t). Using the propertieg5) of the eigenfunctions one Q7 (L =AC (e + B (r)e T (A9)

obtains The next-order termgproportional toe) yield a driven har-
monic oscillator equation fa@{" ™) with the eigenfrequency

. 0

QR (M +2ZMQAD (M) i,

. . . 220MA) 1 (0920M@)
=200 2 g QO +A X gmQl"(V wQi T (07

0

A = —202Q" 0201,
TN 2 kgm QU (DN 2 LegrQ(b),
’ C02ai AMO)
(A5) Q sm(m); 9k Q'
where N (t)=L,(t)/Ly(t) and L (t)=c—a(t) in our sce- +2Q cos{m); 9k QM. (A10)

nario. The antisymmetric coupling,,, is defined via

In order to keep the expansi@A8) convergent, the above
oscillator must not be at resonance. Consequently, all terms
proportional to expiQ)y %)—with k being the particular
mode of interest—on the right-hand side have to cancel. By
imposing these conditions for the mo#éte=L and for the

and is therefore related to the geometry faatfy, via gmk  coupling modek=R and inserting the frequency deviations
=—L,my. Note that compared to Rdf7] the last term in

W(r)d®r (AB)

iy J
Gmi X cavnyal—

Eq. (A5) constitutes a slight modification, since in our sce- 0=200+h=200+e€a, (A11)
nario the coupling between different modes may depend on
the cavity parameters, see also E2P). However, this dif- QO 30 +H:3QE+6,31 (A12)

ference is of minor relevance, since all these terms are ac-

companied by a factor ok?(t). If one assumes periodic one finds four linear and coupled evolution equations for the
oscillations of the cavityL,(t)=L, 1+ esin@Qt)+ef(t)],  coefficientsA{"(7), B"(7), AL (7), and BY(7). These
these terms can be neglected if the amplitedesmall.(The  equations are—apart from the different couplings and the
auxiliary functionf(t) is chosen to meet the continuity con- additional deviationH—virtually identical with those pre-
ditions onL,(t), see also Refl7].) Consequently, one can sented in Ref[7]. Having applied the modified phase trans-
expand Eq(A5) in powers ofe<1 to yield formations
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A" (7)=et e 2(" (1), (A13)
B{"(7)=e 1@ (7), (A14)
AR (7)=e"Sla2g 17D (1), (A15)
B (r)=e a2 1B ( 1), (A16)

it is straightforward to rewrite these equations in matrix
form:

A0\ e

d | by bi”

d- alm =M am | (A17)
o) L

PHYSICAL REVIEW A 66, 023812 (2002

M
—iza Y1 Y2 0
Y1 +i2a 0 Y2
) ~ 3 0 —iz(:«m—zﬁ) 0
0 - 0 +i7(3a—2/3)

The quantitiesyy,y,,v3 have been introduced for conve-
nience,

L, 9Q 1 (Q)9)?2

Y1=5 0Lx~_§—QE , (A18)
202+ h)(2Q2+H—h/2)

= ~2009,r,

Y2 ZQE gLr LILR
(A19)

(2Q2+h)(2Q2+h/2) 2Q Y2

V3= 2(SQE+H) OLrR 3 LILR 3"
(A20)
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