PHYSICAL REVIEW A 66, 023803 (2002
Hydrodynamic theory for spatially inhomogeneous semiconductor lasers. 1l. Numerical results
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We present numerical results for the diffusion coefficigf@€s) in the coupled diffusion modederived
[J. Li and C. Z. Ning, preceding paper, Phys. Re\6@\ 023802(2002] for a semiconductor quantum well.
These include self- and mutual-diffusion coefficients in the general two-component case, as well as density-
and temperature-related DCs under the single-component approximation. The results are analyzed from the
viewpoint of the free Fermi gas theory with many-body effects incorporated. We discuss in detail the depen-
dence of these DCs on densities and temperatures in order to identify different roles played by the free-carrier
contributions including carrier statistics and carrier—LO-phonon scattering, and many-body corrections includ-
ing band-gap renormalization and electron-hodehj scattering. In the general two-component case, it is
found that the self- and mutual-diffusion coefficients are determined mainly by the free-carrier contributions,
but with significant many-body corrections near the transition density where carrier statistics changes from the
Maxwell to the Fermi-Dirac distribution. Carrier—LO-phonon scattering is dominant at low density, wigereas
h scattering becomes important in determining their density dependence above the electron transition density.
In the single-component case, it is found that many-body effects decrease the density coefficients but enhance
the temperature coefficients. The modification is on the order of 10% and reaches a maximum of oy€r 20%
Z. Ning and J. Li, Phys. Rev. B5, 20130%R) (2002] for the density coefficients. Overall, temperature
elevation enhances the diffusive capability of carrié@®@€s) linearly, and such an enhancement grows with
density. The complete data set of various DCs as functions of carrier densities and temperatures provides
necessary ingredients for future applications of tedelto various spatially inhomogeneous optoelectronic
devices.
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[. INTRODUCTION understand them in terms of the underlying physics pro-
cesses. As we will show, all features of the DCs can be

In the preceding theoretical padar], we have derived a explained in terms of the Fermi gas theory with corrections

set ofcoupled diffusion equatiorfer the densities and tem- from many-body effect$2]. Second, we want to present a
peratures of electrons and holes in a spatially inhomogegomplete data set for these DCs as functions of densities and

neous semiconductor quantum welW). Our derivation is temperatures to provide guidance for any future applications

based on a microscopic kinetic theory for the electron-holé)f the CDM to various optoelectronic devices. Since most of

: o such applications will involve extensive simulations of the
plasma(EHP) model. Such a first-principles approach allows LN . . s -
. o : partial differential equations, it is essential to have those DCs
gfg;o(tﬂig\{[irﬁzglrlgttu;ér(glrae;;tlﬁn?lsr;?res”arr?gr%?r:/t;mofgih?-n tabulated and eventually fitted as analytical functions of den-

: - - sities and temperatures beforehand so that time-consuming
fusion coefficientsDCs) in the general two-compone@C)  nicroscopic calculations do not have to be repeated.

case and the single-componeC) case. The SC case IS Fqor the numerical results, we choose an 8-nm
t_reated ywthm the standard ambipolar d|ffu.5|on. approxima-a| - Ga, -As/GaAs quantum well structure as the model ma-
tion or in strong electron-holeeth) scattering limit. The  teria| system. Relevant material parameters are well docu-
DCs are given in terms of momentum relaxation rates, manymented in the literature, but listed here for completeness. For
body corrections, and the derivatives of carrier thermal enerthis structure, typical plasma density is'4ccm™? for room-
gies[1]. Ultimately, the coefficients become functions of the temperature lasing operations. Thus, the ranges for the ther-
thermodynamic variables of the EHP through these quantimodynamic variables are chosen for densities frortf 10
ties. The application of the model is not restricted to lasingl0'® ¢cm™2 and for temperatures from 200 to 400 K. To man-
devices. Rather, it can be easily adapted for EHPs in othesige the already very lengthy analysis, we shall not further
types of devices, such as photodetectors and photocondudifferentiate temperatures between electrons and holes and
ing devices. Obviously, applications of thisupled diffusion  shall use the term “plasma temperature” to denote the com-
model(CDM) rely upon the knowledge of those related dif- mon temperature. As shown in the numerical results, tem-
fusion coefficients. perature plays a very predictable role. Additionally, we re-
The purpose of the present paper is twofold: First, WeStriCt our presentation and discussions to density-related

want to analyze in detail the behaviors of these DCs andesults at 300 K only for the general TC case and discuss the
temperature-related coefficients only for the SC case.

To help the discussions in the two-component case, we
distinguish carrier typegelectrons and holgsnd their asso-
ciated variables as primary and secondary ones when diffu-
sion coefficients are presented. Such an assignment stems
from the fact that a coefficient relates the gradient of one
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(called primary variable to the current of anothésalled ergy has a bilinear combination of density and temperature in
secondary variablgcf. Eq. (C1) in Ref.[1]]. For example, the classical regime, while it is the sum of two quadratic
for the diffusion coefficienD yans, Wherea, Be{e,h}, we  terms of temperature and density. Thus, it follows naturally
refer toN? as the primary carrier density, or simply primary that the densitytemperaturg derivative is independent of
density, and the8 carriers as primary carriers. Accordingly, density (temperaturg while being linearly dependent on
N¢ is referred to as the secondary carrier density, or simplgemperature(density in the classical regime. However, in
secondary density, and the carriers as secondary carriers. the degenerate limit, the densitymperaturgderivative de-

As an extension to this convention, the primary type is thepends linearly on densitftemperaturg while having no de-
same as the secondary one for a quantity with only one capendence on temperatufdensity. Obviously, the energy
rier type in its index, even though the quantity may dependlerivatives(or specific heafsin the two limits exhibit differ-

on variables of the other type implicitly. The coefficient ent behaviors. Since the DCs are closely related to such de-
Dyane and factoru , are such instances, which are functionsrivatives, we expect different behaviors of DCs in the two
of not only the primary densitiN® and temperatur@®, but  limits. The physical origin of the different behaviors is due to
also the secondary densily and temperatur@?. Finally,  statistical degeneracy or Pauli’s principle in the quantum re-
in order to be consistent with this convention, for all othergime. In the interested density and temperature domain of
quantities or terms denoted by both carrier types, their prithis study, carrier behaviors are somewhere between the two
mary type follows their associated DCs. For instance, for théimits.

term Hﬁlh’ which appears in Eqﬁ), its primary carrier type Next, we i”ustrate hOW the tranSition from the ClaSSica|
is the holes. regime to the quantum regime can be quantitatively charac-

The paper is organized as follows. In Sec. II, we Summaj[erized and what role different masses of electrons and holes

a

rize those key results in two-dimension@D) Fermi gas Play- It can be showpsee Eq(D10) and related expressions
theory which are critical in understanding the diffusion coef-IN Ref.[1]] that the density derivative of the thermal energy
ficients. Then, we present and discuss the carrier momentuflf @ Carriers is given by
and temperature relaxation rates due to carrier—LO- 5 N
(longitudinal-optical phonon scattering and electron-hole g W= mh N 1+exd — M @
(e-h) scattering in Sec. Ill. Density diffusion coefficients in Nemm keT%/ |’

the general two-component case are presented and analyzed

in Sec. 1V, followed by all the DCs for the two-component where ¢ is the chemical potential af carriers. The chemi-
case in Sec. V. A summary is given in Sec. VI for the nu-cg| potential for fermionic particles increases monotonically
merical results, together with concluding remarks regardingyith their density owing to Pauli’s principle. To be exact, the
the scope and validity of the CDM, many-body effects, and &hemical potential depends linearly on the density in the de-

comparison with 3D results in the literature. generate limit. In the classical limit, howevefy.W*
=kgT® as the exponential term above becomes important as
Il. KEY RESULTS OF 2D FERMI GAS THEORY the chemical potential gets negatively large. Therefore, it is

clearly shown by the preceding equation that the carrier den-

: Since properties of the |d_eal Fermi gas will be |mporta_ntsity corresponding to zero chemical potential is an excellent
in understanding the behavior of the momentum relaxation ST " :
uantitative indicator for the transition from the classical re-

rates and all the DCs, we summarize certain key results Oqlme to the quantum regime. Such a density is called “the
the. 2D Ferm| gas theory. These results_ are obtained by aé:;'ritical density” in some literatur¢4], even though nothing
plying the independent electron approximat{@}. Further-

Lk critical occurs of statistical nature at this density. In this pa-
more, some terms frequently referred to in this paper shall bSer we use the term “transition density” instead to denote
introduced in this section. '

First of all, the carrier thermal energi®§™s of the 2D this transition. This 2D transition density is given by
EHP can be approximatddf. Eq. (D8) in Ref.[1]] as fol-

) m,kgT
lows: n?D= z In2, 3
NkgT?, classical limit,
We= WEN®2+WST*,  degenerate limit, (D which is about 510 cm 2 for electrons and 3

X 10'? cm™? for holes at room temperature. As defined, the

where we have indicated the statistics applicable in eackansition density provides a quantitative measure above
case. Within the limited temperature range between 200 Rvhich statistical degeneracy for fermionic particles becomes
and 400 K considered in this paper, the statistical property ofmportant. As a consequence of statistical degeneracy, phase-
the degeneracy is determined by the density alone. While thgpace-filling effects greatly influence the physical properties
first line of Eq. (1) is the familiar classical result of the of the Fermi gas in the quantum regime>n?). In this
Boltzmann statistics, the second line is obtained for the deregime, energy for the 2D Fermi gas is on the order of the
generate limit using the Sommerfeld expansion. The firschemical potential, instead of the thermal enekg¥ in the

term has a quadratic density dependence, but no temperatukassical regimeN“< nﬁg). The constant density of states in
dependence. The remaining term contributes to all the ten2D leads to the linear relationship between chemical poten-
perature dependence. Summarily, the free-carrier thermal etial and density, as mentioned earlier. Therefore, this change
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TABLE I. Parameters and their values. All values are from REJ] except where indicated otherwise.

mg Effective electron mads  0.067m, my, Effective hole mass 0.45,
£ Static permittivity 131 €4 High-frequency permittivity 10.9
hoo LO-phonon energy 35.0 meV cP 4

8n units of free-electron mass.
A numerical constant used in the single-plasmon-pole model for screéseegRef[6]).

in energy scale results in corresponding behavioral transithe transition density of the predominant carrier type is the
tions in the physical properties of the Fermi gas, as a maniappropriate one for characterization of the statistical transi-
festation of phase-space-filling effects. Such transitions statton; otherwise, the transparency density is a better choice.
near the transition density. To close this section, we emphasize that the transition
Now let us discuss the case of an EHP. The total thermadlensities introduced here are useful for a general understand-
energy of the plasma is the sum of that of electrons andhg of the numerical results presented in this paper, as their
holes. Because of their different masses, the lighter electrorexistence is a revelation of the fermionic nature of the EHP.
step into the quantum regime before the holes dég( They will be extensively referred to later as we discuss the
<nZP). After the transition for electrons, their contribution underlying physics of the numerical results.
to the total thermal energy becomes larger than holes, as a
result of the stronger density dependence. Therefore, the
transitional behavior of electrons masks that of holes, as far
as density derivatives of the thermal energies are concerned.
However, the story is not complete without considering tem- Momentum relaxation is the underlying physics process
perature derivatives of the thermal energies. It is interestindor carrier diffusion, and various momentum relaxation rates
to show[see Egs.(D10) and (D11) in Ref. [1]] that the appear naturally in the expression of DCs as we will see in
following relationship holds for any density and temperatureithe following section. To prepare ourselves for the explana-
tion of the diffusion coefficients, we present in this section
N*INeWE+ TG W*=2W*, (4)  the relaxation rates obtained microscopicalty. Appendix
B in Ref.[1]). In short, the rates are treated within the second
This is in fact Euler’s theorem for homogeneous functions ofBorn approximatior{5]. Screening of the Coulomb interac-
degree 2, which states that the thermal energy is a linedion is described under the single-plasmon-pole mgagf.
superposition of quadratic polynomials in density and tem-Numerical integration for the rates is implemented with 40-
perature. This equation dictates that bet§ and wj are  point Gaussian quadratures after necessary simplifications.
independent of density and temperature in the degeneraBoth momentum and temperature relaxation rates are shown,
limit, being consistent with, and as indicated by, E#).  but only the momentum relaxation rates affect the DCs. The
However, the first term dominates over the second terniemperature relaxatiofor the Newton's coolingrates are
quantitatively, which is what the above equation fails to re-used in the temperature equatignin the CDM. Two major
veal and why electronic specific heat is much smaller in ecattering mechanisms are considered in the EHP medel:
normal metal than in an ideal gas. As such, we see immediand carrier—LO-phononc(LO) scatterings. Table | contains
ately that the hole transition density masks the electron trarparameters and their numerical values used in our calcula-
sition density for temperature derivatives. Nevertheless, it igions.
important to point out that around the transition density con- Results for momentum relaxation rates dueeth [Eq.
tinuous behaviors are anticipated. As the upper densityA10) in Ref.[1]] and c—LO-phonofEq. (B6) in Ref.[1]]
bound studied in this paper is marginally higher than the holecattering are presented in Fig. 1. For &ile scattering rates
transition density, we expect deviations of the system behawhown, equal electron and hole densities are chosen. At low
ior from that of the limiting cases. One such deviation is thedensity, thee-h scattering rate shows a linear density depen-
density dependence of the temperature derivatives that doelence, while the-LO scattering rates are density indepen-
exist above the transition density, but this dependence weaklent. All the rates decrease above a certain transition density
ens as density increases. Finally, it is also true that for manwhich increases with temperature. The transition density is
physical quantities of the EHP, neither the electron transitiorhigher for holes than for electrons. For tkeeh scattering
density nor the hole transition density properly characterizesate, the decrease starts along with ¢heO scattering rates.
the statistical transition, because the EHP is a mixture oDverall, temperature dependence is relatively weak for all
electrons and holes after all. Instead, the transparency densitige rates. Specifically, a temperature rise leads to a decrease
of the EHP, given byu§+,ufF‘:O and denoted bp2P, is a  of all the rates at low density, but to an increase above the
better indicator of the transition, especially for neutral plas-transition density. Our quantitative comparison shows that
mas. The density has a magnitude between the electron tratiis transition density is nothing but the densrilﬁg defined
sition density and the hole transition density. This can beearlier in Eq.(3). Furthermore, the temperature and carrier-
easily seen from its definition, since the chemical potential isype dependences of this transition density agree well with
a monotonic function of density. In most cases in this paperthose of the densityﬁz. Thus, this characteristic change for

IlI. MOMENTUM AND TEMPERATURE RELAXATION
RATES
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FIG. 1. Carrier momentum relaxation rates as a function of den- FIG. 2. Comparison of carrier temperature relaxation rates as a
sity and temperature. All the results shown in this paper are for afiunction of density and temperature. The results shown are obtained
8-nm Al sGa ;As/GaAs quantum well. The inset shows tpg microscopically following Appendixes A and B in RéflL].
factor given by Eq(34) in Ref.[1]. The electron density and hole ) ) o
density are identical for the electron-hole scattering and gge  t€fing. According to our arguments for the limiting case of
factor here. Note that this, factor is different from that used under Stronge-h scattering in Ref[1], the single-component ap-
the single-component approximatifef. Eq.(13)] and is not carrier ~ proximation for such a case is marginally justified, as the
mobility either. momentum relaxation rate due &h scattering(shown in

Fig. 1) is only a few times larger than those due to
the rates across the transition density is associated witb—LO-phonon scattering around the transparency density.
change from classical to quantum statistics of the fermionic The Newton type of cooling due to energy exchange be-
particles, which is explained in detail next. tween electrons and holes is a pure many-body phenomenon.

At low density, carriers follow the Maxwell distribution As far as we know this rate has not been calculated micro-
and behave independently. Thus, theLO-phonon scatter- scopically in the literature. We thus present in the remaining
ing rates are density independent. Téxd scattering rate, of this section the temperature decay rates due-tioscat-
because of its binary nature, is directly proportional to thetering[cf. Egs.(A13) and(A15) in Ref.[1]] and due t@-LO
secondary densitytype B), and is independent of the pri- scatteringgcf. Eq.(B16) in Ref.[1]] in Fig. 2. Qualitatively
mary density(type «). As the two densities are the same in each decay rate follows similar behavior as its momentum
Fig. 1, we see the linear density dependence. In contrast, icounterpart in Fig. 1 and, thus, only decay rates at 300 K are
the quantum regime phase-space-filling effects become inmshown. In addition, the physical understanding is also similar
portant owing to Pauli’s principle. Limitation to the available to that for momentum relaxation processes. However, the
phase space for carrier scattering causes reduction in thfmoling rates for electrons and holes dueto scattering are
scattering rates. Both carrier types are subject to the phasaet the same as a result of their different masses. This is in
space-filling effects, but starting at different transition densi-contrast to the situation of momentum relaxation where no
ties. Now we examine the role of plasma temperature. In theuch a difference exists. The reason is that the total momen-
classical regime, a temperature increase leads to a populatiomm of the EHP is always conserved so that the momentum
shift to high-energy or -momentum states, but low-relaxation rates have to be the same. However, for tempera-
momentum states are favored for relaxation processes baire cooling it is the total energy that is conserved. Energy
cause they transfer momenta more effectively to theconservation only demands that the same amount of energy
phonons. Thus, the rates drop as temperature rises. As for be exchanged between electrons and holes, but their decay
h scattering, the same argument applies. But since both carates also depend on their specific heats. The difference in
rier types are affected by the temperature change, we see #meir specific heats of electrons and holes, owing to their
enhancement in its temperature dependence in Fig. 1. Adifferent masses, explains why the cooling rates have to be
carriers move into the quantum regime, Pauli's principledifferent for electrons and holes. In the quantum regime, this
plays a predominant role in limiting momentum relaxation.rate difference is enlarged by the phase-space-filling effects,
Temperature rise however reduces the degree of statisticab seen in the high-density results in Fig. 2. As a result, the
degeneracy, hence enhances relaxation processes, as demuoles are much more difficult to cool down than the elec-
strated by the high-density results. At the same time, temtrons. Regarding the-LO cooling rates, we see that holes
perature change also shifts the transition density to a highdrave a larger rate than electrons as a result of larger popula-
value. Finally, difference in the electron and hole massesion (product of distribution function and the density of
gives rise to the higher transition density for the latter, asstategin the low-energy states. Such lower-energy states are
clearly shown by thec—LO-phonon relaxation rates. The favored for very effective energy transfer to phonons via the
higher hole—LO-phonon rate is another manifestation of thescattering, as compared to the lighter electrons. Also, the
larger mass of the holes since it means more effective mdaeavier holes show a higher transition density. Therefore, not
mentum transfer or relaxation, as more low-momentunonly the holes have a larger cooling rate than the electrons,
states are populated by holes. but also a weaker density dependence at the same time.

It is also interesting to note one consequence of the quan- As we close this section, we note that only momentum
titative difference between the momentum relaxation rateselaxation rates are involved in the diffusion coefficients. So,
due toc—LO-phonon scattering and the rate duesto scat-  all relaxation rates mentioned below are meant for momen-
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tum relaxation unless indicated otherwise. density. In particular, it has a V-shaped minimum near the
transitional primary density, as seen by inverting thehape
IV. DIFFUSION COEFFICIENTS FOR A of thee-h scattering curve in Fig. 1. Its consequent effects on
TWO-COMPONENT PLASMA the self-diffusion coefficients will be identified in more detail

in the following section. But a qualitative examination of

. In .th's section we present results for the densny—relatecéqsl (5)—(8) allows us to anticipate the main feature. The
diffusion coefficients in the general two-component case as a

function of electron and hole densities, with a constanlm""gn'tUde ofz, is of the order of several hundreds at low

plasma temperature of 300 K. For convenience, the formulagenSity and on the order of one near the transition density. So

tion for the coefficient§1] is collected below: it acts as a magnification factor for the originally weak
many-body corrections. In addition, is an order of mag-
Dene= el (14 7¢)Syet HL‘le], (5  nitude larger thany, because of both the lighter mass of
electrons and largeh—LO-phonon scattering rate. Both
Denn= ol (14 76)Hen+ Sinls (6)  functions u, and 7, produce most of the density depen-
dence for all the coefficients at low density, and further lead
Dhne= mpl (1+ ﬂh)HEeJF Sﬁle]’ (7) to s_uperlinear _behavior of the coefficients at high d_ensity by
adding to the linear dependence from the free-carrier contri-
D= en[ (14 70) Sun+ H i, (8)  butions. However, the product of these two functions yields

no density dependence at low density. We note that this prod-
where  S{,=dneW*+Nyade® and Hyz=N*dysde®  uctis related to carrier mobilities.
(a,Be{e,h}|a+B). Here 5e* is the many-body correction The last group of functions arg;, and Hﬁa. Sue’S are
to the carrier self-energy of type [cf. Eq.(48) in Ref.[1]].  normally orders of magnitude greater th&if.'s, but the
We refer toS{. and Hy, as self-terms and mutual terms, margin can be greatly reduced near the transition density. In

respectively, in the ensuing discussions. the extreme case, the margin is merely 50% at the hole tran-
sition density when the electron density is high enough. We
A. A few important functions of density and temperature elaborate and explain the physics underlying the numbers

. . . next. The self-terms contain a dominant free-carrier part
We note that the DC.S n E‘?@)‘(f” are glve(? n tsrms of (dneW®) and a negative band-gap renormalizati@GR)
three groups of fungtlonsuas, 74'S, and {SN“’HNK?}'_ It part (N“dne0€®), while the mutual terms consist only of a
helps the interpretation of the results for the coefficients tgzgR part (N“dysde%). As the free-carrier part has been
first analyze these quantities as functions of carrier densitieﬁj”y accounted for in Sec. II, we focus upon the BGR parts
and plasma temperatures. Under the EHP model in thgere Dye to the attractive nature of the Coulomb interaction
Hartree-Fock framework, all the physical effects can beenyeen electrons and holes, the BGR self-energy itself is
groupeq into free—ca.rrler an_d .many—body contributions. Th%egative. The BGR self-energy depends upon the density and
former includes carrier statistics awe-LO-phonon scatter-  emperature through carrier distribution and screening effect.
ing, while the latter includes many-body corrections to thegyih the screening effect and the BGR parts diminish at low
carrier self-energies aneth scattering. Note that statistical gensity, while the former increases with both electron and
degeneracy is a kind of carrier correlation and is regardegy|e densities in the density range studied in this work. Even
here as part of free-carrier contributions, since its origin is Ofthough the hole’s self-energy contains an additional fiha
_statistic_al nature, rather than the Coulombic carrier-carriegg10mb hole(CH) term in Eq.(48) in Ref. [1]], the elec-
Interaction. . , , _ tron's BGR part in the self-terms behaves similarly as their
We first examine functions,, as defined by Eq:34) i pole counterpart. Specifically, the part is negative and in-
Ref.[1]. Results for the case of equal electron and hole dengeases with the primary density but decreases with the sec-
sity are shown as an inset in Fig. 1. The main feature of thyyqary density in the density range studied. In contrast, the
curves are the linear density dependence at low density, ar_h‘?tuation is markedly different for the mutual terms which
a generally weak dependence elsewhere. It decreases Wilyis; thanks to the screening effect by the secondary carriers.
temperature at low density, but increases at high density. O tyrns out that the presence of the large CH term in the
viously, its linear density dependence originates from the,se's self-energy dictates that, below the hole transition
secondary density dependence of ¢He scattering rate. This density, the hole mutual terf” = N"guese be negative
linear density dependence results in a similar secondary den- ’ N N . ’
sity dependence at low density for mutual-diffusion coeffi-2nd the electron mutual teriy, be positive by noting that
cients, as shown later. screening affects the exchange and CH _terms oppos!tely in
Next, we take a close look at functiofy, , which is given Eg. (48) in Ref. Ll]. The consequence of this dlﬁ;erence is, as
by yPo(met+my)/y2m,, essentially the ratio of the Will be shown in the following sections, thad, has an
c—LO-phonon scattering rate to that eh scattering. This appreciable impact on the hole-density coefficieDtgeyn
function, as can be inferred from Fig. 1, has an inverse lineaandD ynyh, as compared to the negligible role pIayedl-le{e
relationship with the primary density¢, but is independent on the electron-density coefficienByene and Dynye. The
of the secondary density? at low density. The relationship physical reasons are manifold: First and foremost, the free-
is weaker than, but close to, linear on both densities at higlearrier partdy.W* plays a dominant role at lower density for

023803-5



JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023803 (2002

electrons owing to their lower transition density than for
holes. Second, the BGR contributions to the electron-density 250
coefficients are either smaller than their counterparts to the
hole-density coefficients or overwhelmed by the free-carrier
part because of the first reason. Last but not the least, the
order-of-magnitude larger magnification functiof, takes

2 -1

Dyy® {em”s )
-
w
S

effect.

Concerning the density and temperature dependence of 50 =
the self-terms and mutual terms, we separately consider the 10° 16" 10% 10™ 10° 10" 10% 10"
free-carrier and BGR contributions. The free-carrier part re- N° (cm™) N (cm™)

lies only on the primary density and temperature. It is density

independent and linearly proportional to the temperature in FIG. 3. General two-component electron-hole plasma case: self-
the classical regime. Furthermore, it depends linearly on derfliffusion electron-density coefficierDyeye [cf. Eq. (5] versus

sity and temperature in the quantum regime. The BGR pal(_iglec_tron densitypanel a and ho_Ie den_staneI b. All data shpwn
partially cancels the free-carrier part near the transition denl Fi9s- 3 and 4 are at 300 K including many-body corrections.
sity in the self-terms. It increases in magnitude with its pri-

mary density, but decreases with the secondary density dJ&Sults for plasma temperature of 300 K only. We note that,
to the screening effect. However, the mutual terms are difin 9éneral, increase in plasma temperature leads to the en-
ferent for electrons and holede5¢" increases with elec- hancement of the diffusive capability of carriers, as will be
tron density and decreases with hole density because &f€N N Sec. V from the results in the single-component case.
screening. By comparisolN®dnde® is negative and de- Depicted in Figs. 3 and 4 are the numerical results for the
creases in magnitude with electron density due to screening€!-diffusion coefficientD yey. with «=e and h, respec-

At the same time it increases in magnitude with hole density!Vely: Panel(@ and panelb) show the dependence of the
when electron density is relatively high, but starts to ge-coefficients on electron and hole densities, respectively. At
crease when the hole density is high enough because of tf}@w density, the coefficients decrease sublinearly with the

combined effects of the screening and the CH term. As foPfimary density[Figs. 3a) and 4b)], but grow very slowly
the influence of the self-terms and mutual terms on the coWith the secondary densiffigs. 3b) and 4a)]. The depen-

efficients, because of the large CH term, the hole-relate@€nce On the primary density, however, becomes positive and

BGR part in the self-terms has a much larger impact than th&UPerlinear at high density. Though the dependence on the

electron-related part. Thus, many-body corrections influenc&econdary density increases, it is weaker than the primary
the hole-density coefficients much more than the electrond€nsity dependence above the transitional primary density.

density coefficients. Near the transition density, the coefficients decrease by as
In connection with the detailed analysis of these importanfUch as 50%, thus forming the valley structures in Figa) 3
functions above, we conclude this section with a summary of"d 4b). The overall behavior is comprehensible by recall-

their behavior and their effects on that of the diffusion coef-INg our discussions of the important functions in the preced-
ficients in the general two-component case, as will be subind section. Density independence in the classical regime is

stantiated quantitatively in the following two sections. The&XPected because the free-carrier part is dominant and inde-
self- and mutual-diffusion coefficients are determined mainlyPendent of density. In addition, functiap, is of the order of
by the free-carrier contributions, but with appreciable many-S€veral hundreds and its density dependence cancels that of
body corrections near the transition density for the hole#« When the two are multiplied. Carrier diffusion in this
density coefficients. Carrier—LO-phonon scattering is domi‘€gime is dominated by the—LO-phonon scattering pro-
nant at low density, but electron-hole scattering become§€sses, no dependence on either carrier density should be
important in determining their density dependence above th@xpected as a result. This expectation, however, comes true
electron transition density. As a result, the self-diffusion co-
efficients are density independent at low density, and become
superlinearly dependent on the primary density. The mutual-
diffusion coefficients depend linearly on the secondary den-
sity at low density. They become strongly dependent on the
electron density, but weaker on the hole density than on the
electron density above the electron transition density. All the
coefficients depend weakly on the secondary density except
Dyenn- Besides, hole-density coefficients are greatly modi-
fied around the hole transition density by many-body correc- ‘ ‘
tions. 10" 10" 10" 10" 10" 10" 10" 10"
N° (cm™) N" (cm™)

Ny
o

2 -1

D,y cm™s7)

—_
(=)

B. Self-diffusion coefficients:D and D
NENE NP FIG. 4. General two-component electron-hole plasma case: self-

Now we are ready for the presentation of the diffusiondiffusion hole-density coefficierid ynyn [cf. Eq.(8)] versus electron
coefficients in the general two-component case. We showlensity[panel(a)] and hole densitypanel(b)].
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FIG. 5. General two-component electron-hole plasma case: FIG. 6. General two-component electron-hole plasma case:

- . - tual-diffusion electron-density coefficie@ynye [cf. EQ. (7)]
mutual-diffusion hole-density coefficieBtyeyn [cf. Eq. (6)] versus MY ! NN
electron densitpanel(a)] and hole denshilt;panel(b)]. versus electron densifypanel(a)] and hole densitypanel(b)].

ity or a smaller DC for them. ConsequentBth scattering
influences the diffusive capability of electrons more than that

The valley stuctures shown in these figures are an indicac—)f holes. Therefore, the reduction in the diffusive capability

tion that the simple Fermi gas picture either in the ClassicaPf electron_s IS ma”?'y QUe to the enhancemerm-bfscatter_-
or degenerate limit is not enough to explain the behaviors o g as carrer density |ncrea§es,.and BGR c_o_ntr|but|on IS Te-
the diffusion coefficients. There are two reasons: First, aspon_smle fqr such suppression in the diffusivity of holes.
large density range around the transition density in these fig-. Itis relgtlvely stralghtforwarq to'understand the results at
ures falls in the intermediate regime between the two ex: igh density. Free-carrier contributions to the self-terms have

treme limits. Second, many-body effects become importan linear primary den_sity dep_e_ndence and no depender_wce on
in this range. As seen in the inset of Fig. 1, functpp starts the secondary density. Additionally, they are predominant
to deviate from the familiar linear density dependence of th ver .the BGR parts. As a result of the combmeq 'effect's of
ideal classical gas behavior at a density of abo«t15'° and unctions o, 7a and _the self-te_rms, the qoefﬁClents In-
the dependence becomes much weaker thereafter. At t ease superlinearly with the primary carrier denity.
same time, other factors also start to show deviation fron{ '95- 38 an_d 4b)]‘. but more weakly with the secondary
their ideal classical behaviors. For instance, ¢He scatter-  C2"M€" densityct. Figs. 3b) and 43)].

ing rate at 300 K is 34% lower than its expected value from
a linear dependence at the density of1@m ™2, as shown

in Fig. 1. Therefore, the phase-space-filling effects become The mutual-diffusion coefficientsDyans With «, B
appreciable before the transition density is reached. Owing te {e,h}|«# 8 are shown in Figs. 5 and 6, respectively. Pan-
the smaller mass of electrons, such deviations appear als (a) and (b) depict the dependence of the coefficients on
lower density for them than for holes, and in larger magni-electron and hole densities, respectively. The coefficients de-
tude as well. In addition, many-body effects also affect thecrease and go to zero following the secondary density. They
behaviors of the coefficients, especially around the transitioare independent of the primary density at low denffigs.
density. In fact, not only the BGR terms become important ag(b) and Ga)]. At high density, they feature a superlinear
carrier density increases, but aledh scattering introduces growth with the electron density, but a much weaker one
density dependence through functiong and 7,. As dis-  with the hole density. FoDyeyh, @ similar valley structure
cussed above, the negative BGR part in the self-terms, i.eappears for high electron densit{¢sg. 5b)], but the bottom
Hye. partially cancels the free-carrier part, and thus supof the valley appears at a higher density thanDggyn [Fig.
presses diffusive processes. As mentioned earlier, many-bodl¢b)] around the hole transition density. FDgnye, however,
effects in this paper contain two parts: the BGR part and théo appreciable feature shows up around the electron transi-
e-h scattering. It is interesting to see how each part playgion density[Fig. 6@], as compared td® yeye [Fig. 3@)].
different roles in forming the valley structure in the two self- Finally, on secondary density dependence, a more pro-
diffusion coefficients. A direct comparison of the coefficientsnounced slowdown of the transitional growth in the coeffi-
with and without the BGR contributions reveals that the val-cients is observed fdDynye Near the hole transition density
ley structure forDyhyn is mainly due to the BGR contribu- in Fig. 6(b) than for Dyeyn near the electron transition den-
tion from the self-term, but it is the-h scattering that causes sity in Fig. 5a).

the similar structure irDyeye. This means that suppression ~ These behaviors can be understood similarly as for the
of carrier diffusion can be due to either the attractive Cou-Self-diffusion coefficients in terms of the several functions
lomb interaction such that carriers tend to cluster rather thadiscussed in Sec. IV fcf. Egs.(5)—(8)]. We start with low-
disperse apart, or the increase in #ab scattering rate so density results. In this classical regime, the free-carrier con-
that carriers spend more time bouncing around locally rathefributions have no density dependence and the BGR terms
than wandering away. The more frequent collisions for holegliminish so that the coefficients are well described by
with LO phonons at low density mean less diffusive capabil-D NaNg%,uaSﬁﬁ. As such, the coefficients inherit the second-

only at very low density and could not explain the valley
structures shown in Figs. 3 and 4.

C. Mutual-diffusion coefficients: Dyeyn @and Dynye
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ary density dependence of functiqn,, or a linear depen- V. THE AMBIPOLAR DIFFUSION COEFFICIENTS

ey ey s Ceatons ot o n 4 secton,we present rumricl reuts for i fou

) . . X gmblpolar diffusion coefficients and analyze their depen-
to exactly the same reasons discussed in the preceding Sefsnce on plasma density and temperature, as well as the
tion. After comparing with results without BGR contribu- offects of many-body corrections. For convenience, we
tions (not shown, it is found that the mutual terrily, ap-  choose the word “ambipolar” to represent the results for the
proximately doublesDyexn When the electron density is single-component case without further implication. Under
above its transition densityFig. 5(b)]. The enhancement is the single-component approximation, the EHP is neutral and
attributed to functionz, whose value is about 400 at all its thermodynamic properties are characterized by the
10'° cm~?—that is why we call it a magnification factor. plasma density and temperature. For easy reference and dis-
Physically, it is easy to understand these behaviors of theussions, the expressions for the coefficients are rewritten
coefficients. The mutual-diffusion process is a consequenc'éelOW
of interaction between carriers. The interaction results in

both many-body corrections to the self-energy of carriers and Din= (oW Nondeg), ©
incoherent scattering eventhigher-order correlationbe- Dur= u(9rW+NdySe,), (10)
tween them. It is trivially expected that the effects of the ¢

interaction on carriers of the secondary type vanish if sec- Drn=[2jw(W/N)—jn]Dnn> (11
ondary density becomes too small in the EHP md@3!

This induced diffusive process is elevated as secondary den- Drr=[2jw(W/N)—jnIDnT, (12

sity increases, though increase in primary density impedes ]

such an enhancement by introducing stronger scattering arfdhere W IS the total thermal energy of the EHP and,
more negative many-body corrections. As carrier densities” 9¢ t o€ is the total BGR energy. Furthermore, we have
are near their transition densities, quantitative differences in e h

the functions discussed in Sec. IV A between electrons and #=1Me¥io M ¥io), (13
holes take effect. As a result, many-body corrections have

fiherej,, andjy are transformation Jacobiafs]. We point
much more noticeable impact @yeyn than onD yaye. One Jw 8GN (| P

Lo e : out that thee-h scattering rate drops out in the present case.
indication is in Fig. §), where the hole-dens_lt_y depend_enceThe absence of the effects &h scattering in the ambipolar
features a remarlfab!e dip near the trz_i(15|t|on denS|ty_ foFnobility was noted in Ref[9]. Similarly all the ambipolar
[.)NeNh' This behavior is because the p05|t.|v.e BGR Cor‘mbu'dif'fusion coefficients are independent of the scattering. Simi-
tion to the mutual term doubles the coefficients at low deny, . 'ihe general two-component case, we start by analyzing
sity _through the_magnlﬂcatlon factor_, In conjunction with 3 the contributing factors to the DCs in ierms of their depen-
partial cancellation of the free-carrier contribution by thedence on the thermodynamic variables of the EHP, followed

negatiye BGR part in the self-terfof. Eq. (6)]..The can_cel— by a presentation of the results for the DCs and the associ-
lation is most pronounced near the transition density. FOLteq many-body effects

Dnhne [cf. Eq. (7)], the free-electron contribution over-
whelms the BGR term in the self-term, whereas the larger
but negative BGR contribution in the mutual term is partially
offset by the order-of-magnitude smaller magnification factor
7. As a matter of fact, functiony, takes a value of 1 as As shown in Eqs(9)—(12), there are four contributions to
compared to a value of 10 fon, when both electron and the diffusion coefficients{1) incoherent scattering by factor
hole density are 8 cm™2. As such, the many-body correc- u, (2) free-carrier part represented by the derivatives of the
tions bring about the valley structure Dyey. However, total thermal energyV, (3) coherent many-body part repre-
many-body corrections do cause a more distinguishablsented by the derivatives of the BGR,, and(4) the pref-
slowdown in its transition into the quantum regime Byye  actor in the expressions @y and Dy in Egs. (11) and
near the hole transition density, as shown in Fifh)6Fi- (12). The first three contributions have been elaborated
nally, above the transition densities, free-carrier contributionsomewhat in the two-component case in Sec. IV A. In the
take over and superlinear growth takes hold for the coeffifollowing, we point out their ramifications in the single-
cients. In comparison with the self-diffusion coefficients, thecomponent case and focus on the BGR contributions instead.
density dependence of the mutual-diffusion coefficients isA summary of the many-body effects is published elsewhere
much weaker because of the displacement of the magnific410].
tion factor 5, from the self-terms to the mutual terrpsf. To begin with, we note that the facter [cf. Eq. (13)] is
Egs.(5)-(8)]. independent of plasma density in the classical regime, and
In summary, mutual-diffusion coefficients describe the in-has a sublinear density dependence above the hole transition
duced diffusive capability of the secondary carriers by inter-density owing to the dominance of the-LO-phonon scat-
acting with the primary carriers. As a result, the coefficientstering rate. The factor increases weakly with plasma tem-
go to zero with the secondary densities. In addition, manyperature in the classical regime, and becomes even more in-
body corrections have more pronounced effects in these censitive to temperature in the quantum regime thanks to the
efficients, especially i yeyh. mixed contributions from the—LO-phonon scattering rates.

A. Density and temperature dependence of the contributing
factors
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10° 150 weakened by temperature, since the free-carrier contributions
200 [300KA 1 | . - become more influential with an increase in temperature. Fi-

nally, the prefactor Ry(W/N)—jy turns out to follow ap-
proximately an inversely linear dependence on the density
and increase with plasma temperature in the whole covered
range, which can be easily verified by recalling that the Ja-
cobians are defined bjyy=1/+W and j = dyW/d;W and
using Eq.(1).

100 5x10" cm

1x10" cm"(b)

(@)

10' 0
10” 10" 10 10° 200 300 400 B. Self-diffusion density coefficient:Dyy
N (cm™) T(K)

Figure 7 shows the self-diffusion coefficieBtyy as a
FIG. 7. The electron-hole plasma under single-component apfunction of plasma densitfa) and temperaturé). Solid and
proximation case: self-diffusion density coefficieDiy [cf. EQ.  dashed curves in the figures represent results with and with-
(9)] versus plasma densifpanel(a)] and temperaturgpanel(b)]. oyt the BGR terms, respectively. The self-diffusion density
Solid Iines_ include many-body correctiens to the free-carrier resun%oefficientDNN displays a superlinear density dependence at
(dashed lineg and the same notation is also used in F.igs.' 8_lohigh density, and is almost constant at low density. The tran-
\T(hscgft shows the 300-K data with many-body effects in linéar sition in the density dependence occurs at the electron tran-
sition density and shifts toward higher density with tempera-
Second, the free-carrier part, as in the two-component caseyre. The temperature dependence is linear at low density,
dominates over the BGR part. In the classical regime, theut somewhat nonlinear at high density as shown in Fig.
free-carrier contribution yields no density and linear tem-7(b). These behaviors are mainly attributed to the free-carrier
perature dependence for density diffusion coefficients, a”ﬁart(?NW in Eq. (9). As discussed earlier, factgr is essen-
no temperature but linear density dependence for tempergg|ly density insensitive in the whole covered range. The
ture diffusion coefficients. In the quantum regime, it giveSgGR term brings some correction to the free-carrier term,
rise to a linear density and no temperature dependence @ qoes not change the basic behavior of the coefficient, as

Sens!:y C(ijlf'fUSlO(;l coeff;mer:ts, andtllnea(;_:cfemperaturecf_byt r,:Cl:iiscussed next. It is the free-carrier part that is responsible
ensity dependence lor temperature difiusion COeMlCIentS, - yna pasic behavior of the coefficient. In particular, the

Furthe_rmore, the dens_ity derivative of the thermal ENeT9Y ominant part increases from the classical valuelgfT2to a
IyW displays the transition density of the electrons, in con-

trast to the temperature derivative of the thermal energ value of the order of the chemical potential for electrons as

4-W, which shows that of the heavier holes when the EH he EHP transite from the classical into. the quantum regime.
transits from the classical to quantum regime. As explaineghus' the coefficienDyy has no density dependence and
in Sec. IV A, lighter electrons enter the quantum regime at a"€ar temperature dependeece at low density. In the mterme-
lower density than holes. In the quantum regime, the contridiate density range, as the lighter electrons lead holes in the
bution to the total thermal energy from electrons is enhancedfansition, the transition density in Fig(& coincides with
because the energy of electrons now increases faster withe electron transition density, and it increases with tempera-
density. However, the enhanced contribution has a weakdkre, as indicated in Eq3). In the quantum regime, the
temperature dependence. With all factors in, free-carrier corchemical potential for electrons is approximately given by
tributions show different transition densities in density and@%2N/m,. Therefore, these properties of the free-carrier
temperature diffusion coefficients. Third, we discuss thepart, together with factor, produce the superlinear density
BGR parts in Egs(9)—(12). In comparison with the general dependence and nonlinear temperature dependerizgyoht
two-component case, the-h scattering rate and mutual high density. We remark that the drastic increase in the co-
terms drop out. The BGR parts in the self-terms are the onlgfficient near the transition density is not mainly due to the
remaining many-body contributions. Therefore, in generalweakening in scattering. As noted, faciersolely conveys
many-body effects have a less drastic impact in the ambipahe effects of scattering. It is clearly shown in E#3) and

lar case as a result of the missing contributions and the domFig. 1 that theh—LO-phonon scattering plays a dominant
nant free-carrier contribution from electrons. Since the BGRrole. Since the scattering is basically density independent in
energy is negative and increases in magnitude with carriethe covered range, we conclude that scattering is not respon-
density [11-13, its derivative with respect to density, sible for the observed strong enhancement at high density.
Ndydey as appeared in Eq$9) and (11), is negative. The Instead, the enhancement comes directly from a density-
magnitude of the BGR term grows with density and tends tadependent gain in the thermal energy of the EHP as a result
saturate at high density. But the term is insensitive to temef the statistical transition. As a matter of fact, such a gain
perature. On the other hand, because the increase in tempeegppears as a prefactor in Landsberg’s generalized Einstein
ture reduces the magnitude of the BGRY], the temperature relation[15]. Lastly, we note that in the classical regime, the
derivative Nd1de, is positive. The magnitude of the term Einstein relation is recovered &= 2kgT u. Interestingly,
increases superlinearly with density at low density and tend# the quantum regime the relation is modified not only by
to saturate at high density. This term is also insensitive tdhe enhancement due to the energy gain, but also by the
temperature. Overall, the many-body effects are relativelynany-body corrections.
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FIG. 8. The electron-hole plasma under single-component ap- FIG. 9. The electron-hole plasma under single-component ap-
proximation case: mutual-diffusion temperature coefficegt [cf.  Proximation case: mutual-diffusion density coefficiénty [cf. Eq.
Eq.(10)] versus plasma densitg) and temperaturéb). LinearX-Y  (11)] versus plasma densit®) and temperaturéb)—(d). The inset
scale is used in order to show the weak temperature dependenc#ows the same data in linedfY scale for comparison. Multiple
The inset shows the 300-K data in a log-log scale for comparisonpanels(b)—(d) are used to better illustrate the temperature depen-

dence of the coefficient, as in Fig. 10.

Next, we discuss many-body effects on the coefficient
Dnn- The effects stem from the BGR terNdy de, in Eq.
(9). They result in the difference in Fig. 7 between the solid
curves (with BGR term) and the dashed curvesvithout

regime, which account for the observed transitional behavior.
The overall behavior of the coefficient fits perfectly to our
BGR term). The BGR contribution increases in size with general_understanding of the physic_s in\_/olve_d. First of all,
density at low density and reaches a maximum near the eleglU€ 10 its induced nature, mutual diffusion is expected to
tron transition density, then decreases at high density. Tem2NiSh with the secondary variable. The linear density depen-
perature has no appreciable effect on the BGR contributiof€NCe at low density manifests the consistency. Second, as
as best seen in pané}), which is in the linearX-Y scale. Ccariers become statistically degg_nerate, the induced current
The reduction in the coefficient by many-body effects is ex-1 reduced by the phase-space-filling effects. In the quantum
pected because of the attractive nature of Coulomb interade€gime, thermal excitation of carriers is restrictive as com-
tion between electrons and holes. Thus, their diffusivity orpared to the classical case, which leads to smaller dlfoSIVIty
diffusion coefficient is reduced as compared to theTemperature elevation tends to lift the restriction, thus we
interaction-free case. Further reduction results as interactiopee an increase in the coefficigot. Fig. 8).
intensifies with density. On the contrary, increase in plasma Many-body effects on coefficierid are shown by the
temperature enhances the thermal motion of the EHP so thdifference between the solid and dashed curves in Fig. 8. As
the significance of the interaction is relatively weakened. Theseen, many-body effects increase the diffusion coefficient,
reduction introduced by many-body effects can be over 20%and the increase grows with density in the range shown. The
[10]. effects are temperature independent, however. Compara-
tively, the many-body effects obyt are weaker than on
C. Mutual-diffusion temperature coefficient: Dy Dyn- From Eq.(10), the coefficient is influenced by many-

The results for the mutual-diffusion temperature coeffi-Pody effects through the BGR terhdrdeg, which is posi-
cientDy are shown in Fig. 8 in lineax-Y scale in the main  tive in the studied rangécf. Sec. V A and Ref[14]). Also,
paneis(a) for density dependence ar(u) for temperature the BGR term increases Superlinearly with denSity and de-
dependence. Additionally, the 300-K data with BGR contri-pends weakly on temperature. In addition, factorshows
bution are plotted in log-log scale as an inset for comparisonboth weak density and temperature dependence. Thus, the
At low density, the coefficient depends on the density lin-many-body effects behave as numerically expected. Physi-
early but not on the temperature. At high density, its densitycally, the effects are understood as follows: Recall Dat
dependence is subline@Fig. 8@a@)], while the temperature represents a measure of efficiency for the induced contribu-
dependence is linedfFig. 8b)]. It is noted from panela) tion from a temperature gradient to density current. The in-
and the inset that the statistical transition is characterized bgiuced current would flow from the high-temperature region
the hole transition density. In the classical regime, the lineato the low-temperature region as many-body effects increase
density-dependent and temperature-independent behavior tise diffusion coefficient. As the negative BGR self-energy is
expected because the dominant free-carrier term dictatdswer in the low-temperature regidi4], force is thus in-
such a behavior with factor having no density and weak duced by the temperature gradient and helps current flow.
temperature dependence. In the quantum regime, the domiherefore, the induced current does flow in the right direc-
nating free-carrier part produces a linear temperature depetion, so many-body effects contribute positively to the coef-
dence but no density dependence. The sublinear density déeient. Finally, it is worth noting that, as indicated by Egs.
pendence comes from factar, as discussed in Sec. VA. (9—(12), the two remaining DCs are affected by many-body
Recall that both the free-carrier partW and factoru fol- effects in the same manner as the two we just showed, so the
low the hole transition density as they enter the quantuneffects shall not be further discussed.
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10° of increase in the energy at the same temperature as com-
—— | 40 30 5X‘°ff'l‘f/’ pared to the classical case, as revealed in pémelThen
— z" 15 (d) temperature elevation increases the energy at any given den-
o o 1%_‘11? 400K 38 210Pemi sity, which improves the mutual diffusion in the whole range
e s “ 1 shown.
A N N o ©
o s00k| 30 1x1o‘zf.31f,/’ E. Self-diffusion temperature coefficient:D1+
ﬂ 15 () We present the results for the self-diffusion temperature
10‘1010 oTTeT 70" %0 300 200 coefficientDyt in this section in the same manner used for
N (em™) T(K) Dtn. As shown in Fig. 10, the coefficient shows a positive

but quite weak dependence on density at low density and a
FIG. 10. The electron-hole plasma under single-component apsublinear decrease above the hole transition density. A
proximation case: self-diffusipn temperature coefficimT.[cf. slightly superlinear temperature dependence is shown by the
Eq. (12)] versus plasma density) and temperaturéb). The inset  efficient. Similar toDyy, the behavior of the coefficient
;s:ro(\:/\(/)sn:hgrir:::y-body corrections-included data in linéaf scale .o pe numerically understood starting from the prefactor
P ' andDyt [see Eq(12)]. Therefore, we shall omit discussions
offfom the numerical viewpoint. Instead we focus on the
hysical interpretation of the results. To start with, we note
% at the self-diffusion of temperature is associated with the
hermal energy of the carriers. This is the fundamental reason
why the two self-diffusion coefficient®, and D11 share
similar values in the classical regime, as shown in Figs. 7
and 10. The thermal energy is linearly proportional to density
In this section, we present the results for the mutual-and temperature at low density, which lead to the well-
diffusion density coefficienD 1y in Fig. 9. Density and tem- known Wiedemann-Franz law[3]. Hence the self-
perature dependence of the coefficient are plotted in panetemperature-diffusion correlates with self-density-diffusion,
(@) and (b)—(d), respectively. In the inset of panéh), the  which results in quantitatively similar behaviors between the
same data are presented in the lingaY scale for compari- two self-diffusion coefficients. However, in the quantum re-
son. gime, statistical degeneracy completely breaks down the bi-
As seen, the coefficient decreases linearly at low densitfinear dependence of the energy on density and temperature.
and increases sublinearly at high density. The transition ocFhe self-diffusion density coefficient is drastically enhanced
curs at a higher density than fBryy and seemingly follows because of the phase-space-filling efféste Sec. V B The
the hole transition density. The temperature dependencenhancement is associated with both increased thermal en-
shows stronger than linear behavior. Understanding these rergy and reduced scattering ratege Fig. 1L But the in-
sults is straightforward by examining E@L1) and recalling crease in thermal energy has been shown to be mainly caused
the behavior of the prefactdsee Sec. V A The prefactor by the quadratic density termiN%? in Eq. (1). Simulta-
2jw(WIN) —j depends inversely on density but linearly on neously, temperature-dependent terms in the quantum regime
temperature, which translates into an inverse proportionalityre greatly reduced in magnitude. As such, the increase in
of the coefficient to density at low density and sublinearthermal energy has an adverse effectbpy. Similarly, the
dependence at high density. Furthermore, the prefactaeduction in scattering rates does not help the self-diffusion
masks the electron transition density by shifting the transitemperature coefficient. Rather, less scattering means less
tion density to a higher value than f@yy, and further thermal motion as if the temperature were lower. Therefore,
transforms the high-density behavior@f from the super- we see how physically the coefficient decreases with density
linear dependence dDyy to the present sublinear depen- in the quantum regime. The effect of temperature elevation is
dence in Fig. @a). On the other hand, the temperature depencomprehensible in a similar manner to the other coefficients
dence ofD+y, as seen in Figs.(B)—9(d), becomes stronger discussed earlier, and thus shall not be repeated.
than that ofDyy, as enhanced by the prefactor. Now we In summary, it has been shown for the diffusion coeffi-
examine the results from the physical perspective. Theients under the single-component approximation that many-
present coefficient measures the temperature diffusivity inbody effects suppress the density coefficients, but enhance
duced by a density gradient. First, it vanishes with the secthe temperature coefficients. The modification is on the order
ondary variable, i.e., plasma temperature, at low temperaturef 10% and can reach over 20p40] for the density coeffi-
as expected and indicated in Figgb3-9(d). Second, at low cients. The effects increase with density for the temperature
density, thermal energy current flows in proportion with den-coefficients within the range studied. However, many-body
sity gradient as the energy scales linearly with density. Howeffects play a minor role in determining the dependence of
ever, temperature, as an intensive quantity, does not scatbe coefficients on plasma density and temperature. Free-
with density. Thus, the induced temperature diffusivity scalesarrier contributions are dominantly responsible for such de-
inversely with density. As phase-space-filling effects set inpendence. In the classical regime, self-diffusion coefficients
when density increases, the diffusivity is enhanced becaudeave a negligible density dependence. In the quantum re-

In summary, many-body effects reduce the density co
ficients but enhance temperature coefficients. Plasma te
perature has negligible influence over the effects on all th
coefficients.

D. Mutual-diffusion density coefficient: D1y
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gime, however, the density coefficieD,y is enhanced to a smaller corresponding density than in the 3D case. To under-
superlinear dependence, whereas the temperature coefficiesiand this difference, we reiterate that the transition is attrib-
Dt is reduced sublinearly, as a result of statistical degenuted to the effect of statistical degeneracy. As free fermions
eracy. By contrast, mutual-diffusion coefficients behave disbecome degenerate, their energy scale is the chemical poten-
tinctly differently. The temperature coefficieBty; vanishes tial instead of the thermal enerdyT. Needless to say, the
linearly with the density in the classical regime, but the den<classical energy scale is density independent. The chemical
sity coefficient Dy scales inversely with density. In the potential in the quantum regime is mainly determined by the

quantum regime, both of them scale sublinearly with densityP!@Sma density, but its value depends on dimensionality be-

Overall, temperature elevation enhances all the diffusion cot@uSe of the different density of states. Therefore, physical

efficients linearly, and the enhancement increases with derfluantities of an EHP in d|ffgrent dlmensmns ha."e d|fferent
values, such as the transition density under discussion. To

Sity. make a more specific comparison, we give the transition den-
sity n2 in the 3D case belojA]:
VI. SUMMARY AND CONCLUDING REMARKS '
) ) 312 " Je
In this section, we make a few general comments on cer- 30_ o[ MaKeT if de € (14)
tain aspects of our coupled diffusion model and the numeri- ta 2mh2 Jmlo  1+exple)’

cal results presented in the previous sections. By doing so,

we shall achieve a deeper physical understanding of thEor electrons it iss10® cm™3, and~10'° cm™3 for holes
present hydrodynamic description of transport in the EHP irat room temperature. Thus, the difference in the transition
a quasi-two-dimensional QW structure. densities is explained in terms of numerics. Next, we further

First of all, it is realized that a general treatment of carrierconsider this difference from a physical perspective. It is
transport at low density on the hydrodynamic level is hin-known that reduced dimensionality makes it easier for fermi-
dered by a Coulomb interaction of carriers. Sophisticatednic particles to feel the presence of each other as compared
theoretical work exists on such exciton-plasma systems foio higher dimensions for a simple geometric reason. The fer-
moderately low-density and pure excitonic systems at lowemionic gas becomes statistically degenerate when carrier
density[16,17], but state-of-the-art laser models fail to in- density is high enough or temperature low enough such that
clude such complexity. In this regard, the CDM represents aparticles which are characterized by the de Broglie wave-
effort towards incorporating such physical complexity. Thislength overlap with each other. This means that the transition
is the premise upon which we justify our low-density results.density is smaller than its counterpart in the bulk material
As such, we call the low-density range below the transitionand the lighter electrons have a lower transition density than
densities the classical regime. Furthermore, this choice ahe holes. As such, we explain the shift in the transition
terminology also implies a classical statistical treatment andlensities in the 2D and 3D cases. Other tiiagy, transi-
an extension of many-body theoretical results, which in-tional behaviors in their density dependence also exist for the
cludes the BGR contributions and scattering rates to this resther DCs in the quasi-2D case. It would be interesting to
gime. compare the quasi-2D results with 3D ones for other diffu-

Next, some observations on the many-body effects on theion coefficients.
diffusion coefficients are in order. As shown, the BGR con- Last but not the least, we comment on the application
tributions ande-h scattering play drastically different roles in aspects of the CDM in the general two-component case
the general TC case than in the SC case. Nevertheless, tidhere spatial charge separation occurs. Such a situation can
results are consistent, as expected, since the singléappen in type-ll QWs or by external modulation of the
component case is just a limiting case of the general twoguantum confinement potential. It is interesting to note that
component case. If the electron-hole pair in the EHP iseven though the screening effect is weakened in such cases,
treated as a single entity, as being done under the singldvigher mobility could, in principle, be achieved through the
component approximation, the incohereeth scattering reduction ofe-h scattering due to a reduced spatial overlap
drops out and has no influence on plasma transport. Howbetween oppositely charged particles. Furthermore, innova-
ever, the BGR contributions do have an effect on all the DCstive device designs could be conceptualized by the realiza-
even though the size of the effect varies from coefficient tation of negative mobility for minority carriers under certain
coefficient. conditions.

Now we make a comparison between the self-diffusion To conclude, we have presented numerical results for
density coefficientDyy in our quasi-2D case and its coun- density-related diffusion coefficients in the general two-
terpart in the 3D case under the ambipolar diffusion approxicomponent case together with results for all the diffusion
mation. The coefficient for bulk GaAs was calculated in Ref.coefficients in the single-component case for the coupled dif-
[18] (solid curve in the lower panel of Fig. 7 thergias a  fusion model as functions of carrier densities and tempera-
function of plasma density. The result is compared to outures of the electron-hole plasma. Also presented are momen-
quasi-2D result in Fig. @). A similar transition of the den- tum and temperature relaxation rates due to carrier—LO-
sity dependence from the classical to quantum regime iphonon scattering and electron-hole scattering, which are
shown in the 3D case, and our coefficient is marginally largercalculated microscopically and used for the diffusion coeffi-
than the bulk value in the density range shown. The transieients. The diffusion coefficients are analyzed in the frame-
tional behavior in our quasi-2D case is found to occur at avork of the free Fermi gas theory with many-body effects
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included. Free-carrier contributions derive from carrier ther-body effects play a minor role in determining the dependence
mal energy and carrier—LO-phonon scattering, whereasf the coefficients on plasma density and temperature, as
many-body effects originate from band-gap renormalizatiorcompared to the two-component case. Overall, temperature
and electron-hole scattering. In the general two-componerglevation enhances the diffusion coefficients linearly, and
case, appreciable many-body corrections occur near the ho&ich an enhancement increases with density. Many-body ef-
transition density for hole-density coefficients. Carrier—LO-fects on the coefficients are insensitive to temperature. Simu-
phonon scattering dominates at low density, but electron-hol&ation results based on the CDM will be presented in a future
scattering becomes important in determining the density dework. Finally, we point out that the CDM in the general
pendence above the electron transition density for all théwo-component case can be incorporated into design tools
coefficients. In the single-component case, many-body effor innovative optoelectronic devices.

fects suppress density coefficients but enhance temperature
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