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Hydrodynamic theory for spatially inhomogeneous semiconductor lasers.
I. A microscopic approach

Jianzhong L1 and C. Z. Ning
Computational Quantum Optoelectronics, NASA Ames Research Center, Mail Stop N229-1, Moffett Field, California 94035-1000
(Received 31 December 2001; published 6 August 2002

Starting from the microscopic semiconductor Bloch equations including the Boltzmann transport terms in
the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for
carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective
optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock
approximation, while scatterings are treated within the second Born approximation including both the in- and
out-scatterings. Microscopic expressions for electron-hela)(and carrier—LO-phononc(LO) scatterings
are directly used to derive the momentum and energy relaxation rates. These rates, expressed as functions of
temperatures and densities, lead to microscopic expressions for self- and mutual-diffusion coefficients in the
coupled density-temperature diffusion equations. Approximations for reducing the general two-component
description of the electron-hole plasma to a single-component one are discussed. In particular, we show that a
special single-component reduction is possible weénscattering dominates over-LO-phonon scattering.

The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients
are independent oé-h scattering, even though the diffusion coefficients of individual components depend
sensitively on thee-h scattering rates. Our discussions lead to deeper insights into the roles played in the
single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the
electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by
coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization,
which in turn couples to the laser field.
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I. INTRODUCTION Bloch equationg 2] that treat only the coupled electrical-
optical subsystems, other approaches have focused on the
A typical semiconductor-based optoelectronic devicethermal aspedi3]. In Refs.[4,5], a self-consistent approach
such as a diode laser, can be considered as consisting of thré@s attempted to combine all three subsystems and the rel-
subsystems: an optical field, an electron-hole plagitsP),  evant processes based on earlier work on plasma heating
and a host crystal lattice. Light generation, propagation, amk6—9] in semiconductors. The approach is, however, valid
plification, and diffraction determine the behavior of the op-Only for a single-mode laser, or a spatially homogeneous
tical field, while electrical conduction, plasma diffusion, and laser. . . o
carrier generation and recombination determine that of the, 1here are plenty of manifestations of spatial inhomogene-
plasma. The host lattice is very often represented by variougIes In a semlcondU(_:tor device. Laser beam filamentation,
phonon modes, with the longitudinal-opticdlO) phonon ynamic beam steering, and multiple trgnsverse-mode for-
mode being the most important one for optics and carriermat'on and competition are some of the important examples

transport of 11l-V semiconductors at room temperature. Ob-Where inclusion of spatial, or spatiotemporal variation, is

. . . . necessary. Additionally, with the inclusion of temperature
viously the whole system involves the interplay of optical, Y Y P

lectrical d th | F h .~“variables, more spatial phenomena can be described, such as
electrical, and thermal processes. From the perspective gf lensing and formation of hot spots, and catastrophic

conversion and conservation, energy is stored in the form ofyiica| damage in diode lasers. For advanced semiconductor
photon energy, kinetic and thermal energy of the EHP, anghsers such as vertical-cavity surface-emitting lasers
thermal energy of the host lattice represented by the phonong/cSELy or master oscillator coupled with power amplifier
excited and annihilated. Though various processes occur ifMOPA), spatial inhomogeneity is a more prominent issue,
different space and time scales, their couplings should bghere efficient coupling of multimode VCSELs to multi-
treated in a self-consistent fashion to arrive at correcimode fibers is desired, or when careful transverse-mode en-
coupled equations, or to appropriately decouple the equagineering is required for certain applications. In terms of
tions in various limiting cases. While modeling and simula-theoretical description, the spatial inhomogeneity of a semi-
tion of semiconductor lasers and other optoelectronic devicesonductor laser is usually dealt with using Maxwell’'s equa-
typically use the rate equatiorfd] or the semiconductor tion with diffraction terms, coupled with the carrier diffusion
equation[10]. This set of equations, which is a direct gener-
alization of the rate equations to the spatially inhomogeneous

*Electronic address: jianzhng@nas.nasa.gov case, can be further augmented by adding the material polar-
"Electronic address: cning@mail.arc.nasa.gov; URL: http://ization equation to account for gain and refractive index dis-
Www.nas.nasa.gowiing persion[11]. This approach has recently been used to simu-
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late MOPAs [12,13 and VCSELs[14]. An alternative sion approximationfADA). In Sec. VI, the very important
approach is to start from the Boltzmann type of transporissue of optical polarization is treated. We use two different
equation for the carrier distribution functions as described irapproaches to close the hierarchy related tokiresolved
Ref.[15]. This approach is a very general one, but it involvespolarization equations. In Sec. VII the corresponding Max-
quite extensive computation, sinkeresolved interband po- Well's equation and the lattice temperature equation are in-
larization equations have to be solved self-consistently for affroduced to form the complete set of equations for a system-
space and time grid points. For nearly all practical purposeddtic description of semiconductor lasers. Though we use
lasers and other optoelectronic devices operating on timESer as an exemplary device in this work, the treatment and
scales longer than 1 ps can be more efficiently dealt with b);he _resultlng equations can be used for other optoelectronic
the moment-equation type of approach. To account for botflevices, such as photoconduct¢fs] and photodetectors
carrier-density and carrier energghus carrier temperature [19], with little or no modification. In Sec. VIl we discuss
inhomogeneities within the framework of the moment equa-2nd comment on some general aspects of our theory and sum
tions, one needs to derive a set of partial differential equalP the major results of this paper before we present detailed
sponding Boltzmann transport equations. Such an approacRCS: Appendix A deals with momentum and energy relax-
which is alternatively called the hydrodynamic approach,ation rates due te-h scattering; the corresponding rates due
will lead to a generalization of the single-mode laser modef® ¢—LO-phonon scattering are treated in Appendix B. In
in Ref.[4] to spatially inhomogeneous cases including therAPpendix C, we list the DCs for the two-component case.
mal and heating effects. In the past, carrier diffusion equatiofrinally, expressions for all the DCs under the one-component
has been derived from the Boltzmann transport equation ifiPProximation are given in Appendix D.
combination with Maxwell's equation and the optical polar-
ization equations by several auth¢fs,16. Since only the
zeroth-order moment equation is deriil], plasma heat-
ing cannot be described. This lack of systematic derivation of We begin this section with some general remarks about
the temperature equation creates a problem in correctlyhe spirit of our approach. As most often assumed, laser-
choosing the energy or temperature diffusion coefficientmatter interaction in a semiconductor laser is described with
[17]. Furthermore, whenever two or more types of diffusionan EHP model. The standard argument to support such a
processes exist, mutual diffusions, or cross diffusions, occuplasma model is that the typical room-temperature lasing
The quantitative significance of these processes needs to biensity is around 18 cm 2, well above the Mott density.
examined, which is only possible with a systematic deriva‘While we use this model in this paper, its adequacy in a
tion of the coupled diffusion equations and all the corre-spatially inhomogeneous system needs special scrutiny. We
sponding diffusion coefficienteDCs). comment on this in the final section of this paper. Within the
This paper sets out to derive such a set of coupled maglasma model, Coulomb interaction is usually characterized
roscopic equations for carrier densities and carrier energidsy an excitonic enhancement of the optical transition and
from the coupled Boltzmann-Bloch transport equations usingarrier-density-dependent band-gap renormalizd@oh6] in
the moment-equation approach. We pay special attention tthe coherent part of the semiconductor Bloch equations
the treatment of carrier-carriec{c) scattering and carrier— (SBES. In addition, this relatively high density leads to ul-
LO-phonon €-LO) scattering. Microscopic electron-hole-(  trafast carrier-carrier scattering within 100 fs, which domi-
h) and c-LO scattering terms in the Boltzmann transport nates carrier dynamics on the short time scale and affects the
equations are used directly to obtain the corresponding ernnteraction of the EHP with a laser field in several important
ergy and momentum relaxation rates. Various DCs are theways: First, these ultrafast collisions thermalize carriers in
expressed in terms of the momentum relaxation rates. Thproperly populated subband0], which justifies the stan-
energy relaxation rates are used to describe energy exchangiard assumption of quasiequilibrium for carrier distributions
which leads to temperature equilibration, between differentvhen longer time scale dynamics is of interest. Second, as
subsystems. Such an approach allows a detailed microscopidll also be shown later in this paper, ultrafash scattering
study of the DCs for a given quantum well structure. De-correlates populated subbands such that the whole EHP can
tailed numerical results and analysis of these coefficients wilbe characterized with a single temperature and drift velocity,
be presented in the subsequent paper. but different chemical potentials for different subbands under
The article is organized as follows. In Sec. I, we intro- normal conditions. This understanding will be elaborated in
duce the basic physical considerations and starting equationthe subsequent sections and in Appendix A by examining in
This is followed by a general derivation of the moment equa-detail the effects of the scattering on momentum and energy
tions and the treatment of the cutoff issue, which is central taelaxations. Due to these ultrafast collision events, local qua-
any moment-equation based approach in Sec. Ill. The gersiequilibrium is established in less than 1 ps. This allows
eral form of the hydrodynamic equations for the general two-carrier distribution functions to be described locally by
component situation is derived in Sec. IV. Section V dealg=ermi-Dirac distributions with finite drift momenta, while
with the specialization to the cases of single-component apspatial inhomogeneity is taken into account by the space-
proximation, where we will discuss the consequence of thelependent macroscopic “parameter&iensities and tem-
ultrafaste-h scattering for the drift momenta of electrons and peratures of such distribution functions. Such a treatment
holes. We will also discuss the well-known ambipolar diffu- further allows other slower processes to be incorporated in a

II. MODEL AND BASIC EQUATIONS
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hydrodynamic fashion. Reasoning and understanding of this
type underpin the moment-equation approach adopted in this  d€“(k,r)= _% n*(k",NVs k- + 5a,u§ (Vs -k
work.

Specifically, we consider an intrinsic semiconductor quan- —Vi_r), (8
tum well of widthw in the z direction and of are&in the x-
y plane. The inhomogeneity occurs in the plane of the quan-
tum well layer, while fixed profiles for carrier distribution ﬁQ(k,r)zM(k)S(r,t)JrZ PK' Vs k—k (©)
and optical modes are assumed in the vertical direction to the K
guantum well due to tight quantum confinement and optical 2
wave guiding. The extension to the case of vertical inhomo- Pa=o E [u* (K)p(k,r)+c.c], (10
geneity can be naturally made when one includes a vertical vV
transport model, similar to what was done in R&f1]. This
is beyond the scope of the present paper. In a typical edgedtn(K.N)|coi= dn*(K.1)| go+ (k.1 [en+ dn*(k,1)| Lo,
emitting laser, the inhomogeneity appears in the plane of the (11
light propagation. For VCSELSs, this plane is transverse to
the light propagation. Our starting point for the semiconduc- = : ' '
tor medium is the semiconductor Bloch equatidas,22, 7Pk Do Fo(k)p(k,r)+§ Filkkp(kt,r),

generalized for the spatially inhomogeneous case in Refs. (12
[15,23, which may now be called Boltzmann-Bloch equa-

tions. The possible local charge imbalance requires that th _ £T 2 «, B _ B _ _a

Poisson equation be included. The complete set of equatiorfs"(k) N BKE,Q#) ) Vsgdlekt € +q €k €ict)

required is therefore the Maxwell-Boltzmann-Bloch-Poisson
(MBBP) equations[2,15,16,22—2%for the nonequilibrium X[nﬁ+qnfr(1— nfr gt nfr Lq1- nf,)(l— Nk g1,
distribution functionsn“(k,r) (a«=e,h for electrons and (13)
holes, respective)y interband polarizatiorp(k,r), electric

potentiald®(r), and the laser field(r,t), with k andr being

the two-dimensional2D) vectors in reciprocalmomentum I'(kk')= 2
space and real space, respectively. The MBBP equations are a8k ,q#0

collected as follows: a a
X[ (1=nH(1—ng,, )+ngng,  (1-ng)],

14

T
2 B B
Tvs,qa( et e fq €T eﬁﬁrq)

K (Pat Py, (D)
goc® | ° where g=0dlot, d,=dlor, d=dlok, 92=a?lot? V?=q?

+ 02022, 97=0%1ax?+ 9%l ay?. Also, (k,r) is the renor-

1
— FRE(r,t) = V2E(r,t) = —
c

1 1 malized carrier energyde“(k,r) is the correction to the

an*(kn)+ 2 e “(kir) - an(k,r) — - 5e*(k,r) single-particle carrier energg”(k) due to exchange interac-
tion and due to the Coulomb-hole self-enerf)(k,r) is the

+q*®(r)]- dn*(k,r)=R*(k,r)+ an*(K,")|col » renormalized Rabi frequency. is the screened Coulomb

@) potential, for which we use the single-plasmon-pole model
[22] in this work, andV, is the bare one. In additiop, (k) is
i the component in the direction of the laser field polarization
N hy _ i of the interband optical dipole matrix element between the
aptkn==glemkn el —kn]lptkn=if(kn) electron statéck) and the hole state —k). P, is the optical
polarization of the unexcited semiconductBg, accounts for
the electronic contribution arising from photoexcitation, and
the total material polarizatio®="P,+ P, . Their treatment
1 2 S gene together with Maxwell's equation is detailed in Secs. VI and
eoep V S a“n(kn), @ v, Furthermore,% is the Planck constang“= e is the
carrier charge for electrons and holeg,is the electric con-
stant, gy, is the relative permittivity of the unexcited semi-
conductorV=wSis the volume of the active regiod,, , is
@ e @ e h the Kronecker delta, and> means summation over all al-
RE(kD =A%k D) = ya®(ki) = Bs (ki) lowable momentumk) states, including spitaccounting for
+i[Qk,r)p*(k,r)—Q*(k,r)p(k,n]T, (5)  the factor 2, for a single subband. Additionally, the lumped
generation-recombinatiofiGR) contributionsR“(k,r) con-
sist of a current injection term “(k,r), a nonradiative re-

X[ne(k,r) +n"(—k,r) = 1]+ p(k,N|cor, (3)

2D (r)=—

with various terms given below:

Atk =yin(OfkN1=n*(k ], ®  combination term with coefficien,,, , a spontaneous emis-
sions term with coefficienBs,, and a stimulated interaction
e“(k,r)=€e*(k)+q*®(r)+ se“(k,r), (7) term involving the renormalized Rabi frequen@yk,r). De-
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tailed treatment of the GR term is available in Sec. VI. We(see appendix of Ref[15]), it is still an open question

note thatA “(k,r)’s describe carrier capturing processes fromwhether and how a moment-equation type of approach can

a bulk distribution f*(k,r) to the confined distribution P€ applied to such spatial inhomogeneity on a longer time

n“(k,r) in the quantum well with capturing ratgf;; (k). Fi- scale. The second and more prac_tlcal reason is that' a fully

nally, collisional contributions denoted by subscripl lead ?g)ugl:(? (:S’,)etvx?(];uelccj]ulig?jnfowtm Sﬁgﬂﬁ;ﬁ?ﬁg&iﬁ?}igfﬁ;'

;c;igr?ciiytlr?etr;zrlrriterrz‘?sq(rjib%?:ggéegl‘fzflfg)(fr)|co\|/\?en(ijn::?lljiixe- well beyond the traditional coupled diffusion equations and
t 11/ lcol -

. ! beyond the scope of the present paper. Finally, shorthand
explicitly both the so-called out-scatten’ng tedi(k) and  tation will be adopted for convenience and brevity, such
the (nondiagonalin-scattering ternd’j(k,k’) [25]. Note that -+ n® stands fom®(k,r), de for se?(k,r), ® for d(r),

I'o(k) andT'i(k,k’) are real, which means that we only in- 44 5o on, in the remaining part of this paper unless indi-

clude the “dephasing” part of the second-order correlations-5ted otherwise.

I'o(k) and I';(k,k") are generally complex. The imaginary

parts add to band-gap renormalization. Since we use a IIl. MOMENT EQUATIONS AND CUTOFF

screened potential that leads to the Coulomb-hole term in Eq.

(8), the band-gap renormalization due to higher-order scat- \We begin with the introduction of the moment and current

terings has been taken into account. This treatment is simil@f the nth order associated with the nonequilibrium distribu-

to that used in Ref[25]. The dominant scatterings consid- tion functionn;’ as follows:

ered in this work arec-LO, a-a, and e-h scatterings, as 5

separately denoted in E¢L1). (== 2 Fang, (159
Before we start the formal derivation of the moment equa- S«

tions, a few remarks are in order. First, a single parabolic

subband is assumed for electrahsles with effective mass J4 ()=

me (My). This approximation is valid when the well width "

(w) is small enough and plasma density is not too high, such

that higher subbands are not populated and thus igrithed ~ whereF, denoting thenth-order weight function, are Lk,

so-called electric quantum limjtand when the effects of the and #2k?/2m, for n=0,1, and 2, respectively, andy

lattice structure on the energy dispersion of carriers are ap=g,e;/% =fik/m, for parabolic subbands. We consider up to

proximated by isotropic effective-mass tensors. This meanthe second order for moments. Note that only the trace of the

that carrier kinetic energy, given as'(k)=%2k?2m,, is  second-order moment tensor needs consideration here, and it

proportional to the second-order moment. As we will seerelates to energy. For clarity, we represent the first three mo-

later, this simplification allows direct association of the ments and currents with conventional symbols: denksity

second-order moment with the total carrier kinetic energy= #§, momentunP®= g, energyE®= 5 ; density current

and the first-order current with this energy partially. As such,JﬁEJg' momentum currentJ¢=J¢, energy currentJg

the extension of the following derivations to the case of NON— 32 32 is a tensor despite its misleading vectorial notation.

parabolic subbands is not straightforward. Second, all thgyte that the moments defined above are intensive quanti-

scattering terms will be treated explicitly in the momentyeq o densities, and the currents are density currents ac-

equations, without resorting to relaxation rate apprOXima'cordingly. Nevertheless, they are referred to simply as den-
tions or leaving them at the formal level. This is where our

) ) X sity, momentum, energy, etc., for brevity. As is customary
approach differs from those earlier approacHes 16 in de- (see, e.g., Ref[26]), we derive the moment equations by
riving the moment equations; this will become more eviden umming over all degrees of freedom, i.e., applying2
as we proceed with the derivation. Third, the spatial deriva C oy K

. ) ) i on the Boltzmann transport equatipiaqg. (2)] with the cor-
tives are dropped in the mf[erband .polarlzatlon equa(B?n responding weight functioR,, . It is straightforward to show
for two reasons. The very first one is that our focus of inter-

) X . that the first three moment equations for electrons and holes
est is on time scales much longer than picoseconds. Thg

momentum-space scatterings in E.and(3) all occur on an be written as follows:

a subpicosecond time scale. The fact. 'ghat these scatterings GN“+3,-J5=R%, (16)
conserve total electron and hole densities leaves these total

densities changed both in real space and in time on a ngnoatpa+ar.‘]g+ N®d,( 5+ q*®) = RE+ 3P o+ 3P| Lo
second scale as a result of diffusion and recombination,

whereas no similar conservation holds for total polarization. 17)
We therefore assume that, on a nanosecond scale, polarizgf« 3y JE+ 9(Se*+ QD) - IR =RE+ IEY|ent dEY| L0,
tion follows the density and laser field adiabatically both in (19)
real space and in time. Thus no explicit spatial derivatives
are retained for the interband polarization. For ultrafast spawhere we have neglected the wdallispersion in the many-
tial inhomogeneous processes, however, such spatial termsfiody correctionse®. Terms on the right-hand side above are
polarization equations should be important. While spatial inthe result of summing the corresponding terms in Ej.
homogeneity of polarization on short time scales can be deativer all degrees of freedom with the corresponding weight
with by solving the Bolzmann type of equations fofk,r) functions. For example,

2 viFni, (15b)

mnli N
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N 2 o back to the hierarchy problem associated vi(lk,r) in Sec.
RN,P,E:§ Ek FrpeR“(K ). (19 VI.
First of all, we assume that the quasiequilibrium distribu-
tions of the EHP are given by the drifted Fermi-Dir@x~D)
Intuitively, a-a scattering does not change the total carrierdistribution functions,
number, momentum, and energy for each subband, so they
vamsh_from the above equations. Fur.thermerb,and.c—ll_o ng= fs_ kaz{1+exqga(és_ka_ﬂg)]}—{ (20)
scatterings do not alter the total carrier number within each D D
‘Elagbang ' aal:jt(tl%?y do survive the summation and remain Ir\}vhere k5 is the drift wave vector angkg is the chemical
While the formal derivation of the above moment equa-pOtent'al' Moreovecrfga_: 1r/]kBT“, where kg f's thle Boltz-
tions [Eqs. (16)~(18)] is exact and straightforward, these mann constant and“ is the temperature for electrons or

equations are not in a closed form yet. There are sever£|°|es' The drift wave vector is related to the first-order mo-
. . . _ 2] i
reasons for this(1) the first-order currendg is not com- ment andug is given by, ug = In[exp(mB,A"N*/m,)—1]in

: ' the 2D case. We note that three parameters are needed to
pletely given by the first- and second-order momeRtsgnd . : . .
E®) in the presence of anisotropy, where equations for thgharacterlze a DFD function given by EO). A total of six

other (traceless diagonal and off-diagonalements of the parameters for the electron and hole distribution functions

second-order moment are requir€®); the second-order cur- can be uniquely associated with the six moment variables.

rent J¢ is connected to higher-order moment3} the terms With the aid of the known functional form of the DFDs, the
« .

o ) ; . right-hand-side terms in Eq$16)—(18) are calculated as
on the right-hand side depend on summation over the Carrlef[mctions of carrier densities, drift wave vectors, and tem-

distribution functions, thus are not fully known in terms of . . I
the first three moments and currents. These are weII—knowReratureS' Finally, using the definition of moments and cur-
) ents, Eqs(15), with n¢ replaced by the DFD function, we

reasons that exist, in general, for the moment-equation aﬂ— i
proach, no matter whether it is applied for transport prob_can shotw tha; c”urrer.lts of the first three orders depend on the
lems in microelectronics or in fluid dynamics, which lead to moments as Tollows:

the so-calledhierarchy problemIn addition, there is an extra

e . > ) Ju=Nu®, (22)
complication in optical problems as we are considering here: N
The carrier distribution functions are coupled to the inter- .
band polarization p(k,r), another space- and -carrier- p=UTPIH WAL, (22)

momentum-dependent distribution function. As a result, we 1
are essentially dealing with coupled Boltzmann transport Qo N ey @ pa
equations for three distribution functions®(k,r), n"(k,r), JE= 2UTWE Ut P @3
andp(k,r), though all transport terms involving explicit spa-
tial variation ofp(k,r) are ignored23]. In general, moment Wherel is the unit tensor,
equations for all these distribution functions should be
sought. To obtain a closed form of equations for these mac- 2 h2k?

: Al : Woe=— > —f¢ (24)
roscopic quantities, two approaches are typically used: One S< 2m, K
is to derive the lower order of the moment equations and cut
off the hierarchy by setting the higher-order moments tois the thermal part of the carrier energy, and
zero. Evidently, the coupling to thp(k,r)’s makes such a
moment cutoff scheme impractical. Another approach is to VO S
assume that the distribution functions are well approximated B =W*+ U P (25)
by known distributions characterized by some macroscopic
parameters. These macroscopic parameters can be linked Agove, P*=N*%k3 and a drift velocity is introduced:
those moment variables. In fluid dynamics or in microelec-
tronics, for example, one assumes that the system is locally u*=P*m,N*=7%k3/m, .
described by a drifted Maxwell distributidr27]. Similarly,
in semiconductor laser theory, the quasiequilibrium conditiorObviously the carrier energg® is related to temperature via
is well established22,24,28. Quasiequilibrium here means its thermal energy part given by EQ4). Therefore, these
that electrons and holes, driven out of mutual equilibrium byrelations between currents and moments connect all dynami-
laser field and external pumping, are separately characterizegl variables in a closed form, leading to a closed set of
by the equilibrium distributions of each subsystem in theirequations fof N*,P*,W}.
inertial frame of reference. The physical mechanism respon-
sible for the establ_ishment of this quasiquilibrium is thelv_ GENERAL TWO-COMPONENT MOMENT EQUATIONS
ultrafasta-a scattering on the femtosecond time sd#é].
Using this quasiequilibrium assumption and neglecting the The moment equations given by Eq36)—(18) are now
other elements in the second-order moment tensor except itdosed for{N“,P*, W} after applying the relations between
trace (valid for isotropic physical systemswe can readily the moments and currents given in E31)—(25). The re-
truncate thénierarchyassociated witm“(k,r). We will come  sultant equations are written more specifically as follows:
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AN+ 9, - (UNY) =R, (26) rate due toc-LO scattering. To obtain an explicit expression
for the density current for each carrier type, we adopt the
AP+ ;- (UPY) + 3, W+ N3, 5e*+q*®) = RE+ 3,P o adiabatic elimination approximation for the above equation
[16]. For a weakly inhomogeneous system, we can further
+ 0P 0, (27)  ignore the nonlineaftsecond on the left-hand sidéerm in
P“. The resulting solution for the momentum is given as

AW+ 3, (2u*W*) —u®- 9, W*= R} + I W] e.n+ W] Lo,
(28) Pr=—Mauy 3 [9W'+N'G,(3e"+0"®)]
where 21°W*=Jy, is the thermal energy current. In addition, e
~ Moo N[ WO+ N, (5 +q*@)], (33

1
Rw=Reg+ 5 meu®- u"Ry—u”-Rp, 29 \yhere the two factors are defined by
W o= HE|en— U"- 3P en» (30) Ve
t |eh t |eh t |eh o= e-h ’ (34)

IWLo=E*| o~ Uu*- 3P| 0. (31) Yo ro(Met+mpy) + ¥4, ;;h M, Yo
Equations(26)—(28) are the general form of the moment
equations which describe the lateral spatiotemporal carrier Yeo met+m;,
dynamics in a semiconductor laser. These equations should 77(1:77 m. (35

e-h @

be solved together with the Poisson equation, &g, the
still k-resolved polarization equations, and Maxwell’'s equa-

. . . . B — . B
tion. The scattering terms in the above equations are spectnere @.Be e, hila#B and y5,=7ven/NP. The two

fied in their general form and given in a linearized form in €M in Eq.(33) have distinct physical meanings: The first

Appendixes A and B. From Eq&29)—(31), we see that terms term relates tca)-t;1 scatterir?g that tednds to (e;quilil_)kr)ate trt:e tWO'l'

@ @ @ ; @ @ a carrier types, whereas the second term describes the equili-
{Riy, W e, 5W*| w0} differ from {Rg 01 |en, 4Bl o}, bration process between each carrier type and the LO-
phonon subsystem. We mention that similar formulation and
éesults fore-h scattering have been derived previously in the
study of the negative mobility of minority carriers in semi-
e(éonductor guantum wellg30-35.

respectively, by nonlinear terms B (u®). As it turns out

(see Appendixes A and)Bthe nonlinear terms drop out in
the thermal energy relaxation expressions. Finally, it can b
shown that these terms vanish f&§, as well if translational

invariance in momentum space is assumed for the lum - :
P P Finally, equations for temperatures are very often pre-

GR term R“(k,r) in Eq. (2) Intw_tlvely these_results make ferred over those for thermal energies. Fortunately, a unique
sense as internal energy relaxation, generation, and r(:“Comt%kamsformation exists under the DFD approximation, since
nation should be independent of translational momenta or ~ e o at e o '
reference frames in the linear regime. WE=WELup(NT9), T*]=W*(N*,T%). Itis given below,

To simplify the above set of equations further, we intend

to eliminate the momentum equati@v). First, we point out

o - L
that tht_a GR terrTRE is negligible as compa_red _to the _two and the resultant temperature equation goes as
scattering terms, since momentum relaxation is dominated

O Té= oW — NN« (36)

by ultrafast scattering events, given that no appreciable mo- O T+ 9, I§— Jou®- G W+ 3, - I8 — 9, - IS,
mentum transfer occurs accompanying the generation and _ _
recombination processes. Furthermore, as shown in Appen- = jw(RW+ W Lo+ dW?|en) — I NRN (37)

dixes A and B, the two scattering terms can be linearized, as e e
a consequence of the assumption of quasiequilibrium for thwhere the temperature curredit=jy,Jy—j{Jy and
electron-hole plasma. Possible violation of this assumption

a @ -1
comes from the presence of a strong electric field in the Jw= (d7eW*|na) "7, (383
guantum well plane that tends to drive the system out of ” Y S
quasiequilibrium and into a nonlinear regime. Substituting IN= INaW | ra( FaW|ya) . (38

the scattering terms by their linearized forms as given in Egs.

(A8) and(B5), the momentum equatid27) is now rewritten To summarize this section, Eq&26) and (37) form the

closed set of diffusion equations in terms of carrier densities

as follows:
and temperatures for each component after we replace mo-
AP+ 3, (U*PY) + 9, W¥+ N3, Se*+ q*D) mentumP® or u® in Egs. (26) and (37) with the adiabatic
o solution of Eq.(33). The corresponding density and tempera-
= — M, yen(Uu*—uP) — ¥ P, (32)  ture currentsJy andJy, are given by

where a# B, M, yen/M,N® corresponds to the momentum JN=Pm,, (39
relaxation rate due te-h scattering,m,=mem;,/(mg+my) _ _

is the reduced mass, angf, is the momentum relaxation IF=[2j(W*N*) = jR1IK .- (40

023802-6



HYDRODYNAMIC THEORY FOR ... I. ... PHYSICAL REVIEW A66, 023802 (2002

The above currents contain the gradients of four macroscopimay be neglected. The omission of the second term conve-
variables:N® and T for a=e,h. In general, we can intro- niently leads to the conclusion af®=u"=u, if N®=N"
duce a 44 diffusion matrix, Dyy, with XY =N. Thus
e {N& N" T8 TM . While the diagonal elements of this matrix

represent the self-diffusion coefficients, the off-diagonal ele-

ments denote various mutual- or cross-diffusion coefficients.

A complete list of all the coefficients is given in Appendix C.

whereu = u.= up as defined in Eq(34). Take a note of the
V. SINGLE-COMPONENT APPROXIMATION difference between thi; line of single—component reduction
and the standard ADA line, as presented in the followed sec-

In this section, we consider two approximations that allowtion. Here the drift velocities are equal, irrespective of the
the reduction of the general two-component description ofnternal electric field ¢ 9,®). In other words, internal field
the electron-hole plasma to a single-component one: the limis not required to maintain equal velocities. The ultratakt
of strong electron-hole scattering and the often um®thipo-  scattering alone maintains the charge neutrality if the system
lar diffusion approximationDetailed analysis is provided for is neutral initially. It is clear from the above discussion that
the comparison of the two approaches and it is found tdahe validity of equal drift velocities for the two components
produce consistent results in the linear regime of descriptiorof unequal masses requires thah scattering dominate
carrier—LO-phonon scattering. This is intuitively easy to un-
derstand from the physical point of view. The role eh
scattering is to correlate electrons and holes dynamically and

While we used the quasiequilibrium assumption in theequilibrate their drift velocities. By contrast—~LO-phonon
above derivation, which is due to ultrafast carrier-carrim’( Scattering leads to different individual drift momenta, be-
@) scattering within each subbaneth scattering, which is  cause of the unequal masses of the two components, and
on the same time scalg6,30, has been retained in Eqgs. therefore unequal scattering rates with LO phonons. When
(16)—(18), together withc-LO scattering(in subpicosecond the e-h scattering strength is comparable to thatcefO
range and carrier diffusion and energy transp@rt nano-  scattering, the unequal—LO-phonon scattering rates for
second range Thus, self-consistency demands that we fur-gjectrons and holes will be enough to counteract the homog-
ther consider the dynamical correlation between electronénizing role played bg-h scattering, thus resulting in differ-
and holes imposed bgh scattering. In this section, we take ent drift velocities. At this point, one may argue if the DB is
on the issue of hove-h scattering reduces the general two- stj|| a valid concept in this situation. We point out that the
component description to a single-component one for th¢yB condition as expressed feth scattering alone in Appen-
EHP near quasiequilibrium. As shown in Appendix A, the dix A is no longer true. Rather, the DB between in- and
detailed balancéDB) requirement for quasiequilibrium in out-scatterings for a givenk state must include
the sole presence @&fh scattering leads to these conditions: c—LO-phonon scattering as well, as the latter becomes non-

negligible. Sincec-LO phonon scattering is sensitively de-
Te=TM, (41) pendent on temperature withh scattering being dependent
on density, it is clear that conditiorigl) and (42) will no
longer be valid for high temperature and relatively low car-
rier density.

For now, let us continue the discussion of the limiting
which is intuitively apparent as electron-hole scattering iscase wher—LO-phonon scattering is much weaker theah
meant for equilibration between the two carrier types. Thescattering. The hydrodynamic equality of drift velocities of
above conditions are the same as th@osteriorirequire-  electrons and holes means tigt=N"=N will be main-
ments needed for the ambipolar diffusion approximationtained if the EHP is neutral initially, as required by the con-
[37], and they now permit us to settle the issue of reducinginuity equation(26). Major GR contributions irR¢ are the
the original two-component problem to a single-componentame for electrons and holes, which will be labeledRas
one i_f the EHP is init.iaIIy neutral in real space. F.urther dis-ynder the single-component approximation and examined
cussions along the line of standard ADA reduction will befyrther in the following section. As charge neutrality under
presented in the following section. _ _ stronge-h scattering can be maintained dynamically, there-

To examine this issue in greater detail, we consider thgyre the Poisson equation is automatically satisfied. The den-

dynamics around the DB state by looking at the equations fogjty equations for electrons and holes are reduced to a single
momenta and energies with scattering terms linearizegne for the plasma density:

around the DB state. The linearized scatterings terms are

|
Zl®

[, W"+Nd,(de"+q"P)], (43

v=e¢,h

A. The limiting case of strong electron-hole scattering

ut=u", (42)

derived in Appendix A and the corresponding momentum IN+3,-IJy=Ry. (44)
equations are given in E¢R2). As we see from the adiabatic
solution to these equatiorsee Eq.(33)], in general, Eq. To obtain the corresponding energy equation in the single-

(42) is not valid. This means that the DB is not sustainablecomponent case, we notice that the temperature equality in-
and the corresponding single-component reduction does nalicated in Eq.(41) signifies interdependence of the energy
hold. However, wheny{o<vyq., , the second term in E¢33) equations for electrons and holes. Becaede scattering
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conserves the total energy of the EHP subsystem, it is naturéthat there is no need for the conductive currents. In more
to take the total carrier energy as the second dynamic vargeneral cases, however, nonzero conductive currents are
able. Applying Eq.(42) for the drift velocities when sum- needed to maintain the total currents for electrons and holes
ming up Eq.(28) for electrons and holes, it is found that the to be the same. The standard ADA procedure has been per-
total thermal energy obeys the following equation of motion:formed in many paper¢see, e.g., Refd.15,16]), though a
real derivation is still lacking in our opinion. In the follow-
W+ ;- Jw=Rw+ dW| o, (45 ing, we simply outline the standard approach. The argument
B " ~ e . on is that in the presence of both diffusive and conductive cur-
where W_We+hW , Jw=2uW, Ry=Ry+Ry, dWlio  rents, the internal field generated due to charge imbalance
=W .o+ dW" 0. In deriving the above equation, wWe vl pe able to counteract instantaneously and equalize the
have assumed weak inhomogeneity in the system so thglta| electron currentsum of the conductive and diffusive
nonlinear terms have been dropped. Up to this point, the S§fartg to the total hole current. Thus, an initial neutesh
of moment equations for the EHP has been reduced to onlyystem can maintain its neutrality even in the presence of
two: one for plasma densitil and one for its total thermal 5ssiple perturbances. Mathematically such an argument
energyW. Slmllarhtg Sec'. IV, an equation for plasma tem- amounts to setting equal the curredgsandJ;, [Eq. (39) in
peratureT=T*=T" is derived as follows: combination with Eq(33)]. We can then solve for the inter-
nal field. Substitution of the internal field expression into
either one of the density current expressions leads to the

=jw(Rw+ dW|. o) — xRN, (46) same ambipolar density current:

HT+3dp-Irtdn-In—dlw Iw

Where\]T: J W‘JW_ ] NJN . ‘]ﬁlmz - Danl\qlﬁrN - DaTarT! (49)
Bearing great resemblance to ordinary diffusion equa-

tions, the equations derived here, E@Bl) and(46), include  where the ambipolar diffusion coefficients are given below:

many-body corrections and apply to a neutral EHP. To define

the related diffusion coefficients, the currents in the equa- S+
tions need to be expressed in terms of the gradients of ) e — (50
plasma density and temperature: MeYio™ MhYLo
In=—DnndN—Dn7d,T, (47 and
Jr==DrndN=DrroT. (48) S§= gy W+ Noyde® (X=N,T). (51

Explicit expressions for the DCs in terms of material param-
eters and thermodynamic variablé$,and T, are given in
Appendix D.

As seen from the above expressions for the ambipolar
DCs, they are independent of thén scattering rates. This is
somewhat surprising at first, since it seems to us that no
previous work has explicitly noticed this poift0]. A plau-
sible explanation is as follows: While-h scattering is im-

The single-component reduction discussed in the precegsortant for electrons and holes to effectively move together
ing section is valid only wher-h scattering is much stron- and thus maintain the validity of the ambipolar diffusion ap-
ger than any other scatterings. In a typical IlI-V semiconduc{proximation,e-h scattering itself should not affect the diffu-
tor device, this is true only for the case of high carriersivity of the e-h ensemble since such scattering drives only
density and low temperature, wheeeh scattering is pre- internal dynamics. Rather, scatterings of #l ensemble
dominant overc-LO scattering. At room temperature, these with the ambient determines its diffusive capability in the
two scatterings are about the same order of magnitude. Thuambient, which is the LO-phonon subsystem in our model.
the reduction procedure above becomes questionable. An- To close this section we point out that the results derived
other single-component reduction procedure is the so-callefbr the limiting case of a predominaeth scattering in Sec.
ambipolar diffusion approximation. Even though it seems toV A and with the standard ADA procedure in this section
us quite difficult to justify purely from scattering analysis, agree with each other. First of all, the derived diffusion equa-
the validity of the ADA, numerical simulation by Helet al.  tions for plasma density and temperature are identical. At the
[38,39 has indeed shown that the ADA is a quite good ap-same time two approaches produce the same expressions for
proximation at nanosecond time scale and at high densitghe DCs. The proof is easily seen by comparing G6) with
The difference between standard ADA and the reduction proits counterpart equationéD4) and (D5) in Appendix D,
cedure prescribed in the preceding section can be seen in there explicit expressions for all the DCs are available for
following way. From Eq.(33), we notice that the total cur- the single-component case. The results for the ambipolar
rent consists of diffusive and conductive parts: One proportemperature current can be derived in exactly the same way
tional to the gradient of the thermal energy and the other tas in Sec. IV and thus will not be shown. Finally, we mention
the field, — 9,®. When other scatterings are negligibly small that we refer to the DCs for the single-component case sim-
compared toe-h scattering, the diffusive currents for elec- ply as the ambipolar diffusion coefficients without distinc-
trons and holes are equal when the densities are the same, tgan afterwards.

B. The ambipolar diffusion approximation
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VI. CARRIER GENERATION AND RECOMBINATION: 1 .
CLOSURE OF k-RESOLVED POLARIZATION &(r,t)= E[E(r,t)e_"”"‘ﬂ-c.], (56)
HIERARCHY

As mentioned, the moment equations still depend on 1
k—r(_asolved pola_rizatiorp(k,r) through Fhe stimglated inter- p(k,r)= _[E(k,r)e—iwot_}_c_cl]_ (57)
action contribution®Ry|sim to the density equatio#4) and 2
Rwlsiim to the energy equatiof46). The complete source

contributions are specified as follows: Then thek-resolved polarization equation is rewritten under

the rotating-wave approximations as

7]NJ®
e

N ~ ¥neN—=BgpN?+Ry|stim. (52) atE(k,r)=—[ro(k)+i5k]5(k,r)—i%D(k)E

7210 +E kk)——D(k)vsk [Pk ),

Rw= g~ YnrW=BgNW=+ Ry/sim: (53

(58)

where a couple of approximations are made to obtain th&vhere
analytical form of expressions for both the injection term and
the spontaneous recombination term. First, we neglect the _ 21,2 e h_
detailed carrier capture kinetics that carriers undergo when ho=By(TO+ATK(2M) + 6+ de'—hwo, (59
entering the active region from the electrodes. Instead, an
empirical model is adopted by assuming an instantaneous D(k):f‘;+fE—1_ (60)
carrier capture process for the injection current density
with quantum efficiencyyy and g . The factor® represents  After introducing thek-resolved susceptibility, by defini-
the spatial profile of the pumping current and is the  tion
band-gap offset between the quantum well and the barrier
material. Second, the spontaneous recombination term as-
sumes a bilinear form as we ignore the correlation between k)= V&E (61)
electrons and holes. The stimulated interaction terms in the p(k.r)=20zp ur
density and energy equations are given by X
we can write the polarization equation under the adiabatic
elimination approximation in the form

2
Ralsim=g 2 Ratim(K.1), (54
Xe=xet 2 K(kK)xier (62
k/
2 2 . :
Rw|stim_§ Ek = Retim(K, 1) (55) \tl)vyere the kernelC and the zeroth-order solution are given

whereRg;im(k,r) is given by the last term in Ed5), which | d2D(K)

containsp(k,r) explicitly. Xo=—i Mk . 63)
To close this hierarchy, approximation to tipék,r) is g0epVA[T'o(K) +i 6]

necessary. This issue has been addressed in the past for dif-

ferent special cases in two ways. The first is to eliminate the

polarization equation adiabatically as done in RéB] for Kk K )=

the total density equation and in Ré¢#fl1] for the kinetic-

energy equation. An alternative approach is to replace the

sum of thek resolved polarization with an effective polariza- This equation can be solved either by matrix inversion or by

tion [11]. We will outline both approaches with a slight gen- an approximatiorj42] similar to the Padenethod as in the

eralization beyond what has been published in either case.case of relaxation rate approximati¢h6]. Then the final
We begin with the adiabatic elimination of the polariza- expressions for the stimulated interaction contributions to

tion. As was done in Ref42], the same adiabatic elimina- density and energy changes can be written as

tion can be performed in the presence of nondiagonal scat-

tering terms in the(k,r) equation. To proceed, we introduce .

the slowly varying temporal amplitudes for the laser field , 0€b 2

and polarization: Rulsim=1 27" Ek (X =X |EI% 63

AL (kK ) =iV DK) uy

AT o(K) +i 5] wh

(64)
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While the first term now depends only on total polarization

| .. soeh > 12k k'S xi X" and its derivative, the last term, standing for the Coulomb-
Rulsim=/ 1V 2h S 2m. oy S:k—k’; assisted CA) energy change, unfortunately still depends on
| p(k.r):
i 21,2
_€0&p 7i%k? N 5 i o
2m. Xk ™ Rw.ca=577 & Vsk—k 5——[P(K,)p*(k,r
i 2 om, (xx —xo ||E[* (66) W,CA 2hV|§3 sk—k 2m,[p( )p* (k,r)

* !

While adiabatic elimination of the polarization leads to a —pr(KLnp(kn]
simple closure of the total set of equations, the resultant i h2(K2—K'3
equations have a severe deficiency, especially in the presence = Z
of spatial inhomogeneity. As was discussed in detail in Ref. 20V (o 2m,
[11], the reason is that the adiabatic elimination treatmen t this stage. we use the adiabatic elimination results for
completely neglects gain dispersion. This the reason wh 9e, ) . o .
some alternative time-dependent polarization equation waB(k:r) to close the set of equations, since gain dispersion has
sought. One remedy is the so-called effective Bloch equatioROW been |_ncluded ywth the eff_ectlve polarization equations.
(EBE) approach as discussed in detail in H&fl]. The issue Expressing the right-hand side of the total-energy equa-
of how to combine the EBE approach with the energy equations in terms of9,P was first done in Ref.17]. Comparing
tion was partly addressed in RdfL7] for the free-carrier the first term of Eq(69) with the corresponding equation in
case with a phenomenological polarization decay constanRef.[17], we find that the term proportional to the polariza-
In the following, we will follow the EBE approach to con- tion decay rate is absent in our expression. This is because
struct the kinetic-energy equation. there the relaxation rate is lkeindependent constant intro-

The EBE approach retains an effectigetal) polarization  duced phenomenologically. Here we have taken into account
equation by microscopically computing the total susceptibil-all (both diagonal and nondiagonaicattering terms in the
ity and reconstructing the total polarizati®{r,t). As a re- polarization equation;. The sum rule for th_e total scattering
sult, an equation foE(r,t) is obtained, which is similar in terms leads to the disappearance of the linear decay term,

form to the standard nondiagonal Bloch equation for a two-Wh'C.h survives the summation in R.Ef[lﬂ by contrast.
level system. The procedure has been described in detail in Fm_ally, plasma heatlng due to stimulated Interactions re-
Ref. [11] and will not be repeated here. As can be easilySUItS in a corresponding temperature change given by

seen, the total density equation depends only on the total

P(K', 1)V P* (K,T).

polarization after summing ovek [11]. Therefore,Ry|stim 9T lstim=TwRwlstim =] NRulstim- (70

will no longer depend omp(k,r). The remaining difficulty is To summarize this section, we have outlined two ap-
to deal with the total-kinetic-energy equations, which still proaches to close the set of equations for the total kinetic
depend ork-resolved polarization. (therma) energy and carrier density by approximating the

Using the definitionPa=(2N)Ek,u§5(k,r), we obtain  polarization equations in two different ways.
from Eq. (58),
- VII. LASER FIELD EQUATION AND LATTICE

ke— TEMPERATURE EQUATION
o p(k,r)
i

_ 2 .
3Pa=—180Pa—i o > uk
K In this section, we specify Maxwell's equation in a more
2F concrete form. Our derivation will include the frequency de-
_iW > | i 2D(K), (670  pendence of the background refractive index and the so-
K called thermal lensing effect, where the background index
depends on lattice temperature. After making the slowly
where d= d|k—o— Sk Vs -k - From Eq.(67), we can con-  varying envelop approximation to E€L), it is written as
struct the following relationship:
* * | * —veE- P0p- é’E—w—SP—i—P L2900
E*9,Pa+EdPL=i8)[EPf —E*P,] = 2 B 80CZ( atPp) oo
2 h2k? — (71
- . * =%
| ﬁv Ek 2mr [/"Lk E p(kar)

where the envelope functioi®, and Py, are defined through

—mEP*(kn]. (68) 1 |
Payb=§(Pa'be*""0‘+c.c.). (72
Using this relation, we have

1 We assume that the background polarization satisfies the
_ . following “constitutive relation” in frequency spacewith a
im== * + + . ) ,
Rustim 2Re{E (i 5oPatdPa)} +Rw,ca (69) tilde added to the top of a variable
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Po(w)=eoxp(@, T)E(w), (73

whereT, stands for lattice temperature agglis, in general,
complex with real and imaginary parts defined as usygl:

= xp+ixp - We Taylor expandy, around a given lattice tem-

peratureT and the reference frequenay:
X Xt
0 0
Xb(waTL):Xb+(T_TL)(9_-I-L+(w_w0)%+ e
(74

where xp= xp(wo, T) =[(nD)2— 1]+ x}"

and we assume

PHYSICAL REVIEW A66, 023802 (2002

fer from the EHP to the lattice due ®LO scattering, tem-
perature rise due to energy transfer from a nonradiative re-
combination ofe-h pairs, and certainly Joule heating by
current injection into an active device with a congregate re-
sistanceR. Only the phonon part of the specific hegg, of

the material is responsible for the lattice temperature change,
and the negligibly small difference between constant-
pressure and constant-volume specific heat of the semicon-
ductor material is ignored. In addition, a heat conduction
term due to phonon diffusion is added with a thermal con-
ductivity K. Finally, Eq. (77), together with Eqs(44),

(46), and(75), the effective Bloch equatior{siot listed here,

that there are no temperature and frequency dependenceslbit see[11]), and appropriate boundary conditions form a

the imaginary part o, (absorption. Substituting the Taylor complete hydrodynamic laser theory. This set of equations
expansion into Eq(73) and Fourier transforming the result- describes coupling between lasing and heating self-
ant expression to the time domain, we will obtain the time-consistently for a spatially inhomogeneous semiconductor la-

domain relation betweeR,(t) and E(t). After straightfor-

Ser.

ward algebraic manipulation, the equation for the slowly

varying envelope is written as follows:

VIIl. CONCLUDING REMARKS

__i 2 1?2 n_g “ﬂ) In conclusion, we have derivedcaupled diffusion model
2K(V +KOES C Bot Brt K HE (CDM) for the hydrodynamic variables—carrier densities
- . and temperatures—for the electron-hole plasma in a semi-
_ lwg P —%E+5 E (75 conductor quantum well optical device. The derivation is
a 26,C2 a 9 2 BrE, self-consistent in the sense that the CDM is coupled to the

where we have adopted the following shorthand notation:

optical polarization and the laser field, such that all relevant
processes and variables are treated on the same footing. The
major difference between this paper and the earlier work is

woNp that carrier-carrier and carrier-LO phonon scatterings are

K= c (763 treated explicitly in the moment equations when deriving the
energy and momentum decay rates. As such, all diffusion

wo Ny coefficients are given as_functiong of .the densities and tem-

B.,= R (76b  peratures via microscopical contributions. There are a few
np 7@ consequences with such a derivation. First, the resultant

CDM not only consists of self-diffusion terms as most phe-

2(T —TD) an, nomenological models do, but also contains mutual-diffusion
T:T T, (760 terms between electron variables and hole variables and be-
b tween temperatures and densities. Second, many-body ef-

on fects of Hartree-Fock type appear in all of the diffusion co-

o :KX_b (760) efficients very naturally, leading to a modification of the

b (nd)2” coefficients, which will be discussed in connection with the

numerical results for the coefficients in the subsequent paper.

The physical meanings of these parameters are obviou&urthermore, our explicit treatment leads to some deeper in-

Br describes the index change with temperature and acights into the single-component reduction and the well-
counts for the thermal lensing effects observed in a highknown ambipolar diffusion approximation. Finally, such a
power laser operation3,, describes the background index detailed treatment leads to the conclusion that the ambipolar
dispersion and thug,np gives the group-velocity index. DCs do not dependent aeh scattering. This work enables
Lastly, a,, describes the background absorption. us to obtain and analyze all the DCs for an optical device in
To complete our hydrodynamic model, we include the lat-the general two-component case and under the ambipolar

tice temperature equation, which is modified from Rej:  diffusion approximation from a microscopic point of view.
Such detailed numerical results will be presented in the sub-

sequent paper.

Another insight we gain from this study is the role of
electron-hole correlation. The degree of such correlation de-
termines whether the plasma subsystem can be adequately
described as an ensemble of correlated pairs or a gaseous
state of individual species, which in turn requires either an
This equation takes into account equilibration to the ambiengffective single-component or two-component description.
temperaturdl’, with a phenomenological rate,, heat trans-  Within the scope of this work there are two distinct ways to

HTL= I(KphCpnds T = = ¥a(TL = Ta) + C;;hl< Wl Lo

+hwoy, N+

J°RS
). (77)
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establish such correlation: One is sh scattering in mo- Such a treatment would require a theory that takes into ac-
mentum space, and the other is by static Coulomb interactiopount all the intermediate situations from an excitonic solid,
in real space. These two types of correlation are responsibler condensate, to a pure plasma phase. This is obviously an
for the two types of single-component reduction, respecissue beyond the scope of this work, but one needs to be
tively. The first type of reduction described in Sec. V A reliesaware of this issue when dealing with a strongly inhomoge-
solely on momentum-space correlati@stablished via-h neous lasing system.

scattering and is statistical in natiirand therefore the inter-

nal field that leads to real-spaeén correlation is not needed. ACKNOWLEDGMENTS
For the second type of reduction shown in Sec. V B, real- .
space correlation is sufficient, and no assumption eér The authors thank Stephan Koch for his comment on the

scattering anct-LO scattering is necessary. In reality, both €Xcitonic absorption in the low-density region in an earlier
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consistentlyin the literature so far. Theoretical treatments
thus far are a mere adaptation to experimental observationaPPENDIX A: MOMENTUM AND ENERGY RELAXATION
rather than rigorous derivation. The combined usage of these RATES DUE TO e-h SCATTERING
two types of correlation may eventually lead to a systematic i .
derivation of the ambipolar diffusion approximation. This |tis well known that ultrafase-e andh-h scatterings lead
will help elucidate when the ambipolar diffusion approxima- {0 carrier thermalization with a rate 650 fs at typical
tion is out of question. lasing den5|ty{20,22,24_,28,4]4 However, the role and con-
Finally, a few words about the plasma modghoring the ~ Séquences af-h scattering are rather unclear. Iq this appen-
excitons are in order. As mentioned at the beginning of Sec dix, we study such a consequence of éde scattering within
II, a plausible argument that supports the plasma model is thf'e second Born approximation. Specifically, we will show
relatively high density in a typical laser. While this certainly that the DB requirement of the microscopi¢h scattering
holds in the phenomenological rate equation model, whictProcesses leads to eq.ual temperatures and drift velocities for
lacks in spatial dependence, this becomes a much weakglectrons apd holes. Linearization around the DB state allows
argument in a spatially inhomogeneous laser. It is welluS to obtain the momentum and energy relaxation rates.
known that carrier density is not uniform in the lateral direc- Similar rates for the Maxwell distributions have been ob-
tion of an edge-emitting laser and in the transverse directiofgined in Ref[38]. o o .
of a surface-emitting laser due to pumping and carrier diffu- Ve assume that each subband is in equilibrium and is
sion and, to a lesser degree, due to the interaction with lasélescribed by a drifted Fermi-Dirac distribution functiorf,
light field. While, at the center of such a nonuniform distri- Eff:fka’ as given in Eq(20), wherea=e,h. Using the sec-
bution, the density is certainly above the Mott density, it
decreases to zero as we move towards the device edg
Typically at about the half-value position of the distribution,
the density drops below the Mott density. Such low-density
regions cause two problems: First, band-gap renormalization AN en= > _Tr\/g O(Aeen)T, (A1)
in high-density regions leads to spectral overlap of the gain K',g#0 hoo®
peak, where the laser is designed to operate, with the exci-
tonic absorption peak in the low-density region. Thus, thewhereV;  is the Fourier component of the screened Cou-
laser field incurs strong absorption there. This is especialljomb potential,Ae., in the § function, which stands for
true for gain guided devices where the field tends to spreadifference in the total kinetic energy between in- and out-
more into Iow—den.sity.regio_ns. For a very short-cavity deViC?scattering, is given by + ef, g 65, — 6g+q, wherea# 8,
where mode spacing is quite large, we may be able to desighq7is defined as
a laser to avoid such overlap of the laser cavity modes with
the excitonic features. This becomes difficult for regular
edge- or surface-emitting lasers where the longitudinal or
transverse modes become closely spaced such that some —ng o). (A2)
modes will always fall near the excitonic features. The effect
of such absorption is expected to be weak in a strongly inde
guided device, nevertheless. The second problem is relatedp

D
ond Born approximatiof45], the change rate in the distri-
Butions due tee-h scattering can be written as

Tznﬁ’mnf,(l—nﬁ)(l—nf,m)—n'fnf,m(l—nf,)(l

ote that we treat the quasi-two-dimensional nature of car-

valid in the .Iow—den5|ty.reg|ons, as noted. Since the dlffu3|qn If the EHP is in quasiequilibrium, the DB condition re-
processes in such regions play a role for the overall carrier . thatT=0. Usind 1— n®=n® « o ay T
distribution and, in particular, for the density at the center, arfiuires thatt="0. Using 1=nc=n ex'ﬂek—kg #e) KeT?],
appropriate treatment of theesh subsystem is thus necessary. we can factorizeZ into the following form:
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> VZa(Aeenni o (1-nd) (L

g higu” ef,+qef,ﬁq<u3}
1

gll—-e kgT® kgTP Kk a0
where G=ng, ng (1-ng)(1-nf,, ) and u*=rkg/m, is _nb )€k+q_ €—hq-u K
the drift velocity. Using energy conservation, the above ex- kta Kg

pression can be rearranged as
= X Vid(Aeen)fiiqflo(1-f(1

—al1 sﬁ+q— eg—hg-u*( 1 1 kk’.q#0
=G| 1—ex kg Te T8 g Ekrq € "
Ml e (D), (A7)
hq
+ ~(u5—u“)1 , (A3)
kgT? which are obtained by using E¢A5) inside thes function

after making the following translational transformations:
by adding and subtracting the terbg- u*/kgT#. Since Eq.
(A2) is valid for arbitraryk andq, andG contains no alge- k—Kk=k
. o . D~ K1,
braic roots, it is then straightforward to conclude that de-
tailed balance leads to
k' —kE=kj,
Te=T", (A4)
then changing the notation back,(~k andk,—k’). Due to
we=uh (A5)  inversion symmetry in the prefactor ok{kp), only the
term proportional tdkg in Eq. (A7) survives. We rewrite its

These equalities are the result of the DB requirement undd?refactor <kg) below:
the condition of dominang-h scattering and have been used
for the single-component reduction in that limiting case.
They are duplicated in Sec. V A as Ed41) and(42).

Now we consider the deviation of the EHP from the DB

state. We make a linear Taylor expansion for the exponentia\}v e that thi ion denotes the int ted
term inside the curly bracket ifi, and the resultant expres- € recognize that this expression denotes the integrated en-
sion is given below: ergy difference between in-scattering and out-scattering with

respect to statelsrk) and|Bk’+q) under detailed balance,
and thus vanishes. Therefore, the momentum relaxation term
is reduced to a simple rate equation form:

kkE 0V§,q6<Aee.h>f§‘+qff,<1—fﬁ)(l—ff,m)(emq—eﬁ>.
kg

T~—G(T*—TP)—G,- (u*—uP).

Plugging this linearized expression into E@1), we then

obtain the momentum and energy relaxation rates. 3P| en=—M yen(u®—ub), (A8)
The momentum relaxation rate due edh scattering, as
appeared in Eq17), is defined as where the effective ratigifferent from the momentum relax-

ation rate by a density-dependent scaling factor; see text after
2 N Eqg. (32)] is given by
3Pen= S Ek ik dinilen

— 2 2w, B
2 27 Yen=—g 2 7 Vidleen i fip(1-f(1
~s, kzq;to — Vi od(Aeen) ThK kK .q£0
o 7igy fiky
2 2 — 8 y— —. (A9)
=5, 2, 7 eadlbeen <+ay T m,
XAKGUT*=TP)+ G, (u*~uP)].  (AB) This can be obtained by making the same replacements

and using the inversion symmetry argument. We also assume
We notice that there are two terms in the momentum relaxthat the direction ofi”—u” is taken as the direction. The
ation, but the ensuing proof shows that the coefficient of thepositive definiteness of the above relaxation rate can be veri-
temperature difference termiT¢—T#) vanishes under the fied easily after accounting for the isotropy of the EHP. Then
DB condition. This leads to the equation for momentum re-we may replaceyk, in the summation by g/2, which is
laxation due to the-h scattering given in Eq:32). To prove  related to €, ,— €) — €5 - Since the energy difference term
this, we notice that the prefactor of the term witi“(  vanishes after integration, the effective rate takes a neat
—T#) is proportional to form:
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2 20 (2) The second equality, E§A5), is the same as what is
— = > V2 qO(A €en) Fic of k,(1 ) required in theambipolar diffusion approximatiofil5,16.
2mkgT? Sy geo B 7 The requirement is consistent with the intuitive understand-
ing of incoherent collisions between different species in the
EHP. These collisions mean an extra frictional contribution
for electrons and holes, in addition to the frictional force
relative to the ambient, caused by interacting with mainly
LO phonons. Such extra frictional drag may lead to a rever-

— m
Ye-n=

a

X (1—f € (A10)

k’+q) q-

Next, we consider the energy relaxation term that ap-
peared in Eq(18), which is specifically given as

21,2 sal in the drift direction of carriers, as corroborated in the
N 2 fck i - O, T !
HEYen=< S 2 2m. —— ¢l en study of the negative mobility of minority carriers in semi-
conductor quantum wellg30—-35. By contrast, the ambipo-
21,2 lar diffusion approximation is deduced by use of charge neu-
2 2w, ik . . OF . _ - .
=— E — Ved(Aeen)T 5— trality, which is a static condition. Interestingly, given a
S k.k’,q#0 h 2m, neutral initial condition for a system, it will evolve and pre-
2,2 serve charge neutrality since there is no charge separation as
2 27, fick .
=—= > V2 5(Aeen)s— the oppositely charged components move at the same veloc-
Sk,k/,qsﬁo h 2m, ity, as governed by the equation of continuity, that is, Eq.

(44), and Eq.(A5). Therefore, having ultrafast carrier scat-
tering in the EHP, the ambipolar diffusion approximation is
wgdundant for an initially neutral system.

X[G(T—=TP)+G,-(u*—uP)]. (A1l

Through exactly the same manipulation and arguments as
did for the momentum relaxation term, the energy relaxation

term can be written in the following form: APPENDIX B: MOMENTUM AND ENERGY RELAXATION

_ RATES DUE TO c¢-LO SCATTERING
aIEa|e-h: B 1—‘g—h(-ra_ Tﬁ) =M yepu*- (U~ UB).

(A12) Interaction of the EHP with the host semiconductor crys-
tal lattice is dominated by the inelastic carrier—LO-phonon
where the energy relaxation rate due to temperature differscattering at room temperature, while collisions with other

ence is given by phonon branches are relatively weak and negligible. In a
) ) semiconductor quantum well structure, as the well width is
. . ;
a _° “TV2 SA fo B (1—f reduced,'phqnon modes could become cpnflned in the
eh Sk,qu;ﬁO h (Aeenfitsqfie (1102 growth direction and interface modes are introduced for

small enough widt46]. On the other hand, if the quantum
k+q well is not too narrow, calculation of the scattering rates
kg TOTA (A13) using bulk modes produces similar results to those obtained
by incorporating both the confined and the interface modes
for a semiconductor quantum well, if no mode-specific phys-
ics is concerned47,48. In this work, we use bulk LO-
phonon modes of the Einstein model for the quantum well
material. Under the assumption of quasiequilibrium for the
EHP and equilibrium for phonons, the momentum and en-
ergy relaxation rates due to LO-phonon scatteri\@?| o
W o= —T ¢ (T*—TA). (A14)  andW*| o are derived in this appendix. In this work the
effect of plasma screening anLO scattering has not been
The corresponding temperature change rate duehtscat-  included.

tering can be written, according to E@7), as follows: First, let us put forth the necessary microscopic ingredi-
ents[46]. The rate of change in carrier distribution due to

IT en= ] %W o= —7:3 (T*—T#), (A15) _c—L_O-pht;)non scattering, according to Fermi's golden rule,
is given by

[l

k’+q) k

Before closing this appendix, it is worth making two ob-
servations.

(1) The relaxation rate equation for energy, E412), is
consistent with our previous results, Eq80) and (A8).
Thus, we prove, within linear expansion treatment, that

where the temperature relaxation rate is given 12&[‘

=jwl en- Note that the temperature relaxation rates are dif- 20 A

ferent for electrons and holes. The reason is twofold: first atn§||_o=7 > [Hel?[ 8(Ae/o)Ni o(1—15)
and foremost, thé&'g,, factor is inversely proportional to the %z

carrier massn, . As compared to EQA10), we immediately — S(Ae )N (1-NnE )]

see that a factom,/m, is recovered for Eq(A13), given d

that .., is carrier mass independent. Second, jtfjefactor n 2_77 2 “:' 12 5(Aero)nE (1-ne)
a LO/'k—q k

depends on the carrier mass in the quantum regime. There-
fore, the temperature relaxation rate is inversely proportional . N
to the carrier mass at low density. —8(Ae o) (1-nii o], (BY)
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where phonon wave vect@®=(q,q,) is expressed in its in-
plane componeng and vertical componeny,, ¢ is the ﬁtpa|LO_—f dkth' dq
phonon circular frequency, and H, are the carrier—LO- (2m)%202p

phonon scattering matrix elements for phonon emission and {ﬁ(k q-u

11(CI)

( (A€ o)

absorptionA€/o= € — €, g+ fiw o, andAe o= eg— €
—hw_o. Using the Frblich Hamiltonian, the matrix ele-
ments are given as

Niot+ fi)fe_g(1—1¢
o (N )T (1 1)

+ﬁk'ua[fa (Nio+1)]Fe(1—f2)
kBTa k—q LO k k
ZﬁwLo Q
[Hel2= —I a,)|? : (B2a) k- u®
2e0epV Q? — 8(A€lo)] ——— (NioH+fi, o F(1— 1)
B
fa(k+q)-u®
. e’fw N — [f¥— (N, o+ 1)]f% (1—fY ,
| a|2:2808L\7|G(qZ)|2Q_§, (BZb) kBTa [k ( LO )] k+q( k+q)])
p

whereN, o=Ng since the LO phonons are dispersionless in

. . o the Einstein model and
where 14 ,=1/e.,— 1/es with &4 (&.,) being the stati¢high-

frequency relative permittivity of the unexcited semi- q (=
conductor. The overlapping integraB(q,), is defined as F11(Q)E;f da,|G(ay) |/(a*+q?)
JZ.dzxi(2) x;(2)exp(a,2), wherey;(2) is the real and nor- o

malized carrier envelop wave function in tht# subband, o %

which has always been taken as the ground state in this ZJ dzlf dz, x1(z1) x1(zz)exp— qlz,
work. The phonon density is governed by Bose-Einstein dis- o o

tribution, No=1[exp(B ofiw o) — 1], with B o=1KkgT o =2 x1(22) x1(21)- (B4)

andT o being the LO-phonon temperature. Conservation of

momentum has already been explicitly considered in EqThen we evaluate the integrals in the momentum relaxation

(B1). expression above term by term using polar coordinates for
Before calculating the momentum and energy relaxatiorbothk andg. During the integration, the direction of the drift

rates, we point out that we will still work in the linear re- wave vector is taken as in thedirection. After term collect-

gime, as in the preceding appendix, but now in the drifting and canceling, the final momentum relaxation term is

velocities themselves(Given the femtosecond scattering found to be

time scale at typical lasing densit#4,49, it is reasonable to

expect that the drifted carrier distributions are small pertur- P Lo=— ¥ oP% (B5)
bations from the nondrift Fermi-Dirac distribution3he lin-
ear expansion is well known as with the momentum relaxation rate given by
ne~f(el)—(k&-aed)f' (ef), (B3) yLO:COfO lo(K{[Not+f(e)]f(e)[1—f(e;)]+[No
+1-f(e)]f(e)[1—Tf(ey)]}tde, (B6)

where f'(eg) is the derivative of the Fermi-Dirac distribu- 5 -

tion function f(eg) with respect to the carrier energy. where  Co=(m.e°w o)/ (87 eoe ksT) and e =€
The momentum relaxation term is defined in the samet#w o. We definek , = Vk?+2m,w /%, which is used in

manner as in the carrier-carrier scattering case, that is,  the integral

(B7)

ky+k 2E d
Io(k):f gq°F1(q)dq

&tPa||_OE g Ek hk&tnmLo . ky—k \/(ZKQ)Z_(QZ_ZmawLO/ﬁ)Z
Similar to carrier-carrier scattering, it is found, after care-
ful evaluation of the carrier energy relaxation due to LO
Inversion symmetry leads to zero contribution from the nonphonon scattering, that the higher-order drift term cancels
drift part of the distribution, so we only need to focus on theout according to Eq(31) as far as carrier thermal energy
linear term inkj in Eq. (B3). Lengthy but straightforward relaxation is concerned. Thus, we will only show the partial
integration over the phonon wave vectrproduces a con- contribution from the nondrift first term in E¢B3) below.
cise integrated solution. We only give a few intermediateTo assist computing the energy relaxation term, summation
steps in the deduction and the main result below: over the phonon wave vector in E@1) can be carried out
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directly so that the procedure becomes more transparent. Afrhe constant is positively definitive far*>T, o . By taking
ter tedious algebraic manipulations, the expression becomehe limit of T*— T o in the above expression, we then obtain
Newton’s cooling rate between electrof holes and LO
il Lo=C1(l 1(K{N of (e —rw 0)[1— f(€g)]— (Nio phonons:

+Df()[1-f(ef—fiwo) ]} +12(K){(No

I'fo=cojw(No+ 1)
+D)f(egthwo)[1—f(e)]—Nof(e)[1 keTto
—f(ei+hwo)]}), (B8)

f dely(K)f(e)[1—f(e)].
(B15)

Here, the results are independent of the assumption that the

where ¢,=(m, 2w 0)/(27Hi2e4s,), while the two lattice and LO phonons are in thermal equilibriurm;
k-dependent intaegrals are given a'; ' =T, o, despite that it is implicitly assumed in this work.

APPENDIX C: CARRIER DIFFUSION COEFFICIENTS

k+k_ F1i(q)dq
(Bg) IN GENERAL TWO-COMPONENT CASE

k—k_ V(2ka)? = (g?+2m,w o /)%’

(k)=

In this appendix, we give the expressions for density-
related diffusion coefficients of a general two-component
(k)= ki tk Fu(g)dg (B10) plasma in semiconductor quantum wells. Using the solutions
2 ki —k \/(qu)Z_(qZ_zmawLo/ﬁ)Z' for electron @=e€) or hole (@=h) momentumP® given in
Eq. (33), we can write the density current for thecompo-
wherek_ = Jk?—2m,w o/%. The integrals are related by Nentin the form
the transformatioh, (k) =1,(k). Using the above equations
for 1 (k) and' integrating over the polar. angle of wave vec- Ine=— Z D ey X — ‘T_arq)’ (C1)
tor k, the carrier thermal energy relaxation is found to be

o whereX e {NéN", T T". We have introduced various DCs
W o= —Czjo dela(K){(No+1)f(e)[1-f(e)] and conductivities which are listed as follows:

_ a B
_NLOf(E)[l_f(5+)]}a (B11) DNaN“_/’La[(1+77a)SNa+HNa]v (C2
where ¢, = (m2ewio)/(2m*h3%e e ). Plugging the Fermi- Dens= ol (14 7)) Hyst Sial, (C3

Dirac distributions in, it can be shown that a factor propor- 6]
tional to the temperature difference between the carriers and Dnete= ol (14 74)Stat HYa (C4)

the host lattice exists. From EB7), we can write the tem-

perature change due teLO scattering in the form Dnats= pol (1+ 7, )HTp+ Sfﬁ], (ChH
T Lo=wIW*|Lo=—T{o(T*~To), (B12) 0= 8N (1+ 7,) —N], (C6)

wherel'['5 is defined as follows: We note that the expressionWherea#'B and

inside the braces of integrand in E@®11) can be rewritten SE= 9, W+ N9y 5e (X=N?,T9)
as follows: % % B

HE=N%Jy5e® (X=NB T#).
(NotDf(e)[1—f(e)]=Nof(e)[1—-f(e,)]

_ _ _ The factoru, is defined by Eq(34). The various rates used

= + o
(Neo+ D)f(e )1 =T K1~ exr (Ba above have been given in the first two appendixes. The cor-
—BLo)hw o]} (B13)  responding temperature currents and associated DCs can be

readily written down according to the relation in E40) and

Obviously the term is proportional to the temperature differ-thus will not be listed.

ence between carriers and phonons. Therefore, the constant

can be explicitly written as APPENDIX D: SELF- AND MUTUAL-DIFFUSION
COEFFICIENTS UNDER THE SINGLE-COMPONENT

o APPROXIMATION
I'lo=cojw(N +1)f de l,(k)f(e)[1
Lo~ 2o 0 ? " In this appendix, all diffusion coefficients for the single-

1 B 5 component case are explicitly given in terms of material pa-
XL (B~ Bro) w'-O]_ (B14)  rameters, scattering rates, and distribution functions of the
To—Tio EHP in a semiconductor quantum well structure. We con-

—f(e)]
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sider the limiting case of dominamth scattering. This is m,(kgT%)2 (=
true when the plasma density is high enough such eHat :a—zf . In(1+e *)dx, (D8)
scattering dominates over other scatterings for momentum mh ~Bare

relaxation. At the end, we introduce terminology for the dif-
fusion coefficients, which shall be extensively used in the
subsequent paper.

From the relations obtained in Sec. V A, it is easily shown
that the currents for density and temperature are given, reFhe derivatives ofV, with respect tdN“ andT“ can also be
spectively, by written explicitly:

m, kg T“
N=———In[1+exp B, ue)]. (D9)
wh?

JN:NU, (Dl) &NaWa|Ta=kBT“0a, (DlO)
Jr=[2jw(WIN) = jn]In, (D2) I71a\W| yo=2Kg B, W* —kgN“0,,, (D1y)

where we have used=jyJw—jnJIn andJy=2uW, with ~ whered,, defined as
W being the total plasma thermal energy. N N

Recall that the drift velocity of plasma, is given by Eq. 0,=[1+exp{— BouptlIn[1+expB.uet], (D12)
(43) and now we rewrite it in terms of the gradients of den-

. can be considered as a degeneracy factor, which goes to 1 in
sity and temperature as follows:

the nondegenerate limit. Both EqD10) and (D11) take
their classical values in the nondegenerate limit.

u=— %(ﬂNW‘F Ndyoeq) I N— %(3TW+ Ndrdeq)d, T, We also note from the definition gf [Eq. (34)] that
3 p=1meyo+ myylo] (D13)
where Seg= 0e°+ 5_6h is the total screened Hartree-Fock hen thec-LO scattering is much slower thash scattering.
band-gap renormalization. As defined in E¢67) and(48),  |n this case, all the diffusion coefficients defined in this ap-
the DCs are finally written as pendix are the same as in Sec. V B. This means that the two
_ single-component reduction approaches lead to the same
D= p(dnWHNydeg), 4 definition of ambipolar DCs.
_ Before closing this appendix and for the benefit of discus-
Dnt= u(dtW+Nd1dey), D5 . : . .
NT=p(T ro¢) ®5  Sions in the subsequent paper, we introduce the following
Drn=[2jw(W/N)—=jnI1Dnn» (D6) te_rmlnology fo_r the DCs. The (_:oeff|C|ent is dubbsgllf—
diffusionwhen it relates the gradient of a variable to its cur-
Drr=[2j w(WI/N)—jn]Dnr- (D7)  rent, andmutual diffusionotherwise. In addition, a variable

name is used to label the coefficient that relates to the vari-
In the two-dimensional case, analytical expressions for thable gradient. For exampl®y is called mutual-diffusion
energy and carrier density are given by density coefficienaccordingly.
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