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Dynamical Casimir effect in a leaky cavity at finite temperature

Gernot Schaller,1,* Ralf Schützhold,1,2 Günter Plunien,1 and Gerhard Soff1

1Institute for Theoretical Physics, Dresden University of Technology, D-01062 Dresden, Germany
2Department of Physics and Astronomy, University of British Columbia, Vancouver, B. C., Canada V6T 1Z1

~Received 21 December 2001; revised manuscript received 21 March 2002; published 16 August 2002!

The phenomenon of particle creation within an almost resonantly vibrating cavity with losses is investigated
for the example of a massless scalar field at finite temperature. A leaky cavity is designed via the insertion of
a dispersive mirror into a larger ideal cavity~the reservoir!. In the case of parametric resonance the rotating
wave approximation allows for the construction of an effective Hamiltonian. The number of produced particles
is then calculated using response theory as well as a nonperturbative approach. In addition, we study the
associated master equation and briefly discuss the effects of detuning. The exponential growth of the particle
numbers and the strong enhancement at finite temperatures found earlier for ideal cavities turn out to be
essentially preserved. The relevance of the results for experimental tests of quantum radiation via the dynami-
cal Casimir effect is addressed. Furthermore, the generalization to the electromagnetic field is outlined.
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I. INTRODUCTION

Since the pioneering work of Casimir@1# the phenomena
of quantum field theory under the influence of external c
ditions have attracted the interest of many authors, see,
@2#. The original prediction by Casimir, i.e., the attractiv
force generated between two perfectly conducting mirr
placed in the vacuum, has been verified in different exp
mental setups with relatively high precision@3#. However, its
dynamic counterpart with nonstationary boundary conditio
inducing interesting effects such as the creation of partic
out of the vacuum has not yet been observed rigorously
corresponding experiment. The observation of quantum
diation could provide a substantial test of the foundations
quantum field theory and thus be of special relevance. G
erally we understand the term quantum radiation to den
the conversion of virtual quantum fluctuations into real p
ticles due to external disturbances. For the special case o
external disturbances being moving mirrors this phenome
is known as the dynamical Casimir effect.

These striking effects have been investigated by sev
authors, for an overview see, e.g., Refs.@2,4# and references
therein. We will focus on the effect of particle creatio
within a constructed—resonantly vibrating—leaky cavi
This case is of special importance for an experimental v
fication of the dynamical Casimir effect since the generat
of particles is enhanced drastically by resonance effects.
ploying different methods and approaches it has already b
shown for ideal cavities~see, e.g., Ref.@5#! that under reso-
nance conditions~i.e., when one of the boundaries perform
harmonic oscillations at twice the frequency of one of t
eigenmodes of the cavity! the phenomenon of parametr
resonance~see, e.g., Ref.@6#! will occur. In the case of an
ideal cavity~i.e., one with perfectly reflecting mirrors! this is
known to lead to an exponential growth of the resona
mode particle occupation numbers, cf. Refs.@5,7–11#.

In view of this prediction an experimental observation
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quantum radiation using the dynamical Casimir effect a
pears to be rather simple—provided the cavity is vibrating
resonance for a sufficiently long period of time. Howev
this point of view is too naive since neither ideal caviti
exist nor is it possible to match the external frequency to
fundamental eigenfrequency of the cavity with arbitrary p
cision. Consequently, it is essential to include effects of le
as well as effects of detuning, see also Ref.@12#.

Investigations concerning effects of losses have been
formed, for example, in Ref.@13# in 111 space-time dimen-
sions based on conformal mapping methods as develope
Ref. @14#. However, these considerations area priori re-
stricted to 111 dimensions and cannot be obviously gen
alized to higher dimensions. In 311 dimensions the charac
ter of the mechanism generating quantum radiation—e
the resonance conditions—differs drastically from the~1
11!-dimensional situation.

More realistic@~311!-dimensional# cavities were consid-
ered in Ref.@15# where the effects of losses were taken in
account by virtue of a master equation ansatz. However,
master equation had not been derived starting from first p
ciples. It has already been noted in Ref.@15# that the em-
ployed ansatz is adequate for a stationary cavity—but
necessarily for a dynamic one. In addition, most papers
not include temperature effects—which may contribute s
nificantly to an experiment. It has been shown in Ref.@5# that
for an ideal cavity the effect of particle production at fini
temperature is enhanced by several orders of magnitud
comparison with the pure vacuum contribution.

In this paper we will adopt the canonical approach th
has proven to be general, successful, and is—in additio
also capable of including temperature effects. However,
aforementioned approach still lacks a generalization for s
tems with losses. We are aiming at providing a remedy
this field @16#.

This paper is organized as follows: In Sec. II we presen
model system and derive the effective Hamiltonian for t
resonance case. In Sec. III we will calculate the number
created particles in the cavity after one of the walls has p
formed resonant oscillations by means of response theor
©2002 The American Physical Society12-1
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Sec. IV we will derive and solve the associated master eq
tion and show consistency with the results obtained in S
III. In Sec. V a nonperturbative approach is presented
compared with the other results. We derive a thresh
condition—valid for leaky cavities—for a possible detunin
from the fundamental resonance in Sec. VI . We shall cl
with a summary, a discussion, a conclusion, and an outlo

Throughout this paper natural units given by\5c5kB
51 will be used.

II. GENERAL FORMALISM

A. The leaky cavity

We want to investigate the effects of a nonideal cavity
view of the dynamical Casimir effect. For that purpose
have to construct a suitable model system. One simple
to do that is to insert a dispersive mirror into an ideal cav
while keeping all other walls perfectly reflecting. There
two leaky cavities are formed. Particles in the left imperfe
cavity are now able to penetrate into the right larger box~the
reservoir!. For reasons of simplicity we consider a rectang
lar cavity as depicted in Fig. 1. The setup in Fig. 1 is no
new idea. A similar—but static—system has already be
treated in Refs.@17,18#. However, here, in addition, the le
wall is moving with a prescribed trajectory during the tim
interval @0,T#. For ideal cavities this is known to lead to
squeezing of the vacuum state which causes the creatio
particles inside the cavity, see, e.g., Ref.@5#.

Note that we are assuming a finite reservoir with a d
crete spectrum instead of an infinite one leading to a c
tinuum of modes. Since, in an experimental setup, the vib
ing cavity will most likely be surrounded by walls, et
~imposing additional boundary conditions!, this assumption
should be justified.

Assuming a surrounding perfectly reflecting wall is a fi
idealization of the real situation. However, in order to min
mize the error obtained by this procedure the experim
could be designed in this way, see also Fig. 8 in Sec.
below.

The ideal mirrors can be simulated by infinitely high p
tential walls inducing Dirichlet boundary conditions. For th
additional dispersive mirror we use thed-type model poten-
tial proposed in Refs.@19,20#

V~x;t !5H gd~x2b! if a~ t !,x,c,

` otherwise
~1!

FIG. 1. Model of a leaky cavity. A large ideal cavity is split u
by a dispersive mirror into a leaky cavity and a reservoir. The
~ideal! wall of the cavity is vibrating.
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see also Fig. 2. The parameterg represents the transmittanc
of the internal mirror, whose reflection and transmission a
plitudes are determined as@18#

R52
ig

v1 ig
, T5

v

v1 ig
. ~2!

Note that the general procedure presented in this articl
independent of the particular form of the potential—t
aforementioned one has just been chosen for convenie
For a more realistic scenario one could apply square-wel
Gaussian potentials. In a realistic experiment where
would want to create photons instead of scalar particle
dispersive mirror could be realized using a thin dielect
slab with a very high dielectric constant. Such a mirror cou
then be approximated by a space-dependent permitti
«(x)511ad(x). This will be addressed in Sec. X B.

B. Hamiltonian

Throughout this article we will use the notation of Re
@21# where the particle production in an ideal vibrating ca
ity was calculated—for a more general treatment see, e
Ref. @22#. We consider a massless and neutral scalar fi
coupled to an external potential:

L5
1

2
~]mF!~]mF!2VF2. ~3!

The perfect mirrors can be incorporated by imposing the c
responding boundary condition onF. By expanding the field
F,

F~r,t !5(
m

Qm~ t ! f m~r;t !, ~4!

into a complete and orthonormal set of functionsf m(r;t)
satisfying

E d3r f m* ~r,t ! f n~r,t !5dmn , ~5!

(
m

f m* ~r;t ! f m~r8;t !5d3~r2r8!, ~6!

$2V2D% f m~r;t !5Vm
2 ~ t ! f m~r;t !, ~7!

t FIG. 2. Diagram of thex dependence of the used potential.
2-2



in

io
nd

di
m

o
on

es

ng
il
to

t of

ing
n-
ion

-

our

d

he
atz

ns

on-

a-
en

ote
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one can reach a more convenient form suitable for do
calculations. SinceF is a real field, we can choose the setf m
to be real. Note that the time dependence of eigenfunct
and eigenfrequency is solely induced by the moving bou
ary. Inserting this expansion into Eq.~3! transforms the La-
grangian into@21#

L5E d3rL5
1

2 (
m

Q̇m
2 2

1

2 (
m

Vm
2 ~ t !Qm

2

1(
mn

QmMmn~ t !Q̇n1
1

2 (
mnk

QmMmk~ t !M nk~ t !Qn ,

~8!

whereMmn(t) is an antisymmetric matrix given by

Mmn5E d3r
] f m

]t
~r;t ! f n~r;t !. ~9!

This matrix describes the coupling strength between two
ferent modes. We introduce the canonical conjugated
menta

Pm5
]L

]Q̇m

5Q̇m1(
n

QnM nm~ t !. ~10!

Furthermore, we apply the usual Legendre transform t
Hamiltonian representation and perform the quantizati
This yields

Ĥ5
1

2 (
m

P̂m
2 1

1

2 (
m

Vm
2 Q̂m

2 1(
mn

P̂mMmnQ̂n . ~11!

The above Hamiltonian can be subclassified into

Ĥ5Ĥ01ĤI
S1ĤI

V , ~12!

where the single Hamiltonians are given by

Ĥ05
1

2 (
m

P̂m
2 1

1

2 (
m

~Vm
0 !2Q̂m

2 , ~13!

ĤI
S5

1

2 (
m

DVm
2 ~ t !Q̂m

2 , ~14!

ĤI
V5(

mn
P̂mMmn~ t !Q̂n . ~15!

The deviationDVm
2 (t)5Vm

2 (t)2(Vm
0 )2 denotes the differ-

ence of the ~squared! time-dependent eigenfrequenci
Vm

2 (t) from the unperturbed ones (Vm
0 )2. The first termĤ0 is

the Hamiltonian of harmonic oscillators. The remaini
terms will further on be called squeezing interaction Ham
tonian and velocity interaction Hamiltonian. We want
point out that in the case of a static system~where the eigen-
functions f m and eigenfrequenciesVm are constant in time!
the complete interaction HamiltonianĤI5ĤI

S1ĤI
V will van-
02381
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ish. The derivation of the eigenfunctionsf m(r,t) andMmn(t)
will be treated in the following section.

C. Eigenmodes

As has already been mentioned, we want to find a se
functions satisfying $2V(r;t)2D% f m(r;t)5Vm

2 (t) f m(r;t).
Any time dependence can only be induced by the mov
boundaries. At first we will just consider the spatial depe
dence, i.e., the stationary problem. The differential equat
can be treated using the separation ansatzf m(r)
5 f m(ri) f m(r'), where f m(ri) depends only on the coordi
nate parallel to the wall velocity andf m(r') is dependent on
the perpendicular coordinates. For the special case of
model system this meansf m(r)5 f m

x (x) f m
y (y) f m

z (z) leading
to the trivial y andz dependence of the eigenfunctions

f m
y ~y!5A 2

Dy
sinFnyp

Dy
yG , Vm

y 5
nyp

Dy
, ~16!

f m
z ~z!5A 2

Dz
sinFnzp

Dz
zG , Vm

z 5
nzp

Dz
, ~17!

with Dy and Dz denoting the dimensions of the cavity an
the frequencies relating via

Vm
2 5~Vm

x !21~Vm
y !21~Vm

z !2. ~18!

The remaining differential equation reads

$2gd~x2b!2]x
2% f m

x ~x!5~Vm
x !2f m

x ~x!, ~19!

where the Dirichlet boundary conditions coming from t
perfect mirrors on either side can be satisfied by the ans

f m
x ~x!5H Lm sin@Vm

x ~x2a!# if a,x,b,

Rm sin@Vm
x ~c2x!# if b,x,c,

0 elsewhere.
~20!

The eigenfunctions have to obey the continuity conditio
@19#

f m
x ~x↓b!2 f m

x ~x↑b!50, ~21!

] f m
x

]x
~x↓b!2

] f m
x

]x
~x↑b!52g f m

x ~b!, ~22!

where the latter can be obtained via integration. These c
ditions can be combined to an eigenvalue equation forVm

x ,

2
2g

Vm
x

5cot@Vm
x ~b2a!#1cot@Vm

x ~c2b!#52
2

hm
.

~23!

Though there is no obvious analytical solution of this equ
tion, a numerical solution can always be obtained for giv
cavity parameters$a,b,c,g%. However, via introducing the
dimensionless perturbation parameterhm5Vm

x /g it is also
possible to obtain an approximate analytical solution. N
2-3
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that this parameter is smallhm!1 in the limit of the internal
mirror being nearly perfectly reflecting. Since the trigon
metric functions are very sensitive to small frequency va
tions one can solve the equation using a series expansio
hm . It is obvious that if the right-hand side goes to2` one
of the addends or even both can become relevant. This
pends on the ratio (b2a)/(c2b) and its inverse both o
which are assumed to be noninteger numbers in the foll
ing nonperturbative calculations implying that only one
the addends is dominating. Accordingly, expanding arou
the poles of one addend one yields a polynomial that can
solved forVm

x as a series expansion inhm!1. Depending on
the chosen addend one obtains two sets of approxim
eigenfrequencies

Vnx ,l
x 5

nxp

b2a
2

1

2~b2a!
hnx ,l

1
1

4~b2a!
cotS nxp

c2b

b2aDhnx ,l
2 1O~hnx ,l

3 !,

Vnx ,r
x 5

nxp

c2b
2

1

2~c2b!
hnx ,r

1
1

4~c2b!
cotS nxp

b2a

c2bDhnx ,r
2 1O~hnx ,r

3 !,

~24!

which constitute a determining polynomial forVm
x . Note that

the indexm5(nx ,l /r ) is a multi-index, wherel and r stand
for left-dominated and right-dominated, respectively. Ho
ever, it can be shown easily that the quality of the linear~in
h) approximation suffices already for moderate values og
>50. The insertion of Eq.~24! into the ansatz~20! leads to
two classes of eigenfunctions: left-dominated and rig
dominated, respectively. The differences between those
clearly discernible in Fig. 3.

In order to avoid the confusion arising from a set of p
turbation parameters$hm% we will introduce the fundamenta
one via

FIG. 3. Illustration of the lowest left- and right-dominate
eigenmodesf 1,r / l

x (x) for h1,l50.1.
02381
-
-
in

e-

-
f
d
e

te

-

-
re

-

h5h1l5
V1l

x

g
, ~25!

to which all others are evidently related viahm5Vm
x /V1l

x h.
Note that this distinction between the classes of eigenfu
tions is applicable only for small values ofh.

Consequently, the eigenfunctions can be labeled by mu
indices m5(nx ,ny ,nz ,r / l ): three quantum numbersnx,y,z
PN1, and a flagr / l denoting the class~right- or left-
dominated, respectively! of the eigenfunction. Now we wan
to consider the effect of one moving boundary. It is tak
into account by substitutinga→a(t) everywhere in the
eigenmodes and -frequencies. Thereby a time dependen
the eigenfunctions as well as of the eigenfrequencies is
troduced. This induces a nonvanishing coupling mat
Mmn(t) as well as the frequency deviationDVm

2 (t). For
small oscillations of the boundary

a~ t !5a01e~b2a0!sin~vt ! ~26!

with a small amplitudee!1 it will be useful to separate the
time dependence using

Mmn~ t !5ȧ~ t !E d3r
] f m

]a
~r;t ! f n~r;t !5ȧ~ t !mmn~ t !.

~27!

The geometry factormmn(t) is approximately constan
mmn(t)5mmn1O(e) in this case. Consequently, one is le
to

Mmn~ t !5mmnȧ~ t !1O~e2!. ~28!

Since the time-dependence of the right-dominated mode
less complicated than that of the left-dominated ones, i
advantageous to exploit the antisymmetry ofMmn which also
implies an antisymmetry ofmmn . For the following calcula-
tions the coupling of the lowest left-dominated modem
5(1,1,1,l ) to some right-dominated onen5(nx ,ny ,nz ,r )
will be of special relevance. They andz integrations simply
generate Kronecker symbols and therefore the geometry
tor results as

mm,n52d1,ny
d1,nz

E
a

c

dx fm
x

] f n
x

]a

5

d1,ny
d1,nz

nx~21!nxAb2a

c2b

Vnxr
x

V1l
x

~c2b!sinS nxp
b2a

c2bD Fnx
2S b2a

c2bD 2

21G h1O~h2!

5O~h!. ~29!

D. Canonical quantization

Aiming at the calculation of possible particle creation e
fects ~expectation values of particle number operators! it is
convenient to introduce the creation and annihilation ope
tors
2-4
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âm~ t !5
1

A2Vm
0 @Vm

0 Q̂m~ t !1 i P̂m~ t !#, ~30!

obeying the usual bosonic equal time commutation relati

@ âm~ t !,ân
†~ t !#5dmn ,

@ âm~ t !,ân~ t !#50,

@ âm
† ~ t !,ân

†~ t !#50. ~31!

These operators diagonalize the free Hamiltonian

Ĥ05(
m

Vm
0 S âm

† ~ t !âm~ t !1
1

2D . ~32!

The following calculations will most conveniently be done
the interaction picture where the dynamics of an observa
is governed byĤ0:

dŶ

dt
5 i @Ĥ0 ,Ŷ#1S ]Ŷ

]t
D

explicit

. ~33!

For reasons of generality and to include finite-temperat
effects we describe the state of a quantum system by a
tistical operator whose dynamics is determined by the
Neumann equation

dr̂

dt
52 i @ĤI ,r̂ #. ~34!

Note that this equation without any explicit time dependen
(]r̂/]t)explicit leads to an unitary time evolution, see also R
@5# and Sec. IV.

In this picture the time dependence of the creation a
annihilation operators turns out to be

âm~ t !5âme2 iVm
0 t. ~35!

However, this trivial time dependence gives rise to the p
sibility of parametric resonance which enhances the chan
to verify the effect of particle creation experimentall
Further-on we will denote the initial creation and annihi
tion operators byâm(0)5âm . Note that in this picture the
particle number operatorN̂m5âm

† âm is time independent for
all modes.

E. Rotating-wave approximation

In the interaction picture the time-evolution operator
given by

Û~T,0!5T̂t expF2 i E
0

T

@ĤI
S~ t !1ĤI

V~ t !#dtG , ~36!

where T̂t denotes time ordering. If the interaction Ham
tonianĤI leads to small corrections, the usual procedure i
apply perturbation theory via expanding the exponent
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Evidently, this would imply thatÛ is close to the identity. On
the other hand, in order to make an experimental verificat
of quantum radiation feasible, the time-evolution opera
should deviate significantly from the identity. Therefore
different approximation needs to be found. For the case
parametric resonance this may be accomplished via appl
the rotating-wave approximation~RWA!, see, e.g.,@5,23,24#.
Within this scenario the left boundary performs harmon
oscillations obeyinga(t)5a01e(b2a0)sin(vt) with the di-
mensionless amplitude@25# e!1 and the external vibration
frequencyv during the time interval@0,T#. This also implies
an oscillating time dependence of the frequency deviat
and coupling matrix

DVm
2 ~ t !52Vm

0
]Vm

0

]a0
~b2a0!e sin~vt !1O~e2!, ~37!

Mmn~ t !5mmn~b2a0!ve cos~vt !1O~e2!, ~38!

see also Sec. II C. Together with the trivial time depende
of the ladder operators~35! in the interaction picture this
enables us to perform the RWA. Expanding the time evo
tion operator~36! into an infinite series one can treat th
time-ordering terms in the following way: In analogy to

T̂t@ĤI~ t1!ĤI~ t2!#5Q~ t22t1!@ĤI~ t2!,ĤI~ t1!#

1ĤI~ t1!ĤI~ t2! ~39!

one can rewrite all these terms to yield a multiple product
Hamiltonians without time-ordering and terms involvin
commutators with Heaviside step functions. In the resona
case, i.e., wherev52Vm

0 the terms with commutators ca
yield nothing but strongly oscillating integrands@5#, as can
also be seen by Fourier-expanding the involved Hami
nians. With the duration of the perturbation being sufficien
long, i.e., withvT@1, the contribution of these terms to E
~36! will be comparably small. As a consequence, tim
ordering can be neglected to all orders within the RWA.

The remaining integrals—without time ordering—
factorize and can be resummed to yield an effective tim
evolution operator

Ûeff~T,0!5exp~2 iĤ eff
I T!, RWA, ~40!

where the effective interaction Hamiltonian

Ĥeff
I T5E

0

T

@ĤI
S~ t !1ĤI

V~ t !#dt, RWA, ~41!

still has to be calculated. The above time integration involv
many oscillating terms. Again, with the duration of the v
bration being sufficiently longvT@1, i.e., after many oscil-
lations, the time-integrated interaction Hamiltonian can
approximated in the following way: Since the time avera
of purely oscillating terms is rather small compared to that
constant contributions we may neglect the former ones. A
result, in the series expansion of the time-evolution opera
Û(T,0) only those terms where the oscillation of the ladd
2-5
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SCHALLER, SCHÜTZHOLD, PLUNIEN, AND SOFF PHYSICAL REVIEW A66, 023812 ~2002!
operators is compensated by the external vibration
represented byDVm

2 (t) and Mmn(t), respectively—will be
kept. Strictly speaking, in the above equation terms
O„e I(vT)J

… are neglected by the RWA ifI .J holds. The
terms withJ5K—i.e., exactly the terms in which the osci
lations of the creation and annihilation operators~35! are
compensated by the external time dependenceDVm

2 (t) and
Mmn(t)—will be kept. ~Note that terms withJ,K do not
occur.!

The general squeezing interaction Hamiltonian reads

ĤI
S5(

m

1

2

]Vm
0

]a0
e~b2a0!sin~vt !@~ âm!2~ t !1~ âm

† !2~ t !

1âm~ t !âm
† ~ t !1âm

† ~ t !âm~ t !#1O~e2!. ~42!

Accordingly, within the RWA only the terms fulfilling the
squeezing resonance condition~see also, e.g., Refs
@5,15,26,27#!,

v52Vm
0 , ~43!

will be kept. In general,m can also be a right-dominate
mode, but note that in this case the effective squeez
Hamiltonian would be ofO(h2), since according to Eq.~24!
the right-dominated eigenfrequencies do not depend ona(t)
up to O(h). Therefore we will restrict ourselves to lef
dominated modesm and among those in particular to th
lowest one, i.e., as commonly done we consider the cas
fundamental resonance

v52V111l
0 52VL

0 . ~44!

From now on this mode will be abbreviated by the indexL
5(1,1,1,l ) throughout this publication. Consequently, by v
tue of

1

TE0

T

sin~vt !e6 ivtdt56
i

2
, RWA, ~45!

an effective squeezing Hamiltonian can be derived,

Ĥeff
S 5 i j@~ âL

†!22~ âL!2#, ~46!

wherej is given by

j5
1

4
eVL

0S VL
x0

VL
0 D 2

. ~47!

ObviouslyĤeff
S is a generator for a squeezing operator for

modeL, with j being the squeezing parameter.
The same procedure can be applied for the velocity in

action Hamiltonian that reads in the vibration case
02381
f

g

of

e

r-

ĤI
V5

i

2 (
mn
AVm

0

Vn
0
mmnev~b2a0!cos~vt !@ âm

† ~ t !ân
†~ t !

1âm
† ~ t !ân~ t !2âm~ t !ân

†~ t !2âm~ t !ân~ t !#1O~e2!.

~48!

However, the occurrence of intermode couplings now res
in a different resonance condition~see also Refs.@5,26#!

v5uVm
0 6Vn

0u. ~49!

Depending on the frequency spectrum of the cavity un
consideration this resonance condition might be fulfilled
several pairsmn, but here we will assume for simplicity tha
only one such pair exists. Though in any case via

1

TE0

T

cos~vt !e6 ivtdt5
1

2
, RWA, ~50!

an effective-velocity Hamiltonian can be derived, the follow
ing two major distinctions should be made.

(a) % coupling. v5V1
01V2

0. In this case one yields an
effective-velocity Hamiltonian given by

Ĥeff
V 5

i

8 SAV1
0

V2
0
2AV2

0

V1
0D m12ev~b2a0!~ â1

†â2
†2â1â2!,

~51!

which is a nondiagonal multimode squeezing Hamiltonia
Note that if one wants to fulfill squeezing and velocity res
nance conditions simultaneously (2VL

05v5V1
01V2

0), the
number of possible combinations reduces significantly, si
then the velocity resonance condition cannot be fulfilled
two distinct left-dominated modes. For reasons of brevity
do not consider this case here.

(b) * coupling. v5V2
02V1

0. Here the resulting
effective-velocity Hamiltonian does not resemble a sque
ing but a hopping operator

Ĥeff
V 5

i

8 SAV1
0

V2
0
1AV2

0

V1
0D m12ev~b2a0!~ â1

†â22â1â2
†!.

~52!

This coupling is of special interest since if one does not in
on simultaneously fulfilling both resonance conditions
parametric resonance might perhaps still be induced
lower external frequenciesv5V2

02V1
0,2VL

0 whose gen-
eration would be simpler in an experiment, see also Sec. V
In the case of simultaneously fulfilling both conditions se
eral combinations may arise.

~1! The frequenciesV i
0 both belong to either right- or

left-dominated modes. In Ref.@7# it has been shown that fo
an ideal cavity with special dimensions, e.g., a cubic one
strong intermode coupling can occur. In that case a m
smaller exponential particle creation rate has been fou
Therefore in view of an experimental verification this case
counterproductive and not considered here. Instead we
2-6
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pose a cavity with transcendental ratios of the dimensi
such that there is no resonant inter-mode coupling of simi
dominated modes. In any case such a coupling would
tainly require large quantum numbers of the involved mod

~2! The frequencyV2
0 represents a right-dominated mod

andV1
0 some left-dominated mode, respectively. The low

possible right-dominated frequencyV25VR
0 would then be

obtained whenV1
05VL

0 . As an example, this case will b
considered here. We want to stress that the used method
nevertheless applicable to any possible combination of c
plings.

Note that the situation would be completely different
111 space-time dimensions where—due to the equidis
spectrum—the velocity term always contributes, see, e
Refs. @5,8–10,28–30#. The coupling right-dominated mod
fulfilling Vnx ,ny ,nz ,r53VL

0 will further-on be denoted with

the indexR5(nx ,ny ,nz ,r ). Accordingly, in our consider-
ations the velocity Hamiltonian reads

Ĥeff
V 5 ix~ âL

†âR2âLâR
† !, ~53!

with

x5
1

4
eVL

0SAVR
0

VL
0
1AVL

0

VR
0 D ~b2a0!mL,R ~54!

being the velocity parameter of the system. Sincex
5O(eVL

0mL,R)5O(eVL
0h) @see also Eq.~29!# it follows

thatx/j5O(h)!1 in the limiting case of a nearly perfectl
reflecting mirror @31#. This hopping operator is consiste
with the visual picture of a semitransparent mirror.

F. Response theory

We assume our system to be initially in a state of therm
equilibrium that can be described by the canonical ensem

r̂~ t50!5 r̂05
exp~2bĤ0!

Tr$exp~2bĤ0!%
, ~55!

with b denoting the initial inverse temperature. The exp
tation value of an explicitly time-independent operatorŶ at
time t5T is given by

^Y~T!&5Tr$Ŷr̂~T!%5TrH ŶT̂t expS 2 i E
0

T

ĤI~ t1!dt1D r̂0

3T̂ t
†expS 1 i E

0

T

ĤI~ t2!dt2D J , ~56!

where T̂ t
† denotes the antichronological operator~anti time

ordering!—for a more involved discussion, see, e.g., R
@5#.

If the interaction Hamiltonian represented a small corr
tion, one could expand the time-evolution operator into
perturbation series yielding a series expansion for^P(T)&.
However, for the resonance case this procedure is not ju
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fied: In the rotating-wave approximation in Sec. II E the i
teraction Hamiltonian simplified to

Ĥeff5 i j@~ âL
†!22~ âL!2#1 ix@ âL

†âR2âLâR
† #, ~57!

which implies for the time-evolution operator

Ûeff~T,0!5exp~2 iĤ eff
I T!, RWA. ~58!

The whole expression for computing the expectation value
an operator now becomes much simpler,

^Y~T!&5Tr$Ŷ exp@2 i ~Ĥeff
S 1Ĥ eff

V !T#r̂0

3exp@1 i ~Ĥeff
S 1Ĥ eff

V !T#%, RWA, ~59!

but since the correctionĤeff
S T is not small in the case o

interest, the above expression is still not practical for app
ing perturbation theory. Exploiting the smallness of the v
locity Hamiltonian it will prove useful to separate the tw
Hamiltonians. This can be achieved with the ansatz

exp@2 i ~Ĥeff
S 1Ĥeff

V !t#5exp~2 iĤ eff
S t!ŝ~t!, ~60!

with ŝ being an auxiliary operator. Differentiation with re
spect tot yields a differential equation that can be solved f
ŝ using the initial conditionŝ(0)51. Introducing the pa-
rameter orderingT̂t in analogy to time ordering (T̂t) the so-
lution for ŝ can be cast into the form

ŝ~T!5T̂tFexpS 2 i E
0

T

Ĥeff
V ~t!dt D G . ~61!

Here the squeezed effective velocity Hamiltonian has b
introduced,

Ĥeff
V ~t!5exp~1 iĤ eff

S t!Ĥeff
V exp~2 iĤ eff

S t!, ~62!

which is now dependent on the parametert. Further we shall
denote squeezed operators by calligraphic letters. By ins
ing the above equations into the expectation value~59!, one
obtains

^Y~T!&5TrH Ŷ~T!T̂t expS 2 i E
0

T

Ĥeff
V ~t1!dt1D r0

3T̂ t
†expS 1 i E

0

T

Ĥeff
V ~t2!dt2D J , RWA. ~63!

Please note that in this representation also the observa
are squeezed,

Ŷ~T!5exp~1 iĤ eff
S T!Ŷ exp~2 iĤ eff

S T!, ~64!

but here using the physical perturbation timeT. We will refer
to this picture as the squeezing interaction picture. Unfor
nately, the parameter ordering is reintroduced by this pro
dure but as the advantage of these manipulations we are
2-7
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able to expand the expectation value^Y(T)& into a perturba-
tion series with powers ofĤeff

V . Keeping only terms to sec
ond order one finds

^Y~T!&5Tr$Ŷ~T!r̂0%1TrH Ŷ~T!F r̂0 ,i E dt1Ĥeff
V ~t1!G J

1TrH Ŷ~T!E dt1Ĥeff
V ~t1!r̂0E dt2Ĥeff

V ~t2!J
2

1

2
TrH Ŷ~T!T̂tE dt1Ĥeff

V ~t1!E dt2Ĥeff
V ~t2!r̂0J

2
1

2
TrH Ŷ~T!r̂0T̂ t

†E dt1Ĥeff
V ~t1!E dt2Ĥeff

V ~t2!J
1O„~Ĥeff

V !3
…, ~65!

which is now a practical expression for calculating expec
tion values.

III. THE QUADRATIC RESPONSE

A. Squeezing

According to the results of Sec. II F in the squeezing
teraction picture both particle number operator and
effective-velocity Hamiltonian have to be squeezed. T
squeezing operator

Ŝ~t!5exp~1 iĤ eff
S t!5exp~j@~ âL!22~ âL

†!2#t! ~66!

implies the following well-known transformation rules~see,
e.g., Ref.@32#!:

b̂L~t!5Ŝ~t!âLŜ†~t!5âL cosh~2jt!1âL
† sinh~2jt!,

~67!

b̂L
†~t!5Ŝ~t!âL

†Ŝ†~t!5âL
† cosh~2jt!1âL sinh~2jt!,

~68!

which can also be envisaged as a Bogoliubov transforma
of the ladder operators. Due to the commutation relati
~31! modes other than the fundamental resonance modeL are
not affected by squeezing. Inserting the above express
into the effective-velocity Hamiltonian~53! one can easily
derive its squeezed counterpart

Ĥeff
V ~t!5Ŝ~t!Ĥeff

V Ŝ†~t!

5 ix cosh~2jt!@ âL
†âR2âLâR

† #

1 ix sinh~2jt!@ âLâR2âL
†âR

† #. ~69!

Note that the squeezed effective-velocity Hamiltonian is n
dependent on the parametert and that it is still ofO(x)
5O(h), which justifies a perturbationlike treatment.

The same can be done for the particle number opera
where again only the fundamental resonance modeN̂L

5âL
†âL is affected,
02381
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N̂L~T!5Ŝ~T!N̂LŜ†~T!5Ŝ~T!âL
†Ŝ†~T!Ŝ~T!âLŜ†~T!

5@112 sinh2~2jT!#âL
†âL1

1

2
sinh~4jT!@~ âL

†!2

1~ âL!2#1sinh2~2jT!. ~70!

For brevity we will denote the hyperbolic functions by

C~T!5cosh~2jT!,

S~T!5sinh~2jT! ~71!

throughout this paper.

B. Expectation values

Since we are mainly interested in the phenomenon
quantum radiation and thus in the calculation of the cav
particle content after a timeT when the disturbance ha
ended. Due to the dynamical disturbance the system lea
the thermodynamic equilibrium, see also Ref.@5#. The qua-
dratic response of the expectation value of the particle nu
ber operator can be calculated via substitutingŶ→N̂ in Eq.
~65!. However, since the initial statistical operatorr̂0 in-
volves arbitrarily high powers inĤ0, it is practical to rewrite
the expression obtained from Eq.~65!. Utilizing the invari-
ance of the trace under cyclic permutation and the prop
of time ordering,

$Â~ t !,B̂~ t8!%15Â~ t !B̂~ t8!1B̂~ t8!Â~ t !

5T̂ @Â~ t !B̂~ t8!#1T̂ †@Â~ t !B̂~ t8!#, ~72!

the expectation value of interest can be cast into the m
convenient form

^N~T!&5Tr$N̂~T!r̂0%1TrH F i E dt1Ĥeff
V ~t1!,N̂~T!G r̂0J

1TrH r̂0E dt2Ĥeff
V ~t2!FN̂~T!,E dt1Ĥeff

V ~t1!G
1

1

2
r̂0F T̂tE dt1Ĥeff

V ~t1!E dt2Ĥeff
V ~t2!,N̂~T!G J

1O„~Ĥeff
V !3

…. ~73!

This form is now suitable for evaluating the traces since
commutators only concern a finite number of creation
annihilation operators. Thus the quadratic response can
brought in relation with the initial particle contents of th
cavity ~Bose-Einstein distributions!,

NL
05Tr$âL

†âLr̂0%5
1

ebVL
0
21

, ~74!

NR
05Tr$âR

† âRr̂0%5
1

ebVR
0
21

, ~75!
2-8
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whereb stands for the initial inverse temperature of the s
tem. These mean occupation numbers incorporate the w
temperature dependence of the quantum radiation—as
as the back reaction of the field on the moving mirror can
neglected. As we shall show later, the lowest-order termh
50) is in agreement with the results of an ideal cavity,
was considered, for example, in Refs.@5,7#. Also, sinceĤeff

V

contains only odd powers of creation and annihilation ope
tors for a single mode, the linear response vanishes. Ge
ally, every trace involving an odd power of ladder operat
vanishes andN̂ as well asr̂0 do only contain even powers
Hence the last trace in Eq.~73! constitutes the quadrati
answer. In contrast to an ideal cavity the terms with tim
ordering are here especially important since they will
found to produce leading-order terms.

C. Particle creation

Using the squeezed operators~69! and ~70! it is now
straightforward to compute the commutators and the tra
in the expectation value~73!. As a result one finds for par
ticles in the fundamental resonance modeL,

^NL~T!&5S 2~T!1@112S 2~T!#NL
0

1
x2

4j2
@3C 2~T!22C~T!2122jTS~2T!#

1
x2

4j2
@4C 2~T!22C~T!2224jTS~2T!#NL

0

1
x2

4j2
@2C 2~T!22C~T!#NR

01O~h3!. ~76!

As was anticipated, the lowest-order termS 2(T)1@1
12S 2(T)#NL

0 is in agreement with the results obtained
Ref. @5# for an ideal cavity. The linear response~in h) van-
ishes. It might be of interest that the leading termsTS(2T)
in the quadratic answer stem from the time ordering which
therefore very important. One can see that at long dis
bance timesT these leading terms show the failure of t
quadratic approximation since the particle number would
come negative at some point. This is due to the fact that
~73! is a perturbation series in*0

TĤeff
V (t)dt which will always

become large at some timeT. This problem can only be
solved by including all orders inh, see also Sec. V.

Of course Eq.~73! can also be applied to the correspon
ing coupling right-dominated mode~whose particle numbe
operator is invariant under squeezing! where one finds

^NR~T!&5NR
01

x2

4j2
@2C 2~T!22C~T!11#

1
x2

4j2
@2C 2~T!22C~T!#NL

0

1
x2

4j2
@22C~T!12#NR

01O~h3!. ~77!
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Again the linear answer is vanishing. Forh50 there would
not be any created particles in the reservoir due to the
namical Casimir effect corresponding to a perfect inter
mirror.

It is remarkable that the coefficient ofNL
0 in ^NR(T)&

equals the coefficient ofNR
0 in ^NL(T)&. As we shall see in

Sec. V B, this feature is preserved to all orders inh.

IV. THE MASTER EQUATION APPROACH

In this section it is our aim to derive the associated mas
equation for an effective statistical operator accounting
the left leaky subcavity or left-dominated modes, resp
tively. So far ~311!-dimensional vibrating leaky cavitie
have only been treated in different setups—see, e.g.,@33#—
where the vibrating mirror is understood as a~quantized!
harmonic oscillator coupled to the cavity field~the reservoir!
or with master equations adequate rather for station
systems—see, e.g., Ref.@15#. It was assumed in Ref.@15#
that these master equations could also be applied when
of the boundaries was moving. The possibility of limitatio
to that procedure as well as the need for arigorous deriva-
tion of the master equation for resonantly excited syste
have already been expressed in Ref.@15#. We want to derive
such an equation starting from first principles. As a test
will also solve the obtained master equation and recalcu
the quadratic answer for the left mode particles to comp
with the previous results of Sec. III C. To obtain a mas
equation we will closely follow the derivation given in Re
@32#.

A. Derivation of a master equation

Throughout this section we will deploy the squeezing
teraction picture where not only the time dependence
duced byĤ0 but also the dependence resulting fromĤeff

S is
determining the operator time evolution. This procedure
already been proposed in Sec. II F. In this picture the ti
evolution of the statistical operator is governed by a modifi
von Neumann equation

]r̂~ t !

]t
52 i @Ĥ eff

V ~ t !,r̂~ t !#52 i L̂~ t !r̂~ t !. ~78!

The above equation defines the action of the Liouvillian
peroperatorL̂ on r̂ ~see also Ref.@34#!. By defining the
projection super operatorP̂ via

P̂Ŷ5 r̂R~0!TrR$Ŷ% ~79!

for all observablesŶ, where TrR means taking the trace
solely over the right dominated modes we can introduc
reduced density operator accounting for the left-domina
modes only,

r̂L~ t !5TrR$r̂~ t !%. ~80!
2-9
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By combining the above equations it can be shown@32# that
the dynamics of the full statistical operatorr̂ is governed by
the Zwanzig master equation

P̂
]r̂~ t !

]t
52P̂L̂~ t !E

0

t

Û~ t,t8!~12P̂!L̂~ t8!P̂r̂~ t8!dt8

2 i P̂L̂~ t !Û~ t,0!~12P̂!r̂~0!2 i P̂L̂~ t !P̂r̂~ t !,

~81!

where

Û~ t,t8!5expS 2 i ~12P̂!E
t8

t

L̂~ t9!dt9D ~82!

is the reduced time-evolution superoperator. The Zwan
master equation is exact to all orders inh but usually too
complicated to be solved. However, assuming an initial th
mal equilibrium state and taking into account that initia
our system and reservoir do not interact~no correlations! it
can be simplified considerably:

~1! In analogy to the argumentation concerning the v
ishing of the linear response in Sec. III B it follows that

TrR$Ĥeff
V r̂R~0!%50, ~83!

sinceĤeff
V contains only odd andr̂R(0) only even powers of

the creation and annihilation operators for the modeR. This
can equivalently be written as

P̂L̂~ t !P̂r̂~ t !50. ~84!

~2! In our setup the initially stationary system~stationary
walls! does not permit interactions between system and
ervoir, since bothMmn(t0) andDV2(t0) will vanish. Conse-
quently, assuming thermal equilibrium, system and reser
initially constitute independent subsystems that cannot
correlated, i.e., the initial statistical operator of the cav
modes factorizes

r̂05 r̂~0!5 r̂L~0! ^ r̂R~0!, ~85!

hence one finds~with TrR$r̂R%51)

~12P̂!r̂~0!50. ~86!

These assumptions yield a simplified Zwanzig mas
equation

]P̂r̂~ t !

]t
52P̂L̂~ t !E

0

t

Û~ t,t8!L̂~ t8!P̂r̂~ t8!dt8, ~87!

which is exact but still too complicated to be solved.
In order to gain a solvable equation, below we apply f

ther approximations.
02381
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(a) Born approximation. SinceL̂5O(h) one can approxi-
mate the reduced time-evolution operator viaÛ(t,t8)51
1O(h). This neglects terms ofO(h3) if inserted into Eq.
~87! and yields

]P̂r̂~ t !

]t
52P̂L̂~ t !E

0

t

L̂~ t8!P̂r̂~ t8!dt81O~h3!. ~88!

By employing the reduced density operatorr̂L(t)
5TrR$r̂(t)% one can equivalently write

]r̂L~ t !

]t
52TrRH L̂~ t !E

0

t

L̂~ t8!r̂R~0!r̂L~ t8!dt8J 1O~h3!.

~89!

This equation governs the time evolution of the effecti
statistical operatorr̂L accounting for the left cavity.

(b) Markov approximation. The retardation in Eq.~89!,
i.e., the occurrence ofr̂L(t8), complicates the calculation o
r̂L(t). Iterative application of Eq.~89! implies that r̂L(t8)
5 r̂L(t)1O(h2). Accordingly, we apply the Markov ap
proximation, which is also known asshort memory approxi-

mation, simply by replacingr̂L(t8)→ r̂L(t) on the right-hand
side. SinceL̂5O(h) we thereby neglect terms ofO(h4) and
obtain the Born-Markov master equation

]r̂L~ t !

]t
52TrRH E

0

t

L̂~ t !L̂~ t8!r̂R~0!r̂L~ t !dt8J 1O~h3!,

~90!

thus having maintained the level of accuracy.
Using the definition of the Liouville operatorL̂ in Eq.

~78! one can equivalently write

]r̂L~ t !

]t
51TrRH Ĥeff

V ~ t !r̂R~0!r̂L~ t !E
0

t

Ĥeff
V ~ t8!dt8J

2TrRH Ĥeff
V ~ t !E

0

t

Ĥeff
V ~ t8!dt8r̂R~0!r̂L~ t !J 1H.c.

1O~h3!. ~91!

Finally, having evaluated both traces and after having p
formed thet8 integrations with the aid of Eq.~69!, one ob-
tains the following master equation:

]r̂L~ t !

]t
5 f 1~ t !@2âL

†r̂L~ t !âL2âLâL
†r̂L~ t !2 r̂L~ t !âLâL

†#

1 f 2~ t !@2âLr̂L~ t !âL
†2âL

†âLr̂L~ t !2 r̂L~ t !âL
†âL#

1 f 3~ t !@ âL
†r̂L~ t !âL

†1âLr̂L~ t !âL#

2 f 4~ t !@~ âL
†!2r̂L~ t !1 r̂L~ t !~ âL!2#

2 f 5~ t !@~ âL!2r̂L~ t !1 r̂L~ t !~ âL
†!2#1O~h3!, ~92!
2-10
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where the functionsf i(t) are given by

f 1~ t !5
x2

2j
S~ t !$C~ t !~2NR

011!2NR
021%,

f 2~ t !5
x2

2j
S~ t !$C~ t !~2NR

011!2NR
0%,

f 3~ t !5
x2

2j
$C 2~ t !1S 2~ t !2C~ t !%~2NR

011!,

f 4~ t !5
x2

2j
$@C 2~ t !1S 2~ t !2C~ t !#NR

01C 2~ t !2C~ t !%,

f 5~ t !5
x2

2j
$@C 2~ t !1S 2~ t !2C~ t !#NR

01S 2~ t !%. ~93!

Via averaging over the degrees of freedom of the reser
and by applying the Born-Markov approximation we ha
now rigorously derived a differential equation for an effe
tive statistical operatorr̂L(t) accounting for the leaky cavity
This effective statistical operator obeys a nonunitary ti
evolution ~changing entropy!. There are several possibilitie
to check the obtained master equation: As the simplest t
one can verify that the time evolution preserves@35# the
hermiticity and the trace ofr̂L .

A better indication for a correct master equation is the f
that if one takes the limit of no squeezing, i.e., in this co
pling j→0, the resulting equation corresponds to a harmo
oscillator coupled to a thermal bath: With

lim
j→0

f 1~ t !5x2tNR
0 , ~94!

lim
j→0

f 2~ t !5x2t~NR
011!, ~95!

lim
j→0

f i 53,4,5~ t !50, ~96!

one arrives at a simplified equation

]r̂L

]t
5

j→0

gD

NR
0

2
@2âL

†r̂LâL2âLâL
†r̂L2 r̂LâLâL

†#

1gD

NR
011

2
@2âLr̂LâL

†2âL
†âLr̂L2 r̂LâL

†âL#1O~h3!.

~97!

Apart from the time dependence of the damping coeffici
gD52x2t, the above equation is exactly the well-know
master equation for a harmonic oscillator coupled to a th
mal bath, see, e.g., Ref.@36#.

The time dependence ofgD is a remnant of the dynami
master equation describing the time-dependent system in
unphysical limitj→0. However, in order to have a strong
indication for the correctness of our ansatz we want to so
the master equation~92! explicitly.
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B. Approximate solution of the master equation

So far we have neglected terms ofO(h3). The functions
f i(t) are already ofO(h2) which makes it possible to main
tain the level of accuracy by applying the additional appro
mation r̂L(t)'r̂L(0) on the right-hand side of Eq.~92!,
which could also be envisaged as an additional Markov
proximation. Accordingly, one is now able to yield a solutio
for r̂L ,

r̂L~T!5 r̂L~0!

1F1~T!@2âL
†r̂L~0!âL2âLâL

†r̂L~0!2 r̂L~0!âLâL
†#

1F2~T!@2âLr̂L~0!âL
†2âL

†âLr̂L~0!2 r̂L~0!âL
†âL#

1F3~T!@ âL
†r̂L~0!âL

†1âLr̂L~0!âL#2F4~T!

3@~ âL
†!2r̂L~0!1 r̂L~0!~ âL!2#

2F5~T!@~ âL!2r̂L~0!1 r̂L~0!~ âL
†!2#

1O~h3!, ~98!

with Fi(T)5*0
Tf i(t)dt. Given this effective statistical opera

tor for the leaky cavity one is now able to calculate t
number of created particles in all left-dominated mod
Note that for considering the right-dominated modes o
would have to derive a statistical operator for the reservo

C. Particle creation

Since we were working in the squeezing interacti
picture—where the observables have to be squeezed—
expectation value of the particle number operator reads

^NL~T!&5TrL$N̂L~T!r̂L~T!%. ~99!

Left-dominated modes other than the fundamental resona
modeL are trivial to solve: Due to the commutation relatio
~31! their ladder operators commute with those of the re
nance modeL. This implies ~due to the invariance of the
trace under cyclic permutations! that all higher-order traces
must vanish and one just yields the trivial result of th
initial occupation numbers. Inserting the approximate
duced density operator obtained in Eq.~98! as well asN̂L
into the above equation, one can see immediately that ze
and first order inh agree with the previous results but show
ing this for the second order is a bit tedious. After som
algebra one finally finds a complete agreement that the
vious result found in Eq.~76! of Sec. III C, thus giving a
strong indication for the validity of our master equatio
within the RWA approach.

D. Comparison with other results

In Ref. @14# the effects of losses are taken into account
a generalized version of the simple master equation ans

dr̂

dt
5 i @ r̂,Ĥ#1

gD

2
@2âr̂â†2â†âr̂2 r̂â†â#. ~100!
2-11
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However, as we have observed in the previous calculati
this master equation does not adequately describe the l
cavity under consideration.

~a! It is restricted to the case where the initial state of
reservoir is just the vacuum state and therefore does no
clude temperature effects. This has been taken into acc
in Ref. @15#.

~b! In addition, even the master equation for an harmo
oscillator in a thermal bath@36#,

]r̂

]t
5 i @ r̂,Ĥ#1

n̄

2
gD@2â†r̂â2ââ†r̂2 r̂ââ†#

1
n̄11

2
gD@2âr̂â†2â†âr̂2 r̂â†â#, ~101!

cannot be assumed to describe the system correctly. Ev
one identifies the HamiltonianĤ in the above equation with
the effective squeezing HamiltonianĤeff

S , this master equa
tion goes along with serious problems since the Markov
proximation is not justified anymore. This complication r
flects the inherent dynamic character of our system. As
have shown in Sec. IV A the complete master equation
sembles the above equation only in the limit of no squeez
j→0—see Eq.~97!—and even then with a time-depende
damping constantgD .

Instead, the complete master equation~92! displays more
similarities to one in a squeezed thermal bath where one
to replace the parameters by time-dependent functions.
cordingly, the dynamical system under consideration is
scribed properly only by an explicitly time-dependent mas
equation.

Potential limitations to Eq.~100! have already been an
ticipated in Ref.@15#.

V. THE NONPERTURBATIVE APPROACH

The previous results in Secs. III C and IV C have not be
able to explain the behavior of the system in the limit o
long-lasting disturbance. The leading-order termTS(2T) in
Eq. ~76! has a negative sign that would lead to negat
particle numbers for large disturbance timesT. This problem
can only be solved by including all orders inh. In this sec-
tion we present a nonperturbative approach within the RW
which enables a convenient calculation of expectation va
by using computer algebra systems@16#. As a further advan-
tage, we want to mention that it can in principle be gene
ized in a straightforward way to the case of more than j
two coupling modes as was assumed in Sec. II E.

A. Time evolution

Application of the RWA in Sec. II E yielded the effectiv
time-evolution operatorÛeff5exp(2iĤeff

I T) with the effec-
tive interaction Hamiltonian~57!. We want to calculate the
expectation value of an observableŶ,

^Y~T!&5Tr$Ŷe2 iĤ eff
I Tr̂0e1 iĤ eff

I T%5Tr$e1 iĤ eff
I TŶe2 iĤ eff

I Tr̂0%.
~102!
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In contrast to the previous sections, here the full time dep
dence is shifted back on the operatorŶ. Since Ŷ can be
expressed using creation and annihilation operators and
to unitarity of the time-evolution operator, one just has
find a solution for the full time dependence of the ladd
operators which is given by

âs~T!5e1 iĤ eff
I Tâse2 iĤ eff

I T. ~103!

The above expression requires special care to evaluate, s
Ĥeff

I is not a pure squeezing generator. In our considerati
the effective interaction Hamiltonian is time-independe
which does not necessarily hold in general. To preserve g
erality we will therefore introduce an auxiliary parameterq
while keeping the timeT fixed. This enables us to write

âs~q!5e1 iĤ eff
I Tqâse2 iĤ eff

I Tq. ~104!

Obviously we are interested inâs(T)5âs(q51). To this
end we define a four-dimensional column vector~see also
Ref. @7#!,

xÎ ~q!5S âL~q!

âL
†~q!

âR~q!

âR
†~q!

D . ~105!

SinceĤeff
I does not depend onq, one finds

dxÎ

dq
5 iT@Ĥeff ,xÎ ~q!#5TAI xÎ ~q!, ~106!

whereAI is a number-valued 4 by 4 matrix acting onxI . This
form can always be reached if the effective Hamiltonian
quadratic: The commutation relations~31! lead to a linear
combination of creation and annihilation operators that c
always be written as a number-valued matrixAI acting onxI .
SinceAI is independent ofq the solution is obtained via

xÎ ~q!5exp~AI Tq!xÎ ~0! ~107!

and hence

xÎ ~1!5exp~AI T!xÎ ~0!5UI ~T!xÎ ~0!. ~108!

Thus the whole problem reduces to a calculation of the tim
evolution matrix UI (T)5exp(AI T). In the present case th

structure ofĤeff in Eq. ~57! implies a very simple form ofAI ,

AI 5S 0 2j x 0

2j 0 0 x

2x 0 0 0

0 2x 0 0

D . ~109!

The four eigenvalues ofAI are given by
2-12
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l15j1Aj22x2,

l25j2Aj22x2,

l352j1Aj22x2,

l452j2Aj22x2. ~110!

For reasons of brevity we shall omit the full listing of th
matrix UI (T)5exp(AI T)—it can easily be calculated usin
some computer algebra system. Note that the expone
matrix UI (T) is positive definite for allTI and thus will not
exhibit the problems associated with the extrapolation of
used approximations of Secs. III and IV beyond their ran
of validity. In order to calculate expectation values one j
needs the matrix elements ofUI (T). This becomes eviden
considering the time evolution of the new annihilation a
creation operators xÎ (T)5UI (T)xÎ (0), i.e., x̂i(T)

5( j 51
4 Ui j (T) x̂ j (0). Therefore the expectation values of pa

ticle number operators of the resonance modesN̂L(T)
02381
ial

e
e
t

5x̂2(T)x̂1(T) andN̂R(T)5 x̂4(T) x̂3(T) can be calculated sim
ply by insertion ofxÎ (T). After evaluation of the remaining
traces containing only the initial creation and annihilati
operatorsx̂i(0) one finds the full response function to be
combination of matrix elements ofUI (T),

^NL~T!&5~U12U211U14U23!1~U11U221U12U21!^NL
0&

1~U13U241U14U23!^NR
0& ~111!

and

^NR~T!&5~U41U321U34U43!1~U42U311U41U32!^NL
0&

1~U33U441U43U34!^NR
0&. ~112!

B. Particle creation

With the full knowledge ofUI we are now in a position to
state the full response function of the particle number ope
tor. Having inserted the matrix elements ofUI into Eq. ~111!
one finds after performing some simplifications
Sec.

on of
^NL~T!&5
1

4~j22x2!
$j cosh@2T~j1Aj22x2!#@j1Aj22x2#1j cosh@2T~j2Aj22x2!#@j2Aj22x2#

22x2 cosh@2Tj#22~j22x2!%

1
NL

0

2~j22x2!
$j cosh@2T~j1Aj22x2!#@j1Aj22x2#

1j cosh@2T~j2Aj22x2!#@j2Aj22x2#2x2 cosh@2Tj#@cosh~2TAj22x2!11#%

1
NR

0

2~j22x2!
$x2 cosh@2Tj#@cosh~2TAj22x2!21#%. ~113!

This result is valid to all orders inx/j or h, respectively. To show consistency with the results obtained in Sec. III C and
IV C we expanded the above expression aroundx/j50 up to second order and found complete agreement with Eq.~76!.
However, even for large values ofx/j51/2 the quadratic approximation is a rather good one—provided that the durati
the disturbanceT is not extremely large—as one can see in Fig. 4.

Doing the same calculations for the corresponding right-dominated mode one finds as a result,

^NR~T!&5
1

4~j22x2!
$j cosh@2T~j1Aj22x2!#@j2Aj22x2#1j cosh@2T~j2Aj22x2!#@j1Aj22x2#22x2 cosh@2Tj#

22~j22x2!%

1
NL

0

2~j22x2!
$x2 cosh@2Tj#@cosh~2TAj22x2!21#%

1
NR

0

2~j22x2!
$j cosh@2T~j1Aj22x2!#@j2Aj22x2#1j cosh@2T~j2Aj22x2!#@j1Aj22x2#

2x2 cosh@2Tj#@cosh~2TAj22x2!11#%, ~114!
2-13
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where the remarkable agreement of coefficients ofNR
0 in

^NL& and ofNL
0 in ^NR& as was already noticed in Sec. III

is preserved for all orders inh. These terms fit the classica
picture of particle transportation through the leaky me
brane where the particle flux is proportional to the num
ofparticles on the other side. Again, expanding aroundx/j
50 up to second order yields exact agreement with Eq.~77!.
Accordingly, also outside the leaky cavity particles are p
duced due to the dynamical Casimir effect, see also Fig.

Note that at least the quadratic answer is necessary to
particle creation effects outside the leaky cavity. The
sumption is still valid that the finite-temperature correctio
will enhance the pure vacuum phenomenon of particle p
duction by several orders of magnitude.~For a direct com-
parison see Fig. 7 in Sec. VIII.!

C. Further remarks

We have derived a complete solution for the effective
teraction Hamiltonian~57!, which is valid to all orders in
x/j5O(h). As an illustration, we consider a case outsi
our initial intentions wherex/j also assumes large value
e.g., x/j>1. In this case the arguments of the hyperbo
functions in Eqs.~113! and ~114! will receive an imaginary
part. The arising imaginary parts of^N(T)& cancel out as
they have to becauseN̂ is a physical observable. Thus on
finds that if the velocity parameterx exceeds the critica
valuex>j the particle occupation number of the resonan
modes versus the vibration time will exhibit oscillations. O
course, for the case of a nearly perfectly reflecting mir
inside this scenario is completely unrealistic since thenx/j
5O(h) will be relatively small. However, this case is not
all academic: If the labelR stood for a left-dominated mode
which is the case we excluded from our considerations so
and whose equivalent for ideal cavities has been consid
in Ref. @7#, x/j may very well become large, sincemLR
would then be ofO(1).

Similar oscillations of the particle number were al
found in the case of strong intermode coupling in an id
cavity @7#.

FIG. 4. Particle creation in the fundamental resonance modeNL

for NL
051000, NR

05100, j51 Hz, andx50.5 Hz. An exponen-
tial growth is found in all cases.
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Note that with x/j5O(h) this also leads to an uppe
bound for the internal mirror transmittanceh, above which
~corresponding to a highly transparent mirror! one finds os-
cillations that correspond to intermode coupling rather th
to system-reservoir coupling. From another perspective
phenomenon could also be envisaged as follows: Star
with an ideal cavity whose original dimensions do not perm
intermode coupling, one can insert a highly transparent m
ror (h@1). This mirror in turn detunes the ideal cavity i
such a way that it now permits intermode couplings as w

It is remarkable that in Fig. 6 the phase of the two mod
is shifted: When̂ NL(T)& is at its maximum, then̂NR(T)& is
at its minimum and vice versa. This fits nicely with the pi
ture of mode hopping mediated by the intermode couplingx.
One even observes a decrease in the particle number in tL
mode for small times. When defining an effective tempe
ture @5# this would correspond to an effective cooling of th
L mode. An extreme case of this consideration would be
limit of no squeezing, i.e.,j50. This would correspond to
the possibility~see also Sec. II E! of not fulfilling the squeez-
ing but the velocity resonance condition. Performing t
limit j→0 everywhere in Eqs.~113! and ~114! one would
find pure oscillations of the particle numbers and no ex
nential growth at all. This case is therefore counterproduc
for an experimental verification. Note, however, that this
different for the case of% coupling. The consistency with
the earlier results leads us to the conclusion that our
proach was justified and the full response function sho
describe the rate of particle production correctly within t
RWA.

Please note that the described procedure also holds
more than just two coupling modes: if one has, e.g.,n modes
fulfilling the resonance conditions given in Sec. II E, the fo
malism still holds and one will have to define
2n-dimensional vectorxI . Of course thenn creation andn
annihilation operators of these resonance modes will be c
tained in the Hamiltonian and therefore alsoAI as well asUI
will be 2n by 2n matrices. The calculations will simply be

FIG. 5. Particle creation in the right resonance modeNR for
NL

051000, NR
05100, j51 Hz, andx50.5 Hz. The lowest order

result just corresponds to a constant initial particle number. Ge
ally the particle creation in the reservoir is a much smaller eff
than in the leaky system, see also Fig. 4.
2-14



, b

so
id
n
to
c
i-
n

ua
a

lu
o

r
r

no

re
da

se
in

t-
n
th

if-
unc-
ity

us
,

ree-
ef.

ead

re

c

DYNAMICAL CASIMIR EFFECT IN A LEAKY CAVITY . . . PHYSICAL REVIEW A 66, 023812 ~2002!
come more involved but can certainly be performed, e.g.
means of computer algebra systems.

VI. DETUNING

So far we have assumed an exact fulfilment of the re
nance conditions, i.e., the vibration of the left cavity wall d
match exactly twice the fundamental resonance freque
VL

0 . However, in real situations one will of course have
deal with deviations from this desired external frequen
since it will not be possible to match it with arbitrary prec
sion. In addition, the back reaction of the created qua
might cause the external vibration frequency to change.

Consequently, we will now discuss the detuned sit
tion—wherev assumes slightly off-resonant values. For
review of detuning effects see, e.g., Refs.@7,11,15,37#. It has
been shown in the literature that there exist threshold va
for the detuning, above which the exponential creation
particles disappears.

Unfortunately the RWA used in our previous conside
ations cannot simply be generalized to this situation. Fo
slight deviation from the resonance conditions in Eqs.~44!
and~49! the terms with time ordering—see Sec. II E—are
longer negligible in this way.

We will consider slightly off-resonant situations, whe
the external vibration frequency does not match the fun
mental resonance exactly,

v52VL
0~11d!, ~115!

where d denotes a small~dimensionless! deviation d!1.
However, if one considers such a variance it is only con
quent to including a possible discrepancy of the coupl
resonance as well, cf.@37#

VR
05VL

0~31D!, ~116!

where D!1 denotes the deviation of the coupling righ
dominated mode from the*-coupling resonance conditio
with the fundamental resonance mode. We will adapt

FIG. 6. Oscillations of the particle number in the resonan
modes NL and NR for NL

051000, NR
05100, j51 Hz, and x

511 Hz.
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multiple scale analysis~MSA! as proposed in Ref.@7# to our
scenario of a leaky cavity, see also@36#. For this purpose we
restrict to the results, since the steps in Refs.@7,37# can
strictly be followed—see also the Appendix. The main d
ference in these considerations is that we use the eigenf
tion system of Sec. II C instead of those of an ideal cav
and that we assume the additional deviation~116!—see also
Ref. @37#.

In analogy to Sec. V A, one obtains a matrixAI 8 governing
the time evolution of the ladder operators,

xÎ 85S âL

âL
†

âR /A3

âR
†/A3

D . ~117!

The creation of quanta will only be exponential—and th
noticeable if at least one of the eigenvalues of the matrix

AI 8

'S iVL
0d 2j A3x 0

2j 2 iVL
0d 0 A3x

2x/A3 0 iVL
0~3d2D! 0

0 2x/A3 0 2 iVL
0~3d2D!

D ,

does have a positive real part. Note that the slight disag
ment between the above matrix and the one given in R
@37# is caused by the usage of a different phase (sin inst
of cos). With the abbreviations

U58j224x2112~VL
0!2dD22~VL

0!2D2220~VL
0!2d2

and

V5116j2~j22x2!164~VL
0!2d2@j21x21~VL

0!2d2#

1~VL
0!2D2@8j214x2152~VL

0!2d21~VL
0!2D2#

24~VL
0!2dD@12j218x2124~VL

0!2d213~VL
0!2D2#,

~118!

the eigenvalues of the above matrix read~cf. @7,37#!

l56
1

2
AU62AV. ~119!

As a consistency check we may setd5D50, where the
eigenvalues reduce to the ones given in Eq.~110!. On the
other hand, forx50 one recovers the usual result of pu
squeezing in an ideal cavityl156A4j42VL

2d2.
Note that in contrast to Refs.@7,37# the intermode cou-

pling and thus the parameterx is very small x!j. This

e

2-15
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SCHALLER, SCHÜTZHOLD, PLUNIEN, AND SOFF PHYSICAL REVIEW A66, 023812 ~2002!
enables us to expand the quantitiesU andV into powers ofx.
The condition for a real eigenvalueU12AV.0 reads

VL
2d2,4j222

4j21VL
2dD24VL

2d2

4j22VL
2d21VL

2~3d2D!2
x21O~x4!.

~120!

Sincex is supposed to be smallx!j one obtains a signifi-
cant contribution only if 3d'D and also in this case merel
in the immediate vicinity of the critical value 2j5VL

0d.
Consequently, the presence of an internal mirror of mode
quality does not drastically modify the threshold

d,
1

2 S VL
x

VL
0D 2

e ~121!

for exponential particle creation. However, we would like
emphasize that the shifts of the eigenfrequencies of the
ity due to the partly permeable internal wall must be tak
into account, see also Sec. IX below.

VII. SUMMARY

We have considered a massless scalar quantum field
side a leaky cavity modeled by means of a dispersive mir
For the case of the lossy cavity vibrating at twice the fun
mental resonance frequency, we derived an effective Ha
tonian using the rotating-wave approximation. Within t
framework of response theory the magnitude of particle c
ation due to the dynamical Casimir effect was calculat
Furthermore, we deduced the corresponding master equ
via applying the Born-Markov approximation. We found
discrepancy to the master equations used so far~see Ref.
@15#! to describe oscillating leaky cavities. We also applie
nonperturbative approach for the explicit calculation of t
time evolution starting from the effective Hamiltonian. A
these methods were found to lead to consistent results
addition, the effects of a detuned external vibration f
quency need to be taken into account.

It turned out that for the case of moderately low transm
sion coefficients~or sufficient quality factors! the rate of cre-
ated particles is almost the same as for ideal cavities.
squeezing of the fundamental resonance mode as well a
strong enhancement of particle production due to the
namical Casimir effect are preserved in the presence of tr
parent mirrors.

VIII. DISCUSSION

In order to illustrate reasonable magnitudes let us spe
the relevant parameters: A cavity with a typical size ofL
51 cm would have a fundamental resonance frequenc
VL

0'150 GHz, i.e., the corresponding coupling righ
dominated mode must have a frequency of aboutVR

053VL
0

'450 GHz. According to Ref.@15# we assume a dimension
less vibration amplitudee'1028. Consequently, in order to
create a significant amount of particles one would have
02381
te

v-
n

in-
r.
-
il-

-
.

ion

a

In
-

-

e
the
-
s-

fy

of

o

sustain the external oscillations over an interval of seve
milliseconds. At room temperature 1/b'300 K one finds
the initial particle occupation numbers to beNL

0'240 and
NR

0'80. Using the above values the squeezing paramete
determined to bej'150 Hz.

As the quality factorQ of a resonator is defined as@38#

Q52p
~energy in cavity!

~energy loss per period!
, ~122!

one finds as a classical estimate yields for our system

Q5
2p

uT u2
52pF11S g

VL
x D 2G5OS 1

h2D . ~123!

T denotes the transmission amplitude through the inte
dispersive mirror andg was defined in Sec. II. Assuming aQ
factor of Q'108 @14# ~and references therein! this would
imply for the corresponding perturbation parameterh
5VL

x /g5O(1024). With these values, a reasonable veloc
parameter could be given byx'2 mHz.

The particle content of the leaky cavity is depicted
Fig. 7.

FIG. 7. Comparison of particle production in the fundamen
resonance mode at finite temperature and without temperatur
fects. At room temperature~300 K! the initial occupation numbers
result inNL

05240 andNR
0580. Accordingly, squeezing and velocit

parameters are given byj5150 Hz andx52 mHz. At room tem-
perature the particle number reaches significant values much fa

FIG. 8. Sketch of a vibrating cavity enclosed by a larger o
This configuration may facilitate the experimental verification
the dynamical Casimir effect inside the smaller cavity.
2-16
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IX. CONCLUSION

According to the above considerations it is necessary
vibrate several milliseconds in order to produce measura
effects. As already stated, a cavity at finite temperature m
even be advantageous—provided the cavity is still nea
ideal at its characteristic thermal wavelength. However, e
after only one millisecond (108 periods! a classical estimate
based on a quality factor ofQ5108 would indicate drastic
energy losses. On the other hand, our calculations based
complete quantum treatment show that the effects of los
are almost negligible compared to the rate of particle c
ation as long ash!1. This leads to the conclusion that low
cavity quality factors than proposed in@15#, e.g., Q5106

@implying h5O(1023)# would already completely suffice t
justify our approximations@16#. Such quality factors are
within the reach of the current experimental status. Of cou
our calculations are based on the assumption that the la
cavity—including both the reservoir and the leaky cavity—
perfectly conducting. The error made by this presumption
of O(Q22) and therefore certainly negligible. Consequen
the experimental verification of the dynamical Casimir effe
could be facilitated by a configuration where the vibrati
cavity is enclosed by a slightly larger one as is demonstra
in Fig. 8. A further important result@16# of our investigations
is the shift of the cavity eigenfrequencies~24! of O(h)
5O(1023), which needs to be taken into account in order
make an experimental observation of quantum radiation
sible.

X. OUTLOOK

A. Multimode Coupling

In Sec. II E we assumed that only one of the righ
dominated modes fulfills the resonance condition for the
locity Hamiltonian, i.e., exactly two modes are coupled.
however, the reservoir cavity becomes larger, the spa
between different levels of its spectrum decreases so
eventually more than just one right-dominated mode begi
couple—at least within the range of detuning. In this case
effective-velocity Hamiltonian would constitute a sum
single two-mode coupling Hamiltonians as the one in E
~53!—but accounting for different right modesR1 , R2, etc.
As we have observed in Fig. 4 in Sec. V B, the quadra
answer is completely sufficient for reasonable values ofx/j.
Inserting the aforementioned sum of Hamiltonians into
quadratic answer one observes that the mixing terms van
Since the effective velocity Hamiltonian only contains o
powers of the creation and annihilation operators per mo
one can only obtain a nonvanishing trace if it involves tw
operators of the same~right! mode. Therefore the quadrat
answer also decomposes into a sum of contributions e
accounting for one right-dominated mode. Hence we exp
the general structure of̂NL(T)& to persist—just substitute
x2→( ix i

2 in the leading contributions@39#. In order to en-
sure the applicability of the perturbative treatment the nu
ber n of coupling right-dominated modes has to be sm
enough to satisfy( ix i

2/j2'nx2/j2!1.
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Typically the spacing between two neighboring righ
dominated modes is ofO(1/L), i.e., the inverse of the char
acteristic length of the reservoir. On the other hand,
width of the resonance peak is ofO(1/T). Consequently, if
the duration of the disturbanceT ~1 ms! exceeds the charac
teristic length of the reservoir~which is the case forL
,105 m) thenn is certainly small enough.

B. Electromagnetic field

So far, we have considered a noninteracting, massl
and neutral scalar field. The next step could be to extend
calculations to the electromagnetic field. In this case sev
new difficulties arise.

~1! The boundary conditions cannot just simply be d
scribed by Dirichlet~or Neumann! conditions. Especially for
moving walls their form will be more complicated due
Ampere’s law~mixing of E andB!.

~2! As the electromagnetic field is a gauge theory, one
to eliminate the unphysical degrees of freedom in order
quantize it. Again, for dynamic external conditions this r
quires special care, see, e.g., Ref.@26#.

~3! The different polarizations of photons need to be tak
into account, which are of special interest concerning
fulfillment of the resonance conditions.

According to Ref.@38# the eigenmodes of the stationa
cavity can be divided into TE and TM modes. For seve
cavities~rectangular, cylindrical, spherical! the eigenfrequen-
cies are well-known. This enables one to determine
squeezing part of the interaction Hamiltonian.

In order to deduce the velocity Hamiltonian it will b
necessary to find an appropriate model for the dispers
mirror. This can be achieved by using a thin dielectric s
with a high permittivity: «(x)511gd(x). As has been
shown for a stationary system in Ref.@17# this leads to a
similar eigenvalue equation as Eq.~23!.

For the detection of the created field quanta some det
ing device will have to be placed inside the cavity, e.g.,
atom. However, the detector will always influence the c
ated field as well. A simple approach for the modeling o
two-level system has been provided in@10,29#. In addition,
the nonadiabatic parametric modulation of the atomic La
shift—as has been considered in@40#—must be taken into
account, since it will cause excitations of the atom as we

Note that the induced quantum field will also excite t
internal degrees of freedom of the cavity mirrors—an alt
nate description of losses should therefore also take the
ergy dissipation of the losses within the mirrors into accou
see, e.g., Ref.@41#.

Future work combining all these effects is of immen
importance regarding experiments on quantum radiation
ing the dynamical Casimir effect.
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APPENDIX: MULTIPLE SCALE ANALYSIS

Starting with the Lagrangian~3! it is straightforward to
show that the field operator fulfills a modified wave equat

$h12V~r;t !%ŵ~r,t !50. ~A1!

If one now follows @7# by introducing ladder operators vi
the expansion

ŵ~r,t !5(
n

ân
inun~r,t !1H.c., ~A2!

where

un~r,t,0!5
1

A2Vn
0

f n~r!e2 iVn
0t, ~A3!

un~r,t.0!5(
k

Qk
(n)~ t ! f k~r;t !, ~A4!

one can derive a time evolution equation for the coefficie
Qk

n(t). Using the properties~5! of the eigenfunctions one
obtains

Q̈m
(n)~ t !1Vm

2 ~ t !Qm
(n)~ t !

52l~ t !(
k

gmkQ̇k
(n)~ t !1l̇~ t !(

k
gmkQ̇k

(n)~ t !

1l2~ t !(
k,l

glkglmQk
(n)~ t !1l2~ t !(

k
Lx

dgkm

dLx
Qk

(n)~ t !,

~A5!

where l(t)5L̇x(t)/Lx(t) and Lx(t)5c2a(t) in our sce-
nario. The antisymmetric couplinggmk is defined via

gmk5LxE
cavity

] f m

]Lx
~r! f k~r!d3r ~A6!

and is therefore related to the geometry factormmk via gmk
52Lxmmk . Note that compared to Ref.@7# the last term in
Eq. ~A5! constitutes a slight modification, since in our sc
nario the coupling between different modes may depend
the cavity parameters, see also Eq.~29!. However, this dif-
ference is of minor relevance, since all these terms are
companied by a factor ofl2(t). If one assumes periodi
oscillations of the cavityLx(t)5Lx@11e sin(Vt)1ef(t)#,
these terms can be neglected if the amplitudee is small.~The
auxiliary function f (t) is chosen to meet the continuity con
ditions onLx(t), see also Ref.@7#.! Consequently, one ca
expand Eq.~A5! in powers ofe!1 to yield
02381
s

-
n

c-

Q̈k
(n)~ t !1~Vk

0!2Qk
(n)~ t !

522Vk
0
]Vk

0

]Lx
Lxe sin~Vt !Qk

(n)~ t !

2eV2 sin~Vt !(
j

gk jQj
(n)~ t !

12eV cos~Vt !(
j

gk jQ̇j
(n)~ t !

1eO~ f !1O~e2!. ~A7!

This equation completely resembles the one found in R
@7#. Note, however, that we have to use the shifted eigen
quencies and the eigenfunctions for leaky cavities. An
proximate solution—for a more detailed discussion see R
@7#—can be obtained via introducing a new time scalet
5et and inserting the formal expansion

Qk
(n)~ t !5Qk

(n)(0)~ t,t!1eQk
(n)(1)~ t,t!1O~e2! ~A8!

with the unknown functionsQk
(n)(0/1) into Eq. ~A7!. Finally,

one has to sort in powers ofe. To lowest order one finds a
free harmonic oscillator that can be solved by

Qk
(n)(0)~ t,t!5Ak

(n)~t!eiVk
0t1Bk

(n)~t!e2 iVk
0t. ~A9!

The next-order terms~proportional toe) yield a driven har-
monic oscillator equation forQk

(n)(1) with the eigenfrequency
Vk

0 ,

] tt
2 Qk

(n)(1)1~Vk
0!2Qk

(n)(1)

522] tt
2 Qk

(n)(0)22Vk
0Lx

]Vk
0

]Lx
sin~Vt !Qk

(n)(0)

2V2 sin~Vt !(
j

gk jQj
(n)(0)

12V cos~Vt !(
j

gk j] tQj
(n)(0) . ~A10!

In order to keep the expansion~A8! convergent, the above
oscillator must not be at resonance. Consequently, all te
proportional to exp(6iVk

0t)—with k being the particular
mode of interest—on the right-hand side have to cancel.
imposing these conditions for the modek5L and for the
coupling modek5R and inserting the frequency deviation

V52VL
01h52VL

01ea, ~A11!

VR
053VL

01H53VL
01eb, ~A12!

one finds four linear and coupled evolution equations for
coefficientsAL

(n)(t), BL
(n)(t), AR

(n)(t), and BR
(n)(t). These

equations are—apart from the different couplings and
additional deviationH—virtually identical with those pre-
sented in Ref.@7#. Having applied the modified phase tran
formations
2-18
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AL
(n)~t!5e1 iat/2aL

(n)~t!, ~A13!

BL
(n)~t!5e2 iat/2bL

(n)~t!, ~A14!

AR
(n)~t!5e13iat/2e2 ibtaR

(n)~t!, ~A15!

BR
(n)~t!5e23iat/2e1 ibtbR

(n)~t!, ~A16!

it is straightforward to rewrite these equations in mat
form:

d

dt S ak
(n)

bk
(n)

aj
(n)

bj
(n)

D 5MI S ak
(n)

bk
(n)

aj
(n)

bj
(n)

D , ~A17!
x-

e

.

A

.

et

. A

02381
MI

5S 2
i
2 a g1 g2 0

g1 1
i
2 a 0 g2

2g3 0 2
i
2 ~3a22b! 0

0 2g3 0 1
i
2~3a22b!

D .

The quantitiesg1 ,g2 ,g3 have been introduced for conve
nience,

g15
Lx

2

]VL
0

]Lx
'2

1

2

~VL
x0!2

VL
0

, ~A18!

g25
~2VL

01h!~2VL
01H2h/2!

2VL
0

gLR'2VL
0gLR ,

~A19!

g35
~2VL

01h!~2VL
01h/2!

2~3VL
01H !

gLR'
2

3
VL

0gLR'
g2

3
.

~A20!
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