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Nonideal teleportation in coherent-state basis
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A coherent representation has been developed for entanglement and measurement, which is an elegant
approach to continuous variable quantum teleportation. In the present paper this frame is used to deal with
nonideal elements of the experimental situation, such as inefficiencies of the Bell measurement, loss, and
thermal noise in the nonlinear crystal used for producing entangled pairs. A measure of fidelity is introduced
for characterizing the quality of nonideal schemes.
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I. INTRODUCTION

Some of the most interesting features of quantum m
chanics arise from entanglement and measurement. Two~or
more! quantum systems are in a pure entangled state if t
common state cannot be obtained by simply compound
pure states of the subsystems. Entangled states of ligh
relatively easy to produce by using proper laser sources
special crystals@1,2#. When the entangled light beams sep
rate, the entanglement can be preserved at great dista
quantum correlations between light beams 10 km apart h
already been shown@3#.

The famous paradox of Einstein, Podolski, and Ro
~EPR! also concerns entanglement and measurement@4#: if
two particles are in a special entangled state, then accor
to Neumann’s principle, a measurement on one influen
the results of possible measurements on the other~that is, the
state of the other particle!.

This is the essence of several quantum communica
and state engineering methods such as quantum teleport
@5#, entanglement swapping@6,7#, distillation of entangle-
ment @8#, or quantum dense coding@9#. These methods ar
closely related to each other and form the base of quan
informatics. In this work we investigate some models of no
ideal quantum teleportation.

Quantum teleportation is a communication protocol
transmitting the state of a quantum system from one plac
another without passing the system itself. In the ideal cas
is carried out by means of a maximally entangled~EPR! pair.
A joint so-called Bell measurement is carried out on o
member of the pair and the system carrying the state to
transmitted. This measurement changes the state of the
member of the pair in such a way that that and only that w
contain information about the given quantum state therea

The teleportation is nonideal if the pair is only partial
entangled@10,11#, if it is in a mixed state@12# or the Bell
measurement is not perfect. As a consequence the comm
cation distorts. From the point of view of teleportation th
imperfection is a disadvantage, in quantum state enginee
however, it may be exploited.

Bennett’s discrete teleportation scheme has been gen
ized by Vaidman@13# and Braunstein and Kimble@14# to
teleport continuous variables. A coherent-state representa
1050-2947/2002/66~2!/023809~9!/$20.00 66 0238
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for entanglement has been developed, providing an e
cially elegant approach to continuous variable teleportat
@15,16#.

Coherent states are very important in quantum optics
several aspects. From the experimental point of view th
are significant because the light of lasers can be appr
mately described by them. From the theoretical point of vi
the fact that they are eigenstates of annihilation operator
important. For the present work the most vital conseque
of this property is that the transformation of coherent sta
on beam splitters is simple.

Coherent states, however, form an over-complete b
that is, a given state can be expanded by them in sev
ways. Nevertheless, using appropriate constraints for
weight function, the expansion can be made unique. Acco
ing to Glauber, such a constraint is, for example, the p
scription of the weight function to be analytic, but many su
representations exist for one and two modes@17–20#.

In this cadre it is quite convenient to deal with nonide
elements of the experimental situation@21#. Such elements
are the inefficiencies of the Bell measurement of the sen
~Alice!, yielding an imperfect Bell measurement; and th
mal noise and loss in the crystal during the creation of
entangled pair, resulting in a partially entangled pair being
mixed state. Our aim is to investigate the distorting effect
these elements.

This paper is organized as follows: in Sec. II we exam
the ideal scheme of continuous teleportation and introduc
measure of fidelity. It will be shown that if the input state
a pure coherent state then fidelity is independent of the
plitude. Therefore the fidelity of the teleportation of cohere
states may be used as a measure of the quality of the sch
In Sec. III a model for nonideal Bell measurement is su
gested and calculated. In Sec. IV we examine teleporta
by means of a more realistic entangled pair obtained by s
ing the Langevin equations in a pumped crystal at finite te
perature. During the investigation of each nonideal elem
all other elements are supposed to be ideal because we w
like to concentrate on the distortion caused by the giv
nonideal element.

II. CONTINUOUS TELEPORTATION

In this section first we follow the discussion of Ref.@15#.
The scenario is depicted in Fig. 1. Alice’s state to be te
©2002 The American Physical Society09-1
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ported is an arbitrary pure state of mode 1 written as

uC in&15
1

pEC
d2ae2uau2/2f ~a* !ua&1 ~1!

in Glauber’s coherent representation. In modes 2 and 3
have the entangled pair

uCEPR
s &23}(

n
snun&2un&3 . ~2!

We use this pair because the ideal down-conversion resul
this two-mode squeezed vacuum state. For calculations
convenient to rewrite this state in coherent-state represe
tion

uCEPR
g &235

N~g!

p E
C
d2ae2uau2/g2

ua&2ua* &3 . ~3!

It is straightforward to see that Eqs.~2! and ~3! are equiva-
lent to

g5A s

12s
. ~4!

N(g) is a normalization factor that becomes important wh
we investigate the fidelity of the scenario as a function og.
This pair becomes maximally entangled asg→` (s→1),
but it is not normalizable in this limit. Later in Sec. IV w
shall see that a nonideal entangled pair in an experimen
not as simple as Eq.~3!, but at the moment this is the sim
plest way to deal with nonideal entangled pairs.

Alice carries out a joint measurement on modes 1 and
She makes them interfere on a symmetric beam splitter
then carries outX̂ and Ŷ quadrature measurements on t
out-modes. This measurement projects the state of mod
and 2 onto

uCB~A!&125
1

pEC
d2lel* A2lA* ul1A&1ul* 2A* &2 , ~5!

FIG. 1. Scheme for continuous teleportation of an unkno
quantum stateuC in& from Alice to Bob by means of the share
entanglement, a joint measurement performed by Alice, and
classical informationA sent from Alice to Bob.
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with

Aª
X1 iY

A2
~6!

reflecting the result of Alice’s measurement.
After Alice’s measurement the state of mode 3 is p

jected onto

uC f&3}^CBell~A!uC i&123, ~7!

where the symbol} indicates that we have an addition
normalization factor arising from such a projection. Th
applying successively Glauber’s useful identity for analytif
functions

f ~b* !5
1

pE d2a f ~a* ! e2uau21ab* , ~8!

yields

uC f&3}
N~g!e22uAu2

p E d2a f ~a* 12A* !

3e2(1/g211/2)uau222a* Aua&3 . ~9!

Now, if Alice passes to Bob the resultA of her measuremen
via a classical channel, he may perform a coherent displa
ment by 2A leading to the state

uCout&35D̂~2A!uC f&3}
N~g!

p E d2a f ~a* !

3expF2
ua22Au2

g2
2

uau2

2 G ua&3 . ~10!

We perceive that in the limit ofg→` this state reproduce
the input state. This is the case of maximal entanglement
the teleportation is without distortion.

In any other case, the transfer distorts: we have a Ga
ian smoothing factor next to the functionf. In the case of
finite g, the stateuCout& is obtained by an obviously nonun
tary transformation ofuC in&, making the reconstruction o
the original state really difficult.

In this scheme, ifg is finite, it is interesting to ask how
good a transfer provided by the teleportation is, in oth
words, how closely the output state resembles the input@22#.
To answer this question let us calculate first the density
erator of the ‘‘expectation state’’ of mode 3 after Alice’s me
surement~a probabilistic event! and Bob’s displacement
This expectation state will be compared with the input.

It is straightforward to see that the expectation state
simply

r̂out
e 5

1

pE d2AuCout~A!&^Cout~A!u, ~11!

because the probability of measuringA is just the inverse of
the missing additional normalization factor appearing in E
~7!. So the fidelity will be defined as

n

e

9-2
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F5Tr $r̂ inr̂out
e %. ~12!

We will not calculate this for the general situation when t
input state has the form~1!, because in this case fidelit
depends on the choice of the functionf, thus it gives little
information on the quality of the scheme itself.

Instead we examine the special case when the input s
is a pure coherent stateua&. In this case, curiously enough
fidelity turns out to be independent of the amplitudea.
Moreover, we find the same result in a more general situa
than the scheme discussed above, if before the measure
the state of modes 2 and 3 is a general two-mode mixed s
and we try to use this for teleportation. At the first look th
may seem surprising because the entangled pair~3! with the
Gaussian cutoff contains large amplitudes with everdimini
ing weight. Thus it does not have enough energy to telep
large-amplitude coherent states faithfully.

The solution of this paradox lies in Bob’s displaceme
that compensates the energy loss in such a way that coh
states can be teleported with equal fidelity irrespective of
amplitude. After Alice’s measurement, one part of the inf
mation about the input state remains with Alice in the m
sured result, while the other part is transferred to Bob
coded in the state of mode 3. Since Alice communicates
result to Bob, he will already have enough information
reconstruct coherent states independently of the amplitu

Since in the teleportation of coherent states the fide
defined in Eq.~12! does not depend on the amplitude, w
shall regard it as a characteristic of the teleportation sch
itself. The fidelity of the scheme represented in Fig. 1 tu
out to be

F~g!5
112g2

2~11g2!
. ~13!

This function is shown in Fig. 2. It is interesting that ev
in the case ofg50 when the state~3! is vacuum, coheren
states may be teleported with fidelity12 due to Bob’s dis-
placement governed by Alice’s classical message. This
cess may be called ‘‘classical teleportation’’ because ther

FIG. 2. Fidelity of teleportation in the ‘‘ideal’’ scheme as
function of theg parameter of the entangled pair.g50 represents
the case of classical teleportation with fidelity1

2 because in this cas
the shared state is the vacuum; whileg5` is the case of maxima
shared entanglement, that is, perfect teleportation with fidelity
02380
te

n
ent
te

-
rt

t
ent
e
-
-
-

er

.
y

e
s

o-
is

no quantum correlation here: the system is measured so
where, the results are sent elsewhere and on the basis o
results of the measurement it is ‘‘assembled’’ again there
can be shown that the fidelity of the classical teleportation
coherent states with a perfect measurement can be at mo1

2 ,
we find this result in Ref.@14#. As we have already men
tioned above, withg→` we tend to the ideal case when th
fidelity tends to 1.

III. INEFFICIENCIES OF THE BELL MEASUREMENT

In an experiment Alice’s Bell measurement is not perfe
because the detector efficiency is finite and beam splitters
not ideal. In this section we examine the distorting effect
the inefficiencies of the measurement. Since our model c
sists of auxiliary beam splitters, here we shall see the
advantage of using a coherent-state representation.

The nonideal Bell measurement is modeled by introd
ing two additional asymmetric beam splitters between
out-modes of the original beam splitter and the detecto
These additional beam splitters scatter out some of the p
tons that we would like to measure. The resulting Bell me
surement will be nonideal, and projects the state of mode
and 2 onto a mixed state. Naturally, Bob’s output state in t
case will be mixed as well.

The proposed scheme is depicted in Fig. 3. BS1 is a s
metric beam splitter while BS2 and BS3 are asymme
beam splitters with transmission coefficientt and reflection
coefficient r; these are supposed to be real for the sake
simplicity ~we haver 21t251). The limit of ideal measure-
ment is the caset51, r 50.

Here Alice wants to teleport the

r̂ in5
1

p2E d2aE d2bR~a* ,b!e2(uau21ubu2)/2ua&^bu

~14!

general state of mode 1, withR(a* ,b)5 f (a* ) f * (b) if the
state to be teleported is pure, but the calculation is similar

FIG. 3. Teleportation scheme for modeling inefficiencies of A
ice’s measurement by the addition of two asymmetric beam split
BS2 and BS3 between the modes to be measured and the dete
These beam splitters scatter out some of the photons to be
sured, resulting in energy loss.
9-3
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general mixed states. The state of modes 2 and 3 is an
EPR pair obtained from Eq.~3! by performing the limitg
→`,

uCEPR&235
1

pEC
d2aua&2ua* &3 , ~15!

which is a non-normalizable state.
First we determine the state the nonideal measurem

projects the state of modes 1 and 2 onto. On modeA an X̂

quadrature measurement is carried out so here we havX̂
eigenstate, while the state of modea is vacuum. The connec
tion between the modes of the beam splitter is

âA5tâb1râa , âB52râb1tâa , ~16!

that is,

âb5
âA1râa

t
, âB5

âa2râA

t
. ~17!

The state of modesA,a is

uC&Aa5
1

Ap
E

R
dae2 iXauX1 ia&Au0&a , ~18!

with X being the result of the quadrature measurement.
ing this and Eq.~17! the state of modesb,B,

uC&bB5
1

Ap
E

R
dae2 iXaUX1 ia

t L
b

U2 r ~X1 ia !

t L
B

,

~19!

from which we form the common density operator of mod
b andB,

r̂bB5
1

pER
daE

R
dbeiX(b2a)UX1 ia

t L
b

U2 r ~X1 ia !

t L
B

3 K X1 ib

t U
b
K 2

r ~X1 ib !

t U
B

, ~20!

which gives the state of modeb by calculating the partia
trace

r̂b}TrB$r̂bB%

5
1

pER
daE

R
db expF iX~b2a!S 12

r 2

t2 D 2
r 2

2t2
~b2a!2G

3UX1 ia

t L
b
K X1 ib

t U
b

, ~21!

where the symbol} means that a state obtained by calcul
ing partial trace is not normalized. We see that the nonid
measurement projects the state of modeb onto a statistically
mixed state. This is quite natural because modesb andB are
02380
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entangled, and the subsystems of a system in a pure
tangled state are in a mixed state when regarded separa

Quite similarly we obtain the state of modec,

r̂c}
1

pER
dcE

R
dd expF iY~c2d!S 11

r 2

t2 D 2
r 2

2t2
~c2d!2G

3Uc1 iY

t L
c
K d1 iY

t U
c

, ~22!

with Y being the result of theŶ quadrature measurement. S
the common density operator of modesb andc is

r̂bc5 r̂b^ r̂c

}
1

p2ER
daE

R
dbE

R
dcE

R
dd expH iY~c2d!S 11

r 2

t2 D
1 iX~b2a!S 12

r 2

t2 D 2
r 2

2t2
@~b2a!21~c2d!2#J

3UX1 ia

t L
b
K X1 ib

t U
b

^Uc1 iY

t L
c
K d1 iY

t U
c

, ~23!

from which, using Eqs.~16! in the special case of a symme
ric beam splitter, we obtain the density operator of mode
and 2 after the Bell measurement,

r̂12
Bell}

1

p2ER
daE

R
dbE

R
dcE

R
dd expH iY~c2d!S 11

r 2

t2 D
1 iX~b2a!S 12

r 2

t2 D 2
r 2

2t2
@~b2a!21~c2d!2#J

3Uc1 ia1X1 iY

tA2
L

1

K d1 ib1X1 iY

tA2
U

1

^Uc2 ia2X1 iY

tA2
L

2

K d2 ib2X1 iY

tA2
U

2

. ~24!

Using again

Aª
X1 iY

A2
~25!

for representing the result of Alice’s measurement, and tu
ing to complex integration variables we have
9-4
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r̂12
Bell}

N~A,t !

p2 E
C
d2gE

C
d2d expFg* A2gA* 1dA* 2d* A

2
r 2

t2
~ ugu21udu22gA1g* A* 2d* A* 1dA

2$g* d1gd* %!GUg1A

t L
1
K d1A

t U
1

^Ug* 2A*

t L
2
K d* 2A*

t U
2

. ~26!

Here in the argument of the exponential function we ha
denoted with braces the two terms,$g* d1gd* %, which
make the state statistically mixed. This state is no
normalizable. It will become convenient, however, to se
rate the dependence of the normalization factor onA andt in
order to be able to calculate fidelity and investigate its
pendence ont,

N~A,t !5
22t2

t2
expS ~12t2!2

t2~22t2!
~A1A* !2D . ~27!

Now let us examine the output of teleportation by mea
of the nonideal Bell measurement introduced above. A
the measurement, the state of Bob’s mode 3 becomes

r̂ f}Tr12$r̂
Bell~ uC in&^C inu ^ uCEPR&^CEPRu!%. ~28!

This, applying four times Glauber’s identity~8!, yields

r̂ f}
1

p2E d2aE d2bRS a* 1
2A*

t
,b1

2A

t D
3expF2r 2~ uau21ubu2!1

r 2

t
~a* A2aA* 2aA1a* A*

2b* A1bA* 1bA2b* A* !1r 2$ab* 1a* b%G
3expF2

uau21ubu2

2
2

2

t
~a* A1bA* !G ua&^bu. ~29!

Further investigations show that Bob should now perform
displacement by 2A/t to obtain the best output. To this en
Alice should send Bob the result of her measurement
Bob needs to know the losses of Alice’s measurement.
state obtained by the displacement is the output of
scheme,
02380
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r̂out5D̂S 2A

t D r̂ f D̂
†S 2A

t D}
1

p2E d2aE d2bR~a* ,b!

3expF2r 2~ uau21ubu2!1
r 2

t
~a* A2aA* 2aA

1a* A* 2b* A1bA* 1bA2b* A* !

1r 2$ab* 1a* b%GexpF2
uau21ubu2

2 G ua&^bu.

~30!

In the second line we can see the exponential smooth
factor we did not have in the ideal case, and inside of t
again two terms are noted with braces,$ab* 1a* b%, which
make the output mixed even if the input were a pure sta

In this scheme it is very useful again to calculate fidel
defined by Eq.~12! in the special case when the input state
a pure coherent state of mode 1. Here we have an ideal
pair but Alice’s measurement is not perfect. However, it tu
out again that the fidelity is independent of the amplitude
the coherent state, so it is again a good measure of the q
ity of the teleportation as a function of the energy loss. T
calculation of the fidelity as a function ofr yields

F~r !5~12r 4!2. ~31!

This dependence is shown in Fig. 4. The caser 50 reflects
the ideal case. For smallr, that is, for a small loss, Bob’s
displacement corrects the defects of Alice’s measurem
quite efficiently: even atr 50.5, for example, we still have
F50.88. The other limiting case isr 51, as if Alice did not
perform a measurement at all, so classical teleportation
fails, yielding zero fidelity.

IV. ENTANGLEMENT WITH NOISE AND LOSSES

In this section we deal in detail with how entangled pa
are produced for teleportation in the experiment. This
carried out by means of a second-order nondegenerate
cess of a nonlinear crystal, most frequently a BB

FIG. 4. Fidelity of the scheme with energy losses at the B
measurement as a function of the reflectancer. r 50 represents
measurement without energy loss, that is, teleportation with fide
1; while r 51 is just as if Alice did not perform a measurement
all, making classical teleportation fail, resulting in fidelity 0.
9-5
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(b-barium-borate! crystal. The scenario is shown in Fig.
During the propagation in the crystal, photons of the pu
mode decay into two identical photons propagating in t
different modes. The photon numbers of the two modes
correlated because the photons are created in pairs.

The pump mode is considered as a classical field and
neglect the attenuation of its intensity during propagation
the crystal. Thus, we have two quantum fields,a andb, and
beside their parametric amplification we also take into
count their attenuation in the crystal and their interact
with a thermostat of temperatureT.

For the calculations we use the Heisenberg picture:
time evolution of ladder operators is investigated. Howev
time will be transformed to the traveled distance in the cr
tal, z, with the speed of light in the crystal. The Langev
equations of motion are

dâ

dz
5xb̂†2gâ1Q̂a , ~32!

db̂

dz
5xâ†2gb̂1Q̂b . ~33!

In these equations, the first term on the right side descr
the pure entanglement in which all attributes of the pump
included in thex parameter taken to be real for the sake
simplicity. g is also a positive real number characterizi
energy loss during the propagation in the crystal. The th
term on the right side describes the interaction with the th
mostat. Assuming ad correlation of the noise operators w
can immediately write

^Q̂i
†~z!Q̂j~z8!&T52gn~T!d~z2z8!d i , j , ~34!

FIG. 5. Scheme for the creation of entanglement between mo
a andb by pumping a nonlinear crystal at temperatureT.
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^Q̂i~z!Q̂j
†~z8!&T52g~n~T!11!d~z2z8!d i , j , ~35!

^Q̂~z!Q̂~z8!&T50, ~36!

^Q̂†~z!Q̂†~z8!&T50, ~37!

where we have used

@Q̂i~z!,Q̂j
†~z8!#52gd~z2z8!d i , j ~38!

for Eq. ~35!. In the above equationsn(T) denotes the expec
tation value of the number of thermal photons,

n~T!5~e\v/kBT21!21. ~39!

Now let us solve the Langevin equations with the given i
tial condition â0 ,b̂0,

â~z!5C~z!â01S~z!b̂0
†1F̂a~z!, ~40!

b̂~z!5C~z!b̂01S~z!â0
†1F̂b~z!, ~41!

with

C~z!ªe2gzcosh~xz!, ~42!

S~z!ªe2gzsinh~xz!, ~43!

and

F̂a~z!5E
0

z

dz8@C~z2z8!Q̂a~z8!1S~z2z8!Q̂b
†~z8!#, ~44!

F̂b~z!5E
0

z

dz8@C~z2z8!Q̂b~z8!1S~z2z8!Q̂a
†~z8!#. ~45!

The calculation of the density operator of the entang
pair obtained by the evolution described by the Lange
equations above is quite straightforward in the characteri
function formalism. First, the normally ordered characteris
function of the two modes is calculated. The normally o
dered characteristic operator

K̂~h,j!5ehâ†(z)e2h* â(z)ejb̂†(z)e2j* b̂(z) ~46!

will be expressed by the ladder operators of modes 0 so
it will be easy to apply the initial condition. Performing th
commutations we obtain the following normally ordere
form:

es
K̂~h,j!5e2S2(z)(uju21uhu2)1C(z)S(z)(h* j* 1hj)e[hC(z)2j* S(z)] â0
†
e2[h* C(z)2jS(z)] â0e2[h* S(z)2jC(z)] b̂0

†
e[hS(z)2j* C(z)] b̂0

3expH E
0

z

dz8@hC~z2z8!Q̂a
†~z8!1jS~z2z8!Q̂a~z8!#J expH 2E

0

z

dz8@h* C~z2z8!Q̂a~z8!1j* S~z2z8!Q̂a
†~z8!#J

3expH E
0

z

dz8@jC~z2z8!Q̂b
†~z8!1hS~z2z8!Q̂b~z8!#J expH 2E

0

z

dz8@j* C~z2z8!Q̂b~z8!1h* S~z2z8!Q̂b
†~z8!#J .

~47!

The initial condition is that in modes 0 there is a vacuum state
9-6
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r̂05u0&a^0ua^ u0&b^0ub^ r̂T , ~48!

wherer̂T is the density operator of the thermostat. So the characteristic function of the two modes is

x~h,j!5Tr $r̂0K̂~h,j!%

5e2S2(z)(uju21uhu2)1C(z)S(z)(h* j* 1hj)Tr Xr̂T expH E
0

z

dz8@hC~z2z8!Q̂a
†~z8!1jS~z2z8!Q̂a~z8!#J

3expH 2E
0

z

dz8@h* C~z2z8!Q̂a~z8!1j* S~z2z8!Q̂a
†~z8!#J expH E

0

z

dz8@jC~z2z8!Q̂b
†~z8!1hS~z2z8!Q̂b~z8!#J

3expH 2E
0

z

dz8@j* C~z2z8!Q̂b~z8!1h* S~z2z8!Q̂b
†~z8!#J C. ~49!
lc

se
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he
sed
The trace is calculated using the expression

Tr $r̂TeF̂†
e2F̂%5e2^F̂†F̂&T11/2̂ F̂†F̂†&T11/2̂ F̂F̂&T, ~50!

where expectation values of the operator products are ca
lated using Eqs.~34!–~37!. The computation yields

x~h,j!5e2m(uju21uhu2)1shj1sh* j* , ~51!

where we have introduced

mªS2~z!12gS n~T!E
0

z

dz8C2~z8!

1~n~T!11!E
0

z

dz8S2~z8! D , ~52!

sªC~z!S~z!12g@2n~T!11#E
0

z

dz8C~z8!S~z8!.

~53!

Using the formula

^~ â†!nâm&5~21!m
]n

]hn

]m

]h* m
x~h!uh50 ~54!

for calculating momenta of ladder operators it is easy to
that the photon numbers of each mode are justm, while s is
connected to entanglement.

Now we are turning our attention to the density opera
of our entangled pair. This will be calculated by means of
R function,

r̂5
1

p2E d2aE d2bR~a* ,b!e2(uau21ubu2)/2ua&^bu.

~55!

The connection between the characteristic function and thR
function is @23#
02380
u-

e

r
e

R~a* ,b!5
ea* b

p E d2hx~h!e2uhu22ha* 1h* b. ~56!

Generalization of these formulas for two modes is straig
forward @24#, in this caseR is a function ofa* ,b,g* ,d.
Performing the transformation~56! for the characteristic
function ~51! we obtain

R~a* ,b,g* ,d!5eV(a* b1g* d)1Jbd1Jg* a* , ~57!

with

Vª

m21m2s2

~m11!22s2
, ~58!

Jª

s

~m11!22s2
. ~59!

So the normalized density operator of the imperfect
tangled pair reads

r̂EPR5
~12V!22J2

p2 E d2gE d2d

3e21/2(12V22J2)(ugu21udu2)1VJgd* 1VJg* d

3ug&^Vg1Jdu ^ uVd* 1Jg* &^d* u. ~60!

Comparison with Eq.~15! yields that this density operato
describes an ideal EPR pair in the limit ofV50, J51. If
V50 andJÞ1 the state remains pure and we obtain t
state we have already seen in Eqs.~2! and ~3! with

J5s5
g2

11g2
. ~61!

In any other case, that is, with finiteV, the entangled pair is
in a mixed state.

Now let us turn our attention to teleportation by means
the more realistic entangled pair discussed above. Here
would like to concentrate on the distorting effects of t
nonideal entangled pair, so Alice’s measurement is suppo
9-7
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to be ideal. Alice’s state to be teleported is again a gen
state of mode 1 characterized by the analytic functionf (a* )
if the state is pure, orR(a* ,b) if it is mixed. Detailed in-
vestigations show that in this case Bob should perform
displacement again by 2A. The calculation is quite similar to
the one discussed in Sec. II. The state of Bob’s mode 3 a
Alice’s measurement and Bob’s displacement reads

r̂out}
1

p4E d2aE d2bE d2mE d2nR~a* 12A* ,b12A!

3expF2uau22ubu22
umu21unu2

2
12~12V!~m* A

1nA* !22a* A22bA* 22J~aA* 1b* A!

1J~am* 1b* n!1V~ab* 1m* n!G um&^nu. ~62!

Using Glauber’s formulas, we could evaluate two further
tegrals of the four, which leads to a difficult asymmetric
form.

For characterizing the quality of transmission by means
an entangled pair created in a realistic crystal we shall
culate again the fidelity of the teleportation of cohere
states. A straightforward calculation yields

F5
12V1J

2
, ~63!

which, as we have already seen, does not depend on
amplitude of the coherent state.

We will investigate this expression with realistic param
eters for BBO crystals. For typical wavelengths of abo
700 nm at room temperature (300 K),n(T) is, of course,
totally negligible. At these wavelengths the typical value
the linear absorption coefficient isg50.1 cm21. If the pa-
rameters of the crystal are fixed,x is simply proportional to
the pump intensity. Let us suppose the length of the crysta
be 2 cm. First we investigate entanglement during
propagation in the crystal as a function ofz, which we will
measure by the fidelity of teleporting coherent states.

FIG. 6. Entanglement of the shared pair, measured by the fi
ity of the teleportation of coherent states, as a function of the pro
gation distancez in the nonlinear crystal at three different values
the pump parameterx. Since the attenuation of the pump is n
glected, entanglement is monotonic.
02380
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Fig. 6 we see the entanglement process in the crystal w
three different pump intensities leading tox
51.1, 0.11, 0.011 cm21. Since the attenuation of the pum
is neglected, the entanglement is monotonic. The higherx we
have, that is, the more intense pump we use, the better fi
ity is obtained. Figure 7 depicts this dependence at the en
the crystal.

V. CONCLUSIONS

In this paper we have investigated nonideal continuo
teleportation. To this end we have used a coherent repre
tation that has proved to be a convenient tool because
transformation law of the coherent states on beam splitte
simple. First, by the example of the ideal scheme we h
introduced a measure of fidelity and shown that in the te
portation of coherent states due to Bob’s appropriate co
ent displacement, fidelity does not depend on the amplit
of the signal even in such an extreme situation when
arbitrary two mode mixed state is shared between Alice
Bob and used for teleportation. So this quantity can be u
as a measure for characterizing the quality of the schem

We have modeled inefficiencies of Alice’s Bell measur
ment by introducing two auxiliary beam splitters into th
original scheme. It has been shown that by this measurem
Bob’s state is projected onto a mixed state. We have fo
that in this case Bob should perform his unitary transform
tion differently from that in the ideal case. To this end
must know about Alice’s losses. In this way the teleportat
with small energy losses remains practically ideal.

Furthermore, we have investigated the production of
entangled pair, which is the other most important elemen
teleportation. We have taken into account distorting effe
such as energy loss and finite temperature in the nonlin
crystal. The Langevin equations of motion can be resolv
exactly using a characteristic function formalism to obta
the density operator of the entangled pair. The depende
on temperature is through the number of thermal phot
n(T), which is negligible for typical wavelengths and tem
peratures. We have determined fidelity with several giv
pump parameters.
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FIG. 7. Entanglement of the shared pair, after propagating 2
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