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Rabi oscillations and macroscopic quantum superposition states
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A two-level atom interacting with a single radiation mode is considered, without the rotating-wave approxi-
mation, in the strong-coupling regime. It is shown that, in agreement with the recent results on Rabi oscilla-
tions in a Josephson junctig®. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Phys. Rev. B&{t246601(2001)],
the Rabi frequency is indeed proportional to first kind integer order Bessel functions in the limit of a large
number of photons and the dressed states are macroscopic quantum superposition states. To approach this
problem, analytical use of the dual Dyson series and the rotating-wave approximation is made.
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A recent experimental finding on Josephson junctidis sider, contrarily to small perturbation theory as given, e.g., in
has shown as Rabi oscillations happen in strong electromagdref. [8], as unperturbed Hamiltonian the term
netic fields for the two-level model. One of the main results N N
of this experiment was the proportionality of the Rabi fre- Ho=wa'atgoy(a’+a). 2
quency to first kind integer order Bessel functions with the . . B
order given by the photon number involved in the transition,The Schrdinger equationf=1),
in agreement with a pioneering treatment by Cohen- 9
Tannoudjiet al. [2], with the contribution of the two-level HoUg(t) =i EUF(t) (©)]
model being systematically neglected.

The study of a two-level model in a cosine time- pas the solutiori4]
dependent perturbation in the strong-coupling regiré
proved that in this case Rabi oscillations involve only odd .
order first kind Bessel functions and partially explains the UF(t):E)\ e Fr[n; ey {([ns e JI (N, (4)
results of Ref[1]. On the same ground we approached the "
problem of a two-level atom interacting with a single radia-where
tion mode in the strong-coupling regime in RE4]. In this

paper we want to extend the results of Hél. by discussing Er=no—(9%w), ay,=\g’/0, and
the case of the experiment of RgL] with a large number of .
photons involved. We will show that theory and experiment I[n;a,])=e@«N@=al|n) (5)

indeed agree. . . . .
The Hamiltonian we start with has the simple form as alsdS @ displaced number staf®], n an integer starting from

given in Ref.[1] (neglecting the tunneling contribution as €0 IS the eigenvalue of the operaida, and\ = =1 is the
not essential eigenvalues ofr,. These states represent the dressed states

for the system but our analysis complies with the one given
in Ref.[7] by a dual Dyson series otherwise, no Rabi oscil-
lations can be obtained theoretically.

At this point we are able to write down a dual Dyson
series for the Hamiltoniafil) as

A
H=wa'a+ Ea3+gal(aT+a), )

where o is the frequency of the radiation moda, is the t

separation between the two levels of the atgnis the cou- Ut =Ue()T exp{ —if dt'HF(t')}, (6)

pling between the radiation field and the atam,ando; are 0

the Pauli matrices, and and a' are the annihilation and having put

creation operators for the radiation field. With respect to the

model used in Ref.1], we have interchanged; and o3 but "

this is irrelevant as the two Hamiltonians are connected by He() =Ugr(t) 5 o3Ug(D). @

the unitary transformation ekijo,(7/4)]. This apparently

simple model is not exactly solvable unless the rotatingdt is important to note that in the dual Dyson seri€$, as

wave approximation is done, in this latter case the solution isilso happens in the small perturbation case, when there is a

exactly known and the model is then named the Jaynegesonance between the two-level atom and the radiation field,

Cummings model5]. The model(1) is able to describe the perturbative terms appear that are unbounded in the timit

results of Ref[1] when the coupling is large with respect —oo and the perturbation series is useless unless we are able

to the level separation. to resum such terms, named “secularities” as in celestial
To reach our goal we apply the duality principle in per- mechanics, at all order. This can be done, e.g., by renormal-

turbation theory as given in Refg6,7]. The idea is to con- ization group methodglO] but here we limit the complexity
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of the mathematical analysis by simply doing the rotating- . A
wave approximation and ignoring any correction to it. i, (V=7 Y an,(he  EneEmet

Let us look at the Hamiltonia(¥). It is easily realized that nzma
it can be rewritten in the forré]

X @ i(m=n)ut <m|e—(zglw)(a—a’f)|n>‘77
. _af g
using the result of Ref9], +(m|e?9/)@-a )|n>§}. (15)
| I—n . . . .
( |e(9/w)>\(a—aT)|n>: \/E< \ g) At this stage we can apply the rotating-wave approximation.
"o The resonance condition is given by
2
xG—mgz/zwz)Lg—n)( ng_z) . En o Emr— (1=M0=0 16
w

and two Rabi frequencies are obtained. For interband transi-

with 1=n andL{~"(x) the associated Laguerre polynomial tions (0# ") one has
[11]. So, one has

_ 129 t
R=A|( n|sinh—(a—a")|[m)], 17
A oo 2 [ 497 w
Hy= 3 et | 29
n ® while for intraband transitions one has
X[ e IXInsa—1]|[1)(—1] 29 ) ]
Flmas a1, (20 R :A'<” COS'{?(‘*‘E‘ )_”‘>" 18
wherelL,, is thenth Laguerre polynomialll] and By using Eq.(9), it is easy to show that
A . | m—n 2
Hi== > e in-mot)(p|e~olw)@-aD|my|[n; a,]) Rzéw /n_(z_g) o~ (20%0?) Lf{“‘”)<ﬂ>
m,n,m#n 2 m o a)z
X ([m;a_]|[1)(~ 1| +(n|e@F @D m)|[n;a_,]) X[1=(=1)"""] (19
X([m; e[| = 1)(1[]. (1D and

The HamiltoniarH can be immediately diagonalized by the A [nl[{2g\mn -
eigenstates R = 5 /W( _) e~ (29709
AN (]

2
L(mn)(ﬂ)
n 2

w

1 _ m—n
|¢n;0>=ﬁ[al[n;aﬂ>ll>+I[n;a71]>|—1>] (12) X[1+ (=™, (20

and then, for interband transitions one can have Rabi oscil-
with eigenvalues lations only between states differing by an odd number and
we write m—n=2N+1, while interband Rabi oscillations

A - 4g2 can happen only for states differing by an even number and
En,,,:(rge*(2g lo9L, — (13)  we write in this casen—n=2N. So, finally
w
n! Zg 2N+1 . 492
whereo==*1. Then we can see that each level of the atomp=A~+/———— _) e~ (2079 N+ =
develop a band with an infinite subset of levels numbered by (n+2N+ D o w?

the integer numben. The eigenstates can be seen as macro- (22)
scopic quantum superposition stats®metimes named in

the literature as Schdinger cat states[5]. We will prove  and

that the two-level atom shows Rabi oscillations between

these states. To prove this result we look for a solution of the L [ nl 2g\ N —eg?le?)| | (2N) 492
Schralinger equation with the Hamiltoniad g by taking R'=A n+2N)!1\ @ e Ly eyl
(22
- —iEp ot .
l¥e(D) ;1 € 80O}, (14 We can interpret this Rabi oscillations as involving an effec-

tive number of photonsi2+1 and N, respectively, in the
which gives the equations for the amplitudds transitions. So, we can taketo be very large antll small or
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zero and this is in agreement with the experiment describednd finally
in Ref.[1]. This in turn means, in agreement with the experi-

m1 R
mental results, an_1(0)= _e_(gz,sz)(g) cos(—t)
4\ng @ ymtl 2
R~A \]2N+1<T)‘ (23 . g 2N+1\/T (R
"o (mr2n+ D! SN2t )
and
@ (32
44n
R ~A ‘]2N 9 , (24) g moq g 2N+1
) —e @A 2| |2
amion+1,i(t) =€
o mlle
where Stirling approximation has been used for the factorial
nl~e "n"27n at largen and the equatiofl1] / m! 5(73 ) o (R ”
XA\ 7= cog =t|+isinst]]|.
a2 (M+2N+1)f 12 2
Ja(ZJﬁX)=e‘X’2(ﬁ) Ln(x) (25) (33

holds in the limit ofn going to infinity, both forkR andR'.

In the limit of a very large number of photoms, we easily
realize that the Rabi frequency is

To complete this paper, we want to show how Rabi oscil-

lations emerge from Ed15) in the limit of a large number of
photons involved, when we start taking as initial state, e.g., R~A

|0)|g), wherea|0)=0 ando;|g)=—|g). Indeed, one has

'°>'9>:Z, an o (0)| ;). (26)

where

g)ni +(—1)" (27)
w) Zgrlo D

For interband resonance, with—m=2N+1, we get for
En(o=1)~ Em,(o'=-1)=(2N+1)w with evenn and oddm
andn>m,

2, ,(0) =~ (€72

: (R
—ian(0)sin ?t ,
(28)

R
am,l(t)=am,1(0)003<§t

R ) (R
an,l(t)zanll(O)cos(gt —|am,1(0)sm(5t>, (29

which can be put in explicit form by the coefficient&7)
giving

C2p 9™ 1 R
am _1(t)=—e @ /2‘“)(;) —cos(ﬁt)
"1 R
—ie‘(gzlz“’z)(g) —sin(it), (30

ooty 9" 1 R
ap(t)=e (@72 )(5> — cos(ft)

moq
+ie<92’2w2>(%)—sin(—t), (31)

Jont1 (34

4mg

w
and we have the oscillating amplitudes
et
P \/ﬁ co Et , (35

ma R

am+2N+1,1<t)=e<92’2‘°Z>(%> = sin(;t), (36
in agreement with the experimental results of Réi. It is
interesting to note that the probability to find the atom in one
of the two levels is in any case proportional to a Poisson
distribution. Similar expressions can be obtained for resonant
intraband transitionsd=o¢') and so we can have Rabi os-
cillations with Rabi frequencies being proportional to odd or
even order first kind Bessel functions. The situation is quite
different if instead of a second quantized radiation field we
use a classical cosine fie[d0]. In this case we can have
Rabi frequency just with odd first kind Bessel functions. This
is due to the disappearance of the band structure for a “clas-
sical” field and then to the disappearance of the intraband
transitions.

The above computation gives a strong theoretical support
to the experimental findings of Refl]. On a different
ground, we can state that the description through dressed
states as generalized in R¢¥] is sound. The experiment
realized by Nakamurat al,, besides to be a first realization
of a strongly perturbed two-level system by a radiation field,
can be seen as the realization of oscillations between macro-
scopic quantum superposition states. However, it is impor-
tant to point out that decoherence is observed whose source
is to be identified in view of practical use of Josephson junc-
tion as gates for quantum computation. But, it is a fundamen-
tal result to have proven experimentally the existence of a
two-level system in a strong-coupling regime.

In conclusion, we have shown how the experimental find-
ings in Ref.[1] can be explained theoretically by the dual

Ay, (1) = —e” (072"
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Dyson series and the generalized understanding of dressed| am indebted to Yasunobu Nakamura for giving me a
states described in Rdf7]. A generalization of the approach copy of their paper before the publication. | have to thank
described in this paper has also been recently provided bigazuyuki Fujii for pointing out some improvements in this

Fujii [12]. paper and for very useful comments.
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