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A coherent representation has been developed for entanglement and measurement, which is an elegant
approach to continuous variable quantum teleportation. In the present paper this frame is used to deal with
nonideal elements of the experimental situation, such as inefficiencies of the Bell measurement, loss, and
thermal noise in the nonlinear crystal used for producing entangled pairs. A measure of fidelity is introduced
for characterizing the quality of nonideal schemes.
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[. INTRODUCTION for entanglement has been developed, providing an espe-
cially elegant approach to continuous variable teleportation

Some of the most interesting features of quantum mel15,16. . . o
chanics arise from entanglement and measurement.(@wo  Coherent states are very important in quantum optics in
more quantum systems are in a pure entangled state if thef€Veral aspects. From the experimental point of view they
common state cannot be obtained by simply compoundin re significant because the light of lasers can be approxi-

: ately described by them. From the theoretical point of view
pure states of the subsystems. Entangled states of light Afie fact that they are eigenstates of annihilation operators is

relat|_vely easy to produce by using proper laser sources ar\gnportant. For the present work the most vital consequence
special crystal$l,2]. When the entangled light beams sepa-s this property is that the transformation of coherent states
rate, the entanglgment can be.preserved at great distanceg; heam splitters is simple.
quantum correlations between light beams 10 km apart have cgherent states, however, form an over-complete base,
already been showf8]. o _ that is, a given state can be expanded by them in several
The famous paradox of Einstein, Podolski, and RoseRyays. Nevertheless, using appropriate constraints for the
(EPR also concerns entanglement and measurefddnif  weight function, the expansion can be made unique. Accord-
two particles are in a special entangled state, then accordirigg to Glauber, such a constraint is, for example, the pre-
to Neumann’s principle, a measurement on one influencescription of the weight function to be analytic, but many such
the results of possible measurements on the dthat is, the  representations exist for one and two mofiEs—20Q.
state of the other particle In this cadre it is quite convenient to deal with nonideal
This is the essence of several quantum communicatiorlements of the experimental situatip®l]. Such elements
and state engineering methods such as quantum teleportatiere the inefficiencies of the Bell measurement of the sender
[5], entanglement swapping$,7], distillation of entangle- (Alice), yielding an imperfect Bell measurement; and ther-
ment [8], or quantum dense Codn‘[@] These methods are mal noise an_d loss |r_'] the Crysta_l dUrlng the Creat_lon Of the
closely related to each other and form the base of quanturintangled pair, resulting in a partially entangled pair being in
informatics. In this work we investigate some models of non-Mixed state. Our aim is to investigate the distorting effect of
ideal quantum teleportation. these elements. . - .
Quantum teleportation is a communication protocol for TNiS paper is organized as follows: in Sec. Il we examine
transmitting the state of a quantum system from one place tEpe ideal scheme of continuous teleportation and introduce a

another without passing the system itself. In the ideal case [heasure of fidelity. It will be _sho_wq that if the input state is
is carried out by means of a maximally entanglE®R pair. a pure coherent state then fidelity is independent of the am-

A joint so-called Bell measurement is carried out on Oneplitude. Therefore the fidelity of the teleportat?on of coherent
member of the pair and the system carrying the state to patates may be used as a measure of the quality of the_ scheme.
transmitted. This measurement changes the state of the othlgr Sec. Il a model for nonideal Bell measurement Is sug-
member of the pair in such a way that that and only that wiljgested and calculated. In Sec. IV we examine .teleportatlon
contain information about the given quantum state thereaftePy means of more regllsth entangled pair obtame_d .by solv-

The teleportation is nonideal if the pair is only partially Ing the Langeym equgnons_ln a pumped crystal' at finite tem-
entangled 10,11, if it is in a mixed statg{12] or the Bell perature. During the investigation of e_ach nonideal element
measurement is not perfect. As a consequence the commu Il other elements are supposc_ed to_be ideal because we \.NOUId
cation distorts. From the point of view of teleportation thisII e to concentrate on the distortion caused by the given
imperfection is a disadvantage, in quantum state engineeriné},Onldeal element.
however, it may be exploited.

Bennett’s discrete teleportation scheme has been general-
ized by Vaidman[13] and Braunstein and Kimblgl4] to In this section first we follow the discussion of REL5].
teleport continuous variables. A coherent-state representatiorhe scenario is depicted in Fig. 1. Alice’s state to be tele-

II. CONTINUOUS TELEPORTATION
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with

X+iY
A::
V2
reflecting the result of Alice’s measurement.

After Alice’s measurement the state of mode 3 is pro-
jected onto

(6)

[P )3 (Vgen(A)| W) 123, (7)

where the symbok: indicates that we have an additional
normalization factor arising from such a projection. This,

_ _ applying successively Glauber’s useful identity for analftic
FIG. 1. Scheme for continuous teleportation of an unknownsnctions

quantum statgW;,) from Alice to Bob by means of the shared

entanglement, a joint measurement performed by Alice, and the 1 2 e
classical informatiorA sent from Alice to Bob. f(B*)= ;j d2af(a*) el af”, 8
ported is an arbitrary pure state of mode 1 written as yields
1 2 —2|A‘2
== | q2qelel2 Mag)e
W= [ gtee (e, @ W | dat(at +24%)
in Glauber’s coherent representation. In modes 2 and 3 we ><ef(1/92+1/2)|a|272a*A|a>3_ (9)

have the entangled pair
Now, if Alice passes to Bob the resudtof her measurement
via a classical channel, he may perform a coherent displace-

S n
|WEPP>23“; s"In)2ln)s. 2) ment by 2A leading to the state
We use this pair because the ideal down-conversion results in W o) 3= If)(2A)|\Iff)30c /\/(g)f d2af(a*)
this two-mode squeezed vacuum state. For calculations it is ou ™
convenient to rewrite this state in coherent-state representa- =217 |af?
i o — o
tion X ;{ ———— > |la)s. (10
g 2
Mao) 20,2
g _ 2 —lal“lg . . . .
[WEpR2a=— Ld ae” | )yl a*)s. 3 We perceive that in the limit ofi— = this state reproduces

the input state. This is the case of maximal entanglement and
It is straightforward to see that Eq&) and (3) are equiva- the teleportation is without distortion.
lent to In any other case, the transfer distorts: we have a Gauss-
ian smoothing factor next to the functidnIn the case of
s finite g, the statd ¥, is obtained by an obviously nonuni-
g= 1—-s (4)  tary transformation of ¥,,), making the reconstruction of
the original state really difficult.

Mg) is a normalization factor that becomes important when [N this scheme, i is finite, it is interesting to ask how
we investigate the fidelity of the scenario as a functiogof 900d @ transfer provided by the teleportation is, in other
This pair becomes maximally entangled gs>= (s—1), words, how closely the output state resembles the ifgRit
but it is not normalizable in this limit. Later in Sec. IV we 10 answer this question let us calculate first the density op-
shall see that a nonideal entangled pair in an experiment {grator of the “expectation state” of mode 3 after Alice's mea-
not as simple as Eq3), but at the moment this is the sim- surement(a probabilistic eventand Bob’s displacement.
plest way to deal with nonideal entangled pairs. This expectation state will be compared with the input.
Alice carries out a joint measurement on modes 1 and 2. It is straightforward to see that the expectation state is
She makes them interfere on a symmetric beam splitter BSIMPY

then carries ouK and Y quadrature measurements on the R 1
out-modes. This measurement projects the state of modes 1 pgut:;f d?A|W o ANV ol A)], (11
and 2 onto

1 because the probability of measuriAgs just the inverse of
Wo(A))=— | AN AN LAY, N — A%, (5 the missing additional normalization factor appearing in Eq.
Ve(A)2 wL NF AN )or © (7). So the fidelity will be defined as
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FIG. 2. Fidelity of teleportation in the “ideal” scheme as a
function of theg parameter of the entangled pair=0 represents FIG. 3. Teleportation scheme for modeling inefficiencies of Al-
the case of classical teleportation with fidelyoecause in this case  jce’'s measurement by the addition of two asymmetric beam splitters
the shared state is the vacuum; while = is the case of maximal BS2 and BS3 between the modes to be measured and the detectors.
shared entanglement, that is, perfect teleportation with fidelity 1. These beam splitters scatter out some of the photons to be mea-
sured, resulting in energy loss.

F=Tr{pinPgud- (12 _ .
no quantum correlation here: the system is measured some-

We will not calculate this for the general situation when theWhere, the results are sent elsewhere and on the basis of the
input state has the fornil), because in this case fidelity results of the measurement it is “assempled" again th(_are. It
depends on the choice of the functignthus it gives little  ¢an be shown tha_t the fidelity of the classical teleportation of
information on the quality of the scheme itself. cohgrent states Wlth a perfect measurement can be atsmost

Instead we examine the special case when the input state find this result in Ref[14]. As we have already men-
is a pure coherent stafe). In this case, curiously enough, tioned above, witlg— o we tend to the ideal case when the
fidelity turns out to be independent of the amplitude  fidelity tends to 1.
Moreover, we find the same result in a more general situation
than the scheme discussed above, if before the measurementj;. INEFFICIENCIES OF THE BELL MEASUREMENT
the state of modes 2 and 3 is a general two-mode mixed state . ) .
and we try to use this for teleportation. At the first look this [N an experiment Alice’s Bell measurement is not perfect
may seem surprising because the entangled(Bpivith the ~ because the detector efficiency is finite and beam splitters are
Gaussian cutoff contains large amplitudes with everdiminishinot ideal. In this section we examine the distorting effect of
ing weight. Thus it does not have enough energy to telepor&he mefﬁmenqes of the measurement. Since our model con-
large-amplitude coherent states faithfully. sists of auxnlary beam splitters, here we shall see the real

The solution of this paradox lies in Bob's displacement@dvantage of using a coherent-state representation.
that compensates the energy loss in such a way that coherent The nonideal Bell measurement is modeled by introduc-
states can be teleported with equal fidelity irrespective of thé"d two additional asymmetric beam splitters between the
amplitude. After Alice’s measurement, one part of the infor-out-modes of the original beam splitter and the detectors.
mation about the input state remains with Alice in the mea-These additional beam splitters scatter out some of the pho-
sured result, while the other part is transferred to Bob entons that we would like to measure. The resulting Bell mea-
coded in the state of mode 3. Since Alice communicates heturement will be nonideal, and projects the state of modes 1
result to Bob, he will already have enough information to@nd 2 onto a mixed state. Naturally, Bob's output state in this
reconstruct coherent states independently of the amplitudecase will be mixed as well. _

Since in the teleportation of coherent states the fidelity ~The proposed scheme is depicted in Fig. 3. BS1 is a sym-
defined in Eq.(12) does not depend on the amplitude, we Metric beam splitter while BS2 and BS3 are asymmetric
shall regard it as a characteristic of the teleportation schem@eam splitters with transmission coefficienand reflection

itself. The fidelity of the scheme represented in Fig. 1 turngoefficientr; these are supposed to be real for the sake of
out to be simplicity (we haver2+t?=1). The limit of ideal measure-

ment is the casé=1, r=0.

1+2g2 Here Alice wants to teleport the

F(9) 21+ g) (13 )
N b= | e[ R e (71907 ) g
This function is shown in Fig. 2. It is interesting that even T
in the case ofj=0 when the stat¢3) is vacuum, coherent (14)
states may be teleported with fidelity due to Bob’s dis-
placement governed by Alice’s classical message. This prageneral state of mode 1, wiR(a*,8)=f(a*)f*(B) if the
cess may be called “classical teleportation” because there istate to be teleported is pure, but the calculation is similar for
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general mixed states. The state of modes 2 and 3 is an ideahtangled, and the subsystems of a system in a pure en-
EPR pair obtained from Ed23) by performing the limitg  tangled state are in a mixed state when regarded separately.
—00, Quite similarly we obtain the state of modge

~ 1
Pc* ;JRchRddexr{iY(c—d)

c+iY> <d+iY
C

2 2

1
ez | dala)atys, 19
¢ — —(c—d)?

2t?

1+

2

which is a non-normalizable state.
First we determine the state the nonideal measurement

projects the state of modes 1 and 2 onto. On madn X

guadrature measurement is carried out so here we Kave
eigenstate, while the state of modés vacuum. The connec-

tion between the modes of the beam splitter is with Y being the result of th¥ quadrature measurement. So
the common density operator of modesandc is

X

: (22

c

t t

éA:téb+réa, éB:_réb"‘téa, (16)

that is, D =D @D
Pbc=Pb®Pc
~ é.A'i"ré.a ~ aa_réA l r2
ab:f- ag= : . (17 oc—zf daJ' dbf dcf ddexp{iY(c—d)(lﬂL—z)
T JRr R R R t

The state of moded,a is

_ r\  r? X 5
+|X(b—a)( 1- t—z) - alb-a?+e=d ]}

— 1 —iXa y g
¥)na ﬁfadae IX+ia)al0)a. 19 X+ia\ [X+ib| [cHiY| [d+iY|
<P e L e

with X being the result of the quadrature measurement. Us- b b ¢ ¢
ing this and Eq(17) the state of modek, B,

1 X+ia F(X+ia) from which, l_Jsing Eqs(16)_in the spec_ial case of a symmet-

|\p>bB:_j dae iXa > - > , ric beam splitter, we obtain the density operator of modes 1
NE to/, t B and 2 after the Bell measurement,

(19

from which we form the common density operator of modes 1
b andB, pﬁg"oc—zf daf dbf dcf ddepriY(C—d)
m°JR R R R

5 :ij daJ dbdX(b-a X+ia> - r(X+ia)>
B TJIR R t B

t
<x+ib| < r(X+ib)|
X —
t t

r2
1+t_2

b +iX(b—a)

r2\  r? ) )
1- t_2> —E[(b—a) +(c—d) ]]

: (20

Iy s

c+ia+X+iY> <d+ib+x+iY
1

t\2 t\2 .

which gives the state of mode by calculating the partial

trace c—ia—X+iY d—ib—X+iY
t\/E t\/i . (24
P> Tre{ppe} 2 2
1fd fdb iX(b—a)| 1 e (b—a)?
=— a exg i —-a ——|——=(b—a i i
S . 2] o2 Using again
X+ia X+ib
X1 i (21 A X+iY 25
b b =
J2

where the symbok means that a state obtained by calculat-

ing partial trace is not normalized. We see that the nonideal

measurement projects the state of mbdmnto a statistically for representing the result of Alice’s measurement, and turn-
mixed state. This is quite natural because mdilaadB are  ing to complex integration variables we have
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2 2 FIG. 4. Fidelity of the scheme with energy losses at the Bell

measurement as a function of the reflectance=0 represents
measurement without energy loss, that is, teleportation with fidelity
Here in the argument of the exponential function we haver: whiler =1 is just as if Alice did not perform a measurement at
denoted with braces the two termsy* 6+ yd*}, which  all, making classical teleportation fail, resulting in fidelity 0.
make the state statistically mixed. This state is non-

normalizable. It will become convenient, however, to sepa- 2A oAl 1
rate the dependence of the normalization factoAa@ndt in Pou= b(_)ﬁbe(_) o _Zf d2aJ' d?BR(a*,pB)
order to be able to calculate fidelity and investigate its de- t t ™
pendence o, r2
Xexp{—r2(|a|2+|,8|2)+T(ar*A— aA* — aA
2—t? 1—'[2)2 * AKx _ %k * _ % A%
t t7(2—1%) |a|2+|,8|2
+r2{ap* +a* B) ex;{— Thaxm.
Now let us examine the output of teleportation by means (30
of the nonideal Bell measurement introduced above. After
the measurement, the state of Bob’s mode 3 becomes In the second line we can see the exponential smoothing

factor we did not have in the ideal case, and inside of this
again two terms are noted with bracéa8* + a* 8}, which
i Trad B[ W (Wil @ |V ep(Vepd))l.  (29) make the output mixed even if the input were a pure state.
In this scheme it is very useful again to calculate fidelity
defined by Eq(12) in the special case when the input state is
a pure coherent state of mode 1. Here we have an ideal EPR
pair but Alice’s measurement is not perfect. However, it turns
out again that the fidelity is independent of the amplitude of
DA* A the coherent state, so it is again a good measure of the qual-
a* + B+ _) ity of the teleportation as a function of the energy loss. The
t t calculation of the fidelity as a function ofyields

This, applying four times Glauber’s identit$), yields

~ 1
pfoc—zf dzaf d?BR
T

2 _ 42

Xexr{—r2(|a|2+|,8|2)+rT(a*A— aA* — aA+ a* A* Hr)=(1=r% (3D

This dependence is shown in Fig. 4. The case) reflects

the ideal case. For smal| that is, for a small loss, Bob’s

displacement corrects the defects of Alice’'s measurement

quite efficiently: even at=0.5, for example, we still have

la)(p|. (29 F=0.88. The other limiting case is=1, as if Alice did not
perform a measurement at all, so classical teleportation also
fails, yielding zero fidelity.

— B* At BA*+ BA- B A*) Hr¥{aB* +a* B}

lal?+|B]> 2
xexp = ———— (" A+ BA%)

Fyrther investigations show 'that Bob should now per}‘orm his V. ENTANGLEMENT WITH NOISE AND LOSSES
displacement by 2/t to obtain the best output. To this end,

Alice should send Bob the result of her measurement and In this section we deal in detail with how entangled pairs
Bob needs to know the losses of Alice’s measurement. Thare produced for teleportation in the experiment. This is
state obtained by the displacement is the output of thearried out by means of a second-order nondegenerate pro-
scheme, cess of a nonlinear crystal, most frequently a BBO
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(Qi2Q](@))r=2y(n(T)+1)8(z-2")5;, (39

B (QQ(2))r=0, (36
(Q'2Q"(2"))r=0, (37)
ﬁ where we have used
0 pump ) [Qi(2),Q](z)1=2y8(z-2) 5, (39)
FIG. 5. Scheme for the creation of entanglement between mode®r Eq. (35). In the above equations(T) denotes the expec-
a andb by pumping a nonlinear crystal at temperatiire tation value of the number of thermal photons,
n(T)=(e*eT—1)"1. (39

(B-barium-boratg crystal. The scenario is shown in Fig. 5.
During the propagation in the crystal, photons of the pump\,y |et us solve the Langevin equations with the given ini-
mode decay into two identical photons propagating in two,_ | ditiona- b

different modes. The photon numbers of the two modes aréal conditiona, by,

correlated because the photons are created in pairs. a(2)=C(2)ag+S(2)bf+ F.(2), (40)
The pump mode is considered as a classical field and we
neglect the attenuation of its intensity during propagation in B(Z)ZC(Z)50+ s(z)ég.;. 'Eb(Z)- (41

the crystal. Thus, we have two quantum fieldgndb, and
beside their parametric amplification we also take into acwith
count their attenuation in the crystal and their interaction

—a  YZ
with a thermostat of temperatutie C(2):=e" "costixz), (42)
For the calculations we use the Heisenberg picture: the S(z):=e "*sinh(x2), (43)
time evolution of ladder operators is investigated. However,
time will be transformed to the traveled distance in the crys-and
tal, z, with the speed of light in the crystal. The Langevin 2 . .
equations of motion are Fa(z):f dz'[C(z-2')Qa(2')+S(z—2)Qf(z)], (49
0
da b'—ya+Q (32 z
g, X0 —va ! - ’ AYa ' AYa ’
dz : Fo(2)= fodz [C(z-2')Qu(Z') +S(z—=2))QL(z)].  (49)
db ., . . _ :
E=xaT— vb+Qy. (33 The calculation of the density operator of the entangled

pair obtained by the evolution described by the Langevin

In these equations, the first term on the right side describe‘(%q”ations above is quite straightforward in the characteristic

the pure entanglement in which all attributes of the pump ar unct!on formalism. First, the_ normally ordered characteristic
included in thex parameter taken to be real for the sake offunction of the two modes is calculated. The normally or-
simplicity. y is also a positive real number characterizingd€re€d characteristic operator

energy loss during the propagation in the crystal. The third R(n,§)=e”51(z)e* 7* a(2) gb"(2) g~ £*b(2) (46)

term on the right side describes the interaction with the ther-

mostat. Assuming & correlation of the noise operators we will be expressed by the ladder operators of modes 0 so that

can immediately write it will be easy to apply the initial condition. Performing the
At A, ) commutations we obtain the following normally ordered
(Qi(2)Qj(Z"))r=2yn(T)8(z—2")6; (34 form:

R (7,8)= e~ S@UEH 17+ CRASD(7 € +76) gl nC(D)~¢* (@) afg[7* C(D)~ ES()]a0g 7 S(2) ~ EC(Dbogl 75(2) ~ € C(2)1 o
Xexp{ Jodz’[nC(Z—Z')Q;(Z’)—i-fS(Z_ZI)Qa(Zr)]} ex% _ Jodzl[ﬂ*C(Z_Z’)Qa(Z,)+f*S(Z_Z’)Q;(Z')]}
Xexp{ fodZ’[éqz—zr)QE(z’)Jr 7S(z— z’)Qb(z’)]} exp[ — fodz’[é*C(Z—Z’)Qb(Z’H n*S(z—z’)Qg(z')ﬁ.
(47)

The initial condition is that in modes 0 there is a vacuum state
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po=10)a(0[a®]0)p(0],® pr, (48)
wherep+ is the density operator of the thermostat. So the characteristic function of the two modes is
X(7,6)=Tr{poK(7,6)}

* ¢k ~ z A A
— e~ S @&+ 71D+ C@S@D (n* & + 9o Ty (PT expl jodz’[nC(Z—Z')Q;(Z')+§S(Z—Z')Qa(2')]

xexp{ - fozdz’[r;* C(z—2")Qu(2)+ & S(z— z’)@z‘;(z’)]] eXp[ fozdz’[§C(Z—Z')Qg(Z')+ WS(Z—Z’)Qb(Z')])

xexp{ - [laz1ecie-2)0ue+ n*8<z—z'>©£<z')]]). (49)

The trace is calculated using the expression e B
R(a*,B8)=

w

L e . f d2yx(pye et E (56)
TF{E)TEFTE_ Fl— e~ (FTR)r+ V2R R+ VAFF)T - (50)
Generalization of these formulas for two modes is straight-
where expectation values of the operator products are calcfierward [24], in this caseR is a function of a*,,y*, 4.
lated using Eqs(34)—(37). The computation yields Performing the transformatiori56) for the characteristic
function (51) we obtain

_ 2 2 o on* &*
X(77,§)=e m(\‘f\ +|77| Yhontton e ’ (51) R( * B ')/* 5) eQ(a*5+y*5)+EB5+Ey*a* (57)
a 1 1 1 = 1
where we have introduced with

z 2 2
m:=S2(z) + 2y n(T)J dz' C2(z') L mmzot (59)

0 (m+1)2—o?

z
+(n(M+1) | dz’S¥(z") ]|, 52

(n(m+1) [ <>> 52 _ . 5

T (mt1)2-o?

So the normalized density operator of the imperfect en-
tangled pair reads

~ (1-0)*-E?
pEPR:TJ dz’)’j d?s

x @~ V2(1-02=E)(|7?+|89) + QEys* +QEy* s

0:=C(2)S(z2)+2y[2n(T)+1] Jozdz’C(z’)S(z’).
(53
Using the formula

n m

((@hnam=(-1)m

x(m)| = (54)
g gm0 X[y (Qy+E8®|Q8* +Ey*)5*|.  (60)
for calculating momenta of ladder operators it is easy to se&omparison with Eq(15) yields that this density operator

that the photon numbers of each mode are fjisivhile o is ~ 9€scribes an ideal EPR pair in the limit 6f=0, E=1. If
connected to entanglement. Q=0 andE#1 the state remains pure and we obtain the

Now we are turning our attention to the density operatorStaté we have already seen in E(.and (3) with
of our entangled pair. This will be calculated by means of the g2

R function, E=s= . (61)
1+g?
;): ij dzaf d2BR(a* ’B)e—(|a|2+\ﬁ\2)/2| a)(B. In any other case, that is, with finif¢, the entangled pair is
2 in a mixed state.
(55 Now let us turn our attention to teleportation by means of

the more realistic entangled pair discussed above. Here we
The connection between the characteristic function andRthe would like to concentrate on the distorting effects of the
function is[23] nonideal entangled pair, so Alice’s measurement is supposed
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FIG. 6. Entanglement of the shared pair, measured by the fidel- g5 7. Entanglement of the shared pair, after propagating 2 cm
ity of the teleportation of coherent states, as a function of the propay, 3 BBO crystal, as a function of the parametewhich is propor-
gation distance in the nonlinear crystal at three different values of {jong| 1o the pump intensity.
the pump parametex. Since the attenuation of the pump is ne-
glected, entanglement is monotonic. Fig. 6 we see the entanglement process in the crystal with

three different pump intensities leading tox
to be ideal. Alice’s state to be teleported is again a generar 1.1,0.11,0.011 cm'. Since the attenuation of the pump
state of mode 1 characterized by the analytic funcfigw*)  is neglected, the entanglement is monotonic. The higivez
if the state is pure, oR(a*,) if it is mixed. Detailed in- have, that is, the more intense pump we use, the better fidel-
vestigations show that in this case Bob should perform hidly is obtained. Figure 7 depicts this dependence at the end of
displacement again by The calculation is quite similar to the crystal.
thg o,ne discussed in Sec. Il. T,he state of Bob’s mode 3 after V. CONCLUSIONS
Alice’s measurement and Bob’s displacement reads
L In this paper we have investigated nonideal continuous

N teleportation. To this end we have used a coherent represen-

Pout™ Ff dzaf dzﬂf dz“f d*vR(a* +2A*, B+2A) tation that has proved to be a convenient tool because the

transformation law of the coherent states on beam splitters is

| |2+ |v|? simple. First, by the example of the ideal scheme we have

xexg —|a|*=|B[*~ T+2(1—Q)(M*A introduced a measure of fidelity and shown that in the tele-
portation of coherent states due to Bob’s appropriate coher-

+ vA*)—2a* A—2BA* —2E (aA* + B*A) ent displacement, fidelity does not depend on the amplitude

of the signal even in such an extreme situation when an
arbitrary two mode mixed state is shared between Alice and
| w)(vl. (62) Bob and used for teleportation. So this quantity can be used
as a measure for characterizing the quality of the scheme.
Using Glauber’s formulas, we could evaluate two further in-  We have modeled inefficiencies of Alice’s Bell measure-
tegrals of the four, which leads to a difficult asymmetricalment by introducing two auxiliary beam splitters into the
form. original scheme. It has been shown that by this measurement
For characterizing the quality of transmission by means oBob’s state is projected onto a mixed state. We have found
an entangled pair created in a realistic crystal we shall calthat in this case Bob should perform his unitary transforma-

culate again the fidelity of the teleportation of coherenttion differently from that in the ideal case. To this end he
states. A straightforward calculation yields must know about Alice’s losses. In this way the teleportation

with small energy losses remains practically ideal.
1-Q+5 Furthermore, we have investigated the production of the
= (63 entangled pair, which is the other most important element of
2 teleportation. We have taken into account distorting effects,
fpeich as energy loss and finite temperature in the nonlinear
amplitude of the coherent state. crystal. The Langevin equations of motion can be resolved

We will investigate this expression with realistic param- exactly u.sing a characteristic function fo_rmalism to obtain
eters for BBO crystals. For typical wavelengths of aboutth® density operator of the entangled pair. The dependence
700 nm at room temperature (300 Ki(T) is, of course, ©ON temperature is through the number of thermal photons

totally negligible. At these wavelengths the typical value of"(T), which is negligible for typical wavelengths and tem-
the linear absorption coefficient ig=0.1 cn L. If the pa- peratures. We have determined fidelity with several given
rameters of the crystal are fixexljs simply proportional to PUMP parameters.

the pump intensity. Let us suppose the length of the crystal to
be 2 cm. First we investigate entanglement during the
propagation in the crystal as a function fwhich we will This work was partially supported by the National Re-
measure by the fidelity of teleporting coherent states. Irsearch Foundation of Hungary under Contract No. T034484.

+E(au*+B* 1)+ Q(aB* +u*v)

which, as we have already seen, does not depend on t
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