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Quantum-entanglement production in a micromaser
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We show that a micromaser can work as an effective source of highly correlated atoms. We consider a
one-photon micromaser pumped by a Poissonian beam of atomic pairs. We show that the atoms forming the
pairs leave the micromaser’s cavity in entangled states and that they can violate the Bell inequality. We
consider two aspects of the violation of the Bell inequality: we study the maximal Bg|yeof an expression
appearing in the Bell inequality and we evaluate a vector-deperB(e};ﬁ’,B,B’) depending upon experi-
mental setup. We calculate the entanglement of the formation of states of the atomic pairs. We show that the
pairs of atoms, which fly out from the micromaser cavity, are entangled for almost all values of control
parameters characterizing the considered two-atom micromaser. This happens even if they do not violate the
Bell inequality.
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[. INTRODUCTION steady-state photon distribution, which will be used in the
next section to calculate an atomic correlation function. In
Quantum information theory has been developed duringec. lll, we demonstrate the violation of the Bell inequality.
recent years very rapidly. Recent progress in new experimerWe consider a CHSH version of the Bell inequalitys]. The
tal techniques is also significant. Quantum logic gates havévo-atom correlation function used in the Bell inequality de-
been demonstrated in many cavity QELD, ion trap[2], and  pends upon some parameters, which in the original formula-
NMR [3] experiments. Quantum teleportation has been realtion related to an experiment with polarized photons have an
ized in experiments using optical systefd$ and NMR[5].  interpretation of vectors characterizing a spatial orientation
It may be possible, in the near future, to store and processf polarizers. We analyze also the maximal value of the ex-
information encoded in microscopic quantum systems. Faqiression appearing in the Bell-CHSH inequality. The maxi-
progress in high-speed photon detection, high-speed las@pal value of this expression is the quantity, which is already
optoelectronics, wavelength, and time division multiplexingindependent of any additional parameters characterizing ex-
has occurred, making it possible for the first time to contemferimental setups, and it is very useful in the evaluation of
plate the design of high-speed quantum cryptography syghe quantum correlations actually present in the atomic pairs.
tems implemented in actual physical environments via eitheln Sec. 1V, we calculate the entanglement of formation of the
free-space or fiber-optic cable quantum chanp@]sQuan-  states of the atomic pairs. This quantity is much more sensi-
tum correlations are the key feature of quantum systemdjve to the nonlocal quantum correlations and it allows us to
which allows us to perform many computational and com-identify the entangled states, even if they do not violate the
municational tasks with an efficiency unattainable using clasBell inequality. We compare different ranges of the param-
sic devices. We consider a micromaser, which is an experieters used to a characterization of the considered model of
mental realization of the Jaynes-Cummings model of a singléhe two-atom micromaser. We find these values of the param-
two-level atom interacting with a single mode of the electro-eters for which the Bell inequality is violated and these val-
magnetic field 7], as a promising source of such highly cor- ues for which the entanglement of formation is greater than
related quantum systems. The micromaser can also be us&éro. The comparison will allow us to judge how the micro-
to investigate many interesting quantum effects, such agaser can be efficient as a source of twor more atom
quantum revivalg[8], trapping stateg9], sub—Poissonian correlated systems. Finally, in Sec. V, we summarize the re-
photon statistic§10], or to prepare pure photon number sults and we present conclusions.
stateg 11]. Preparation of EPR states and testing of the Bell

inequality in the micromaser have also been recently consid- Il. TWO-ATOM MICROMASER WITH POISSONIAN

ered[12.—14]. _ . PUMPING
In this paper, we consider a two-atom micromaser

pumped by a Poissonian beam of pairs of excited two-level In the one-atom micromaser, the pumping rate is so low
atoms. We investigate how interaction of the atoms with thehat at most only one atom at a time is present inside the
electromagnetic field in the micromaser causes creation cfavity. This condition, easy to fulfill in the case of regular
guantum correlations between the atoms. We show that theumping by appropriate choosing of the intensity of the
atoms leaving the cavity are in entangled states. We checktomic pumping beam, is also fulfilled with very good accu-
the nonlocality of the states of the atoms in two ways: firstracy in the case of the Poissonian pumping. Such a situation
we analyze the violation of the Bell inequality, and second,is particularly desirable in experiments, when confirmation
we calculate an entanglement of formation of the atphas. of the possibility of the generation of an electromagnetic
In Sec. I, we present the theory of the micromaser pumpedield in such a system, and nonclassical properties of the
by the Poissonian beam of atomic pairs. We work out aobtained field, are investigated. However, there are effects
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that should be more evident when the simultaneous presenae= w— wo=0. We expand the state vector of the whole sys-
of more than one atom in the cavity is allowed. Recently, ittem in the basis of statés, (*),(*);),

was shown that the atoms leaving the micromaser’s cavity
can violate the Bell inequality12,14. We think that the
quantum correlations between the atoms flying out from the |V (t))= 20 [Cn++(D[N,++)+Chig -+ (DN+1,—+)
micromaser should be distinctly stronger when more atoms "

o]

present in the same time in the cavity will interact with the +Chirs—(DN+1+—)

electromagnetic field. We concentrate on the simplest case

when two atoms fly simultaneously through the cavity +Cnio—(D)[n+2,— )], 2
[17,18.

We consider the one-photon micromaser pumped by th@nd We solve the Schdinger equation
beam of pairs of excited two-level atoms. Velocities of the 3
atoms in the pairs can differ, so times of flight of the atoms i—|[W(t))=H'(t)|¥(1)). (3)
through the cavity can also be different,# r,, but we as- ot
sume that they are of the same order of magnitude. We as- . i
sume that delays of the second atoms, and the times of [N Our notation, the right symbol at the vecto;’_(i).ﬁ cor-
flight 7, and 7, are the same for all pairs. We assume alsg'€sponds to the first atom, which flies into the cavity, and the
that the lifetime of atoms,,, is much larger than the times €t symbol,|.,(*),.), corresponds to the second atom. The
of the interaction of the atoms with the field in the cavity, ime dependence of the Hamiltoniafi(t) is trivial and we
71, and we neglect the spontaneous emission. We assunf@" solve the Schdinger equation in each time interval
that the following conditions are fulfilledr; ;<t,<tca, [to.ts], [t1,t2], and[ty,t5] separately. Fote[Of,], we
wheret,, is a time distance between succeeding pairs, anfjave the following set of equations for amplitudes of the
tca= 1/k is a cavity damping time. The delay of the secondPasis states appearing in the expansion of the state vector
atom can change from 0, when both atoms fly into the cavit)}q'(t»:
at the same time, te,, when the atoms interact with the field 1
separately. We use the deldy and the interaction times, , Chas(D=—=iQVn+1cyiqs_ (1), (%)
as control parameters of the model. The pairs enter the cavity ’ 2 '
according to the Poisson process with mean spaciRgo&t L
tween events, wherR is the flux of the pairs. Iny=0, let - . .
the first atom from the pair fly into the cavity. Next, at the Cn+14-(1)= = 51QVN+1Cn . (1),
momentt,; the second atom arrives and both atoms fly
through the resonator together. At the momenthe first ) 1
atom leaves the cavity and, at the end, in the morhgttte Crr1-+(D)==51QVN+2Cn1 5 (1),
second atom flies out from the cavity. We neglect all kinds of
direct interatomic interactions such as the dipole-dipole in- 1
teraction or the van der Waals interaction. However, during Chio——(t)=— ziﬂ‘/n+20n+1,—+(t)y
the periodt.=t,—t;, when both atoms are in the cavity, they
interact with the same field and they entangle due to thi
interaction. We assume that the atoms entering the cavity a?gr neNU{0} and
in the same excited stataw,. The Hamiltonian in the inter- . .
action picture has the following form: Co-+()=0, co+-(1)=0,

Hl(t):H.IJC,lnl(t)+HBC,2772(t)1 Co—(1)=0, ¢ (1)=0, ®)

1 for the amplitudes of the remaining states, which do not par-
Hic = SQL( @oha+(l®e)a’l, (1) ticipate in the interaction. Because we assume that the atoms
fly into the cavity in the excited states, the initial condition
has the following form: c, . ,(0)=cn(0),Chs1—+(0)
=0,Cn+1+-(0)=0, chyp——(0)=0. The amplitudes,(0)
=+/pn(0) correspond to the initial probability distribution of
the photons in the cavity. We set the amplitudes of the non-
where H'Jc’(lvz) are the time-independent Jaynes-Cummingsnteracting states equal to zerogy_.(0)=cq+_(0)
Hamiltonians for the first and the second atom(t) =Cp--(0)=cy__(0)=0. At the moment, the state vector
=0(t)—0(t—ty) and 7,(t)=6(t—t;)—6(t—t;) are step is the following:
functions equal to 1, when, respectively, the first or the sec-

Hic = EQ[(a*@>l)a+(cr®l)aT],
Z 2

ond atom is present in the resonataf, and a are photon -

creation and annihilation operators, antland o are raising |\I’(t1)>:nzo [cogxpty) [N, ++)

and lowering atomic operators, respectively. We assume also

that the atoms are in the resonance with the field, i.e., that —isin(X,ty)|n+1,+—-)], (6)
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wherex,=3Qn+1. We use the amplitudes, - - (t;)

the initial condition in calculations of the evolution from
tot,. The equations for the amplitudes have a similar form to

that in the previous case,

. 1
Cnyt+ (D)=~ EiQ vn+1[chigy (D+Chya (D],

@)

. 1

Chr1r (D)=~ E'Q[ vn+1c, 4 (1)
#2000 (D],

. 1

Chr1,—+ (D)=~ Eiﬂ[ yn+1c, 4 4 (1)

YN+ 2en, (1],

: 1
Chiz--(1)=— EiQ VN+2[Cpig 4 () +Chya— (D]

We solve them and obtain the amplitudes

(n+2)+(n+1)cogyn(t,—ty)]
2n+3

~IV5an g St t)]Cns 1 - (1)
[l
Chr14+—(tp)=—i \/%Slr[yn(tz—tl)]cn’++(tl)

+cog

Cn,++(t2) Cn,++(t1)

Cnr1+—(t1),

1
Eyn(tz_tl)

) n+1 )
Chr1,-+(t2)= =11/ mS|F[Yn(tz—t1)]Cn,++(t1)

—sir?

1
EYn(tz_tﬂ Cni1+—(12),

2\J(n+1)(n+2)

2n+3

Cnio——(tp)=—

X sir?

1
zyn(tz_tl) Cn++(t1)

. n+1
—j \/%Slr[yn(tz_tl)]cn+l,+(tl)’

(

wherey,=Q+/3(2n+3). Again the amplitudes,, . - (t
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as

V(t)=2 2 Copaltalnba),

where the amplitudes are the following:

Ch++(t3)= COan(t3—t2)]Cn'++(t2)

_| Sir’[Xn(t3—t2)]Cn+1,— +(t2)’

Cnr1—+(tg)=—isiMX,(tz—t)]C, 4 (L)

+ COé—LXn(t3_t2)]cn+1,7+(t2),

€)

Cny1+—(t3)=COgXpy1(tz—t)]Chig+ —(tp)

—i si X1 1(t3—t2)ICnia— —(12),

Cnyz——(tg)=—isiN X, 1(t3—tp)]Cni1 4 —(12)

+c0g Xp+1(ta—ta)]Chiz - —(t2).

We want to obtain the probability distribution ofphoton
states. We need to take into account cavity losses. We calcu-

late a reduced density operatpf of the electromagnetic
field. At the moment; , ; =t,+t3+1t;, when the first atom of
the next pair flies into the resonator, the field is given by the
density matrix

pi(tis) = oG () py(ty),

3

where the operatoé(ts) describes the interaction of the
atoms with the field, and its explicit form can be obtained
from the calculations presented above:

(n|G(ta)ps(t)|Ny=py(t;+1t3)

. .Z+ |Cn,ij (ti T ta)[?

=|dn, + 4 (ta)[?pn(t)
+]dn 4~ (ta)[PPn—a(t)
+]dn, - 1 (ta)[?Pn-1(t)
+]dn, -~ (ta)[*pn-2(t),

(10

where|d,, - . (t3)|? denotes transition probabilities between
the appropriate states. The amplitudks(t;) are obtained

by the composition of the formulas describing the evolution
of the system in three separately considered time intervals,

Cn(0)—=Cyn,++),(n+1,+ —(ta)

8 = di(n+-+),(n+ 1+ ) (t1)Ca(0) =, (t2)

=d,(t2)cn(0)—c,(tz) =d,(t3)ca(0),  (11)

2)

are used as the initial condition in calculations of the next

stage of the evolution in the intervidh ,t;]. The state vector

where the indexy takes the valuesn(+ +), (n+1,—+),

of the system, when the second atom leaves the cavity, i+ 1,+ —), and (1+2,— —). The Liouville superoperatdr

given by the expression

describes the damping of the field in the cavity,
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ber. We collect coefficients at the probabilities of the same

dps -~ «k - ~ A
£=Lpf= E(nb+ 1)(2ap;a’—a'ap;—pra'a) number of photonsp,,, and we obtain the equation
K i - ) anPntby-1Pn-1+Cri1Pnr1tdn2pn-2=0, (15
+ s np(2a’'pra—aa'ps—paa’). 12
2 b(2a'py pr—praa’) (12) where

We assume that the pairs of atoms arrive at the cavity in time )
intervals given by the Poissonian distribution with mean — @,=|d, ; (t3)[*—1— N_L(np+1)n+ny(n+1)],
ex

value 1R. We average the equation fpk over the Poisso- (16)
nian distributionP(t,) = Rexp(—Rt,) and obtain the follow-
ing equation: 5 ,  Npn
bn71:|dn,+—(t3)| +|dn,7+(t3)| + N’ (17)
I: -1 ex
Pf(ti+1):<1—§) G(ta)ps(ti). (13 (Np+1)(n+1)
n+t1=— N ) (18
In order to obtain the steady-state solution, we equate the ex
density matrices describing the field in the cavity at the mo- d, ,=|d (ts)]2 (19
mentst; and t;,; p¢(ti+1)=p¢(t}). We have to solve the n=27Hn, = =370 -
following equation:[1—(L/R)]ps, s= G(ts)pr e, Which in  Due to the relations
the basis of the Fock states takes the form
1 |Cn,++(t)|2+|Cn+1,—+(t)|2+|Cn+l,+—(t)|2
pn_N_m((nb+1)[(n+1)pn+l_npn] +lcnia(D]?=pn(t) (20)
+np[npy_ 3~ (N+1)p,] and
= |dn,++(t3)|2pn+[|dn,+—(t3)|2+ |dn,—+(t3)|2]pn—1 |dn,++(t)|2+ |dn+1,—+(t)|2+ |dn+1,+—(t)|2
+1dn -~ (ta)[*Pn-2, (14) +dnsp-—(D)]?=1 (21)

where Ng,=R/k is an average number of the pairs thatfor te[t;,tj+1], expressing the normalization of the prob-
traverse the cavity during the lifetime of the field amglis  ability distribution, Eq.(15) has a solution in the form of a
the steady-state temperature-dependent mean photon nusfain fraction[19]:

n
1 d—2Ck—1
Po=Poll —| bi-1tdi1+ (22
k=1 C dx—3Ck-2
bg—2+di—2+ -
dotcCy

The steady-state solution is fully determined by values of theet rid of the direct dependence up8nand we introduce a
following parameters: the vacuum Rabi frequerQy the  family of dimensionless time parameters defined by the func-
pumping rateNe,, the interaction times of the first and the tion ©(t)=10Q/N.t, wheret can be any of the considered
second atom in the pair;, 7,, and the delay of the second time parameters.In this parametrization, the considered
atom dt. The timest,, t,, andt; are connected with the model is fully characterized by the pumping ratg,, the
parameters; anddt by the relationg;=dt, t,=r,, andt; ratio of the interaction times the dimensionless delay of the
=7,+dt. In order to systematize and simplify analysis of second atond® = ® (dt), and the dimensionless interaction
the model, we relate the time parameters to the time interagime ®=0(7) of the first atom. All results of numerical
tion of the first atomr=r7;. The time parameters are ex- computations presented in the next sections are parametrized
pressed byr and the ratior =7,/ in the following way: by these quantities.

T=r71, t;=dt, t,=7, andtz=r r+dt. We see that the am-

plitudes d, characterizing the changes of the state of the——

system depend upon the Rabi frequefityust by the prod- The parameters, andy, have in the® parametrization the
uct of the frequency) and appropriate interaction times. We following form: x,= Vn+1/\Ngx andy,=[2(2n+3)/2]/ VN
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IIl. VIOLATION OF THE BELL INEQUALITY a andb have the usual meaning of polarization vectors of a

The Bell inequality was primarily introduced in order to Stern-Gerlach apparatus or light polarizers. Now the vectors
test local hidden variable theories considered as alternativ@2ve another interpretation because entanglement between
to the quantum mechani¢&5]. Many modified versions of internal degrees of freedom of the different atoms is consid-
the inequality proposed originally by Bell, adapted to differ- €red. Instead of a projection on the “polarization” vectors,
ent experimental proposals, were studiz€]. A violation of ~ @n auxiliary interaction of the atoms with an electromagnetic
the Bell inequality was demonstrated in many experimentdield is necessary in order to transform the states of the atoms
[20], and now the old question, namely whether the Belli" @ manner assigned by the vectors. Then a standard mea-
inequality is violated, can be replaced by a new questionSurement of the atoms in their upper or lower states is
how strong is the violation of the Bell inequality when a enough to obtain a value of the correlation functiefa,b).
given system is investigated? A degree of the violation of thdf the atoms are in the state in which the quantum correla-
Bell inequality is also one of the few quantitative measuredions are present, then the following inequality is violated:
of the quantum nonlocality.

The violation of the Bell inequality by the atoms interact-
ing with the photons in the micromaser has recently beems:=|E(a,b)—E(a,b’)|+|E(a’,b)+E(a’,b")|<2. (26)
studied theoretically12,14). The standard model of the one-
atom micromaser with the very weak pumping beam was
used in these considerations. We extend the earlier obtaineghe quantityB appearing in the Bell inequality is a function
results to the case of the two-atom micromaser. We expect the state of the quantum system and the vedio, a’,

that in the case in which two atoms simultaneously interaclg, . _
with the field in the micromaser’s cavity, the quantum corre-P’ - It is known thatB takes a maximal value equal to/2

lations should be much more distinct. We are more interestefpr the singlet stat¢¥ ~)=1/y2(/01) - |10)), when vectors

in the opportunity to use the micromaser as a source of norg, b, a’, andb’ lie in one plane and angles between two
local multiatomic systems than in testing the local realisticconsecutive vectors are the same, and they are equal to 45°.
theories, and we want to use the degree of violation of thé\n optimal configuration of the vectors, for whighis maxi-

Bell inequality to quantitatively evaluate the quantum corre-mal, depends upon the state and should be fitted for different
lations between the atonp&2]. states separately. This requirement makes the qudtity-

We suppose that at the beginning the field in the micropearing in the Bell inequality slightly inconvenient to ana-
maser is in a steady state described by probability distribulyze. It is rather impractical and actually computationally
tion p, [Eq. (22)] and a probe pair of atoms arrives into the almost impossible to look for a new optimal configuration of
cavity. The initial state of the atom-field system, at the mo-the vectors every time the state of the system changes. Be-
mentt=0, when the first atom enters the resonator, is desidesB depending upon the set of vectors, we consider also
scribed by the state vector the maximal value oB, which does not already depend upon

any additional parameters except the state of the system. A
” compact expression for the maximal valueBoivas recently
|‘I’(0)>:nzo cn(0)[n, ++), (23 obtained by Horodeckét al. [21]. By is given directly by
the formulaBya=2Vm(p), wherem(p) = max_;(u;+u;),

where the amplitudes,(0)= \p,. Atoms fly through the and u;_,,, are eigenvalues of the matrixU(p)
cavity, and at the momertt, when the second atom leaves =T(p)'T(p), whereT, j(;)):-rr[’;(}i(l)® (}1(2)]_ Using this

the cavity, the system is in the state expression, we investigate the quantum correlations of the
w atoms leaving the micromaser’s cavity. The state of the at-
W(ts)) = c )N+ +)+c (t)n+1+— oms leaving the cavity depends upon the _mteractlon times
¥ (ta)) ngo [Cn,++(ta)] )F Cnra (8] ) and the delay. We check hoB,,, changes with the change
of the parameters, d®, and ®. We neglect a destructive
+Cnr1-+(ta)[n+1,—+) influence of the background field and we assume that the
+Cnia(ta)n+2——)]. (24) number pf_thermal photonsb=_0. This assumption is not
too restrictive because for typical temperatures attainable in
Amplitudesc,, . - (t3) are given by Eqs(9). We calculate a real experiments, is really very close to zero. We decide to
correlation function neglect the thermal field present in the micromaser’s cavity
also due to another reason. We are interested in an estimation
of an upper limit of the quantum correlations between the

L
E(a,b)=(a-07b-o%) atoms leaving the cavity of the micromaser. It is known that

3 in experiments there are a lot of sources of various kinds of
=> aibj<\lf(t3)|a-ila-.zllll(t3)>, (25)  noises, which can reduce subtle quantum effects and which
ij=0 . should be taken into account in the analysis of experimental

. . . results. However, we want to check whether it is in general
wherea andb are unit vectors and; are the Pauli matrices. possible to obtain entangled atoms in the micromaser. If the
In experiments with spig- particles or photons, the vectors answer is no, in this slightly idealized situation, then all ad-
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Fig. la Nex = 001 Fig. 1b Nex = 0.1

Fig. 1¢ Nex = 1 Fig. 1d Nex = 10

FIG. 1. The values oB,,,, cal-
culated for r=1 and d®=0.
Horizontal lines indicate the criti-
cal values:B,,,=2, which sepa-
rates the classical and quantum re-
gions; andB.,=2+2, which is
the upper limit ofB, -

0 50 100 150 200 0 50 100 150 200
(S] (C]

ditional factors decreasing the quantum correlations, such asase of the two-atom micromaser when both atoms interact
thermal fluctuations of the electromagnetic field, become unwith the field together. The field is weak for the low pumping
important. and the connection between the atoms is small in this case.
First we calculateBy,, for r=1 and d®=0, which  The quantum correlations do not appear and the Bell inequal-
means that both atoms enter and leave the cavity togethaty s fulfilled because the atoms do not feel themselves
Such a situation may seem to be very similar to the case iBnough strongly. The intensity of the field increases for
which only one atom is inside the cavity, however it is not SOlarger N, and the atoms correlate so strongly that the Bell

trivial as one might suppose. Although the atoms do not injnequality can be violated. The connection between the at-

teract directly, they interact with the same mode of the elecy, g jecreases for larger pumping because the interaction of
tromagnetic field in the cavity and their states are entangle

o . . gne atom with photons cannot change the field strongl
due to this interaction. We will refer the results of the next P 9 gy

. : . . . enough to have a significant influence on the state of the
computations to the results obtained in this case. In Fig. 1 g 9

) . other atom, an@,,,., is in this case not as large as for smaller
we show values 0B, calculated as a function of the inter- max )

action time® for pumping parameteN, equal to 0.01, 0.1 values ofNg,. The large field is too “inert” to create very
1. 10. 20. and 200 X 7T strong quantum correlations between the atoms, and the de-

We see that the Bell inequality is fulfilled for very weak gree of the vio!ation of the Bell inequal_ity is smaller in such
pumping wherN,=0.01. B, does not exceed 2 for almost C2S€s: We notice thzﬁmax_ decreases slightly Whe_n the sec-
all values of®. In the few remaining cases in which the Bell O"d atom enters the cavity with some det#y. This effect
inequality is violatedB ., exceeds 2 only imperceptibly and 1S common for all values of the pumping parameltgy.
the quantum correlations are actually negligible. When the The properties of the micromaser and obviously the states
pumping parameter increasesNg,= 0.1, B,,., becomes, for of the atoms leaving the cavity depend upon the times of the
some values of the interaction tin@, distinctly greater than  interactions. Up until now, we have investigated the violation
the critical value, and foN..= 1 the values 0B, approach of the Bell inequality in the case in which the times of the
the maximal value equal to\2. The violation of the Bell interactions of both atoms were equal. Now we are going to
inequality, rather rare for the very weak pumping, becomeg&nalyze the situation when the second atom flies through the
frequent forN,= 10, butB,,,,,do not achieve as large values cavity longer than the first one. We put1.5 andd® =0.
as forN.=1. We interpret changes of th&, . in the fol-  The first atom resides in the resonator one and half times
lowing way. The quantum correlations come into being in theshorter than the second atom. In Fig. 2, we show the values
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Fig. 2a Nex = 0.01

FIG. 2. The values 0B, cal-

0 50 100 150 200 0 50 100 150 200 culated forr=1.5 and d®=0.
o o Horizontal lines indicate the criti-
) i cal values:B,,,=2, which sepa-

3 Fig. 2¢ Nex = 10 3 Fig. 2d Nex =200 rates the classical and quantum re-

gions; andB.,=2+2, which is
the upper limit ofB -

50 100 150 200
(S}

of B, Calculated as a function of the interaction tidefor ~ the quantum correlations present in the system is investi-
pumping paramete,, equal to 0.01, 1, 10, and 200. gated. However, it is also interesting to know how much
In this case the violation of the Bell inequality is most B, overestimate the vector-depende®ta,a’,b,b’)=B,
distinct for weak pumping. The values Bf,., are largest for  which is measured in experiments. In Fig. 3, we show
Nex= 0_0_1 and the_y are, for some values®f very close to B(é,é’,B,B’) calculated forr =1, d®=0, andN,=0.01,
the maximal possible valu®&,,,, decreases for the next con- T .
, 20, and 200. We compaB{a,a’,b,b") with B,,,, which

sidered values of the pumping parameter. It is interestin _ X i
that, in this case, foNg,= 200 the values 0B, are con- as been considered previousglyig. 1). The values of the

stantly smaller than the critical value. AgaB},, weakly ~PUMPiNg parameteNe, are selected in such a way as to
depends upon the delay time and is slightly smaller for |argepbsery_e the most characteristic relations between considered
do. quantities.

Up until now, we have analyzed the maximal value of the  The configuration of the vectors for whi@(a,a’,b,b’)
quantity appearing in the Bell inequalit,,,, does not de- becomes maximal depends upon the state of the system and
pend upon the configuration of vect@sa’, b, andb’, i.e., it is actually impossible to guess which vectors should be
it is independent of any measurement details. This makes thighosen in order to optimize experimental results. We decide
quantity very convenient and useful when the upper limit ofto take the vectors which are optimal for the singlet state

Fig. 3a Nex = 0.01 Fig. 3b Nex =1

B
FIG. 3. The values of
0 50 100 150 200 0 50 00 150 200 B(a,a’,b,b") calculated for =1
) ) andd®=0. Horizontal lines indi-
Fig. 3 ) cate the critical valuesB=2,
3 8 ¢ Nex =20 3 Fig. 3d Nex =200 which separates the classical and
25 25 quantum regions; and3=22,
5 ) which is the upper limit oB.
1 1 i\,\\*
05} 05}
0 50 100 150 200 0 50 100 150 200
(2] e
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Fig. 4a Fig. 4b

08} _ 08}..

FIG. 4. In(a),(b) the entangle-
ment of formation calculated for
the values of parameters=1,
dO=0, Ng=1 and r=1.5,
d®=0, Ng=0.01 is shown. In
(c),(d) dashed lines indicate the
values of® for which the states of
atoms are entanglefower line)
and for which the Bell inequality
is violated (upper line.

0 10 20 30 40 50 0 10 20 30 40 50
(S} (C]

|¥ ™). We see that for very weak pumping, valuesBoare ~ one such measure is the entanglement of form4&8h This
much smaller than their counterparts corresponding,ig,, quantity is much more sensitive to the quantum correJations
and they do not even approach them. The situation changékan the Bell inequality. The entanglement of formatit(p)
when the pumping parameter increases, and\ige=1 the  is defined in the following way23]:
values ofB(a,a’,b,b’) are closer tdB,,,. They exceed the . .
border value 2 for some values @f. The values of théNg, E(p)=&(C(p)), (27
belonging to an intervdll-10] seem to be optimal because
already forN,,= 20 the values oB(a,a’,b,b’) are smaller
and 'Fhey dp not approach the quantum linéita,a’,b,b’) C(p)=maxON;—A,—Nz—\4}, (28)
was investigated also far>1, but we do not present appro-

1+ ﬂ)

where

priate pictures. We just notice that the relation between com-
paring quantities changes slightly when the ratio of the two €(y)=h( 5
interaction times is greater than 1. The values of

B(a,a’,b,b’) are, as previously, smaller than values ofand h(x)= —xlog,(x)—(1-X)logy(1-X). In these expres-
Bmax, but the separation between values of these two quarsions,\;’s are the square roots of eigenvalues, in decreasing
tities, distinctly seen for=1, does not appear in this case.

! !
e o o e oo w9 (7,01). We check whether and n haw many
) SR e cases the quantum correlated states of the atoms are omitted

=200. In this caseB(a,a’,b,b") <Bmay for almost all con- i, the analysis when the Bell inequality is used. We calculate
sidered values of the paramet@t the entanglement of formation of the states of the atoms
leaving the cavity of the micromaser. We choose for a com-
parison the most important cases when the violation of the
Bell inequality is the largest. In Figs(@ and 4b), we show

In the preceding section we investigated the quantum corthe entanglement of formation calculated for two sets of pa-
relations of atoms interacting with the field in the two-atomrametersr =1, d®=0, Ng=1 andr=1.5, dO=0, N,
micromaser analyzing the violation of the Bell inequality. =0.01.
For some values of the control parameters the Bell inequality We see that actually almost all pairs of the atoms leave the
is violated, but for others it is fulfilled. The fulfilment of the micromaser’s cavity in entangled states. The degree of the
Bell inequality does not mean, however, that the atoms arentanglement of the atoms strongly depends upon the values
not correlated. Unfortunately, the violation of the Bell in- of the interaction time®. It seems that in the former case
equality, an effect that can be directly observed in the experitFig. 4a)], well-outlined peaks are present. In the latter case
ments, is not completely satisfactory as the measure of thigrig. 4(b)], the ® dependence seems to be more irregular,
guantum nonlocality22]: it is not as sensitive as other mea- but now the entanglement is much larger for almost all val-
sures of the entanglement. There are other quantities thakes of ® and approaches, for sont®, the maximal value
have been developed as measures of the quantum correlequal to 1. The atoms are entangled for almost all values of
tions. In the case of a pair of correlated two-level systems@. This is even more evident when we look at Fig&)4nd

(29

order, of the non-Hermitian matrixpp, where p=(a,

IV. ENTANGLEMENT OF FORMATION
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4(d), where we compare regions of the paramdierfor  investigated the degree of violation of the Bell inequality for
which the atoms are in the entangled stdtewer ling), and  the different values of the micromaser parameters. We have
for which the atoms can violate the Bell inequality, i.e., theshown that the Bell inequality is violated in many different
values ofB . are greater than fupper ling. We see that the regimes of work of the micromaser. In particular, we have
atoms in the pairs are quantum correlated much more oftefound that in some cases the upper limit®fis attainable.
than can be detected in the experiments testing the violatiopje have checked also when the valuesoﬁ,é’,ﬁ,ﬁ’) ap-
of the Bell inequality. The micromaser turns out to be anproach the values (BmaX! i.e., when the given experimenta|
effective source of the entangled pairs of atoms. We thinkonfiguration of the parameters can be considered as optimal
that the micromaser can produce equally well highly en-and exploited in practice. Finally, we have considered the
tangled multiatomic systems, when more than two atoms antanglement of the formation of the pairs of atoms that fly
the same t|me inteI’aCt W|th the e|ectl’0magnetic f|e|d in th%ut from the Cavity_ It turns out that actua”y a” pairs Of
cavity. atoms are entangled even if they do not violate the Bell
inequality. The atoms are entangled in the micromaser very
V. CONCLUSIONS effectively. The entanglement approaches the maximal value,
for some values of the parameters, and it is much greater

In this paper, we have investigated properties of the two;[han zero in wide ranges of the values of the pump

atom micromaser, pumped by the Poissonian beam of thgnd the interaction time
atomic pairs. We have shown that the atoms, after interaction '
with the electromagnetic field, leave the micromaser’s cavity
in the quantum correlated states violating the Bell inequality.
We have analyzed the violation of the Bell inequality using

two quantities: the maximal valug,,and vector-dependent e wish to thank Professor K. Rzwski for fruitful dis-

B(a,a’,b,b’") depending upon experimental setup. We havecussions.
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