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Hydrodynamic theory for spatially inhomogeneous semiconductor lasers.
I. A microscopic approach

Jianzhong Li* and C. Z. Ning†
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~Received 31 December 2001; published 6 August 2002!

Starting from the microscopic semiconductor Bloch equations including the Boltzmann transport terms in
the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for
carrier densities and temperatures with self-consistent coupling to Maxwell’s equation and to an effective
optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock
approximation, while scatterings are treated within the second Born approximation including both the in- and
out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier–LO-phonon (c-LO! scatterings
are directly used to derive the momentum and energy relaxation rates. These rates, expressed as functions of
temperatures and densities, lead to microscopic expressions for self- and mutual-diffusion coefficients in the
coupled density-temperature diffusion equations. Approximations for reducing the general two-component
description of the electron-hole plasma to a single-component one are discussed. In particular, we show that a
special single-component reduction is possible whene-h scattering dominates overc–LO-phonon scattering.
The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients
are independent ofe-h scattering, even though the diffusion coefficients of individual components depend
sensitively on thee-h scattering rates. Our discussions lead to deeper insights into the roles played in the
single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the
electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by
coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization,
which in turn couples to the laser field.
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I. INTRODUCTION

A typical semiconductor-based optoelectronic devi
such as a diode laser, can be considered as consisting of
subsystems: an optical field, an electron-hole plasma~EHP!,
and a host crystal lattice. Light generation, propagation, a
plification, and diffraction determine the behavior of the o
tical field, while electrical conduction, plasma diffusion, a
carrier generation and recombination determine that of
plasma. The host lattice is very often represented by var
phonon modes, with the longitudinal-optical~LO! phonon
mode being the most important one for optics and car
transport of III-V semiconductors at room temperature. O
viously the whole system involves the interplay of optic
electrical, and thermal processes. From the perspectiv
conversion and conservation, energy is stored in the form
photon energy, kinetic and thermal energy of the EHP,
thermal energy of the host lattice represented by the phon
excited and annihilated. Though various processes occu
different space and time scales, their couplings should
treated in a self-consistent fashion to arrive at corr
coupled equations, or to appropriately decouple the eq
tions in various limiting cases. While modeling and simu
tion of semiconductor lasers and other optoelectronic dev
typically use the rate equations@1# or the semiconducto
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Bloch equations@2# that treat only the coupled electrica
optical subsystems, other approaches have focused on
thermal aspect@3#. In Refs.@4,5#, a self-consistent approac
was attempted to combine all three subsystems and the
evant processes based on earlier work on plasma hea
@6–9# in semiconductors. The approach is, however, va
only for a single-mode laser, or a spatially homogeneo
laser.

There are plenty of manifestations of spatial inhomoge
ities in a semiconductor device. Laser beam filamentat
dynamic beam steering, and multiple transverse-mode
mation and competition are some of the important examp
where inclusion of spatial, or spatiotemporal variation,
necessary. Additionally, with the inclusion of temperatu
variables, more spatial phenomena can be described, su
thermal lensing and formation of hot spots, and catastrop
optical damage in diode lasers. For advanced semicondu
lasers such as vertical-cavity surface-emitting las
~VCSELs! or master oscillator coupled with power amplifie
~MOPA!, spatial inhomogeneity is a more prominent issu
where efficient coupling of multimode VCSELs to mult
mode fibers is desired, or when careful transverse-mode
gineering is required for certain applications. In terms
theoretical description, the spatial inhomogeneity of a se
conductor laser is usually dealt with using Maxwell’s equ
tion with diffraction terms, coupled with the carrier diffusio
equation@10#. This set of equations, which is a direct gene
alization of the rate equations to the spatially inhomogene
case, can be further augmented by adding the material p
ization equation to account for gain and refractive index d
persion@11#. This approach has recently been used to sim
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JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023802 ~2002!
late MOPAs @12,13# and VCSELs @14#. An alternative
approach is to start from the Boltzmann type of transp
equation for the carrier distribution functions as described
Ref. @15#. This approach is a very general one, but it involv
quite extensive computation, sincek-resolved interband po
larization equations have to be solved self-consistently for
space and time grid points. For nearly all practical purpos
lasers and other optoelectronic devices operating on t
scales longer than 1 ps can be more efficiently dealt with
the moment-equation type of approach. To account for b
carrier-density and carrier energy~thus carrier temperature!
inhomogeneities within the framework of the moment eq
tions, one needs to derive a set of partial differential eq
tions for up to the second-order moments from the co
sponding Boltzmann transport equations. Such an appro
which is alternatively called the hydrodynamic approa
will lead to a generalization of the single-mode laser mo
in Ref. @4# to spatially inhomogeneous cases including th
mal and heating effects. In the past, carrier diffusion equa
has been derived from the Boltzmann transport equatio
combination with Maxwell’s equation and the optical pola
ization equations by several authors@15,16#. Since only the
zeroth-order moment equation is derived@15#, plasma heat-
ing cannot be described. This lack of systematic derivation
the temperature equation creates a problem in corre
choosing the energy or temperature diffusion coeffici
@17#. Furthermore, whenever two or more types of diffusi
processes exist, mutual diffusions, or cross diffusions, oc
The quantitative significance of these processes needs
examined, which is only possible with a systematic deri
tion of the coupled diffusion equations and all the cor
sponding diffusion coefficients~DCs!.

This paper sets out to derive such a set of coupled m
roscopic equations for carrier densities and carrier ener
from the coupled Boltzmann-Bloch transport equations us
the moment-equation approach. We pay special attentio
the treatment of carrier-carrier (c-c) scattering and carrier–
LO-phonon (c-LO! scattering. Microscopic electron-hole (e-
h) and c-LO scattering terms in the Boltzmann transpo
equations are used directly to obtain the corresponding
ergy and momentum relaxation rates. Various DCs are t
expressed in terms of the momentum relaxation rates.
energy relaxation rates are used to describe energy excha
which leads to temperature equilibration, between differ
subsystems. Such an approach allows a detailed microsc
study of the DCs for a given quantum well structure. D
tailed numerical results and analysis of these coefficients
be presented in the subsequent paper.

The article is organized as follows. In Sec. II, we intr
duce the basic physical considerations and starting equat
This is followed by a general derivation of the moment eq
tions and the treatment of the cutoff issue, which is centra
any moment-equation based approach in Sec. III. The g
eral form of the hydrodynamic equations for the general tw
component situation is derived in Sec. IV. Section V de
with the specialization to the cases of single-component
proximation, where we will discuss the consequence of
ultrafaste-h scattering for the drift momenta of electrons a
holes. We will also discuss the well-known ambipolar diff
02380
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sion approximation~ADA !. In Sec. VI, the very important
issue of optical polarization is treated. We use two differe
approaches to close the hierarchy related to thek-resolved
polarization equations. In Sec. VII the corresponding Ma
well’s equation and the lattice temperature equation are
troduced to form the complete set of equations for a syst
atic description of semiconductor lasers. Though we
laser as an exemplary device in this work, the treatment
the resulting equations can be used for other optoelectr
devices, such as photoconductors@18# and photodetectors
@19#, with little or no modification. In Sec. VIII we discus
and comment on some general aspects of our theory and
up the major results of this paper before we present deta
considerations in the appendixes for scattering rates
DCs. Appendix A deals with momentum and energy rela
ation rates due toe-h scattering; the corresponding rates d
to c–LO-phonon scattering are treated in Appendix B.
Appendix C, we list the DCs for the two-component ca
Finally, expressions for all the DCs under the one-compon
approximation are given in Appendix D.

II. MODEL AND BASIC EQUATIONS

We begin this section with some general remarks ab
the spirit of our approach. As most often assumed, las
matter interaction in a semiconductor laser is described w
an EHP model. The standard argument to support suc
plasma model is that the typical room-temperature las
density is around 1012 cm22, well above the Mott density
While we use this model in this paper, its adequacy in
spatially inhomogeneous system needs special scrutiny.
comment on this in the final section of this paper. Within t
plasma model, Coulomb interaction is usually characteri
by an excitonic enhancement of the optical transition a
carrier-density-dependent band-gap renormalization@2,16# in
the coherent part of the semiconductor Bloch equati
~SBEs!. In addition, this relatively high density leads to u
trafast carrier-carrier scattering within 100 fs, which dom
nates carrier dynamics on the short time scale and affects
interaction of the EHP with a laser field in several importa
ways: First, these ultrafast collisions thermalize carriers
properly populated subbands@20#, which justifies the stan-
dard assumption of quasiequilibrium for carrier distributio
when longer time scale dynamics is of interest. Second
will also be shown later in this paper, ultrafaste-h scattering
correlates populated subbands such that the whole EHP
be characterized with a single temperature and drift veloc
but different chemical potentials for different subbands un
normal conditions. This understanding will be elaborated
the subsequent sections and in Appendix A by examining
detail the effects of the scattering on momentum and ene
relaxations. Due to these ultrafast collision events, local q
siequilibrium is established in less than 1 ps. This allo
carrier distribution functions to be described locally b
Fermi-Dirac distributions with finite drift momenta, whil
spatial inhomogeneity is taken into account by the spa
dependent macroscopic ‘‘parameters’’~densities and tem-
peratures! of such distribution functions. Such a treatme
further allows other slower processes to be incorporated
2-2
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HYDRODYNAMIC THEORY FOR . . . I. . . . PHYSICAL REVIEW A66, 023802 ~2002!
hydrodynamic fashion. Reasoning and understanding of
type underpin the moment-equation approach adopted in
work.

Specifically, we consider an intrinsic semiconductor qu
tum well of widthw in thez direction and of areaS in thex-
y plane. The inhomogeneity occurs in the plane of the qu
tum well layer, while fixed profiles for carrier distributio
and optical modes are assumed in the vertical direction to
quantum well due to tight quantum confinement and opt
wave guiding. The extension to the case of vertical inhom
geneity can be naturally made when one includes a ver
transport model, similar to what was done in Ref.@21#. This
is beyond the scope of the present paper. In a typical ed
emitting laser, the inhomogeneity appears in the plane of
light propagation. For VCSELs, this plane is transverse
the light propagation. Our starting point for the semicond
tor medium is the semiconductor Bloch equations@16,22#,
generalized for the spatially inhomogeneous case in R
@15,23#, which may now be called Boltzmann-Bloch equ
tions. The possible local charge imbalance requires that
Poisson equation be included. The complete set of equat
required is therefore the Maxwell-Boltzmann-Bloch-Poiss
~MBBP! equations@2,15,16,22–24# for the nonequilibrium
distribution functionsna(k,r) (a5e,h for electrons and
holes, respectively!, interband polarizationp(k,r), electric
potentialF(r), and the laser fieldE(r,t), with k andr being
the two-dimensional~2D! vectors in reciprocal~momentum!
space and real space, respectively. The MBBP equations
collected as follows:

1

c2
] t

2E~r,t !2¹2E~r,t !52
1

«0c2
] t

2~Pa1Pb!, ~1!

] tn
a~k,r!1

1

\
]k«

a~k,r!•] rn
a~k,r!2

1

\
] r@dea~k,r!

1qaF~r!#•]kn
a~k,r!5Ra~k,r!1] tn

a~k,r!ucol ,

~2!

] tp~k,r!52
i

\
@«e~k,r!1«h~2k,r!#p~k,r!2 iV~k,r!

3@ne~k,r!1nh~2k,r!21#1] tp~k,r!ucol , ~3!

] r
2F~r!52

1

«0«b

2

V (
a,k

qana~k,r!, ~4!

with various terms given below:

Ra~k,r!5La~k,r!2gnrn
a~k,r!2Bspn

e~k,r!nh~k,r!

1 i @V~k,r!p* ~k,r!2V* ~k,r!p~k,r!#, ~5!

La~k,r!5g in j
a ~k! f̄ a~k,r!@12na~k,r!#, ~6!

«a~k,r!5ea~k!1qaF~r!1dea~k,r!, ~7!
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dea~k,r!52(
k8

na~k8,r!Vs,k2k81da,v(
k8

~Vs,k2k8

2Vk2k8!, ~8!

\V~k,r!5m~k!E~r,t !1(
k8

p~k8,r!Vs,k2k8 , ~9!

Pa5
2

V (
k

@m* ~k!p~k,r!1c.c.#, ~10!

] tn
a~k,r!ucol5] tn

a~k,r!uaa1] tn
a~k,r!ueh1] tn

a~k,r!uLO ,

~11!

] tp~k,r!ucol52Go~k!p~k,r!1(
k8

G i~k,k8!p~k8,r!,

~12!

Go~k!5 (
a,b,k8,qÞ0

2p

\
Vs,q

2 d~ek
a1ek81q

b
2ek8

b
2ek1q

a !

3@nk1q
a nk8

b
~12nk81q

b
!1nk81q

b
~12nk8

b
!~12nk1q

a !#,

~13!

G i~k,k8!5 (
a,b,k8,qÞ0

2p

\
Vs,q

2 d~ek
a1ek81q

b
2ek8

b
2ek1q

a !

3@nk8
b

~12nk
a!~12nk81q

b
!1nk

ank81q
b

~12nk8
b

!#,

~14!

where ] t[]/]t, ] r[]/]r, ]k[]/]k, ] t
2[]2/]t2, ¹2[] r

2

1]2/]z2, ] r
2[]2/]x21]2/]y2. Also, «a(k,r) is the renor-

malized carrier energy,dea(k,r) is the correction to the
single-particle carrier energyea(k) due to exchange interac
tion and due to the Coulomb-hole self-energy.V(k,r) is the
renormalized Rabi frequency.Vs,k is the screened Coulom
potential, for which we use the single-plasmon-pole mo
@22# in this work, andVk is the bare one. In addition,m(k) is
the component in the direction of the laser field polarizat
of the interband optical dipole matrix element between
electron stateuck& and the hole stateuv2k&. Pb is the optical
polarization of the unexcited semiconductor,Pa accounts for
the electronic contribution arising from photoexcitation, a
the total material polarizationP5Pa1Pb . Their treatment
together with Maxwell’s equation is detailed in Secs. VI a
VII. Furthermore,\ is the Planck constant,qa57e is the
carrier charge for electrons and holes,«0 is the electric con-
stant,«b is the relative permittivity of the unexcited sem
conductor,V5wS is the volume of the active region,da,v is
the Kronecker delta, and 2(k means summation over all a
lowable momentum (k) states, including spin~accounting for
the factor 2!, for a single subband. Additionally, the lumpe
generation-recombination~GR! contributionsRa(k,r) con-
sist of a current injection termLa(k,r), a nonradiative re-
combination term with coefficientgnr , a spontaneous emis
sions term with coefficientBsp , and a stimulated interaction
term involving the renormalized Rabi frequencyV(k,r). De-
2-3
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tailed treatment of the GR term is available in Sec. VI. W
note thatLa(k,r)’s describe carrier capturing processes fro

a bulk distribution f̄ a(k,r) to the confined distribution
na(k,r) in the quantum well with capturing rateg in j

a (k). Fi-
nally, collisional contributions denoted by subscriptcol lead
to decay in the interband polarization] tp(k,r)ucol and relax-
ation in the carrier distributions] tn

a(k,r)ucol . We include
explicitly both the so-called out-scattering termGo(k) and
the ~nondiagonal! in-scattering termG i(k,k8) @25#. Note that
Go(k) and G i(k,k8) are real, which means that we only in
clude the ‘‘dephasing’’ part of the second-order correlatio
Go(k) and G i(k,k8) are generally complex. The imaginar
parts add to band-gap renormalization. Since we us
screened potential that leads to the Coulomb-hole term in
~8!, the band-gap renormalization due to higher-order s
terings has been taken into account. This treatment is sim
to that used in Ref.@25#. The dominant scatterings consid
ered in this work arec-LO, a-a, and e-h scatterings, as
separately denoted in Eq.~11!.

Before we start the formal derivation of the moment eq
tions, a few remarks are in order. First, a single parab
subband is assumed for electrons~holes! with effective mass
me (mh). This approximation is valid when the well widt
~w! is small enough and plasma density is not too high, s
that higher subbands are not populated and thus ignored~the
so-called electric quantum limit!, and when the effects of th
lattice structure on the energy dispersion of carriers are
proximated by isotropic effective-mass tensors. This me
that carrier kinetic energy, given asea(k)5\2k2/2ma , is
proportional to the second-order moment. As we will s
later, this simplification allows direct association of th
second-order moment with the total carrier kinetic ene
and the first-order current with this energy partially. As su
the extension of the following derivations to the case of n
parabolic subbands is not straightforward. Second, all
scattering terms will be treated explicitly in the mome
equations, without resorting to relaxation rate approxim
tions or leaving them at the formal level. This is where o
approach differs from those earlier approaches@15,16# in de-
riving the moment equations; this will become more evid
as we proceed with the derivation. Third, the spatial deri
tives are dropped in the interband polarization equation~3!
for two reasons. The very first one is that our focus of int
est is on time scales much longer than picoseconds.
momentum-space scatterings in Eqs.~2! and~3! all occur on
a subpicosecond time scale. The fact that these scatte
conserve total electron and hole densities leaves these
densities changed both in real space and in time on a n
second scale as a result of diffusion and recombinat
whereas no similar conservation holds for total polarizati
We therefore assume that, on a nanosecond scale, pola
tion follows the density and laser field adiabatically both
real space and in time. Thus no explicit spatial derivativ
are retained for the interband polarization. For ultrafast s
tial inhomogeneous processes, however, such spatial term
polarization equations should be important. While spatial
homogeneity of polarization on short time scales can be d
with by solving the Bolzmann type of equations forp(k,r)
02380
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~see appendix of Ref.@15#!, it is still an open question
whether and how a moment-equation type of approach
be applied to such spatial inhomogeneity on a longer ti
scale. The second and more practical reason is that a
coupled set of equations with spatial transport terms in E
~2! and ~3! would lead to the resultant moment equatio
well beyond the traditional coupled diffusion equations a
beyond the scope of the present paper. Finally, shorth
notation will be adopted for convenience and brevity, su
that nk

a stands forna(k,r), dea for dea(k,r), F for F(r),
and so on, in the remaining part of this paper unless in
cated otherwise.

III. MOMENT EQUATIONS AND CUTOFF

We begin with the introduction of the moment and curre
of thenth order associated with the nonequilibrium distrib
tion functionnk

a as follows:

cn
a~r![

2

S (
k

Fn
ank

a , ~15a!

Jn
a~r![

2

S (
k

vk
aFn

ank
a , ~15b!

whereFn
a , denoting thenth-order weight function, are 1,\k,

and \2k2/2ma for n50,1, and 2, respectively, andvk
a

[]kek
a/\5\k/ma for parabolic subbands. We consider up

the second order for moments. Note that only the trace of
second-order moment tensor needs consideration here, a
relates to energy. For clarity, we represent the first three
ments and currents with conventional symbols: densityNa

[c0
a , momentumPa[c1

a , energyEa[c2
a ; density current

JN
a[J0

a , momentum currentJP
a[J1

a , energy currentJE
a

[J2
a . JP

a is a tensor despite its misleading vectorial notatio
Note that the moments defined above are intensive qua
ties, or densities, and the currents are density currents
cordingly. Nevertheless, they are referred to simply as d
sity, momentum, energy, etc., for brevity. As is customa
~see, e.g., Ref.@26#!, we derive the moment equations b
summing over all degrees of freedom, i.e., applying (2/S)(k
on the Boltzmann transport equation@Eq. ~2!# with the cor-
responding weight functionFn

a . It is straightforward to show
that the first three moment equations for electrons and h
can be written as follows:

] tN
a1] r•JN

a5RN
a , ~16!

] tP
a1] r•JP

a1Na] r~dea1qaF!5RP
a1] tP

aue-h1] tP
auLO,

~17!

] tE
a1] r•JE

a1] r~dea1qaF!•JN
a5RE

a1] tE
aue-h1] tE

auLO,

~18!

where we have neglected the weakk dispersion in the many-
body correctiondea. Terms on the right-hand side above a
the result of summing the corresponding terms in Eq.~2!
over all degrees of freedom with the corresponding wei
functions. For example,
2-4
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RN,P,E
a 5

2

S (
k

FN,P,E
a Ra~k,r!. ~19!

Intuitively, a-a scattering does not change the total carr
number, momentum, and energy for each subband, so
vanish from the above equations. Furthermore,e-h andc-LO
scatterings do not alter the total carrier number within e
subband, but they do survive the summation and remai
Eqs.~17! and ~18!.

While the formal derivation of the above moment equ
tions @Eqs. ~16!–~18!# is exact and straightforward, thes
equations are not in a closed form yet. There are sev
reasons for this:~1! the first-order currentJP

a is not com-
pletely given by the first- and second-order moments (Pa and
Ea) in the presence of anisotropy, where equations for
other ~traceless diagonal and off-diagonal! elements of the
second-order moment are required;~2! the second-order cur
rent JE

a is connected to higher-order moments;~3! the terms
on the right-hand side depend on summation over the ca
distribution functions, thus are not fully known in terms
the first three moments and currents. These are well-kn
reasons that exist, in general, for the moment-equation
proach, no matter whether it is applied for transport pro
lems in microelectronics or in fluid dynamics, which lead
the so-calledhierarchy problem. In addition, there is an extra
complication in optical problems as we are considering he
The carrier distribution functions are coupled to the int
band polarization p(k,r), another space- and carrie
momentum-dependent distribution function. As a result,
are essentially dealing with coupled Boltzmann transp
equations for three distribution functions:ne(k,r), nh(k,r),
andp(k,r), though all transport terms involving explicit spa
tial variation ofp(k,r) are ignored@23#. In general, momen
equations for all these distribution functions should
sought. To obtain a closed form of equations for these m
roscopic quantities, two approaches are typically used: O
is to derive the lower order of the moment equations and
off the hierarchy by setting the higher-order moments
zero. Evidently, the coupling to thep(k,r)’s makes such a
moment cutoff scheme impractical. Another approach is
assume that the distribution functions are well approxima
by known distributions characterized by some macrosco
parameters. These macroscopic parameters can be link
those moment variables. In fluid dynamics or in microele
tronics, for example, one assumes that the system is loc
described by a drifted Maxwell distribution@27#. Similarly,
in semiconductor laser theory, the quasiequilibrium condit
is well established@22,24,28#. Quasiequilibrium here mean
that electrons and holes, driven out of mutual equilibrium
laser field and external pumping, are separately character
by the equilibrium distributions of each subsystem in th
inertial frame of reference. The physical mechanism resp
sible for the establishment of this quasiequilibrium is t
ultrafasta-a scattering on the femtosecond time scale@29#.
Using this quasiequilibrium assumption and neglecting
other elements in the second-order moment tensor excep
trace ~valid for isotropic physical systems!, we can readily
truncate thehierarchyassociated withna(k,r). We will come
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back to the hierarchy problem associated withp(k,r) in Sec.
VI.

First of all, we assume that the quasiequilibrium distrib
tions of the EHP are given by the drifted Fermi-Dirac~DFD!
distribution functions,

nk
a5 f k2k

D
a

a
[$11exp@ba~ek-k

D
a

a
2mF

a!#%21, ~20!

where kD
a is the drift wave vector andmF

a is the chemical
potential. Moreover,ba51/kBTa, where kB is the Boltz-
mann constant andTa is the temperature for electrons o
holes. The drift wave vector is related to the first-order m
ment andmF

a is given bybamF
a5 ln@exp(pba\2Na/ma)21# in

the 2D case. We note that three parameters are neede
characterize a DFD function given by Eq.~20!. A total of six
parameters for the electron and hole distribution functio
can be uniquely associated with the six moment variab
With the aid of the known functional form of the DFDs, th
right-hand-side terms in Eqs.~16!–~18! are calculated as
functions of carrier densities, drift wave vectors, and te
peratures. Finally, using the definition of moments and c
rents, Eqs.~15!, with nk

a replaced by the DFD function, we
can show that currents of the first three orders depend on
moments as follows:

JN
a5Naua, ~21!

JP
a5uaPa1WaI , ~22!

JE
a52uaWa1

1

2
uaua

•Pa, ~23!

whereI is the unit tensor,

Wa[
2

S (
k

\2k2

2ma
f k

a ~24!

is the thermal part of the carrier energyEa, and

Ea5Wa1
1

2
ua

•Pa. ~25!

Above,Pa5Na\kD
a and a drift velocity is introduced:

ua5Pa/maNa5\kD
a /ma .

Obviously the carrier energyEa is related to temperature vi
its thermal energy part given by Eq.~24!. Therefore, these
relations between currents and moments connect all dyna
cal variables in a closed form, leading to a closed set
equations for$Na,Pa,Wa%.

IV. GENERAL TWO-COMPONENT MOMENT EQUATIONS

The moment equations given by Eqs.~16!–~18! are now
closed for$Na,Pa,Wa% after applying the relations betwee
the moments and currents given in Eqs.~21!–~25!. The re-
sultant equations are written more specifically as follows
2-5



n,

nt
rri
ou

a
e
in

n
b

pe

m

nd

o
te

m
a

pe
, a
th

tio
th
o

in
q

m

n
the
ion
her

st
o
uili-

LO-
nd

he
i-

re-
que
ce

ties
mo-

a-

JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023802 ~2002!
] tN
a1] r•~uaNa!5RN

a , ~26!

] tP
a1] r•~uaPa!1] rW

a1Na] r~dea1qaF!5RP
a1] tP

aue-h

1] tP
auLO , ~27!

] tW
a1] r•~2uaWa!2ua

•] rW
a5RW

a 1] tW
aue-h1] tW

auLO,

~28!

where 2uaWa5JW
a is the thermal energy current. In additio

RW
a 5RE

a1
1

2
maua

•uaRN
a2ua

•RP
a , ~29!

] tW
aue-h5] tE

aue-h2ua
•] tP

aue-h , ~30!

] tW
auLO5] tE

auLO2ua
•] tP

auLO . ~31!

Equations~26!–~28! are the general form of the mome
equations which describe the lateral spatiotemporal ca
dynamics in a semiconductor laser. These equations sh
be solved together with the Poisson equation, Eq.~4!, the
still k-resolved polarization equations, and Maxwell’s equ
tion. The scattering terms in the above equations are sp
fied in their general form and given in a linearized form
Appendixes A and B. From Eqs.~29!–~31!, we see that terms
$RW

a ,] tW
aue-h ,] tW

auLO% differ from $RE
a ,] tE

aue-h ,] tE
auLO%,

respectively, by nonlinear terms inPa (ua). As it turns out
~see Appendixes A and B!, the nonlinear terms drop out i
the thermal energy relaxation expressions. Finally, it can
shown that these terms vanish forRW

a as well if translational
invariance in momentum space is assumed for the lum
GR termRa(k,r) in Eq. ~2!. Intuitively these results make
sense as internal energy relaxation, generation, and reco
nation should be independent of translational momenta
reference frames in the linear regime.

To simplify the above set of equations further, we inte
to eliminate the momentum equation~27!. First, we point out
that the GR termRP

a is negligible as compared to the tw
scattering terms, since momentum relaxation is domina
by ultrafast scattering events, given that no appreciable
mentum transfer occurs accompanying the generation
recombination processes. Furthermore, as shown in Ap
dixes A and B, the two scattering terms can be linearized
a consequence of the assumption of quasiequilibrium for
electron-hole plasma. Possible violation of this assump
comes from the presence of a strong electric field in
quantum well plane that tends to drive the system out
quasiequilibrium and into a nonlinear regime. Substitut
the scattering terms by their linearized forms as given in E
~A8! and~B5!, the momentum equation~27! is now rewritten
as follows:

] tP
a1] r•~uaPa!1] rW

a1Na] r~dea1qaF!

52mr ḡe-h~ua2ub!2gLO
a Pa, ~32!

whereaÞb, mr ḡe-h /maNa corresponds to the momentu
relaxation rate due toe-h scattering,mr5memh /(me1mh)
is the reduced mass, andgLO

a is the momentum relaxation
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rate due toc-LO scattering. To obtain an explicit expressio
for the density current for each carrier type, we adopt
adiabatic elimination approximation for the above equat
@16#. For a weakly inhomogeneous system, we can furt
ignore the nonlinear~second on the left-hand side! term in
Pa. The resulting solution for the momentum is given as

Pa52mama (
n5e,h

@] rW
n1Nn] r~den1qnF!#

2mamaha@] rW
a1Na] r~dea1qaF!#, ~33!

where the two factors are defined by

ma5
ge-h

b

gLO
e gLO

h ~me1mh!1ge-h
b (

n5e,h
mngLO

n

, ~34!

ha5
gLO

b

ge-h
b

me1mh

ma
, ~35!

where a,bP$e, h%uaÞb and ge-h
b 5ḡe-h /Nb. The two

terms in Eq.~33! have distinct physical meanings: The fir
term relates toe-h scattering that tends to equilibrate the tw
carrier types, whereas the second term describes the eq
bration process between each carrier type and the
phonon subsystem. We mention that similar formulation a
results fore-h scattering have been derived previously in t
study of the negative mobility of minority carriers in sem
conductor quantum wells@30–35#.

Finally, equations for temperatures are very often p
ferred over those for thermal energies. Fortunately, a uni
transformation exists under the DFD approximation, sin
Wa5W̃a@mF

a(Na,Ta),Ta#5Wa(Na,Ta). It is given below,

] tT
a5 j W

a ] tW
a2 j N

a] tN
a, ~36!

and the resultant temperature equation goes as

] tT
a1] r•JT

a2 j W
a ua

•] rW
a1] r j N

a
•JN

a2] r j W
a
•JW

a

5 j W
a ~RW

a 1] tW
auLO1] tW

aue-h!2 j N
aRN

a , ~37!

where the temperature currentJT
a5 j W

a JW
a 2 j N

aJN
a and

j W
a 5~]TaWauNa!21, ~38a!

j N
a5]NaWauTa~]TaWauNa!21. ~38b!

To summarize this section, Eqs.~26! and ~37! form the
closed set of diffusion equations in terms of carrier densi
and temperatures for each component after we replace
mentumPa or ua in Eqs. ~26! and ~37! with the adiabatic
solution of Eq.~33!. The corresponding density and temper
ture currents,JN

a andJT
a , are given by

JN
a5Pa/ma , ~39!

JT
a5@2 j W

a ~Wa/Na!2 j N
a#JN

a . ~40!
2-6
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The above currents contain the gradients of four macrosc
variables:Na and Ta for a5e,h. In general, we can intro
duce a 434 diffusion matrix, DXY , with X,Y
P$Ne,Nh,Te,Th%. While the diagonal elements of this matr
represent the self-diffusion coefficients, the off-diagonal e
ments denote various mutual- or cross-diffusion coefficie
A complete list of all the coefficients is given in Appendix C

V. SINGLE-COMPONENT APPROXIMATION

In this section, we consider two approximations that all
the reduction of the general two-component description
the electron-hole plasma to a single-component one: the l
of strong electron-hole scattering and the often usedambipo-
lar diffusion approximation. Detailed analysis is provided fo
the comparison of the two approaches and it is found
produce consistent results in the linear regime of descript

A. The limiting case of strong electron-hole scattering

While we used the quasiequilibrium assumption in t
above derivation, which is due to ultrafast carrier-carrier (a-
a) scattering within each subband,e-h scattering, which is
on the same time scale@36,30#, has been retained in Eq
~16!–~18!, together withc-LO scattering~in subpicosecond
range! and carrier diffusion and energy transport~in nano-
second range!. Thus, self-consistency demands that we f
ther consider the dynamical correlation between electr
and holes imposed bye-h scattering. In this section, we tak
on the issue of howe-h scattering reduces the general tw
component description to a single-component one for
EHP near quasiequilibrium. As shown in Appendix A, t
detailed balance~DB! requirement for quasiequilibrium in
the sole presence ofe-h scattering leads to these condition

Te5Th, ~41!

ue5uh, ~42!

which is intuitively apparent as electron-hole scattering
meant for equilibration between the two carrier types. T
above conditions are the same as thea posteriori require-
ments needed for the ambipolar diffusion approximat
@37#, and they now permit us to settle the issue of reduc
the original two-component problem to a single-compon
one if the EHP is initially neutral in real space. Further d
cussions along the line of standard ADA reduction will
presented in the following section.

To examine this issue in greater detail, we consider
dynamics around the DB state by looking at the equations
momenta and energies with scattering terms lineari
around the DB state. The linearized scatterings terms
derived in Appendix A and the corresponding moment
equations are given in Eq.~32!. As we see from the adiabati
solution to these equations@see Eq.~33!#, in general, Eq.
~42! is not valid. This means that the DB is not sustaina
and the corresponding single-component reduction does
hold. However, whengLO

a !ge-h
a , the second term in Eq.~33!
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may be neglected. The omission of the second term con
niently leads to the conclusion ofue5uh5u, if Ne5Nh

5N. Thus

u52
m

N (
n5e,h

@] rW
n1N] r~den1qnF!#, ~43!

wherem5me5mh as defined in Eq.~34!. Take a note of the
difference between this line of single-component reduct
and the standard ADA line, as presented in the followed s
tion. Here the drift velocities are equal, irrespective of t
internal electric field (2] rF). In other words, internal field
is not required to maintain equal velocities. The ultrafaste-h
scattering alone maintains the charge neutrality if the sys
is neutral initially. It is clear from the above discussion th
the validity of equal drift velocities for the two componen
of unequal masses requires thate-h scattering dominate
carrier–LO-phonon scattering. This is intuitively easy to u
derstand from the physical point of view. The role ofe-h
scattering is to correlate electrons and holes dynamically
equilibrate their drift velocities. By contrast,c–LO-phonon
scattering leads to different individual drift momenta, b
cause of the unequal masses of the two components,
therefore unequal scattering rates with LO phonons. W
the e-h scattering strength is comparable to that ofc-LO
scattering, the unequalc–LO-phonon scattering rates fo
electrons and holes will be enough to counteract the hom
enizing role played bye-h scattering, thus resulting in differ
ent drift velocities. At this point, one may argue if the DB
still a valid concept in this situation. We point out that th
DB condition as expressed fore-h scattering alone in Appen
dix A is no longer true. Rather, the DB between in- a
out-scatterings for a given k state must include
c–LO-phonon scattering as well, as the latter becomes n
negligible. Sincec-LO phonon scattering is sensitively de
pendent on temperature withe-h scattering being dependen
on density, it is clear that conditions~41! and ~42! will no
longer be valid for high temperature and relatively low ca
rier density.

For now, let us continue the discussion of the limitin
case whenc–LO-phonon scattering is much weaker thane-h
scattering. The hydrodynamic equality of drift velocities
electrons and holes means thatNe5Nh5N will be main-
tained if the EHP is neutral initially, as required by the co
tinuity equation~26!. Major GR contributions inRN

a are the
same for electrons and holes, which will be labeled asRN
under the single-component approximation and exami
further in the following section. As charge neutrality und
stronge-h scattering can be maintained dynamically, the
fore, the Poisson equation is automatically satisfied. The d
sity equations for electrons and holes are reduced to a si
one for the plasma densityN:

] tN1] r•JN5RN . ~44!

To obtain the corresponding energy equation in the sing
component case, we notice that the temperature equality
dicated in Eq.~41! signifies interdependence of the ener
equations for electrons and holes. Becausee-h scattering
2-7
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JIANZHONG LI AND C. Z. NING PHYSICAL REVIEW A 66, 023802 ~2002!
conserves the total energy of the EHP subsystem, it is na
to take the total carrier energy as the second dynamic v
able. Applying Eq.~42! for the drift velocities when sum
ming up Eq.~28! for electrons and holes, it is found that th
total thermal energy obeys the following equation of motio

] tW1] r•JW5RW1] tWuLO , ~45!

where W5We1Wh, JW52uW, RW5RW
e 1RW

h , ] tWuLO

5] tW
euLO1] tW

huLO . In deriving the above equation, w
have assumed weak inhomogeneity in the system so
nonlinear terms have been dropped. Up to this point, the
of moment equations for the EHP has been reduced to
two: one for plasma densityN and one for its total therma
energyW. Similar to Sec. IV, an equation for plasma tem
peratureT5Te5Th is derived as follows:

] tT1] r•JT1] r j N•JN2] r j W•JW

5 j W~RW1] tWuLO!2 j NRN , ~46!

whereJT5 j WJW2 j NJN .
Bearing great resemblance to ordinary diffusion eq

tions, the equations derived here, Eqs.~44! and~46!, include
many-body corrections and apply to a neutral EHP. To de
the related diffusion coefficients, the currents in the eq
tions need to be expressed in terms of the gradients
plasma density and temperature:

JN52DNN] rN2DNT] rT, ~47!

JT52DTN] rN2DTT] rT. ~48!

Explicit expressions for the DCs in terms of material para
eters and thermodynamic variables,N and T, are given in
Appendix D.

B. The ambipolar diffusion approximation

The single-component reduction discussed in the prec
ing section is valid only whene-h scattering is much stron
ger than any other scatterings. In a typical III-V semicond
tor device, this is true only for the case of high carr
density and low temperature, wheree-h scattering is pre-
dominant overc-LO scattering. At room temperature, the
two scatterings are about the same order of magnitude. T
the reduction procedure above becomes questionable.
other single-component reduction procedure is the so-ca
ambipolar diffusion approximation. Even though it seems
us quite difficult to justify purely from scattering analysi
the validity of the ADA, numerical simulation by Heldet al.
@38,39# has indeed shown that the ADA is a quite good a
proximation at nanosecond time scale and at high den
The difference between standard ADA and the reduction p
cedure prescribed in the preceding section can be seen i
following way. From Eq.~33!, we notice that the total cur
rent consists of diffusive and conductive parts: One prop
tional to the gradient of the thermal energy and the othe
the field,2] rF. When other scatterings are negligibly sm
compared toe-h scattering, the diffusive currents for ele
trons and holes are equal when the densities are the sam
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that there is no need for the conductive currents. In m
general cases, however, nonzero conductive currents
needed to maintain the total currents for electrons and h
to be the same. The standard ADA procedure has been
formed in many papers~see, e.g., Refs.@15,16#!, though a
real derivation is still lacking in our opinion. In the follow
ing, we simply outline the standard approach. The argum
is that in the presence of both diffusive and conductive c
rents, the internal field generated due to charge imbala
will be able to counteract instantaneously and equalize
total electron current~sum of the conductive and diffusiv
parts! to the total hole current. Thus, an initial neutrale-h
system can maintain its neutrality even in the presence
possible perturbances. Mathematically such an argum
amounts to setting equal the currentsJe andJh @Eq. ~39! in
combination with Eq.~33!#. We can then solve for the inter
nal field. Substitution of the internal field expression in
either one of the density current expressions leads to
same ambipolar density current:

JN
am52DNN

am] rN2DNT
am] rT, ~49!

where the ambipolar diffusion coefficients are given belo

DNX
am5

SX
e1SX

h

megLO
e 1mhgLO

h
~50!

and

SX
a5]XWa1N]Xdea ~X5N,T!. ~51!

As seen from the above expressions for the ambipo
DCs, they are independent of thee-h scattering rates. This is
somewhat surprising at first, since it seems to us that
previous work has explicitly noticed this point@40#. A plau-
sible explanation is as follows: Whilee-h scattering is im-
portant for electrons and holes to effectively move toget
and thus maintain the validity of the ambipolar diffusion a
proximation,e-h scattering itself should not affect the diffu
sivity of the e-h ensemble since such scattering drives o
internal dynamics. Rather, scatterings of thee-h ensemble
with the ambient determines its diffusive capability in th
ambient, which is the LO-phonon subsystem in our mode

To close this section we point out that the results deriv
for the limiting case of a predominante-h scattering in Sec.
V A and with the standard ADA procedure in this sectio
agree with each other. First of all, the derived diffusion eq
tions for plasma density and temperature are identical. At
same time two approaches produce the same expression
the DCs. The proof is easily seen by comparing Eq.~50! with
its counterpart equations~D4! and ~D5! in Appendix D,
where explicit expressions for all the DCs are available
the single-component case. The results for the ambip
temperature current can be derived in exactly the same
as in Sec. IV and thus will not be shown. Finally, we menti
that we refer to the DCs for the single-component case s
ply as the ambipolar diffusion coefficients without distin
tion afterwards.
2-8
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VI. CARRIER GENERATION AND RECOMBINATION:
CLOSURE OF k-RESOLVED POLARIZATION

HIERARCHY

As mentioned, the moment equations still depend
k-resolved polarizationp(k,r) through the stimulated inter
action contributionsRNustim to the density equation~44! and
RWustim to the energy equation~46!. The complete source
contributions are specified as follows:

RN5
hNJQ

e
2gnrN2BspN

21RNustim , ~52!

RW5
hEJQ

e
DEg2gnrW2BspNW1RWustim , ~53!

where a couple of approximations are made to obtain
analytical form of expressions for both the injection term a
the spontaneous recombination term. First, we neglect
detailed carrier capture kinetics that carriers undergo w
entering the active region from the electrodes. Instead
empirical model is adopted by assuming an instantane
carrier capture process for the injection current densitJ
with quantum efficiencyhN andhE . The factorQ represents
the spatial profile of the pumping current andDEg is the
band-gap offset between the quantum well and the ba
material. Second, the spontaneous recombination term
sumes a bilinear form as we ignore the correlation betw
electrons and holes. The stimulated interaction terms in
density and energy equations are given by

RNustim5
2

S (
k

Rstim~k,r!, ~54!

RWustim5
2

S (
k

\2k2

2mr
Rstim~k,r!, ~55!

whereRstim(k,r) is given by the last term in Eq.~5!, which
containsp(k,r) explicitly.

To close this hierarchy, approximation to thep(k,r) is
necessary. This issue has been addressed in the past fo
ferent special cases in two ways. The first is to eliminate
polarization equation adiabatically as done in Ref.@16# for
the total density equation and in Ref.@41# for the kinetic-
energy equation. An alternative approach is to replace
sum of thek resolved polarization with an effective polariz
tion @11#. We will outline both approaches with a slight ge
eralization beyond what has been published in either cas

We begin with the adiabatic elimination of the polariz
tion. As was done in Ref.@42#, the same adiabatic elimina
tion can be performed in the presence of nondiagonal s
tering terms in thep(k,r) equation. To proceed, we introduc
the slowly varying temporal amplitudes for the laser fie
and polarization:
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E~r,t !5
1

2
@E~r,t !e2 iv0t1c.c.#, ~56!

p~k,r!5
1

2
@ p̄~k,r!e2 iv0t1c.c.#. ~57!

Then thek-resolved polarization equation is rewritten und
the rotating-wave approximations as

] t p̄~k,r!52@Go~k!1 idk# p̄~k,r!2 i
mk

\
D~k!E

1(
k8

FG i~k,k8!2
i

\
D~k!Vs,k2k8G p̄~k8,r!,

~58!

where

\dk5Eg~TL!1\2k2/~2mr !1dee1deh2\v0 , ~59!

D~k!5 f k
e1 f k

h21. ~60!

After introducing thek-resolved susceptibilityxk by defini-
tion

p̄~k,r!5«0«bV
xk

mk*
E, ~61!

we can write the polarization equation under the adiab
elimination approximation in the form

xk5xk
01(

k8
K~k,k8!xk8 , ~62!

where the kernelK and the zeroth-order solution are give
by

xk
052 i

umku2D~k!

«0«bV\@Go~k!1 idk#
, ~63!

K~k,k8!5
\G i~k,k8!2 iVs,k2k8D~k!

\@Go~k!1 idk#

mk*

mk8
*

. ~64!

This equation can be solved either by matrix inversion or
an approximation@42# similar to the Pade´ method as in the
case of relaxation rate approximation@16#. Then the final
expressions for the stimulated interaction contributions
density and energy changes can be written as

RNustim5 i
«0«b

2\ (
k

~xk* 2xk!uEu2, ~65!
2-9
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RWustim5F iV
«0

2«b
2

2\ (
k,k8

\2~k22k82
!

2mr

xk*

mk
Vs,k2k8

xk8*

mk8

1 i
«0«b

2\ (
k

\2k2

2mr
~xk* 2xk!G uEu2. ~66!

While adiabatic elimination of the polarization leads to
simple closure of the total set of equations, the result
equations have a severe deficiency, especially in the pres
of spatial inhomogeneity. As was discussed in detail in R
@11#, the reason is that the adiabatic elimination treatm
completely neglects gain dispersion. This the reason w
some alternative time-dependent polarization equation
sought. One remedy is the so-called effective Bloch equa
~EBE! approach as discussed in detail in Ref.@11#. The issue
of how to combine the EBE approach with the energy eq
tion was partly addressed in Ref.@17# for the free-carrier
case with a phenomenological polarization decay const
In the following, we will follow the EBE approach to con
struct the kinetic-energy equation.

The EBE approach retains an effective~total! polarization
equation by microscopically computing the total suscepti
ity and reconstructing the total polarizationP̄(r,t). As a re-
sult, an equation forP̄(r,t) is obtained, which is similar in
form to the standard nondiagonal Bloch equation for a tw
level system. The procedure has been described in deta
Ref. @11# and will not be repeated here. As can be eas
seen, the total density equation depends only on the t
polarization after summing overk @11#. Therefore,RNustim
will no longer depend onp(k,r). The remaining difficulty is
to deal with the total-kinetic-energy equations, which s
depend onk-resolved polarization.

Using the definitionPa5(2/V)(kmk* p̄(k,r), we obtain
from Eq. ~58!,

] tPa52 id0Pa2 i
2

\V (
k

mk*
\2k2

2mr
p̄~k,r!

2 i
2E

\V (
k

umku2D~k!, ~67!

whered05dkuk502(k8Vs,k2k8 . From Eq.~67!, we can con-
struct the following relationship:

E* ] tPa1E] tPa* 5 id0@EPa* 2E* Pa#

2 i
2

\V (
k

\2k2

2mr
@mk* E* p̄~k,r!

2mkEp̄* ~k,r!#. ~68!

Using this relation, we have

RWustim5
1

2
Re$E* ~ id0Pa1] tPa!%1RW,CA . ~69!
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While the first term now depends only on total polarizati
and its derivative, the last term, standing for the Coulom
assisted~CA! energy change, unfortunately still depends
p(k,r):

RW,CA5
i

2\V (
k,k8

Vs,k2k8

\2k2

2mr
@ p̄~k8,r!p* ~k,r!

2p* ~k8,r!p̄~k,r!#

5
i

2\V (
k,k8

\2~k22k82!

2mr
p̄~k8,r!Vs,k2k8p* ~k,r!.

At this stage, we use the adiabatic elimination results
p̄(k,r) to close the set of equations, since gain dispersion
now been included with the effective polarization equatio

Expressing the right-hand side of the total-energy eq
tions in terms of] t P̄ was first done in Ref.@17#. Comparing
the first term of Eq.~69! with the corresponding equation i
Ref. @17#, we find that the term proportional to the polariz
tion decay rate is absent in our expression. This is beca
there the relaxation rate is ak-independent constant intro
duced phenomenologically. Here we have taken into acco
all ~both diagonal and nondiagonal! scattering terms in the
polarization equations. The sum rule for the total scatter
terms leads to the disappearance of the linear decay t
which survives thek summation in Ref.@17# by contrast.

Finally, plasma heating due to stimulated interactions
sults in a corresponding temperature change given by

] tTustim5 j WRWustim2 j NRNustim . ~70!

To summarize this section, we have outlined two a
proaches to close the set of equations for the total kin
~thermal! energy and carrier density by approximating t
polarization equations in two different ways.

VII. LASER FIELD EQUATION AND LATTICE
TEMPERATURE EQUATION

In this section, we specify Maxwell’s equation in a mo
concrete form. Our derivation will include the frequency d
pendence of the background refractive index and the
called thermal lensing effect, where the background ind
depends on lattice temperature. After making the slow
varying envelop approximation to Eq.~1!, it is written as

2¹2E2
v0

2

c2
E2

2iv0

c2
] tE5

v0
2

«0c2
~Pa1Pb!1

2iv0

«0c2
] tPb ,

~71!

where the envelope functionsPa andPb are defined through

Pa,b5
1

2
~Pa,be2 iv0t1c.c.!. ~72!

We assume that the background polarization satisfies
following ‘‘constitutive relation’’ in frequency space~with a
tilde added to the top of a variable!:
2-10
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P̃b~v!5«0xb~v,TL!Ẽ~v!, ~73!

whereTL stands for lattice temperature andxb is, in general,
complex with real and imaginary parts defined as usual:xb

5xb81 ixb9 . We Taylor expandxb around a given lattice tem
peratureTL

0 and the reference frequencyv0:

xb~v,TL!5xb
01~T2TL

0!
]xb8

]TL
1~v2v0!

]xb8

]v
1•••,

~74!

where xb
05xb(v0 ,TL

0)5@(nb
0)221#1 ixb

09 and we assume
that there are no temperature and frequency dependenc
the imaginary part ofxb ~absorption!. Substituting the Taylor
expansion into Eq.~73! and Fourier transforming the resul
ant expression to the time domain, we will obtain the tim
domain relation betweenPb(t) and E(t). After straightfor-
ward algebraic manipulation, the equation for the slow
varying envelope is written as follows:

2 i

2K
~¹21K2!E1

nb
0

c S bv1bT1
iab

K D ] tE

5
iv0

2

2«0c2
Pa2

ab

2
E1

iK

2
bTE, ~75!

where we have adopted the following shorthand notation

K5
v0nb

0

c
, ~76a!

bv511
v0

nb
0

]nb

]v
, ~76b!

bT5
2~TL2TL

0!

nb
0

]nb

]TL
, ~76c!

ab5K
xb

09

~nb
0!2

. ~76d!

The physical meanings of these parameters are obvi
bT describes the index change with temperature and
counts for the thermal lensing effects observed in a hi
power laser operation.bv describes the background inde
dispersion and thusbvnb

0 gives the group-velocity index
Lastly, ab describes the background absorption.

To complete our hydrodynamic model, we include the l
tice temperature equation, which is modified from Ref.@4#:

] tTL2] r~KphCph
21] rTL!52ga~TL2Ta!1Cph

21S ] tWuLO

1\v0gnrN1
J2RS

w D . ~77!

This equation takes into account equilibration to the amb
temperatureTa with a phenomenological ratega , heat trans-
02380
of
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t

fer from the EHP to the lattice due toc-LO scattering, tem-
perature rise due to energy transfer from a nonradiative
combination ofe-h pairs, and certainly Joule heating b
current injection into an active device with a congregate
sistanceR. Only the phonon part of the specific heatCph of
the material is responsible for the lattice temperature chan
and the negligibly small difference between consta
pressure and constant-volume specific heat of the semi
ductor material is ignored. In addition, a heat conduct
term due to phonon diffusion is added with a thermal co
ductivity Kph . Finally, Eq. ~77!, together with Eqs.~44!,
~46!, and~75!, the effective Bloch equations~not listed here,
but see@11#!, and appropriate boundary conditions form
complete hydrodynamic laser theory. This set of equati
describes coupling between lasing and heating s
consistently for a spatially inhomogeneous semiconductor
ser.

VIII. CONCLUDING REMARKS

In conclusion, we have derived acoupled diffusion mode
~CDM! for the hydrodynamic variables—carrier densiti
and temperatures—for the electron-hole plasma in a se
conductor quantum well optical device. The derivation
self-consistent in the sense that the CDM is coupled to
optical polarization and the laser field, such that all relev
processes and variables are treated on the same footing
major difference between this paper and the earlier work
that carrier-carrier and carrier-LO phonon scatterings
treated explicitly in the moment equations when deriving
energy and momentum decay rates. As such, all diffus
coefficients are given as functions of the densities and t
peratures via microscopical contributions. There are a
consequences with such a derivation. First, the resul
CDM not only consists of self-diffusion terms as most ph
nomenological models do, but also contains mutual-diffus
terms between electron variables and hole variables and
tween temperatures and densities. Second, many-body
fects of Hartree-Fock type appear in all of the diffusion c
efficients very naturally, leading to a modification of th
coefficients, which will be discussed in connection with t
numerical results for the coefficients in the subsequent pa
Furthermore, our explicit treatment leads to some deepe
sights into the single-component reduction and the w
known ambipolar diffusion approximation. Finally, such
detailed treatment leads to the conclusion that the ambip
DCs do not dependent one-h scattering. This work enable
us to obtain and analyze all the DCs for an optical device
the general two-component case and under the ambip
diffusion approximation from a microscopic point of view
Such detailed numerical results will be presented in the s
sequent paper.

Another insight we gain from this study is the role
electron-hole correlation. The degree of such correlation
termines whether the plasma subsystem can be adequ
described as an ensemble of correlated pairs or a gas
state of individual species, which in turn requires either
effective single-component or two-component descripti
Within the scope of this work there are two distinct ways
2-11
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establish such correlation: One is bye-h scattering in mo-
mentum space, and the other is by static Coulomb interac
in real space. These two types of correlation are respons
for the two types of single-component reduction, resp
tively. The first type of reduction described in Sec. V A reli
solely on momentum-space correlation~established viae-h
scattering and is statistical in nature!, and therefore the inter
nal field that leads to real-spacee-h correlation is not needed
For the second type of reduction shown in Sec. V B, re
space correlation is sufficient, and no assumption fore-h
scattering andc-LO scattering is necessary. In reality, bo
real-space and momentum-space correlations exist and
responsible for the establishment of an effective sing
component behavior in most cases. We note that the amb
lar diffusion approximation has not been derivedself-
consistentlyin the literature so far. Theoretical treatmen
thus far are a mere adaptation to experimental observati
rather than rigorous derivation. The combined usage of th
two types of correlation may eventually lead to a system
derivation of the ambipolar diffusion approximation. Th
will help elucidate when the ambipolar diffusion approxim
tion is out of question.

Finally, a few words about the plasma model~ignoring the
excitons! are in order. As mentioned at the beginning of S
II, a plausible argument that supports the plasma model is
relatively high density in a typical laser. While this certain
holds in the phenomenological rate equation model, wh
lacks in spatial dependence, this becomes a much we
argument in a spatially inhomogeneous laser. It is w
known that carrier density is not uniform in the lateral dire
tion of an edge-emitting laser and in the transverse direc
of a surface-emitting laser due to pumping and carrier dif
sion and, to a lesser degree, due to the interaction with l
light field. While, at the center of such a nonuniform dist
bution, the density is certainly above the Mott density,
decreases to zero as we move towards the device ed
Typically at about the half-value position of the distributio
the density drops below the Mott density. Such low-dens
regions cause two problems: First, band-gap renormaliza
in high-density regions leads to spectral overlap of the g
peak, where the laser is designed to operate, with the e
tonic absorption peak in the low-density region. Thus,
laser field incurs strong absorption there. This is especi
true for gain guided devices where the field tends to spr
more into low-density regions. For a very short-cavity dev
where mode spacing is quite large, we may be able to de
a laser to avoid such overlap of the laser cavity modes w
the excitonic features. This becomes difficult for regu
edge- or surface-emitting lasers where the longitudinal
transverse modes become closely spaced such that
modes will always fall near the excitonic features. The eff
of such absorption is expected to be weak in a strongly in
guided device, nevertheless. The second problem is relate
the treatment of momentum and energy decay proce
which affect carrier diffusion. The plasma model is no long
valid in the low-density regions, as noted. Since the diffus
processes in such regions play a role for the overall car
distribution and, in particular, for the density at the center,
appropriate treatment of thee-h subsystem is thus necessa
02380
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Such a treatment would require a theory that takes into
count all the intermediate situations from an excitonic so
or condensate, to a pure plasma phase. This is obviousl
issue beyond the scope of this work, but one needs to
aware of this issue when dealing with a strongly inhomo
neous lasing system.
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APPENDIX A: MOMENTUM AND ENERGY RELAXATION
RATES DUE TO e-h SCATTERING

It is well known that ultrafaste-e andh-h scatterings lead
to carrier thermalization with a rate of'50 fs at typical
lasing density@20,22,24,28,44#. However, the role and con
sequences ofe-h scattering are rather unclear. In this appe
dix, we study such a consequence of thee-h scattering within
the second Born approximation. Specifically, we will sho
that the DB requirement of the microscopice-h scattering
processes leads to equal temperatures and drift velocitie
electrons and holes. Linearization around the DB state allo
us to obtain the momentum and energy relaxation ra
Similar rates for the Maxwell distributions have been o
tained in Ref.@38#.

We assume that each subband is in equilibrium and
described by a drifted Fermi-Dirac distribution function,nk

a

[ f k2k
D
a

a
, as given in Eq.~20!, wherea5e,h. Using the sec-

ond Born approximation@45#, the change rate in the distri
butions due toe-h scattering can be written as

] tnk
aue-h5 (

k8,qÞ0

2p

\
Vs,q

2 d~Dee-h!T, ~A1!

whereVs,q is the Fourier component of the screened Co
lomb potential,Dee-h in the d function, which stands for
difference in the total kinetic energy between in- and o
scattering, is given byek

a1ek81q
b

2ek8
b

2ek1q
a , whereaÞb,

andT is defined as

T [nk1q
a nk8

b
~12nk

a!~12nk81q
b

!2nk
ank81q

b
~12nk8

b
!~1

2nk1q
a !. ~A2!

Note that we treat the quasi-two-dimensional nature of c
rier confinement within the quantum well in the same ma
ner as presented forc-LO scattering in the following appen
dix.

If the EHP is in quasiequilibrium, the DB condition re
quires thatT50. Using 12nk

a5nk
a exp@(ek2k

D
a

a
2mF

a)/kBTa#,

we can factorizeT into the following form:
2-12
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GF12e
ek1q

a
2ek

a
2\q•ua

kBTa 2

e
k81q
b

2e
k8
b

2\q•ub

kBTb G ,
where G5nk1q

a nk8
b (12nk

a)(12nk81q
b ) and ua[\kD

a /ma is
the drift velocity. Using energy conservation, the above
pression can be rearranged as

T5GH 12expF ek1q
a 2ek

a2\q•ua

kB
S 1

Ta
2

1

TbD
1

\q

kBTb
•~ub2ua!G J , ~A3!

by adding and subtracting the term\q•ua/kBTb. Since Eq.
~A2! is valid for arbitraryk and q, andG contains no alge-
braic roots, it is then straightforward to conclude that d
tailed balance leads to

Te5Th, ~A4!

ue5uh. ~A5!

These equalities are the result of the DB requirement un
the condition of dominante-h scattering and have been us
for the single-component reduction in that limiting cas
They are duplicated in Sec. V A as Eqs.~41! and ~42!.

Now we consider the deviation of the EHP from the D
state. We make a linear Taylor expansion for the exponen
term inside the curly bracket inT, and the resultant expres
sion is given below:

T'2G1~Ta2Tb!2G2•~ua2ub!.

Plugging this linearized expression into Eq.~A1!, we then
obtain the momentum and energy relaxation rates.

The momentum relaxation rate due toe-h scattering, as
appeared in Eq.~17!, is defined as

] tP
aue-h[

2

S (
k

\k ] tnk
aue-h

5
2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h!T \k

52
2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h!

3\k@G1~Ta2Tb!1G2•~ua2ub!#. ~A6!

We notice that there are two terms in the momentum re
ation, but the ensuing proof shows that the coefficient of
temperature difference term (Ta2Tb) vanishes under the
DB condition. This leads to the equation for momentum
laxation due to thee-h scattering given in Eq.~32!. To prove
this, we notice that the prefactor of the term with (Ta

2Tb) is proportional to
02380
-

-

er

.

al

-
e

-

(
k,k8,qÞ0

Vs,q
2 d~Dee-h!nk1q

a nk8
b

~12nk
a!~1

2nk81q
b

!
ek1q

a 2ek
a2\q•ua

kB
k

5 (
k,k8,qÞ0

Vs,q
2 d~Dee-h! f k1q

a f k8
b

~12 f k
a!~1

2 f k81q
b

!
ek1q

a 2ek
a

kB
~k1kD

a !, ~A7!

which are obtained by using Eq.~A5! inside thed function
after making the following translational transformations:

k2kD
a 5k1 ,

k82kD
b 5k2 ,

then changing the notation back (k1→k andk2→k8). Due to
inversion symmetry in the prefactor of (k1kD

a ), only the
term proportional tokD

a in Eq. ~A7! survives. We rewrite its
prefactor (3kB) below:

(
k,k8,qÞ0

Vs,q
2 d~Dee-h! f k1q

a f k8
b

~12 f k
a!~12 f k81q

b
!~ek1q

a 2ek
a!.

We recognize that this expression denotes the integrated
ergy difference between in-scattering and out-scattering w
respect to statesuak& and ubk81q& under detailed balance
and thus vanishes. Therefore, the momentum relaxation t
is reduced to a simple rate equation form:

] tP
aue-h52mr ḡe-h~ua2ub!, ~A8!

where the effective rate@different from the momentum relax
ation rate by a density-dependent scaling factor; see text a
Eq. ~32!# is given by

ḡe-h52
2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h! f k1q
a f k8

b
~12 f k

a!~1

2 f k81q
b

!
\qx

kBTb

\kx

mr
. ~A9!

This can be obtained by making the same replacem
and using the inversion symmetry argument. We also ass
that the direction ofua2ub is taken as thex direction. The
positive definiteness of the above relaxation rate can be v
fied easily after accounting for the isotropy of the EHP. Th
we may replaceqxkx in the summation byk•q/2, which is
related to (ek1q

a 2ek
a)2eq

a . Since the energy difference term
vanishes after integration, the effective rate takes a n
form:
2-13
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ḡe-h5
ma

2mrkBTb

2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h! f k1q
a f k8

b
~12 f k

a!

3~12 f k81q
b

!eq
a . ~A10!

Next, we consider the energy relaxation term that
peared in Eq.~18!, which is specifically given as

] tE
aue-h[

2

S (
k

\2k2

2ma
] tnk

aue-h

5
2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h!T \2k2

2ma

52
2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h!
\2k2

2ma

3@G1~Ta2Tb!1G2•~ua2ub!#. ~A11!

Through exactly the same manipulation and arguments a
did for the momentum relaxation term, the energy relaxat
term can be written in the following form:

] tE
aue-h52Ge-h

a ~Ta2Tb!2mr ḡe-hua
•~ua2ub!,

~A12!

where the energy relaxation rate due to temperature di
ence is given by

Ge-h
a 5

2

S (
k,k8,qÞ0

2p

\
Vs,q

2 d~Dee-h! f k1q
a f k8

b
~12 f k

a!~1

2 f k81q
b

!ek
a

ek
a2ek1q

a

kBTaTb
. ~A13!

Before closing this appendix, it is worth making two o
servations.

~1! The relaxation rate equation for energy, Eq.~A12!, is
consistent with our previous results, Eqs.~30! and ~A8!.
Thus, we prove, within linear expansion treatment, that

] tW
aue-h52Ge-h

a ~Ta2Tb!. ~A14!

The corresponding temperature change rate due toe-h scat-
tering can be written, according to Eq.~37!, as follows:

] tT
aue-h5 j W

a ] tW
aue-h52gTa

e-h
~Ta2Tb!, ~A15!

where the temperature relaxation rate is given bygTa
e-h

5 j W
a Ge-h

a . Note that the temperature relaxation rates are
ferent for electrons and holes. The reason is twofold: fi
and foremost, theGe-h

a factor is inversely proportional to th
carrier massma . As compared to Eq.~A10!, we immediately
see that a factormr /ma is recovered for Eq.~A13!, given
that ḡe-h is carrier mass independent. Second, thej W

a factor
depends on the carrier mass in the quantum regime. Th
fore, the temperature relaxation rate is inversely proportio
to the carrier mass at low density.
02380
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~2! The second equality, Eq.~A5!, is the same as what i
required in theambipolar diffusion approximation@15,16#.
The requirement is consistent with the intuitive understa
ing of incoherent collisions between different species in
EHP. These collisions mean an extra frictional contributi
for electrons and holes, in addition to the frictional for
relative to the ambient, caused by interacting with main
LO phonons. Such extra frictional drag may lead to a rev
sal in the drift direction of carriers, as corroborated in t
study of the negative mobility of minority carriers in sem
conductor quantum wells@30–35#. By contrast, the ambipo
lar diffusion approximation is deduced by use of charge n
trality, which is a static condition. Interestingly, given
neutral initial condition for a system, it will evolve and pre
serve charge neutrality since there is no charge separatio
the oppositely charged components move at the same ve
ity, as governed by the equation of continuity, that is, E
~44!, and Eq.~A5!. Therefore, having ultrafast carrier sca
tering in the EHP, the ambipolar diffusion approximation
redundant for an initially neutral system.

APPENDIX B: MOMENTUM AND ENERGY RELAXATION
RATES DUE TO c-LO SCATTERING

Interaction of the EHP with the host semiconductor cry
tal lattice is dominated by the inelastic carrier–LO-phon
scattering at room temperature, while collisions with oth
phonon branches are relatively weak and negligible. In
semiconductor quantum well structure, as the well width
reduced, phonon modes could become confined in
growth direction and interface modes are introduced
small enough width@46#. On the other hand, if the quantum
well is not too narrow, calculation of the scattering rat
using bulk modes produces similar results to those obtai
by incorporating both the confined and the interface mo
for a semiconductor quantum well, if no mode-specific ph
ics is concerned@47,48#. In this work, we use bulk LO-
phonon modes of the Einstein model for the quantum w
material. Under the assumption of quasiequilibrium for t
EHP and equilibrium for phonons, the momentum and
ergy relaxation rates due to LO-phonon scattering,] tP

auLO
and ] tW

auLO are derived in this appendix. In this work th
effect of plasma screening onc-LO scattering has not bee
included.

First, let us put forth the necessary microscopic ingre
ents @46#. The rate of change in carrier distribution due
c–LO-phonon scattering, according to Fermi’s golden ru
is given by

] tnk
auLO5

2p

\ (
q,qz

uĤeu2@d~DeLO
1 !nk1q

a ~12nk
a!

2d~DeLO
2 !nk

a~12nk2q
a !#

1
2p

\ (
q,qz

uĤau2@d~DeLO
2 !nk2q

a ~12nk
a!

2d~DeLO
1 !nk

a~12nk1q
a !#, ~B1!
2-14
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where phonon wave vectorQ[(q,qz) is expressed in its in-
plane componentq and vertical componentqz , vLO is the
phonon circular frequency,Ĥe and Ĥa are the carrier–LO-
phonon scattering matrix elements for phonon emission
absorption,DeLO

1 5ek
a2ek1q

a 1\vLO , andDeLO
2 5ek

a2ek2q
a

2\vLO . Using the Fro¨hlich Hamiltonian, the matrix ele-
ments are given as

uĤeu25
e2\vLO

2«0«pV
uG~qz!u2

NQ11

Q2
, ~B2a!

uĤau25
e2\vLO

2«0«pV
uG~qz!u2

NQ

Q2
, ~B2b!

where 1/«p51/«`21/«s with «s («`) being the static~high-
frequency! relative permittivity of the unexcited sem
conductor. The overlapping integral,G(qz), is defined as
*2`

` dzx i(z)x j (z)exp(iqzz), wherex i(z) is the real and nor-
malized carrier envelop wave function in thei th subband,
which has always been taken as the ground state in
work. The phonon density is governed by Bose-Einstein d
tribution, NQ51/@exp(bLO\vLO)21#, with bLO51/kBTLO
andTLO being the LO-phonon temperature. Conservation
momentum has already been explicitly considered in
~B1!.

Before calculating the momentum and energy relaxat
rates, we point out that we will still work in the linear re
gime, as in the preceding appendix, but now in the d
velocities themselves.~Given the femtosecond scatterin
time scale at typical lasing density@44,49#, it is reasonable to
expect that the drifted carrier distributions are small pert
bations from the nondrift Fermi-Dirac distributions.! The lin-
ear expansion is well known as

nk
a' f ~ek

a!2~kD
a
•]kek

a! f 8~ek
a!, ~B3!

where f 8(ek
a) is the derivative of the Fermi-Dirac distribu

tion function f (ek
a) with respect to the carrier energy.

The momentum relaxation term is defined in the sa
manner as in the carrier-carrier scattering case, that is,

] tP
auLO[

2

S (
k

\k] tnk
auLO .

Inversion symmetry leads to zero contribution from the no
drift part of the distribution, so we only need to focus on t
linear term inkD

a in Eq. ~B3!. Lengthy but straightforward
integration over the phonon wave vectorQ produces a con-
cise integrated solution. We only give a few intermedia
steps in the deduction and the main result below:
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] tP
auLO5

pe2vLO

~2p!4«0«p
E dk \kE dq

F11~q!

q S d~DeLO
2 !

3H \~k2q!•ua

kBTa
~NLO1 f k

a! f k2q
a ~12 f k2q

a !

1
\k•ua

kBTa
@ f k2q

a 2~NLO11!# f k
a~12 f k

a!J
2d~DeLO

1 !H \k•ua

kBTa
~NLO1 f k1q

a ! f k
a~12 f k

a!

1
\~k1q!•ua

kBTa
@ f k

a2~NLO11!# f k1q
a ~12 f k1q

a !J D ,

whereNLO5NQ since the LO phonons are dispersionless
the Einstein model and

F11~q![
q

pE2`

`

dqzuG~qz!u2/~q21qz
2!

5E
2`

`

dz1E
2`

`

dz2 x1~z1!x1~z2!exp~2quz1

2z2u!x1~z2!x1~z1!. ~B4!

Then we evaluate the integrals in the momentum relaxa
expression above term by term using polar coordinates
bothk andq. During the integration, the direction of the dri
wave vector is taken as in thex direction. After term collect-
ing and canceling, the final momentum relaxation term
found to be

] tP
auLO52gLO

a Pa, ~B5!

with the momentum relaxation rate given by

gLO
a 5c0E

0

`

I 0~k!$@NLO1 f ~e1!# f ~e1!@12 f ~e1!#1@NLO

112 f ~e!# f ~e1!@12 f ~e1!#%de, ~B6!

where c05(mae2vLO)/(8p2\2«0«pkBT) and e15e

1\vLO . We definek15Ak212mavLO /\, which is used in
the integral

I 0~k!5E
k12k

k11k q2F11~q!dq

A~2kq!22~q222mavLO /\!2
. ~B7!

Similar to carrier-carrier scattering, it is found, after car
ful evaluation of the carrier energy relaxation due to L
phonon scattering, that the higher-order drift term canc
out according to Eq.~31! as far as carrier thermal energ
relaxation is concerned. Thus, we will only show the part
contribution from the nondrift first term in Eq.~B3! below.
To assist computing the energy relaxation term, summa
over the phonon wave vector in Eq.~B1! can be carried out
2-15
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directly so that the procedure becomes more transparent
ter tedious algebraic manipulations, the expression beco

] tnk
auLO5c1„I 1~k!$NLOf ~ek

a2\vLO!@12 f ~ek
a!#2~NLO

11! f ~ek
a!@12 f ~ek

a2\vLO!#%1I 2~k!$~NLO

11! f ~ek
a1\vLO!@12 f ~ek

a!#2NLOf ~ek
a!@1

2 f ~ek
a1\vLO!#%…, ~B8!

where c15(mae2vLO)/(2p\2«0«p), while the two
k-dependent integrals are given as

I 1~k!5E
k2k2

k1k2 F11~q!dq

A~2kq!22~q212mavLO /\!2
, ~B9!

I 2~k!5E
k12k

k11k F11~q!dq

A~2kq!22~q222mavLO /\!2
, ~B10!

where k25Ak222mavLO /\. The integrals are related b
the transformationI 1(k1)5I 2(k). Using the above equation
for I 1,2(k) and integrating over the polar angle of wave ve
tor k, the carrier thermal energy relaxation is found to be

] tW
auLO52c2E

0

`

de I 2~k!$~NLO11! f ~e1!@12 f ~e!#

2NLOf ~e!@12 f ~e1!#%, ~B11!

where c25(ma
2e2vLO

2 )/(2p2\3«0«p). Plugging the Fermi-
Dirac distributions in, it can be shown that a factor prop
tional to the temperature difference between the carriers
the host lattice exists. From Eq.~37!, we can write the tem-
perature change due toc-LO scattering in the form

] tT
auLO5 j W

a ] tW
auLO52GLO

a ~Ta2TLO!, ~B12!

whereGLO
a is defined as follows: We note that the express

inside the braces of integrand in Eq.~B11! can be rewritten
as follows:

~NLO11! f ~e1!@12 f ~e!#2NLOf ~e!@12 f ~e1!#

5~NLO11! f ~e1!@12 f ~e!#$12exp@~ba

2bLO!\vLO#%. ~B13!

Obviously the term is proportional to the temperature diff
ence between carriers and phonons. Therefore, the con
can be explicitly written as

GLO
a 5c2 j W

a ~NLO11!E
0

`

de I 2~k! f ~e1!@1

2 f ~e!#
12exp@~ba2bLO!\vLO#

Ta2TLO
. ~B14!
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The constant is positively definitive forTa.TLO . By taking
the limit of Ta→TLO in the above expression, we then obta
Newton’s cooling rate between electrons~or holes! and LO
phonons:

GLO
a 5c2 j W

a ~NLO11!
\vLO

kBTLO
2 E

0

`

de I 2~k! f ~e1!@12 f ~e!#.

~B15!

Here, the results are independent of the assumption tha
lattice and LO phonons are in thermal equilibrium:TL
5TLO , despite that it is implicitly assumed in this work.

APPENDIX C: CARRIER DIFFUSION COEFFICIENTS
IN GENERAL TWO-COMPONENT CASE

In this appendix, we give the expressions for densi
related diffusion coefficients of a general two-compone
plasma in semiconductor quantum wells. Using the soluti
for electron (a5e) or hole (a5h) momentumPa given in
Eq. ~33!, we can write the density current for thea compo-
nent in the form

JNa52(
X

DNaX] rX2
sa

qa
] rF, ~C1!

whereXP$Ne,Nh,Te,Th%. We have introduced various DC
and conductivities which are listed as follows:

DNaNa5ma@~11ha!SNa
a

1HNa
b

#, ~C2!

DNaNb5ma@~11ha!HNb
a

1SNb
b

#, ~C3!

DNaTa5ma@~11ha!STa
a

1HTa
b

#, ~C4!

DNaTb5ma@~11ha!HTb
a

1STb
b

#, ~C5!

sa5mae2@Na~11ha!2Nb#, ~C6!

whereaÞb and

SX
a5]XWa1Na]Xdea ~X5Na,Ta!,

HX
a5Na]Xdea ~X5Nb,Tb!.

The factorma is defined by Eq.~34!. The various rates use
above have been given in the first two appendixes. The
responding temperature currents and associated DCs ca
readily written down according to the relation in Eq.~40! and
thus will not be listed.

APPENDIX D: SELF- AND MUTUAL-DIFFUSION
COEFFICIENTS UNDER THE SINGLE-COMPONENT

APPROXIMATION

In this appendix, all diffusion coefficients for the single
component case are explicitly given in terms of material
rameters, scattering rates, and distribution functions of
EHP in a semiconductor quantum well structure. We co
2-16
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sider the limiting case of dominante-h scattering. This is
true when the plasma density is high enough such thate-h
scattering dominates over other scatterings for momen
relaxation. At the end, we introduce terminology for the d
fusion coefficients, which shall be extensively used in
subsequent paper.

From the relations obtained in Sec. V A, it is easily sho
that the currents for density and temperature are given,
spectively, by

JN5Nu, ~D1!

JT5@2 j W~W/N!2 j N#JN , ~D2!

where we have usedJT5 j WJW2 j NJN and JW52uW, with
W being the total plasma thermal energy.

Recall that the drift velocity of plasma,u, is given by Eq.
~43! and now we rewrite it in terms of the gradients of de
sity and temperature as follows:

u52
m

N
~]NW1N]Ndeg!] rN2

m

N
~]TW1N]Tdeg!] rT,

~D3!

where deg5dee1deh is the total screened Hartree-Foc
band-gap renormalization. As defined in Eqs.~47! and ~48!,
the DCs are finally written as

DNN5m~]NW1N]Ndeg!, ~D4!

DNT5m~]TW1N]Tdeg!, ~D5!

DTN5@2 j W~W/N!2 j N#DNN , ~D6!

DTT5@2 j W~W/N!2 j N#DNT . ~D7!

In the two-dimensional case, analytical expressions for
energy and carrier density are given by
B

on

le

n

m

02380
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Wa5
ma~kBTa!2

p\2 E
2bamF

a

`

ln~11e2x!dx, ~D8!

Na5
makBTa

p\2
ln@11exp~bamF

a!#. ~D9!

The derivatives ofWa with respect toNa andTa can also be
written explicitly:

]NaWauTa5kBTaua , ~D10!

]TaWauNa52kBbaWa2kBNaua , ~D11!

whereua , defined as

ua5@11exp$2bamF
a%# ln@11exp$bamF

a%#, ~D12!

can be considered as a degeneracy factor, which goes to
the nondegenerate limit. Both Eqs.~D10! and ~D11! take
their classical values in the nondegenerate limit.

We also note from the definition ofm @Eq. ~34!# that

m51/@megLO
e 1mhgLO

h # ~D13!

when thec-LO scattering is much slower thane-h scattering.
In this case, all the diffusion coefficients defined in this a
pendix are the same as in Sec. V B. This means that the
single-component reduction approaches lead to the s
definition of ambipolar DCs.

Before closing this appendix and for the benefit of disc
sions in the subsequent paper, we introduce the follow
terminology for the DCs. The coefficient is dubbedself-
diffusionwhen it relates the gradient of a variable to its cu
rent, andmutual diffusionotherwise. In addition, a variable
name is used to label the coefficient that relates to the v
able gradient. For example,DTN is called mutual-diffusion
density coefficientaccordingly.
s
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