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Hydrodynamic theory for spatially inhomogeneous semiconductor lasers. II. Numerical results

Jianzhong Li* and C. Z. Ning†
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We present numerical results for the diffusion coefficients~DCs! in the coupled diffusion modelderived
@J. Li and C. Z. Ning, preceding paper, Phys. Rev. A66, 023802~2002!# for a semiconductor quantum well.
These include self- and mutual-diffusion coefficients in the general two-component case, as well as density-
and temperature-related DCs under the single-component approximation. The results are analyzed from the
viewpoint of the free Fermi gas theory with many-body effects incorporated. We discuss in detail the depen-
dence of these DCs on densities and temperatures in order to identify different roles played by the free-carrier
contributions including carrier statistics and carrier–LO-phonon scattering, and many-body corrections includ-
ing band-gap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is
found that the self- and mutual-diffusion coefficients are determined mainly by the free-carrier contributions,
but with significant many-body corrections near the transition density where carrier statistics changes from the
Maxwell to the Fermi-Dirac distribution. Carrier–LO-phonon scattering is dominant at low density, wherease-
h scattering becomes important in determining their density dependence above the electron transition density.
In the single-component case, it is found that many-body effects decrease the density coefficients but enhance
the temperature coefficients. The modification is on the order of 10% and reaches a maximum of over 20%@C.
Z. Ning and J. Li, Phys. Rev. B65, 201305~R! ~2002!# for the density coefficients. Overall, temperature
elevation enhances the diffusive capability of carriers~DCs! linearly, and such an enhancement grows with
density. The complete data set of various DCs as functions of carrier densities and temperatures provides
necessary ingredients for future applications of themodelto various spatially inhomogeneous optoelectronic
devices.

DOI: 10.1103/PhysRevA.66.023803 PACS number~s!: 42.55.Px, 42.65.Sf, 78.20.Bh
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I. INTRODUCTION

In the preceding theoretical paper@1#, we have derived a
set ofcoupled diffusion equationsfor the densities and tem
peratures of electrons and holes in a spatially inhomo
neous semiconductor quantum well~QW!. Our derivation is
based on a microscopic kinetic theory for the electron-h
plasma~EHP! model. Such a first-principles approach allow
us to derive explicit expressions for all momentum and
ergy ~thus temperature! relaxation rates, and for various di
fusion coefficients~DCs! in the general two-component~TC!
case and the single-component~SC! case. The SC case i
treated within the standard ambipolar diffusion approxim
tion or in strong electron-hole (e-h) scattering limit. The
DCs are given in terms of momentum relaxation rates, ma
body corrections, and the derivatives of carrier thermal en
gies@1#. Ultimately, the coefficients become functions of t
thermodynamic variables of the EHP through these qua
ties. The application of the model is not restricted to las
devices. Rather, it can be easily adapted for EHPs in o
types of devices, such as photodetectors and photocond
ing devices. Obviously, applications of thiscoupled diffusion
model~CDM! rely upon the knowledge of those related d
fusion coefficients.

The purpose of the present paper is twofold: First,
want to analyze in detail the behaviors of these DCs
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understand them in terms of the underlying physics p
cesses. As we will show, all features of the DCs can
explained in terms of the Fermi gas theory with correctio
from many-body effects@2#. Second, we want to present
complete data set for these DCs as functions of densities
temperatures to provide guidance for any future applicati
of the CDM to various optoelectronic devices. Since most
such applications will involve extensive simulations of t
partial differential equations, it is essential to have those D
tabulated and eventually fitted as analytical functions of d
sities and temperatures beforehand so that time-consum
microscopic calculations do not have to be repeated.

For the numerical results, we choose an 8-n
Al0.3Ga0.7As/GaAs quantum well structure as the model m
terial system. Relevant material parameters are well do
mented in the literature, but listed here for completeness.
this structure, typical plasma density is 1012 cm22 for room-
temperature lasing operations. Thus, the ranges for the t
modynamic variables are chosen for densities from 1010 to
1013 cm22 and for temperatures from 200 to 400 K. To ma
age the already very lengthy analysis, we shall not furt
differentiate temperatures between electrons and holes
shall use the term ‘‘plasma temperature’’ to denote the co
mon temperature. As shown in the numerical results, te
perature plays a very predictable role. Additionally, we
strict our presentation and discussions to density-rela
results at 300 K only for the general TC case and discuss
temperature-related coefficients only for the SC case.

To help the discussions in the two-component case,
distinguish carrier types~electrons and holes! and their asso-
ciated variables as primary and secondary ones when d
sion coefficients are presented. Such an assignment s
from the fact that a coefficient relates the gradient of o
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JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023803 ~2002!
~called! primary variable to the current of another~called!
secondary variable@cf. Eq. ~C1! in Ref. @1##. For example,
for the diffusion coefficientDNaNb, wherea, bP$e,h%, we
refer toNb as the primary carrier density, or simply prima
density, and theb carriers as primary carriers. Accordingl
Na is referred to as the secondary carrier density, or sim
secondary density, and thea carriers as secondary carrier
As an extension to this convention, the primary type is
same as the secondary one for a quantity with only one
rier type in its index, even though the quantity may depe
on variables of the other type implicitly. The coefficie
DNaNa and factorma are such instances, which are functio
of not only the primary densityNa and temperatureTa, but
also the secondary densityNb and temperatureTb. Finally,
in order to be consistent with this convention, for all oth
quantities or terms denoted by both carrier types, their
mary type follows their associated DCs. For instance, for
term HNh

e , which appears in Eq.~6!, its primary carrier type
is the holes.

The paper is organized as follows. In Sec. II, we summ
rize those key results in two-dimensional~2D! Fermi gas
theory which are critical in understanding the diffusion co
ficients. Then, we present and discuss the carrier momen
and temperature relaxation rates due to carrier–L
~longitudinal-optical! phonon scattering and electron-ho
(e-h) scattering in Sec. III. Density diffusion coefficients
the general two-component case are presented and ana
in Sec. IV, followed by all the DCs for the two-compone
case in Sec. V. A summary is given in Sec. VI for the n
merical results, together with concluding remarks regard
the scope and validity of the CDM, many-body effects, an
comparison with 3D results in the literature.

II. KEY RESULTS OF 2D FERMI GAS THEORY

Since properties of the ideal Fermi gas will be importa
in understanding the behavior of the momentum relaxa
rates and all the DCs, we summarize certain key result
the 2D Fermi gas theory. These results are obtained by
plying the independent electron approximation@3#. Further-
more, some terms frequently referred to in this paper sha
introduced in this section.

First of all, the carrier thermal energiesWa’s of the 2D
EHP can be approximated@cf. Eq. ~D8! in Ref. @1## as fol-
lows:

Wa5H NakBTa, classical limit,

w0
aNa21w2

aTa2, degenerate limit,
~1!

where we have indicated the statistics applicable in e
case. Within the limited temperature range between 20
and 400 K considered in this paper, the statistical propert
the degeneracy is determined by the density alone. While
first line of Eq. ~1! is the familiar classical result of th
Boltzmann statistics, the second line is obtained for the
generate limit using the Sommerfeld expansion. The fi
term has a quadratic density dependence, but no temper
dependence. The remaining term contributes to all the t
perature dependence. Summarily, the free-carrier therma
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ergy has a bilinear combination of density and temperatur
the classical regime, while it is the sum of two quadra
terms of temperature and density. Thus, it follows natura
that the density~temperature! derivative is independent o
density ~temperature!, while being linearly dependent o
temperature~density! in the classical regime. However, i
the degenerate limit, the density~temperature! derivative de-
pends linearly on density~temperature!, while having no de-
pendence on temperature~density!. Obviously, the energy
derivatives~or specific heats! in the two limits exhibit differ-
ent behaviors. Since the DCs are closely related to such
rivatives, we expect different behaviors of DCs in the tw
limits. The physical origin of the different behaviors is due
statistical degeneracy or Pauli’s principle in the quantum
gime. In the interested density and temperature domain
this study, carrier behaviors are somewhere between the
limits.

Next, we illustrate how the transition from the classic
regime to the quantum regime can be quantitatively cha
terized and what role different masses of electrons and h
play. It can be shown@see Eq.~D10! and related expression
in Ref. @1## that the density derivative of the thermal ener
of a carriers is given by

]NaWa5
p\2Na

ma
F11expS 2

mF
a

kBTaD G , ~2!

wheremF
a is the chemical potential ofa carriers. The chemi-

cal potential for fermionic particles increases monotonica
with their density owing to Pauli’s principle. To be exact, th
chemical potential depends linearly on the density in the
generate limit. In the classical limit, however,]NaWa

5kBTa as the exponential term above becomes importan
the chemical potential gets negatively large. Therefore, i
clearly shown by the preceding equation that the carrier d
sity corresponding to zero chemical potential is an excell
quantitative indicator for the transition from the classical
gime to the quantum regime. Such a density is called ‘‘
critical density’’ in some literature@4#, even though nothing
critical occurs of statistical nature at this density. In this p
per, we use the term ‘‘transition density’’ instead to deno
this transition. This 2D transition density is given by

nt,a
2D5

makBT

p\2
ln 2, ~3!

which is about 531011 cm22 for electrons and 3
31012 cm22 for holes at room temperature. As defined, t
transition density provides a quantitative measure ab
which statistical degeneracy for fermionic particles becom
important. As a consequence of statistical degeneracy, ph
space-filling effects greatly influence the physical propert
of the Fermi gas in the quantum regime (Na.nt,a

2D). In this
regime, energy for the 2D Fermi gas is on the order of
chemical potential, instead of the thermal energykBT in the
classical regime (Na,nt,a

2D). The constant density of states
2D leads to the linear relationship between chemical pot
tial and density, as mentioned earlier. Therefore, this cha
3-2
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TABLE I. Parameters and their values. All values are from Ref.@19# except where indicated otherwise.

me Effective electron massa 0.067m0 mh Effective hole mass 0.45m0

«s Static permittivity 13.1 «` High-frequency permittivity 10.9
\vLO LO-phonon energy 35.0 meV Cb 4

aIn units of free-electron mass.
bA numerical constant used in the single-plasmon-pole model for screening~see Ref.@6#!.
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in energy scale results in corresponding behavioral tra
tions in the physical properties of the Fermi gas, as a m
festation of phase-space-filling effects. Such transitions s
near the transition density.

Now let us discuss the case of an EHP. The total ther
energy of the plasma is the sum of that of electrons
holes. Because of their different masses, the lighter elect
step into the quantum regime before the holes do (nt,e

2D

,nt,h
2D). After the transition for electrons, their contributio

to the total thermal energy becomes larger than holes,
result of the stronger density dependence. Therefore,
transitional behavior of electrons masks that of holes, as
as density derivatives of the thermal energies are concer
However, the story is not complete without considering te
perature derivatives of the thermal energies. It is interes
to show @see Eqs.~D10! and ~D11! in Ref. @1## that the
following relationship holds for any density and temperatu

Na]NaWa1Ta]TaWa52Wa. ~4!

This is in fact Euler’s theorem for homogeneous functions
degree 2, which states that the thermal energy is a lin
superposition of quadratic polynomials in density and te
perature. This equation dictates that bothw0

a and w2
a are

independent of density and temperature in the degene
limit, being consistent with, and as indicated by, Eq.~1!.
However, the first term dominates over the second te
quantitatively, which is what the above equation fails to
veal and why electronic specific heat is much smaller i
normal metal than in an ideal gas. As such, we see imm
ately that the hole transition density masks the electron t
sition density for temperature derivatives. Nevertheless,
important to point out that around the transition density c
tinuous behaviors are anticipated. As the upper den
bound studied in this paper is marginally higher than the h
transition density, we expect deviations of the system beh
ior from that of the limiting cases. One such deviation is t
density dependence of the temperature derivatives that
exist above the transition density, but this dependence w
ens as density increases. Finally, it is also true that for m
physical quantities of the EHP, neither the electron transit
density nor the hole transition density properly characteri
the statistical transition, because the EHP is a mixture
electrons and holes after all. Instead, the transparency de
of the EHP, given bymF

e1mF
h50 and denoted byntr

2D , is a
better indicator of the transition, especially for neutral pla
mas. The density has a magnitude between the electron
sition density and the hole transition density. This can
easily seen from its definition, since the chemical potentia
a monotonic function of density. In most cases in this pap
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the transition density of the predominant carrier type is
appropriate one for characterization of the statistical tran
tion; otherwise, the transparency density is a better choic

To close this section, we emphasize that the transit
densities introduced here are useful for a general underst
ing of the numerical results presented in this paper, as t
existence is a revelation of the fermionic nature of the EH
They will be extensively referred to later as we discuss
underlying physics of the numerical results.

III. MOMENTUM AND TEMPERATURE RELAXATION
RATES

Momentum relaxation is the underlying physics proce
for carrier diffusion, and various momentum relaxation ra
appear naturally in the expression of DCs as we will see
the following section. To prepare ourselves for the expla
tion of the diffusion coefficients, we present in this secti
the relaxation rates obtained microscopically~cf. Appendix
B in Ref. @1#!. In short, the rates are treated within the seco
Born approximation@5#. Screening of the Coulomb interac
tion is described under the single-plasmon-pole model@6,7#.
Numerical integration for the rates is implemented with 4
point Gaussian quadratures after necessary simplificati
Both momentum and temperature relaxation rates are sho
but only the momentum relaxation rates affect the DCs. T
temperature relaxation~or the Newton’s cooling! rates are
used in the temperature equation~s! in the CDM. Two major
scattering mechanisms are considered in the EHP model:e-h
and carrier–LO-phonon (c-LO) scatterings. Table I contain
parameters and their numerical values used in our calc
tions.

Results for momentum relaxation rates due toe-h @Eq.
~A10! in Ref. @1## and c–LO-phonon@Eq. ~B6! in Ref. @1##
scattering are presented in Fig. 1. For thee-h scattering rates
shown, equal electron and hole densities are chosen. At
density, thee-h scattering rate shows a linear density depe
dence, while thec-LO scattering rates are density indepe
dent. All the rates decrease above a certain transition den
which increases with temperature. The transition density
higher for holes than for electrons. For thee-h scattering
rate, the decrease starts along with thee-LO scattering rates.
Overall, temperature dependence is relatively weak for
the rates. Specifically, a temperature rise leads to a decr
of all the rates at low density, but to an increase above
transition density. Our quantitative comparison shows t
this transition density is nothing but the densitynt,a

2D defined
earlier in Eq.~3!. Furthermore, the temperature and carri
type dependences of this transition density agree well w
those of the densitynt,a

2D . Thus, this characteristic change fo
3-3
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JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023803 ~2002!
the rates across the transition density is associated
change from classical to quantum statistics of the fermio
particles, which is explained in detail next.

At low density, carriers follow the Maxwell distribution
and behave independently. Thus, thec–LO-phonon scatter-
ing rates are density independent. Thee-h scattering rate,
because of its binary nature, is directly proportional to
secondary density~type b), and is independent of the pr
mary density~type a). As the two densities are the same
Fig. 1, we see the linear density dependence. In contras
the quantum regime phase-space-filling effects become
portant owing to Pauli’s principle. Limitation to the availab
phase space for carrier scattering causes reduction in
scattering rates. Both carrier types are subject to the ph
space-filling effects, but starting at different transition den
ties. Now we examine the role of plasma temperature. In
classical regime, a temperature increase leads to a popul
shift to high-energy or -momentum states, but lo
momentum states are favored for relaxation processes
cause they transfer momenta more effectively to
phonons. Thus, the rates drop as temperature rises. As fe-
h scattering, the same argument applies. But since both
rier types are affected by the temperature change, we se
enhancement in its temperature dependence in Fig. 1
carriers move into the quantum regime, Pauli’s princip
plays a predominant role in limiting momentum relaxatio
Temperature rise however reduces the degree of statis
degeneracy, hence enhances relaxation processes, as d
strated by the high-density results. At the same time, te
perature change also shifts the transition density to a hig
value. Finally, difference in the electron and hole mas
gives rise to the higher transition density for the latter,
clearly shown by thec–LO-phonon relaxation rates. Th
higher hole–LO-phonon rate is another manifestation of
larger mass of the holes since it means more effective
mentum transfer or relaxation, as more low-moment
states are populated by holes.

It is also interesting to note one consequence of the qu
titative difference between the momentum relaxation ra
due toc–LO-phonon scattering and the rate due toe-h scat-

FIG. 1. Carrier momentum relaxation rates as a function of d
sity and temperature. All the results shown in this paper are fo
8-nm Al0.3Ga0.7As/GaAs quantum well. The inset shows theme

factor given by Eq.~34! in Ref. @1#. The electron density and hol
density are identical for the electron-hole scattering and theme

factor here. Note that thisme factor is different from that used unde
the single-component approximation@cf. Eq.~13!# and is not carrier
mobility either.
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tering. According to our arguments for the limiting case
stronge-h scattering in Ref.@1#, the single-component ap
proximation for such a case is marginally justified, as t
momentum relaxation rate due toe-h scattering~shown in
Fig. 1! is only a few times larger than those due
c–LO-phonon scattering around the transparency densit

The Newton type of cooling due to energy exchange
tween electrons and holes is a pure many-body phenome
As far as we know this rate has not been calculated mic
scopically in the literature. We thus present in the remain
of this section the temperature decay rates due toe-h scat-
tering@cf. Eqs.~A13! and~A15! in Ref. @1## and due toc-LO
scatterings@cf. Eq. ~B16! in Ref. @1## in Fig. 2. Qualitatively
each decay rate follows similar behavior as its moment
counterpart in Fig. 1 and, thus, only decay rates at 300 K
shown. In addition, the physical understanding is also sim
to that for momentum relaxation processes. However,
cooling rates for electrons and holes due toe-h scattering are
not the same as a result of their different masses. This i
contrast to the situation of momentum relaxation where
such a difference exists. The reason is that the total mom
tum of the EHP is always conserved so that the momen
relaxation rates have to be the same. However, for temp
ture cooling it is the total energy that is conserved. Ene
conservation only demands that the same amount of en
be exchanged between electrons and holes, but their d
rates also depend on their specific heats. The differenc
their specific heats of electrons and holes, owing to th
different masses, explains why the cooling rates have to
different for electrons and holes. In the quantum regime,
rate difference is enlarged by the phase-space-filling effe
as seen in the high-density results in Fig. 2. As a result,
holes are much more difficult to cool down than the ele
trons. Regarding thec-LO cooling rates, we see that hole
have a larger rate than electrons as a result of larger pop
tion ~product of distribution function and the density o
states! in the low-energy states. Such lower-energy states
favored for very effective energy transfer to phonons via
scattering, as compared to the lighter electrons. Also,
heavier holes show a higher transition density. Therefore,
only the holes have a larger cooling rate than the electro
but also a weaker density dependence at the same time

As we close this section, we note that only momentu
relaxation rates are involved in the diffusion coefficients. S
all relaxation rates mentioned below are meant for mom

-
n

FIG. 2. Comparison of carrier temperature relaxation rates a
function of density and temperature. The results shown are obta
microscopically following Appendixes A and B in Ref.@1#.
3-4
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HYDRODYNAMIC THEORY FOR . . . . II . . . . PHYSICAL REVIEW A 66, 023803 ~2002!
tum relaxation unless indicated otherwise.

IV. DIFFUSION COEFFICIENTS FOR A
TWO-COMPONENT PLASMA

In this section we present results for the density-rela
diffusion coefficients in the general two-component case a
function of electron and hole densities, with a const
plasma temperature of 300 K. For convenience, the form
tion for the coefficients@1# is collected below:

DNeNe5me@~11he!SNe
e

1HNe
h

#, ~5!

DNeNh5me@~11he!HNh
e

1SNh
h

#, ~6!

DNhNe5mh@~11hh!HNe
h

1SNe
e

#, ~7!

DNhNh5mh@~11hh!SNh
h

1HNh
e

#, ~8!

where SNa
a

5]NaWa1Na]Nadea and HNb
a

5Na]Nbdea

(a,bP$e,h%uaÞb). Heredea is the many-body correction
to the carrier self-energy of typea @cf. Eq. ~48! in Ref. @1##.
We refer toSNa

a and HNb
a as self-terms and mutual term

respectively, in the ensuing discussions.

A. A few important functions of density and temperature

We note that the DCs in Eqs.~5!–~8! are given in terms of
three groups of functions:ma’s, ha’s, and $SNa

a ,HNb
a %. It

helps the interpretation of the results for the coefficients
first analyze these quantities as functions of carrier dens
and plasma temperatures. Under the EHP model in
Hartree-Fock framework, all the physical effects can
grouped into free-carrier and many-body contributions. T
former includes carrier statistics andc–LO-phonon scatter-
ing, while the latter includes many-body corrections to t
carrier self-energies ande-h scattering. Note that statistica
degeneracy is a kind of carrier correlation and is regar
here as part of free-carrier contributions, since its origin is
statistical nature, rather than the Coulombic carrier-car
interaction.

We first examine functionma , as defined by Eq.~34! in
Ref. @1#. Results for the case of equal electron and hole d
sity are shown as an inset in Fig. 1. The main feature of
curves are the linear density dependence at low density,
a generally weak dependence elsewhere. It decreases
temperature at low density, but increases at high density.
viously, its linear density dependence originates from
secondary density dependence of thee-h scattering rate. This
linear density dependence results in a similar secondary
sity dependence at low density for mutual-diffusion coe
cients, as shown later.

Next, we take a close look at functionha , which is given
by gLO

b (me1mh)/geh
b ma , essentially the ratio of the

c–LO-phonon scattering rate to that ofe-h scattering. This
function, as can be inferred from Fig. 1, has an inverse lin
relationship with the primary densityNa, but is independen
of the secondary densityNb at low density. The relationship
is weaker than, but close to, linear on both densities at h
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density. In particular, it has a V-shaped minimum near
transitional primary density, as seen by inverting theL shape
of thee-h scattering curve in Fig. 1. Its consequent effects
the self-diffusion coefficients will be identified in more deta
in the following section. But a qualitative examination
Eqs. ~5!–~8! allows us to anticipate the main feature. Th
magnitude ofha is of the order of several hundreds at lo
density and on the order of one near the transition density
it acts as a magnification factor for the originally wea
many-body corrections. In addition,he is an order of mag-
nitude larger thanhh because of both the lighter mass
electrons and largerh–LO-phonon scattering rate. Bot
functions ma and ha produce most of the density depe
dence for all the coefficients at low density, and further le
to superlinear behavior of the coefficients at high density
adding to the linear dependence from the free-carrier con
butions. However, the product of these two functions yie
no density dependence at low density. We note that this p
uct is related to carrier mobilities.

The last group of functions areSNa
a and HNa

b . SNa
a ’s are

normally orders of magnitude greater thanHNa
b ’s, but the

margin can be greatly reduced near the transition density
the extreme case, the margin is merely 50% at the hole t
sition density when the electron density is high enough.
elaborate and explain the physics underlying the numb
next. The self-terms contain a dominant free-carrier p
(]NaWa) and a negative band-gap renormalization~BGR!
part (Na]Nadea), while the mutual terms consist only of
BGR part (Na]Nbdea). As the free-carrier part has bee
fully accounted for in Sec. II, we focus upon the BGR pa
here. Due to the attractive nature of the Coulomb interact
between electrons and holes, the BGR self-energy itse
negative. The BGR self-energy depends upon the density
temperature through carrier distribution and screening eff
Both the screening effect and the BGR parts diminish at l
density, while the former increases with both electron a
hole densities in the density range studied in this work. Ev
though the hole’s self-energy contains an additional term@the
Coulomb hole~CH! term in Eq.~48! in Ref. @1##, the elec-
tron’s BGR part in the self-terms behaves similarly as th
hole counterpart. Specifically, the part is negative and
creases with the primary density but decreases with the
ondary density in the density range studied. In contrast,
situation is markedly different for the mutual terms whic
exist thanks to the screening effect by the secondary carr
It turns out that the presence of the large CH term in
hole’s self-energy dictates that, below the hole transit
density, the hole mutual termHNe

h
5Nh]Nedeh be negative,

and the electron mutual termHNh
e be positive by noting that

screening affects the exchange and CH terms oppositel
Eq. ~48! in Ref. @1#. The consequence of this difference is,
will be shown in the following sections, thatHNh

e has an
appreciable impact on the hole-density coefficientsDNeNh

andDNhNh, as compared to the negligible role played byHNe
h

on the electron-density coefficientsDNeNe and DNhNe. The
physical reasons are manifold: First and foremost, the fr
carrier part]NaWa plays a dominant role at lower density fo
3-5
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JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023803 ~2002!
electrons owing to their lower transition density than f
holes. Second, the BGR contributions to the electron-den
coefficients are either smaller than their counterparts to
hole-density coefficients or overwhelmed by the free-car
part because of the first reason. Last but not the least,
order-of-magnitude larger magnification functionhe takes
effect.

Concerning the density and temperature dependenc
the self-terms and mutual terms, we separately consider
free-carrier and BGR contributions. The free-carrier part
lies only on the primary density and temperature. It is den
independent and linearly proportional to the temperature
the classical regime. Furthermore, it depends linearly on d
sity and temperature in the quantum regime. The BGR p
partially cancels the free-carrier part near the transition d
sity in the self-terms. It increases in magnitude with its p
mary density, but decreases with the secondary density
to the screening effect. However, the mutual terms are
ferent for electrons and holes.Nh]Nedeh increases with elec
tron density and decreases with hole density becaus
screening. By comparisonNe]Nhdee is negative and de
creases in magnitude with electron density due to screen
At the same time it increases in magnitude with hole den
when electron density is relatively high, but starts to d
crease when the hole density is high enough because o
combined effects of the screening and the CH term. As
the influence of the self-terms and mutual terms on the
efficients, because of the large CH term, the hole-rela
BGR part in the self-terms has a much larger impact than
electron-related part. Thus, many-body corrections influe
the hole-density coefficients much more than the electr
density coefficients.

In connection with the detailed analysis of these import
functions above, we conclude this section with a summar
their behavior and their effects on that of the diffusion co
ficients in the general two-component case, as will be s
stantiated quantitatively in the following two sections. T
self- and mutual-diffusion coefficients are determined mai
by the free-carrier contributions, but with appreciable ma
body corrections near the transition density for the ho
density coefficients. Carrier–LO-phonon scattering is do
nant at low density, but electron-hole scattering becom
important in determining their density dependence above
electron transition density. As a result, the self-diffusion c
efficients are density independent at low density, and bec
superlinearly dependent on the primary density. The mut
diffusion coefficients depend linearly on the secondary d
sity at low density. They become strongly dependent on
electron density, but weaker on the hole density than on
electron density above the electron transition density. All
coefficients depend weakly on the secondary density ex
DNeNh. Besides, hole-density coefficients are greatly mo
fied around the hole transition density by many-body corr
tions.

B. Self-diffusion coefficients:DNeNe and DNhNh

Now we are ready for the presentation of the diffusi
coefficients in the general two-component case. We sh
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results for plasma temperature of 300 K only. We note th
in general, increase in plasma temperature leads to the
hancement of the diffusive capability of carriers, as will
seen in Sec. V from the results in the single-component c

Depicted in Figs. 3 and 4 are the numerical results for
self-diffusion coefficientsDNaNa with a5e and h, respec-
tively. Panel~a! and panel~b! show the dependence of th
coefficients on electron and hole densities, respectively.
low density, the coefficients decrease sublinearly with
primary density@Figs. 3~a! and 4~b!#, but grow very slowly
with the secondary density@Figs. 3~b! and 4~a!#. The depen-
dence on the primary density, however, becomes positive
superlinear at high density. Though the dependence on
secondary density increases, it is weaker than the prim
density dependence above the transitional primary den
Near the transition density, the coefficients decrease by
much as 50%, thus forming the valley structures in Figs. 3~a!
and 4~b!. The overall behavior is comprehensible by reca
ing our discussions of the important functions in the prec
ing section. Density independence in the classical regim
expected because the free-carrier part is dominant and i
pendent of density. In addition, functionha is of the order of
several hundreds and its density dependence cancels th
ma when the two are multiplied. Carrier diffusion in thi
regime is dominated by thec–LO-phonon scattering pro
cesses, no dependence on either carrier density shoul
expected as a result. This expectation, however, comes

FIG. 3. General two-component electron-hole plasma case:
diffusion electron-density coefficientDNeNe @cf. Eq. ~5!# versus
electron density~panel a! and hole density~panel b!. All data shown
in Figs. 3 and 4 are at 300 K including many-body corrections.

FIG. 4. General two-component electron-hole plasma case:
diffusion hole-density coefficientDNhNh @cf. Eq.~8!# versus electron
density@panel~a!# and hole density@panel~b!#.
3-6
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only at very low density and could not explain the vall
structures shown in Figs. 3 and 4.

The valley stuctures shown in these figures are an ind
tion that the simple Fermi gas picture either in the class
or degenerate limit is not enough to explain the behavior
the diffusion coefficients. There are two reasons: First
large density range around the transition density in these
ures falls in the intermediate regime between the two
treme limits. Second, many-body effects become impor
in this range. As seen in the inset of Fig. 1, functionma starts
to deviate from the familiar linear density dependence of
ideal classical gas behavior at a density of about 531010 and
the dependence becomes much weaker thereafter. At
same time, other factors also start to show deviation fr
their ideal classical behaviors. For instance, thee-h scatter-
ing rate at 300 K is 34% lower than its expected value fr
a linear dependence at the density of 1011 cm22, as shown
in Fig. 1. Therefore, the phase-space-filling effects beco
appreciable before the transition density is reached. Owin
the smaller mass of electrons, such deviations appea
lower density for them than for holes, and in larger mag
tude as well. In addition, many-body effects also affect
behaviors of the coefficients, especially around the transi
density. In fact, not only the BGR terms become importan
carrier density increases, but alsoe-h scattering introduces
density dependence through functionsma and ha . As dis-
cussed above, the negative BGR part in the self-terms,
HNa

a , partially cancels the free-carrier part, and thus s
presses diffusive processes. As mentioned earlier, many-b
effects in this paper contain two parts: the BGR part and
e-h scattering. It is interesting to see how each part pl
different roles in forming the valley structure in the two se
diffusion coefficients. A direct comparison of the coefficien
with and without the BGR contributions reveals that the v
ley structure forDNhNh is mainly due to the BGR contribu
tion from the self-term, but it is thee-h scattering that cause
the similar structure inDNeNe. This means that suppressio
of carrier diffusion can be due to either the attractive Co
lomb interaction such that carriers tend to cluster rather t
disperse apart, or the increase in thee-h scattering rate so
that carriers spend more time bouncing around locally ra
than wandering away. The more frequent collisions for ho
with LO phonons at low density mean less diffusive capa

FIG. 5. General two-component electron-hole plasma ca
mutual-diffusion hole-density coefficientDNeNh @cf. Eq. ~6!# versus
electron density@panel~a!# and hole density@panel~b!#.
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ity or a smaller DC for them. Consequently,e-h scattering
influences the diffusive capability of electrons more than t
of holes. Therefore, the reduction in the diffusive capabil
of electrons is mainly due to the enhancement ofe-h scatter-
ing as carrier density increases, and BGR contribution is
sponsible for such suppression in the diffusivity of holes.

It is relatively straightforward to understand the results
high density. Free-carrier contributions to the self-terms h
a linear primary density dependence and no dependenc
the secondary density. Additionally, they are predomin
over the BGR parts. As a result of the combined effects
functions ma , ha , and the self-terms, the coefficients in
crease superlinearly with the primary carrier density@cf.
Figs. 3~a! and 4~b!#, but more weakly with the secondar
carrier density@cf. Figs. 3~b! and 4~a!#.

C. Mutual-diffusion coefficients: DNeNh and DNhNe

The mutual-diffusion coefficientsDNaNb with a, b
P$e,h%uaÞb are shown in Figs. 5 and 6, respectively. Pa
els ~a! and ~b! depict the dependence of the coefficients
electron and hole densities, respectively. The coefficients
crease and go to zero following the secondary density. T
are independent of the primary density at low density@Figs.
5~b! and 6~a!#. At high density, they feature a superline
growth with the electron density, but a much weaker o
with the hole density. ForDNeNh, a similar valley structure
appears for high electron densities@Fig. 5~b!#, but the bottom
of the valley appears at a higher density than forDNhNh @Fig.
4~b!# around the hole transition density. ForDNhNe, however,
no appreciable feature shows up around the electron tra
tion density@Fig. 6~a!#, as compared toDNeNe @Fig. 3~a!#.
Finally, on secondary density dependence, a more p
nounced slowdown of the transitional growth in the coe
cients is observed forDNhNe near the hole transition densit
in Fig. 6~b! than forDNeNh near the electron transition den
sity in Fig. 5~a!.

These behaviors can be understood similarly as for
self-diffusion coefficients in terms of the several functio
discussed in Sec. IV A@cf. Eqs.~5!–~8!#. We start with low-
density results. In this classical regime, the free-carrier c
tributions have no density dependence and the BGR te
diminish so that the coefficients are well described
DNaNb'maSNb

b . As such, the coefficients inherit the secon

e: FIG. 6. General two-component electron-hole plasma ca
mutual-diffusion electron-density coefficientDNhNe @cf. Eq. ~7!#
versus electron density@panel~a!# and hole density@panel~b!#.
3-7
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JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023803 ~2002!
ary density dependence of functionma , or a linear depen-
dence~Fig. 1 inset!. The coefficients have no dependence
the primary density either. Nevertheless, deviations exist
to exactly the same reasons discussed in the preceding
tion. After comparing with results without BGR contribu
tions ~not shown!, it is found that the mutual termHNh

e ap-
proximately doublesDNeNh when the electron density i
above its transition density@Fig. 5~b!#. The enhancement i
attributed to functionhe whose value is about 400 a
1010 cm22—that is why we call it a magnification facto
Physically, it is easy to understand these behaviors of
coefficients. The mutual-diffusion process is a conseque
of interaction between carriers. The interaction results
both many-body corrections to the self-energy of carriers
incoherent scattering events~higher-order correlation! be-
tween them. It is trivially expected that the effects of t
interaction on carriers of the secondary type vanish if s
ondary density becomes too small in the EHP model@8#.
This induced diffusive process is elevated as secondary
sity increases, though increase in primary density impe
such an enhancement by introducing stronger scattering
more negative many-body corrections. As carrier densi
are near their transition densities, quantitative difference
the functions discussed in Sec. IV A between electrons
holes take effect. As a result, many-body corrections hav
much more noticeable impact onDNeNh than onDNhNe. One
indication is in Fig. 5~b!, where the hole-density dependen
features a remarkable dip near the transition density
DNeNh. This behavior is because the positive BGR contrib
tion to the mutual term doubles the coefficients at low d
sity through the magnification factor, in conjunction with
partial cancellation of the free-carrier contribution by t
negative BGR part in the self-term@cf. Eq. ~6!#. The cancel-
lation is most pronounced near the transition density.
DNhNe @cf. Eq. ~7!#, the free-electron contribution ove
whelms the BGR term in the self-term, whereas the lar
but negative BGR contribution in the mutual term is partia
offset by the order-of-magnitude smaller magnification fac
hh . As a matter of fact, functionhh takes a value of 1 as
compared to a value of 10 forhe when both electron and
hole density are 1012 cm22. As such, the many-body correc
tions bring about the valley structure inDNeNh. However,
many-body corrections do cause a more distinguisha
slowdown in its transition into the quantum regime forDNhNe

near the hole transition density, as shown in Fig. 6~b!. Fi-
nally, above the transition densities, free-carrier contributi
take over and superlinear growth takes hold for the coe
cients. In comparison with the self-diffusion coefficients, t
density dependence of the mutual-diffusion coefficients
much weaker because of the displacement of the magni
tion factor ha from the self-terms to the mutual terms@cf.
Eqs.~5!–~8!#.

In summary, mutual-diffusion coefficients describe the
duced diffusive capability of the secondary carriers by int
acting with the primary carriers. As a result, the coefficie
go to zero with the secondary densities. In addition, ma
body corrections have more pronounced effects in these
efficients, especially inDNeNh.
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V. THE AMBIPOLAR DIFFUSION COEFFICIENTS

In this section, we present numerical results for all fo
ambipolar diffusion coefficients and analyze their depe
dence on plasma density and temperature, as well as
effects of many-body corrections. For convenience,
choose the word ‘‘ambipolar’’ to represent the results for t
single-component case without further implication. Und
the single-component approximation, the EHP is neutral
all its thermodynamic properties are characterized by
plasma density and temperature. For easy reference and
cussions, the expressions for the coefficients are rewri
below:

DNN5m~]NW1N]Ndeg!, ~9!

DNT5m~]TW1N]Tdeg!, ~10!

DTN5@2 j W~W/N!2 j N#DNN , ~11!

DTT5@2 j W~W/N!2 j N#DNT , ~12!

where W is the total thermal energy of the EHP anddeg
5dee1deh is the total BGR energy. Furthermore, we hav

m51/~megLO
e 1mhgLO

h !, ~13!

where j W and j N are transformation Jacobians@1#. We point
out that thee-h scattering rate drops out in the present ca
The absence of the effects ofe-h scattering in the ambipola
mobility was noted in Ref.@9#. Similarly all the ambipolar
diffusion coefficients are independent of the scattering. Si
lar to the general two-component case, we start by analyz
the contributing factors to the DCs in terms of their depe
dence on the thermodynamic variables of the EHP, follow
by a presentation of the results for the DCs and the ass
ated many-body effects.

A. Density and temperature dependence of the contributing
factors

As shown in Eqs.~9!–~12!, there are four contributions to
the diffusion coefficients:~1! incoherent scattering by facto
m, ~2! free-carrier part represented by the derivatives of
total thermal energyW, ~3! coherent many-body part repre
sented by the derivatives of the BGRdeg , and~4! the pref-
actor in the expressions ofDTN and DTT in Eqs. ~11! and
~12!. The first three contributions have been elabora
somewhat in the two-component case in Sec. IV A. In
following, we point out their ramifications in the single
component case and focus on the BGR contributions inst
A summary of the many-body effects is published elsewh
@10#.

To begin with, we note that the factorm @cf. Eq. ~13!# is
independent of plasma density in the classical regime,
has a sublinear density dependence above the hole trans
density owing to the dominance of theh–LO-phonon scat-
tering rate. The factor increases weakly with plasma te
perature in the classical regime, and becomes even mor
sensitive to temperature in the quantum regime thanks to
mixed contributions from thec–LO-phonon scattering rates
3-8
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HYDRODYNAMIC THEORY FOR . . . . II . . . . PHYSICAL REVIEW A 66, 023803 ~2002!
Second, the free-carrier part, as in the two-component c
dominates over the BGR part. In the classical regime,
free-carrier contribution yields no density and linear te
perature dependence for density diffusion coefficients,
no temperature but linear density dependence for temp
ture diffusion coefficients. In the quantum regime, it giv
rise to a linear density and no temperature dependence
density diffusion coefficients, and linear temperature but
density dependence for temperature diffusion coefficie
Furthermore, the density derivative of the thermal ene
]NW displays the transition density of the electrons, in co
trast to the temperature derivative of the thermal ene
]TW, which shows that of the heavier holes when the E
transits from the classical to quantum regime. As explain
in Sec. IV A, lighter electrons enter the quantum regime a
lower density than holes. In the quantum regime, the con
bution to the total thermal energy from electrons is enhan
because the energy of electrons now increases faster
density. However, the enhanced contribution has a wea
temperature dependence. With all factors in, free-carrier c
tributions show different transition densities in density a
temperature diffusion coefficients. Third, we discuss
BGR parts in Eqs.~9!–~12!. In comparison with the genera
two-component case, thee-h scattering rate and mutua
terms drop out. The BGR parts in the self-terms are the o
remaining many-body contributions. Therefore, in gene
many-body effects have a less drastic impact in the amb
lar case as a result of the missing contributions and the do
nant free-carrier contribution from electrons. Since the BG
energy is negative and increases in magnitude with ca
density @11–13#, its derivative with respect to density
N]Ndeg as appeared in Eqs.~9! and ~11!, is negative. The
magnitude of the BGR term grows with density and tends
saturate at high density. But the term is insensitive to te
perature. On the other hand, because the increase in tem
ture reduces the magnitude of the BGR@14#, the temperature
derivative N]Tdeg is positive. The magnitude of the term
increases superlinearly with density at low density and te
to saturate at high density. This term is also insensitive
temperature. Overall, the many-body effects are relativ

FIG. 7. The electron-hole plasma under single-component
proximation case: self-diffusion density coefficientDNN @cf. Eq.
~9!# versus plasma density@panel~a!# and temperature@panel~b!#.
Solid lines include many-body corrections to the free-carrier res
~dashed lines!, and the same notation is also used in Figs. 8–
The inset shows the 300-K data with many-body effects in lineaX-
Y scale.
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weakened by temperature, since the free-carrier contribut
become more influential with an increase in temperature.
nally, the prefactor 2j W(W/N)2 j N turns out to follow ap-
proximately an inversely linear dependence on the den
and increase with plasma temperature in the whole cove
range, which can be easily verified by recalling that the
cobians are defined byj W51/]TW and j N5]NW/]TW and
using Eq.~1!.

B. Self-diffusion density coefficient:DNN

Figure 7 shows the self-diffusion coefficientDNN as a
function of plasma density~a! and temperature~b!. Solid and
dashed curves in the figures represent results with and w
out the BGR terms, respectively. The self-diffusion dens
coefficientDNN displays a superlinear density dependence
high density, and is almost constant at low density. The tr
sition in the density dependence occurs at the electron t
sition density and shifts toward higher density with tempe
ture. The temperature dependence is linear at low den
but somewhat nonlinear at high density as shown in F
7~b!. These behaviors are mainly attributed to the free-car
part ]NW in Eq. ~9!. As discussed earlier, factorm is essen-
tially density insensitive in the whole covered range. T
BGR term brings some correction to the free-carrier ter
but does not change the basic behavior of the coefficien
discussed next. It is the free-carrier part that is respons
for the basic behavior of the coefficient. In particular, t
dominant part increases from the classical value of 2kBT to a
value of the order of the chemical potential for electrons
the EHP transits from the classical into the quantum regim
Thus, the coefficientDNN has no density dependence a
linear temperature dependence at low density. In the inter
diate density range, as the lighter electrons lead holes in
transition, the transition density in Fig. 7~a! coincides with
the electron transition density, and it increases with tempe
ture, as indicated in Eq.~3!. In the quantum regime, the
chemical potential for electrons is approximately given
p\2N/me . Therefore, these properties of the free-carr
part, together with factorm, produce the superlinear densi
dependence and nonlinear temperature dependence ofDNN at
high density. We remark that the drastic increase in the
efficient near the transition density is not mainly due to t
weakening in scattering. As noted, factorm solely conveys
the effects of scattering. It is clearly shown in Eq.~13! and
Fig. 1 that theh–LO-phonon scattering plays a domina
role. Since the scattering is basically density independen
the covered range, we conclude that scattering is not res
sible for the observed strong enhancement at high den
Instead, the enhancement comes directly from a dens
dependent gain in the thermal energy of the EHP as a re
of the statistical transition. As a matter of fact, such a g
appears as a prefactor in Landsberg’s generalized Eins
relation@15#. Lastly, we note that in the classical regime, t
Einstein relation is recovered asDNN52kBTm. Interestingly,
in the quantum regime the relation is modified not only
the enhancement due to the energy gain, but also by
many-body corrections.
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Next, we discuss many-body effects on the coeffici
DNN . The effects stem from the BGR termN]Ndeg in Eq.
~9!. They result in the difference in Fig. 7 between the so
curves ~with BGR term! and the dashed curves~without
BGR term!. The BGR contribution increases in size wi
density at low density and reaches a maximum near the e
tron transition density, then decreases at high density. T
perature has no appreciable effect on the BGR contribu
as best seen in panel~b!, which is in the linearX-Y scale.
The reduction in the coefficient by many-body effects is e
pected because of the attractive nature of Coulomb inte
tion between electrons and holes. Thus, their diffusivity
diffusion coefficient is reduced as compared to t
interaction-free case. Further reduction results as interac
intensifies with density. On the contrary, increase in plas
temperature enhances the thermal motion of the EHP so
the significance of the interaction is relatively weakened. T
reduction introduced by many-body effects can be over 2
@10#.

C. Mutual-diffusion temperature coefficient: DNT

The results for the mutual-diffusion temperature coe
cientDNT are shown in Fig. 8 in linearX-Y scale in the main
panels~a! for density dependence and~b! for temperature
dependence. Additionally, the 300-K data with BGR con
bution are plotted in log-log scale as an inset for comparis
At low density, the coefficient depends on the density l
early but not on the temperature. At high density, its den
dependence is sublinear@Fig. 8~a!#, while the temperature
dependence is linear@Fig. 8~b!#. It is noted from panel~a!
and the inset that the statistical transition is characterized
the hole transition density. In the classical regime, the lin
density-dependent and temperature-independent behavi
expected because the dominant free-carrier term dict
such a behavior with factorm having no density and wea
temperature dependence. In the quantum regime, the d
nating free-carrier part produces a linear temperature de
dence but no density dependence. The sublinear density
pendence comes from factorm, as discussed in Sec. V A
Recall that both the free-carrier part]TW and factorm fol-
low the hole transition density as they enter the quant

FIG. 8. The electron-hole plasma under single-component
proximation case: mutual-diffusion temperature coefficientDNT @cf.
Eq. ~10!# versus plasma density~a! and temperature~b!. LinearX-Y
scale is used in order to show the weak temperature depend
The inset shows the 300-K data in a log-log scale for comparis
02380
t

c-
-

n

-
c-
r

on
a
at
e

-

-
n.
-
y

y
r
is

es

i-
n-
e-

regime, which account for the observed transitional behav
The overall behavior of the coefficient fits perfectly to o
general understanding of the physics involved. First of
due to its induced nature, mutual diffusion is expected
vanish with the secondary variable. The linear density dep
dence at low density manifests the consistency. Second
carriers become statistically degenerate, the induced cur
is reduced by the phase-space-filling effects. In the quan
regime, thermal excitation of carriers is restrictive as co
pared to the classical case, which leads to smaller diffusiv
Temperature elevation tends to lift the restriction, thus
see an increase in the coefficient~cf. Fig. 8!.

Many-body effects on coefficientDNT are shown by the
difference between the solid and dashed curves in Fig. 8
seen, many-body effects increase the diffusion coefficie
and the increase grows with density in the range shown.
effects are temperature independent, however. Comp
tively, the many-body effects onDNT are weaker than on
DNN . From Eq.~10!, the coefficient is influenced by many
body effects through the BGR termN]Tdeg , which is posi-
tive in the studied range~cf. Sec. V A and Ref.@14#!. Also,
the BGR term increases superlinearly with density and
pends weakly on temperature. In addition, factorm shows
both weak density and temperature dependence. Thus
many-body effects behave as numerically expected. Ph
cally, the effects are understood as follows: Recall thatDNT
represents a measure of efficiency for the induced contr
tion from a temperature gradient to density current. The
duced current would flow from the high-temperature reg
to the low-temperature region as many-body effects incre
the diffusion coefficient. As the negative BGR self-energy
lower in the low-temperature region@14#, force is thus in-
duced by the temperature gradient and helps current fl
Therefore, the induced current does flow in the right dire
tion, so many-body effects contribute positively to the co
ficient. Finally, it is worth noting that, as indicated by Eq
~9!–~12!, the two remaining DCs are affected by many-bo
effects in the same manner as the two we just showed, so
effects shall not be further discussed.

p-

ce.
n.

FIG. 9. The electron-hole plasma under single-component
proximation case: mutual-diffusion density coefficientDTN @cf. Eq.
~11!# versus plasma density~a! and temperature~b!–~d!. The inset
shows the same data in linearX-Y scale for comparison. Multiple
panels~b!–~d! are used to better illustrate the temperature dep
dence of the coefficient, as in Fig. 10.
3-10
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In summary, many-body effects reduce the density co
ficients but enhance temperature coefficients. Plasma
perature has negligible influence over the effects on all
coefficients.

D. Mutual-diffusion density coefficient: DTN

In this section, we present the results for the mutu
diffusion density coefficientDTN in Fig. 9. Density and tem-
perature dependence of the coefficient are plotted in pa
~a! and ~b!–~d!, respectively. In the inset of panel~a!, the
same data are presented in the linearX-Y scale for compari-
son.

As seen, the coefficient decreases linearly at low den
and increases sublinearly at high density. The transition
curs at a higher density than forDNN and seemingly follows
the hole transition density. The temperature depende
shows stronger than linear behavior. Understanding thes
sults is straightforward by examining Eq.~11! and recalling
the behavior of the prefactor~see Sec. V A!. The prefactor
2 j W(W/N)2 j N depends inversely on density but linearly o
temperature, which translates into an inverse proportiona
of the coefficient to density at low density and subline
dependence at high density. Furthermore, the prefa
masks the electron transition density by shifting the tran
tion density to a higher value than forDNN , and further
transforms the high-density behavior ofDTN from the super-
linear dependence ofDNN to the present sublinear depe
dence in Fig. 9~a!. On the other hand, the temperature dep
dence ofDTN , as seen in Figs. 9~b!–9~d!, becomes stronge
than that ofDNN , as enhanced by the prefactor. Now w
examine the results from the physical perspective. T
present coefficient measures the temperature diffusivity
duced by a density gradient. First, it vanishes with the s
ondary variable, i.e., plasma temperature, at low tempera
as expected and indicated in Figs. 9~b!–9~d!. Second, at low
density, thermal energy current flows in proportion with de
sity gradient as the energy scales linearly with density. Ho
ever, temperature, as an intensive quantity, does not s
with density. Thus, the induced temperature diffusivity sca
inversely with density. As phase-space-filling effects set
when density increases, the diffusivity is enhanced beca

FIG. 10. The electron-hole plasma under single-component
proximation case: self-diffusion temperature coefficientDTT @cf.
Eq. ~12!# versus plasma density~a! and temperature~b!. The inset
shows the many-body corrections-included data in linearX-Y scale
for comparison.
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of increase in the energy at the same temperature as c
pared to the classical case, as revealed in panel~a!. Then
temperature elevation increases the energy at any given
sity, which improves the mutual diffusion in the whole ran
shown.

E. Self-diffusion temperature coefficient:DTT

We present the results for the self-diffusion temperat
coefficientDTT in this section in the same manner used
DTN . As shown in Fig. 10, the coefficient shows a positi
but quite weak dependence on density at low density an
sublinear decrease above the hole transition density
slightly superlinear temperature dependence is shown by
coefficient. Similar toDTN , the behavior of the coefficien
can be numerically understood starting from the prefac
andDNT @see Eq.~12!#. Therefore, we shall omit discussion
from the numerical viewpoint. Instead we focus on t
physical interpretation of the results. To start with, we no
that the self-diffusion of temperature is associated with
thermal energy of the carriers. This is the fundamental rea
why the two self-diffusion coefficientsDNN and DTT share
similar values in the classical regime, as shown in Figs
and 10. The thermal energy is linearly proportional to dens
and temperature at low density, which lead to the we
known Wiedemann-Franz law@3#. Hence the self-
temperature-diffusion correlates with self-density-diffusio
which results in quantitatively similar behaviors between
two self-diffusion coefficients. However, in the quantum r
gime, statistical degeneracy completely breaks down the
linear dependence of the energy on density and tempera
The self-diffusion density coefficient is drastically enhanc
because of the phase-space-filling effects~see Sec. V B!. The
enhancement is associated with both increased therma
ergy and reduced scattering rates~see Fig. 1!. But the in-
crease in thermal energy has been shown to be mainly ca
by the quadratic density termw0

aNa2 in Eq. ~1!. Simulta-
neously, temperature-dependent terms in the quantum reg
are greatly reduced in magnitude. As such, the increas
thermal energy has an adverse effect onDTT . Similarly, the
reduction in scattering rates does not help the self-diffus
temperature coefficient. Rather, less scattering means
thermal motion as if the temperature were lower. Therefo
we see how physically the coefficient decreases with den
in the quantum regime. The effect of temperature elevatio
comprehensible in a similar manner to the other coefficie
discussed earlier, and thus shall not be repeated.

In summary, it has been shown for the diffusion coef
cients under the single-component approximation that ma
body effects suppress the density coefficients, but enha
the temperature coefficients. The modification is on the or
of 10% and can reach over 20%@10# for the density coeffi-
cients. The effects increase with density for the tempera
coefficients within the range studied. However, many-bo
effects play a minor role in determining the dependence
the coefficients on plasma density and temperature. F
carrier contributions are dominantly responsible for such
pendence. In the classical regime, self-diffusion coefficie
have a negligible density dependence. In the quantum

p-
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gime, however, the density coefficientDNN is enhanced to a
superlinear dependence, whereas the temperature coeffi
DTT is reduced sublinearly, as a result of statistical deg
eracy. By contrast, mutual-diffusion coefficients behave d
tinctly differently. The temperature coefficientDNT vanishes
linearly with the density in the classical regime, but the de
sity coefficient DTN scales inversely with density. In th
quantum regime, both of them scale sublinearly with dens
Overall, temperature elevation enhances all the diffusion
efficients linearly, and the enhancement increases with d
sity.

VI. SUMMARY AND CONCLUDING REMARKS

In this section, we make a few general comments on
tain aspects of our coupled diffusion model and the num
cal results presented in the previous sections. By doing
we shall achieve a deeper physical understanding of
present hydrodynamic description of transport in the EHP
a quasi-two-dimensional QW structure.

First of all, it is realized that a general treatment of carr
transport at low density on the hydrodynamic level is h
dered by a Coulomb interaction of carriers. Sophistica
theoretical work exists on such exciton-plasma systems
moderately low-density and pure excitonic systems at lo
density @16,17#, but state-of-the-art laser models fail to in
clude such complexity. In this regard, the CDM represents
effort towards incorporating such physical complexity. Th
is the premise upon which we justify our low-density resu
As such, we call the low-density range below the transit
densities the classical regime. Furthermore, this choice
terminology also implies a classical statistical treatment
an extension of many-body theoretical results, which
cludes the BGR contributions and scattering rates to this
gime.

Next, some observations on the many-body effects on
diffusion coefficients are in order. As shown, the BGR co
tributions ande-h scattering play drastically different roles i
the general TC case than in the SC case. Nevertheless
results are consistent, as expected, since the sin
component case is just a limiting case of the general t
component case. If the electron-hole pair in the EHP
treated as a single entity, as being done under the sin
component approximation, the incoherente-h scattering
drops out and has no influence on plasma transport. H
ever, the BGR contributions do have an effect on all the D
even though the size of the effect varies from coefficien
coefficient.

Now we make a comparison between the self-diffus
density coefficientDNN in our quasi-2D case and its coun
terpart in the 3D case under the ambipolar diffusion appro
mation. The coefficient for bulk GaAs was calculated in R
@18# ~solid curve in the lower panel of Fig. 7 therein! as a
function of plasma density. The result is compared to
quasi-2D result in Fig. 9~a!. A similar transition of the den-
sity dependence from the classical to quantum regime
shown in the 3D case, and our coefficient is marginally lar
than the bulk value in the density range shown. The tra
tional behavior in our quasi-2D case is found to occur a
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smaller corresponding density than in the 3D case. To un
stand this difference, we reiterate that the transition is att
uted to the effect of statistical degeneracy. As free fermio
become degenerate, their energy scale is the chemical po
tial instead of the thermal energykBT. Needless to say, the
classical energy scale is density independent. The chem
potential in the quantum regime is mainly determined by
plasma density, but its value depends on dimensionality
cause of the different density of states. Therefore, phys
quantities of an EHP in different dimensions have differe
values, such as the transition density under discussion
make a more specific comparison, we give the transition d
sity nt,a

3D in the 3D case below@4#:

nt,a
3D52S makBT

2p\2 D 3/2
2

Ap
E

0

`

de
Ae

11exp~e!
. ~14!

For electrons it is'1018 cm23, and'1019 cm23 for holes
at room temperature. Thus, the difference in the transit
densities is explained in terms of numerics. Next, we furt
consider this difference from a physical perspective. It
known that reduced dimensionality makes it easier for fer
onic particles to feel the presence of each other as comp
to higher dimensions for a simple geometric reason. The
mionic gas becomes statistically degenerate when ca
density is high enough or temperature low enough such
particles which are characterized by the de Broglie wa
length overlap with each other. This means that the transi
density is smaller than its counterpart in the bulk mate
and the lighter electrons have a lower transition density t
the holes. As such, we explain the shift in the transiti
densities in the 2D and 3D cases. Other thanDNN , transi-
tional behaviors in their density dependence also exist for
other DCs in the quasi-2D case. It would be interesting
compare the quasi-2D results with 3D ones for other dif
sion coefficients.

Last but not the least, we comment on the applicat
aspects of the CDM in the general two-component c
where spatial charge separation occurs. Such a situation
happen in type-II QWs or by external modulation of th
quantum confinement potential. It is interesting to note t
even though the screening effect is weakened in such ca
higher mobility could, in principle, be achieved through t
reduction ofe-h scattering due to a reduced spatial overl
between oppositely charged particles. Furthermore, inno
tive device designs could be conceptualized by the real
tion of negative mobility for minority carriers under certa
conditions.

To conclude, we have presented numerical results
density-related diffusion coefficients in the general tw
component case together with results for all the diffus
coefficients in the single-component case for the coupled
fusion model as functions of carrier densities and tempe
tures of the electron-hole plasma. Also presented are mom
tum and temperature relaxation rates due to carrier–L
phonon scattering and electron-hole scattering, which
calculated microscopically and used for the diffusion coe
cients. The diffusion coefficients are analyzed in the fram
work of the free Fermi gas theory with many-body effec
3-12
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included. Free-carrier contributions derive from carrier th
mal energy and carrier–LO-phonon scattering, wher
many-body effects originate from band-gap renormalizat
and electron-hole scattering. In the general two-compon
case, appreciable many-body corrections occur near the
transition density for hole-density coefficients. Carrier–L
phonon scattering dominates at low density, but electron-h
scattering becomes important in determining the density
pendence above the electron transition density for all
coefficients. In the single-component case, many-body
fects suppress density coefficients but enhance temper
coefficients. The modification is on the order of 10% a
reaches a maximum of over 20%@10# for the density coef-
ficients. The effect increases with density for the tempera
coefficients within the range studied. However, the ma
ta
o

s

l

e
tia
xc
p
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body effects play a minor role in determining the depende
of the coefficients on plasma density and temperature
compared to the two-component case. Overall, tempera
elevation enhances the diffusion coefficients linearly, a
such an enhancement increases with density. Many-body
fects on the coefficients are insensitive to temperature. Si
lation results based on the CDM will be presented in a fut
work. Finally, we point out that the CDM in the gener
two-component case can be incorporated into design t
for innovative optoelectronic devices.
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