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Ground state and elementary excitations of single and binary Bose-Einstein condensates
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We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped
dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we
discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the
dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas
composed of two antiparallel dipolar components.
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[. INTRODUCTION fied by reducinga via Feshbach resonanckb,26. Similar
effects have been discussed in Rd8.11,19 for ground-

The nature and stability of a Bose-Einstein condensatstate atoms with electric dipole moments induced by high dc
(BEC) [1,2] are strongly influenced by the interparticle inter- electric fields(of the order of 16 V/cm). It has been also
actions that are described by thevave scattering length. suggested that laser-induced dipole-dipole interactions could
If a>0 the interactions are repulsive, and condensates withe achieved by exciting atoms to Rydberg stai€R. In this
an arbitrary large number of particles are stable. On the conzase applications to quantum information processing have
trary, spatially homogeneous condensates w&itt0 are ab- been discussetsee, e.g., Ref27]).
solutely unstable with regard to local collap$8§ The pres- The stability of the condensate is significantly modified
ence of a trapping potential changes the situation drasticallgy the presence of dipole-dipole interactidi®s-11,13. In
as revealed in successful experiments with magneticallyparticular, a BEC of particles dominantly interacting via di-
trapped atomic’Li (a=—14 A) [2,4]. As found in theoret- pole forces is, similar to condensates witkr O, unstable in
ical studies[5-7], there will be a metastable BEC if the a spatially homogeneous case and can be stabilized by con-
number of condensed particles is sufficiently small, such thafinement in a trap. It has been shoyi0] that the sign and
the spacing between the trap levels exceeds the mean-fiellde value of the dipole-dipole interaction energy is strongly
interparticle interactiomg|g| (wheren, is the condensate influenced by the trapping geometry and, hence, the stability
density, g=4m#%a/m, and m is the atom mags In other  diagram depends crucially on the trap anisotropy. This opens
words, the BEC is stabilized if the negative pressure causedew, interesting possibilities for controlling and engineering
by the interparticle attraction is compensated by the quanturmacroscopic quantum states. In particular, for dipoles ori-
pressure imposed by the trapping potential. ented along the axis of a cylindrical trap there exists a critical

The effects of the interparticle interactions on the condenvaluel* =0.4 for the square root of the ratio of the radial to
sate properties have been mainly discussed for the case &kial frequency=(wp/wz)1’2. Pancake traps with<|* pro-
van der Waalgshort-rangginteractions. However, the BEC vide mostly a repulsive mean field of the dipole-dipole inter-
in the presence of dipole-dipole interactions has recentlyction, and thus the dipolar condensate in such traps will be
raised a considerable interd&—16]. Novel physics is ex- stable at any number of particléé For|>1* the stability
pected for dipolar BEC, since the dipole-dipole interactionsrequiresN<N., where the critical valué\. at which the
are long range, anisotropic, and partially attractive. The noneollapse occurs is determined by the condition {loat aver-
trivial task of achieving and controlling dipolar BECs is thus age the mean-field interaction energy is attractive and close
particularly challenging. in absolute value tdw, .

The interest in dipolar gases has been partially motivated The study of the condensate properties would be incom-
by the recent success in creating ultracold molecular cloudplete without the analysis of the excitation spectrum, which
[17,18. This success opens fascinating prospects to achievdetermines the dynamical behavior of the system in the re-
guantum degeneracy in trapped gases of heteronuclear majime of weak perturbations. Zero-temperature excitation fre-
ecules that could interact via electric dipole-dipole forcesguencies have been extensively studied in the case of con-
after being oriented in a sufficiently high electric field. On densates in dilute alkali gases, both experimentdB,29
the other hand, the ultracold gases of atoms with large magand theoreticallf30—32. In this paper we discuss the low-
netic dipole moments, such as chromiyi®-23 or eu- lying collective excitation frequencies of trapped dipolar
ropium[24], have also been a subject of growing interest. INBECs, complementing the analysis of Rdfkl,12. We first
this case, the dipole-dipole interactions are not expected toonsider the case of dominant dipole-dipole interactions, and
be dominant, although for a relatively smalthe BEC may later on we discuss the situation where the short-range inter-
reflect the interplay between short-range and dipole-dipol@ction is also relevant. In particular, we discuss in detail the
interactiond 9,13]. Interestingly, these effects can be ampli- nature of instability and demonstrate that one of the excita-
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tions frequencies tends to zero at the criticality as a power oihgly, the dipole-dipole interaction potential between two di-
(N.—N)?. We discuss the qualitative character of the low-poles is given byV4(R)=(d?R%)(1-3 cog6), whered
lying modes, and show that the exponghtundergoes a characterizes the dipole momeRtjs the vector between the
crossover from 1/4 fot>1* to 2 atl=I*. To illustrate the dipoles R=|R| being its length, and§ the angle betweeR
case of mixed short-range and dipole-dipole interactions, wand the dipole orientation. Similarly as in Ref8~10], we
present predictions for the excitation frequencies for the pardescribe the dynamics of the condensate wave function
ticular case of a chromium gas. (r,t) by using the time-dependent Gross-Pitaevskii equa-
The second part of the paper is devoted to the analysis dfon (GPE):
binary dipolar BECs. In recent years, the development of ,
trapping techniques has allowed for creation of multicompo i [ 3 ﬁ—V2+ g(w§p2+w§zz)+g|¢/x(r,t)|2

nent condensates, formed by atoms in different internal iﬁ(;t Yr.)= om

(electroni¢ states[33,34. The physics of multicomponent

BEC, far from being a trivial extension of the single- 1— P
component one, presents novel and fundamentally different +d2J dr’—3|¢(r’,t)|2 Y(r b)),
scenarios for its ground-state wave funct{@%,36] and ex- [r=r|

citations[37]. In particular, it has been experimentally ob- (1)
served that a BEC can reach an equilibrium state character-

ized by phase separation of the species in different domainghere ¢(r,t) is normalized to the total number of conden-
[34]. The analysis of multicomponent BEC has been so fagate particledN. The third term in the rhs of Eq1) corre-
mostly limited to the case of short-range interparticle inter-sponds to the mean field of short-rangean der Waals
actions(a model long-range interaction has been considereéPrces and the last term to the mean field of the dipole-dipole
in Ref. [36]). One of the main goals of this paper is to ana-interaction. In this section, we omit the term
lyze the properties of multicomponent dipolar BEC. Such ad|#(r.t)|?¢(r,t), assuming that the interparticle interac-
mixture can be achieved in different physical contexts. Intion is dominated by dipole-dipole forcesd%>|g|
particular, it would be, in general, the case for experiments irF 47#7a|/m) and the system is away from shape reso-
ultracold polar moleculef38,41], and in chromiun{39] in nances olV4(R). The effects of the short-range interactions
which different magnetic-moment species are simultaneousl9n the excitation spectrum are discussed in detail in Sec. III.
trapped in an optical dipole trap. It would also be the case of The wave function of the relative motion of a pair of
atomic electric dipoles created by laser-induced pumping télipoles is influenced by the dipole-dipole interaction at inter-
two different Rydberg states. Finally, the same situatiorparticle distancesr—r’|<r*=2md?/4°. This influence is
would appear in condensates of heteronuclear Handi-  ignored in the dipole-dipole term of Eql), as the main
atomic molecules, for which the direction of the magneticcontribution to the integral comes from distan¢es r’| of
moment is correlate(parallel or antiparallglwith the direc- ~ order the spatial size of the condensate, which we assume to
tion of the molecular axis. Thus, if the magnetic moments arde much larger than*.

oriented in a magnetic field, the electric moments can ac- Away from the shape resonances, the dipolar condensate
quire two possible directions. We show below that a binaryis unstable in the spatially homogeneous case. For all dipoles
dipolar BEC of two antiparallel dipole components differs parallel to each other, by using the Bogoliubov method, one
qualitatively from the case of a short-range interacting binaryfinds an anisotropic dispersion law for elementary excita-
BEC. tions: e(k)=[E2+87E,nyd?(cos 6,—1/3)]*2 where E,

Our paper is organized as follows. In Sec. Il we briefly =#2k?/2m, n, is the condensate density, afigis the angle
review the ground-state properties of a single-componernibetween the excitation momentutmand the direction of the
BEC of trapped dipolar gas¢&0]. Section Ill is devoted to dipoles. The instability is clearly seen from the fact that at
the analysis of the excitation spectrum of single-componensmall k and cod 6,<1/3, imaginary excitation energies
trapped dipolar condensed gases. Section IV briefly discussesnerge.
the ballistic expansion of a dipolar BEC. In Sec. V the
ground state of a BEC of two different dipolar species is B. Numerical results

considered. The excitation spectrum for this case is discussed Equation(1), contrary to the usually employed GPE with

in Sec. VI. We conclude in Sec. VII. short-range interactions, is an integro-differential equation.
The evaluation of the integral term deserves special atten-

3 cod
r/

Il. GROUND-STATE PROPERTIES tion, since the integrand diverges at relative interparticle dis-
OF A SINGLE-COMPONENT DIPOLAR BEC tances tending to zero. Fortunately, the calculation of the
integral term can be simplified by means of the convolution

A. Description of the syst
escription of the system theorem:

In this section we briefly review the results of REL0].
We consider a condensate of dipolar particles in a cylindrical 5 1-3 cog ¢ o . )
harmonic trap. In the following we consider the case of elecd f r WW/(V )|2=F H{FIVI(@)FL 411D},
tric dipoles, although the same physics is expected for mag- 2
netic oneqd9]. All dipoles are assumed to be oriented along

the trap axis by a sufficiently strong external field. Accord-where F and 71

indicate the Fourier transform and the
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inverse Fourier transform, respectively. The Fourier trans=L,/L,, continuously decreases with increasing number of
form of the dipole-dipole potential reads particles and reaches a limiting valueNat> o (see Fig. 3 of
Ref. [10]). In this respect, for a very larghl we have a
pancake Thomas-Fermi condensate.
, For I=1, the mean-field dipole-dipole interaction is al-
3 ways attractive. The quantityv| increases witiN and the

shape of the cloud changes. In spherical traps the cloud be-
wherea is the angle between the momentapand the di- comes more elongated in the axial direction, and réar
pole direction, and is a cutoff distance corresponding to the

=N, the shape of the cloud is close to Gaussian with the
atomic radius(a few Bohr radi). Sinceb is much smaller

aspect ratido=2.1. In cigar-shaped trap$x1) especially
than any significant length scale of the system, one Cafﬂterestmg is the regime wheti,<|V|<#iw, . In this case
safely perform the limit t

cogbqg) sin(bg)
(bg)?  (bg)®

FIV](q)=4md*(1—-3 cog a)

e radial shape of the cloud remains the s@@aussiapas
in a noninteracting gas, but the axial behavior of the conden-
. sate will be governed by the dipole-dipole interaction which
lim F(V(r))= —d*(3 cog a—1). (4) acquires a quasi-one-dimensiof@liasi-1D character. Thus,
b—0 3 one has dquas) 1D gas with attractive interparticle interac-
tions and is dealing with a stab{bright) solitonlike conden-
In order to evaluate the Fourier transform of E2), F(| |?) sate where attractive forces are compensated by the kinetic
is numerically evaluated by means of a standard fast Fouriegnergy[41]. L, decreases with increasing, NearN=N,,
transform(FFT) algorithm and multiplied byF(V(r)). where|V| is close tohiw,, the axial shape of the cloud also
The ground state of the system is obtained by employingpecomes Gaussian and the aspect ratio takes the Value
a standard split-operator technique in imaginary time. The<3.0. Forl* <|<1, the dipole-dipole interaction energy is
split-operator technique is also based on a FFT algorithnpositive for a small number of particles and increases With
and, consequently, for each time step four FFTs are needetthe quantityV/ reaches its maximum and further increase in
two for the calculation of the integral term and two for the N reducesv and makes the cloud less pancake shaped. At the
evolution. We would like to stress that this procedure consticritical pointN= N, the shape of the cloud is close to Gauss-
tutes a nontrivial computational task. Additionally, the FFT jan and the aspect ratio<3.0.
algorithm must be evaluated in Cartesian coordinates and, as In the previous analysis, the case of dominant dipole-
a consequence, computationally demanding fully threedipole interactions was considered. Howe{@y13,8,11, in
dimensional calculations are required. the general case the effects of the short-range interactions are
To understand the influence of the trapping potential orcomparable or even larger than those related to the dipole-
the dipolar condensate, we have simulated(Egfor various  dipole interactions. In such situations the short-range term
values of the number of particlé, dipole moment, and  must be maintained in E1). Provided thag is sufficiently
the trap aspect ratib We have found the conditions under small and positive, the system can become unstable and un-
which the condensate is stabilized by the trapping field andlergo a collapse in a way similar to what was observed in
investigated static properties of this Bose-condensed state.experiments with’Li [2] and &Rb [26]. For the case of
For a stationary condensate the wave functipfr,t)  negativea, the dipolar gas is expected to be highly unstable,
= ho(r)exp(—iut/h), whereu is the chemical potential, and but the dipole-dipole interaction could be employed to stabi-
the lhs of Eq.(1) becomesuy(r). The important energy lize the gas by the trap geometry in a way analogous to the
scales of the problem are the trap frequeneigsw, and the  one presented in Reff10].
dipole-dipole interaction energy per particle defined\as
=(LIN) [V4(r—r")gd(r) 3(r")drdr’. Accordingly, the trap
frequencies, and thé&enormalized number of particless
=Nr*/amay [With apna=#2mom,)Y? being the maximal
oscillator length of the trajform the necessary set of param-  In this section we analyze the collective excitations of a
eters allowing us to determine the chemical potential andiipolar BEC. Since this is a potentially unstable system,
give a full description of the ground state of a trapped dipolathere is a fundamental question about the qualitative and

IIl. EXCITATIONS OF A SINGLE-COMPONENT
DIPOLAR BEC

condensate. guantitative nature of this instability. Another important
We have found that the dipolar condensate is stable eith&juestion concerns quantitative aspects, in particular how rel-
at V>0 or atV<0 with |V|<%w,. This requiresN<N.,  evant are the effects of the dipole-dipole interaction in the

where the critical numbeM. depends on the trap aspect ratio excitation spectrum and to what extent they can observed in
| =(w,/w,)"% The calculated dependendg(l) clearly in-  the experiments.

dicates the presence of a critical pdifit=0.43[10]. In pan- In Sec. Il A, we briefly summarize the variational ap-
cake traps withl<I*, the condensate is stable at aNy  proach introduced by Pez-Garca et al. [31] and later used
because/ always remains positive. For smal| the shape of by Yi and You[11,12 to describe the low-lying excitation
the cloud is Gaussian in all directions. With increadMidhe  spectrum of a dipolar condensdfer a different variational
guantity V increases and the cloud first becomes Thomasmethod using the self-similarity assumption, see R&f)).
Fermi in the radial direction and then, for a very laMealso ~ We employ the notation introduced in Refd.1,12. Sec.
axially. The ratio of the axial to radial size of the cloud, Ill B is devoted to the analysis of the behavior of the exci-
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tations close to the instability. In Sec. Il C, we calculate
numerically the response of the system to small perturbation:

and compare the results with those yielded by the method o
Sec. Il B. Finally, in Sec. Il C, we also discuss how the - — T
effects of the dipole-dipole interactions can manifest them- —_—

selves in the excitation spectrum for various kinds of dipolar .~~~
gases and trapping geometries.

A. Variational approach
mode 1 mode 2 mode 3

The problem of solving the time-dependent GPE, @g,.
can be restated as a variational problem corresponding to the FIG. 1. Graphical representation of oscillations modes of the
stationary point of the actio®= [dtdr £ related to the La- condensate.
grangian density11,12,31:

P (r) IY(r)

52 Small amplitude oscillations around the stationary solu-
) —— e 2
e GRS }+2m|vw<r>|

tion can be found by studying second derivativesJofThis
procedure provides the excitation frequency for the first three
g compressional excitation modes of the systd]. The ge-
TV 2,9 4 ometry of these modes is depicted in Fig. 1. For cylindrical
(NIY(r)] ZW(r)l traps with the axis along the dipole direction, the projection
of the angular momentunm, on thez axis is a good quan-
, tum number. For modes 2 and 3 we hawe=0, whereas
S art e ®

i
L= Eﬁ[l//(r)

m=1 for mode 1. In the following we call mode 2 (3) the
breathing(quadrupole mode.

whereu,=4/7/5d? andV,(r) describes the trapping poten-

tial. We consider the following Gaussian ansatz for the con- B. The nature of the instability

densate wave function: . .
To study the nature of the instability, one needs to deter-

_ P i n?B(0) mine which mode be_x_:omes unstable When_the number _of

p(x,y,z,t)=A(t) _H e 7 el Pt (6)  atoms reaches the critical value and to describe the behavior
T of the frequency of the corresponding mode close to the criti-

where in contrast to Ref11] we omit the possibility of the cality. These two issues have been first discussed for the case

sloshing motion of the condensate. By inserting the ansat@f short-range interacting Bose gases vati0. Bergeman

(6) into Eq. (5) and integrating over the spatial coordinates,[32] observed numerically that, as the raticof the nonlin-

one obtains the effective Lagrangian. From this effective La€ar interaction energy to the trap frequency approaches a

grangian one finds the equations of motion of the variationagiven critical valuey., the frequency of the breathing mode

parameters, i.e., the corresponding Euler-Lagrange equéends to zero and merges with the frequency of the Goldstone

tions. In particular, ifw,= ViImow, o= wyy, 0=y, mode corresppnd_ing to the ove.raII phase of the condensate.
vyy=v, P= \/mNa/ ﬁ/mw and r=wt, the Euler- Above the criticality, the breathln_g mode becomes unstable
Lagrange equations take the following form: and attains complex frequency. Singh and Rokhs@f ana-
lyzed this instability using self-similar solutions describing
d? 5 1 d 1 us the modegequivalently one may employ the variational ap-
d 70, T AU ”:v_3 - Pa_ SR 1+ —f dr proach of the preceding sectjoiThey have shown that close
K e to the criticality the frequency of the breathing mode 2 van-
7\ Yool 0) ishes agy— vy Y4
><exp( - —2) —3) , (7) In the case of a dipolar gas with dominant dipole interac-
n 205 r tions the situation is completely different and much more

complex. Only for aspect ratios far above the criticallty,
>1* (1>1.29), the situation resembles that of a gas with
< 0. The mode corresponding to the lowest frequency is the
breathing mode. This mode becomes unstable when the pa-
1 1/1 1 1 rameteroc— o .. The scaling behavior of the frequency of
U(UXvarUz):E()\>2<U)2(+)\§U§+7\ v+ > 5|2t 2 —2) this mode can be analyzed employing the variational ap-
Ux Uy Uz proach of the preceding sectiphl]. We find thatw, goes to
zero as ¢.— o)?, with B=1/4. For intermediate values of
1+—f dr I>1* (0.75<1<1.29) the exponeng is still 1/4, but the
geometry of the mode which drives the instability depends
on o. For o far below o, the mode corresponding to the
(8) lowest frequency has a breathing symmetry, whereas as one
approaches the critical value ofthe lowest mode becomes

where\, ,=1 and\,= \.This equation describes the motion
of a particle with coordinatesy( ,vy,v,) in an effective po-
tential

+

UxUyUz

X exp

7%\ Yoo 0
25 2) Zd ) .

7 77 r
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guadrupolelike. Forl close tol* (1<0.75) the situation
changes and the mode corresponding to the lowest frequency
is quadrupolarlike. Farnot too close td* the exponeng is

still close to 1/4. However, dsapproaches*, the exponent

B departs from 1/4 towards a greater value, which becomes
2 atl=I1*. The latter prediction must be understood as a
qualitative argument, since fowvery close td*, the system
enters a Thomas-Fermi regime where the Gaussian ansatz is
no more valid.

C. Numerical results

In this section we study the low-lying collective excita- 0 1 2 3 4 5
tions of a trapped dipolar BEC by analyzing numerically the 4
response of a BEC after applying an external perturbation.
We compare our numerical results with those obtained frorqno
the variational approac_h descrlbeql above. In the fOIIOWIhgeterg for a gas of condensed dipoles in the pancake JILA trap. The
we employ the _method_lntroduced in Rp#2] for the case of solid lines indicate the corresponding variational results.
a short-range interacting BEC. After generating the BEC
ground-state wave function using imaginary time evolution In the following, we study the excitation frequencies as a
of the GPE, we first slightly perturb the trapping potential infunction of the dip,olar parameter
a periodic way:

FIG. 2. Numerical results for the excitation frequencies of
des 1(squaresand 3(circles as functions of the dipolar param-

V(rt)—lm > [1+A, sin( t+a,)Pwin? §=Nm %dz- (10
L) = 2 S 2 7 Omod T &y) | @, 7", hZ h
€)

Note the relationo=2y2w,/wnmix{. Since in the pancake
where w4 is the modulation frequency,, are the ampli-  JILA trap the breathing mode has a relatively high frequency
tudes, andx,, are the initial phases. A perturbation of a cho-and it is not excited by the perturbation of the GPE, we
sen symmetry can be accomplished by properly selectingoncentrate in this case on the modes 1 and 3 of Fig. 1. The
these parameters. In particular, sufficiently small amplitudesesults for the pancake JILA trap are presented in Fig. 2. For
are necessary near the instabilities, since the system can pe-0 the ideal-gas resulto/w,=2 is retrieved for both
easily driven into collapse. On the other hand, by settingnodes 1 and 3. Ag increases mode 1 is shifted upwards,
large amplitudes one may probe various nonlinear effectsyhereas the frequency of mode(Guadrupole goes down,
[42,43. The response of the system is enhanced by selectinganishing for a critical¢., at which the system becomes
wmeg IN the vicinity of expected excitation frequencies. unstable. Probing the system in this regime is very difficult,

In a second stage, the condensate evolves in an unpesince even a slight disturbance drives the collapse. &For
turbed trap(i.e., A,=0). The condensate widths are moni- >/ ~3.68, it is not possible to obtain stable ground-state
tored and subsequently Fourier transformed to reveal the exolutions of the time-independent GPE]. The variational
citation spectrum. Our aim is to determine t{potentially  analysis reproduces the numerical results for relatively weak
smal) deviations of the excitation frequencies with respectdipolar interactions. However, it does not describe well the
to those expected for purely short-range interacting gases, agimerical results close to the instability.
precisely as they can be experimentally measttggically Figure 3 depicts a similar dependence for the cigar JILA
Awl wy,p=0.01[28,29). Long integration times are neces- trap. In this case the breathing mode is the lowest one. The
sary to accomplish the desired spectral resolution. This introfrequency of mode 1 displays an upward shift whereas that
duces serious technical difficulties, since a large number obf the quadrupole mode stays essentially untouched. Again,
integration steps is needed to guarantee the energy conserthe instability threshold is not correctly predicted by the
tion during the whole evolution. Note that additional compli- variational analysis.
cations arise from the evaluation of the interaction integral in
Eg. (1) at each time step. 2. Interplay between short-range and dipole-dipole interactions

Let us now consider the case in which the short-range
interactions and the dipole-dipole ones have a comparable
For the case of dominant dipole-dipole interacti¢h6], strength[8,9,13,12,11 In particular, we have performed our

the short-range part of Eq1) can be safely omitted. We simulations for the particular case 8fCr, which has drawn
consider two different trap geometries that were employed atome experimental intere$i9—-23, since it possesses a
JILA in Ref. [28], with a trap aspect ratib=8"4 (referred  large magnetic dipole moment ofu (Bohr magnetons

to as pancake JILA trgpand a trap witH =8 (referred to  The value ofa for this element is at the moment unknown,
as cigar JILA trap The latter trap has been recently em-and consequently we have explored different valuea if
ployed for experiments if°Rb [26]. the calculations below. In the following, the trap parameters

1. Dominant dipole-dipole interactions
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I I U S 0 2x10* 4x10“N 6x10*  sx10'  1x10°

FIG. 5. Difference of excitation frequency for mode 1 in the

Z'G' 3. Numerlcal_ reslults foorl the_ elxutatl(;n fr_equemf:lehs Ofabsence and in the presence of dipole-dipole interactions, as a func-
modes 1(squarej 2 (triangles, and 3(circles as functions of the tion of the total number of atomN, for a=ay, and a trap aspect

dipolar parametef for a gas of condensed dipoles in the cigar JILA __.. | _ o :
L s . _ ratio | = /485/40(data from the variational analysis
trap. The solid lines indicate the corresponding variational results. ( ysi

correspond to those of an ongoing experiment in Stuttgadowest mode is not reproduced correctly even qualitatively.
[40], namely,w,=27x40 Hz andw,=2mX485 Hz. Figure 4 also presents the excitation frequencies for the same
Figure 4 shows the three lowest modes for different val-System in the absence of dipole-dipole interactions. Apart
ues ofa, for the case oN=10000 atoms. Wheais smaller from the obvious presence of the instability in the dipolar
than a.;, the system becomes unstable due to an unbafFase(and the corresponding behavior of the lowest maude
anced attractive component of dipole-dipole interactiongbserve large frequency differences for mode 1 between the
[8,9,13,1]. When approaching®"/a,,=0.23 from above, cases with and without dipole-dipole interactions.
the frequency of the lowest mode decreases to 0 and the The above result suggests that the effects of dipole-dipole
system collapses. For 0.2%&/ay,<0.26ay, the lowest interactions may be detectable. Having discussed the role of
mode(triangles has a breathing geometry, whereas the high#, it is thus important to discuss the possible valueslaind
est one(circles is quadrupolelike. The opposite is true for @,/w,, which could maximize the dipole-induced frequency
alay,>0.26ay,. The highest mode shows virtually no de- Shifts. o _
pendence on the scattering length whereas the frequency of Figure 5 shows the deviation between the case with and
mode 1 is shifted upwards. Again, close to the instability, thevithout dipole-dipole interactions, for the mode &,/w,
results obtained from the variational calculation differ from =40/485, anda=ay,. For this calculation we have em-

those obtained numerically. Moreover, the behavior of thePloyed the variational method as it is very exact away from
the instability. We observe that for number of atorNs

greater than 5000 the frequency shift is observahke.,

] greater than 0.01), and reaches its maximunB(6%) for

i N==10 000 which should be the number available in ongoing
experimentg40]. In this case, shifts for modes 2 and 3 are
substantially lower £0.001).

& | | Finally, we have analyze@ising the variational method

3 the dependence of the spectrum on the trap aspectl rétio

2.5 T T T T T T T T T T

2.0

1.5 b

Lo 7 a=ay, andN=10000. The results are presented in Fig. 6.
We observe that in pancake traps with0.7, the quadrupole
0.5 A mode experiences a shift of up to 10% with respect to the
A . . . .
_____ L, A 1 nondipolar case. We have confirmed this conclusion by per-
0.05 R g forming an exact numerical simulation of the perturbed GPE
) alay ’ ’ for =0.58, a=ay,, andN=10000. For these parameters

the excitation frequency of mode 3 is 1a§(1.86w,) with

FIG. 4. Excitation frequencies of modesfilled square} high-  (without) dipole-dipole interactions. The remaining two
est (filled triangles and lowest(filled circles as functions of the modes also display large shifts over a wide range of aspect
scattering lengttliexpressed in units of the corresponding value forratios.
sodium) for a condensate of 10 000 chromium atoms in a trap with
w,=2mXx40 Hz andw,=27Xx485 Hz (numerical results The
corresponding variational values are depicted by dashed lines. Solid |, BALLISTIC EXPANSION OF A DIPOLAR BEC
lines indicate variational data for the case with no dipole-dipole
interactions and the corresponding numerical results are plotted In typical BEC experiments, the measurements are per-
with empty symbolgnote that we have not been able to probe theformed after removing the trapping potential and allowing
lowest mode numericaly for a ballistic expansion of the condensate. It is the aim of
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L L R L L L L during the time of flight. On the contrary, fde>1.12 the
i cloud becomes pancakelike after expanding fo¢ adnd for
I<I*, the initial pancake cloud always becomes cigar
shaped.

0.05F

V. GROUND STATE OF A BINARY DIPOLAR BEC

((Ddip- nodip)/ ('op
(=

In the previous sections we have shown that various phe-
nomena are expected in dipolar BEC. One can therefore ex-
pect that even a richer behavior can be displayed by a mul-
. o . ticomponent dipolar BEC. In the case of two-component
0.5 1 1.5 2 25 3 35 dipolar gases, the system properties depend on a large num-

trap aspect ratio 1 ber of control parameters, including the number of particles
in each component, the strengths and orientations of the di-
_ : _ \ e poles, and the trap geometries. In the following, for simplic-
line), breathing(dotted ling, and quadrupolelikdsolid line) be- . "\ve focus on the case of a BEC of two dipolar identical
tween t_he cases of purely contact and mixedntact an_d dipole- components polarized in opposite directions. As discussed in
dipole) interactions as afunctlon_ o_f the trap as_pect ratio for 10 OOOSec. | this should be the case for HuAdmolecules in a
atoms ant=ay, (data from variational analysis magnetic field, where the magnetic moment is oriented by
the field, but the(possibly large electric moment can be
this section to briefly discuss such an expansion by means @farallel or antiparallel to the direction of the applied mag-
the previously introduced variational approach. After evalumetic field. To simplify the analysis even further, we consider
ating the minimum of the potential provided by E®), i.e.,  only a spherical trap. Thus, the system is determined’ by
the ground state of the trapped gas, welsgf ,=0 in Eq.  and =N, /N, where as before\ is the total number of
(7) and evolve these equations using the ground state as grticles and\, is the number of particles in the component
initial condition. In this section we restrict ourselves to the| The system can be described by a system of two coupled

-0.05|

FIG. 6. Difference of excitation frequency for modesdhshed

case of dominant dipole-dipole interactions. GPEs:
The ballistic expansion of a short-range interacting BEC
is characterized by an inversion of the aspect ratio of the v2 2
condensate cloud, i.e., cigar-shaped condensates become;j lh:{ ——+ =+ +LVi(r)—(1— ﬂ)Vz(r)]] W1,
pancakelike after expansion, and vice versa. This is not nec- 2 2

essarily the case in dipolar condensates. Figure 7 shows the (113
condensate aspect ratio for a spherical trap, before releasing

the trap(dasheg, and once the aspect ratio reaches a station- .. vZ r2
ary value after the expansidsolid). The aspect ratio of the 2=~ 5 T 5 ++ = Vi) + (A= )V ]} 2,
cloud decreases during the expansion, but never becomes (11b

smaller than 1, i.e., the condensate keeps its original cigar-
shaped character during the expansion. A similar behavior ighere \V,(r)=fdr’(1-3 co2 6)|(r’,t)|%|r—r'|3. In the

observed for ¥1<1.12, where there exists a range &f apove expression we have employed harmonic oscillator
values for which the BEC remains C|garI|I_<e. F!dr<|<1 units of length Hme. For equal population of the compo-
and for ¢ close toZ, the BEC also remains cigar shaped pents (5=0.5) both ground-state wave functions are the
same. As a consequence, the nonlocal interaction terms van-

] ish and the system behaves like an ideal gas, the ground-state
] wave functions being that of the corresponding harmonic

l oscillator. However, as the interaction strengthincreases,
the system becomes unstable. The reason of this instability is
rooted in the excitation spectrum and is discussed below.

For each value o it is possible to compute a criticgl,,
above which no stable solution of Eq41) exists. The cor-
responding stability diagram, resulting from a numerical so-
lution of Egs.(11), is presented in Fig. 8. We observe that the
more symmetric the mixture is, the more stable it is.

For »+ 0.5 the ground state has a more complicated struc-
ture. In this respect it resembles solutions for short-range
interacting binary condensatd85,36. In particular, the
component whose self-interaction is stronger partially wraps

FIG. 7. Aspect ratio as a function of for a condensate initially ~around the other. However, contrary to short-range interact-
trapped in a spherical trap of frequeney before the expansion ing binary BEC, due to the anisotropy of the dipole-dipole
(dashedland after 48.B* (solid). interactions, the density dip in one component appears only

1.8

Condensate aspect ratio L
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1.5 — T T T components. We first discuss the homogeneous case, and
7'_ ] then study the case of harmonically trapped binary dipolar
I BEC.
6.5 .
unstable unstable A. Homogeneous space
K ] ) . .
I Let us consider two species of dipolds=d,u, andd,
>3 ] = —d,u, with respective densities; andn, in a homoge-
5k i neous box of volumé/. The Hamiltonian in second quanti-
. zation is
4.5 . .
I N hok
R 1 A A 1 R 1 A — T
4 02 04 06 0.3 1 H= azlz om 2kalka

n

1
S . . _ ot
FIG. 8. Stability diagram for a binary condensate of oppositely +5 Z > gk} Kbikiko)ay, ay ai .ac .
polarized dipolar gases in a spherically symmetric trap. Above the a=12 Ky Ko k] k) 1= "2

line there are no stable ground-state solutions.

A Tt
along the radial direction, whereas alongoth components _k kEk, g g(kl’k2’kl’kZ)akilakézakZZakll' 12
possess Gaussian profiles. An example of such a structure is L
shown in Fig. 9. with

In the analysis presented in this section we have neglected
the influence of short-range interactions. Since the two com- L, N N
ponents are identical except for the opposite dipole moments, g(kl’kz;klka):f drf dr' g (N, (FVIr=r’)
the short-range interactioriboth intercomponent and the in-
tracomponent ongsare the same. Therefore, in the absence Xihe, (1) e, (1), (13
of dipole-dipole interactions a miscible mixture is expected,
which differs from the ideal-gas Gaussian case considerednda,; the annihilation operator of a particle of thth com-
above(eventually acquiring a Thomas-Fermi profilélow- ~ ponent with momentunk. Performing the Bogoliubov ap-
ever, in the same way as above, the dipole-dipole mean fieldsroximation @gf ap=+N; and agzz ag,;=N,), one ob-
will be exactly canceled forp=0.5. Therefore, the cloud is tains
expected to remain in an unperturbed Thomas-Fermi profile
until the £ coefficient reaches a critical valdg, (only quan- N Cy1at 2n /0yt
titatively different from that obtained in agrsencg gf short- H_k;o {Lect2B(k) Jagan tlact 20 Bk Jagae
range interactions For > .., the system becomes unstable. R

+B(k)[(ala’ g +ama_ )+ A4 (aha’ ,+apa )

VI. EXCITATIONS OF A BINARY DIPOLAR BEC _Zh(akla—kz"'alla—kz"'allakz"' alzakl)]}v (14)

In this section we analyze the excitation spectrum of the - A
previously discussed gas of two oppositely oriented dipolaivith — ex=A7k%2m,  ynd;=Ayn,d;, and  B(k)
=(877/3)\/(77/5(n1d§)Y20(k). The diagonalization of the

L L Hamiltonian provides two different branches of quasiparticle
041 T excitations:
~ 02} - Ei=ex, (1539
o
S . L , 32w |m 5 5 L\
é 0 Eo=| et 3~V 5 (1+A)(ndD) Yao(k) e
I I '
= 1
L o4 i (15b)
> For the case ofA—0, the spectrum of a homogeneous
02} i single-component dipolar BEC is discussed in Sec. Il. As
observed, the spectd5a is that of a soft mode, whereas
o1 - A o the second brancfi5b) is even more unstable than that of a
-4 3 2 -1 0 1 2 3 4 single-component BEC.

z/ay,

FIG. 9. Density profiles along the radialpper graphand axial _ o o _
(lower graph directions for a binary condensate of two oppositely ~ For simplicity, we limit ourselves to the case of a spheri-
polarized dipolar gases. Parameters are0.8 and;=4.8. cal trap with frequency, but similar arguments can be em-

B. Trapped case
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ployed for a cylindrical trap. We also considel|=|d,| and
7=0.5 (i.e., Ny=N,=N/2). As we have already noted, in
this case the ground state of the system is the ground state of
a harmonic oscillator. It is therefore more convenient to re- -g(n,0;n",00D,,}. (190
write the Hamiltonian in terms of the creation and annihila-

tion operators of the harmonic oscillator modes for the dipole

components 1 and 2:

€,D,n=—fiwyD o +2N;d? >, {g(n,n";0,0C,,
n'#0

In the following, we omit, for simplicityy in the notation for
the A, B, C, andD coefficients. We observe that, like in the
homogeneous case, we have two different branches of qua-

N t o :
H—; ﬁwn(ag:lanl+ an28n2) siparticles, one of them being a soft mode. The last two
equations are the BdG equations for the nonsoft mode. From
N,d? _ - f[h_e propgrties of sp_herical harmonics and thesgmbols,
T ;io {9(n1,n2;0,0a; 18, it is possible to obtain that
1112

+ g(oao;nlanZ)anllan21+ g(nl ,n2 ;OYO)aI12aE22 g(o’o;nlm,nrl rmr) — g(nlm,n’l ’m,;0,0)

+9(0,0in1,nz)an 280 2+ 29(”1.0:n2.0)arﬁ113n21 =g(0,0nIm,n"l"=m) Sy m

+29(Nn1,0;n2,0)a) »a,, 2 X g(nlm,0;n'l'm’,0)

_Zg(oio;nlinz)anllanzz :g(n I m 101n|m10)

=0(0,0;nIm,n"l1"—m) S/ m -
—29(n1,n2;0,0)a§11a§22—29(n1.0;0n2)aﬁllanzz e
—Zg(nl,O;Onz)aﬁlzanzl}, (16)  Also, I’=1,1+2 must be fulfilled. Employing these proper-
ties, and changing to the variable$,,=Cnm—
(—D)™ni—m: Grim=Cnim*+(—1)"D,_m., One obtains
wheren=(n,|,m) denotes the set of spherical quantum num-that G,= (€/f ®,)Fm, and

bers for the corresponding eigenstate of the harmonic oscil-
lator, % w,, is the energy of the eigenstate and

€°F yim= (A wy)°F yim+ 4N1d°7 o),
g(nl,nz;ns,n4)=f drf dr’¢:1(r)¢:2(r')V(r—r') XZO g(0,0;nlm,n’'l"—=m)Frprm.  (20)
n

X (1) (). (17)

. ) One can write
Let us perform the Bogoliubov transformation

b”:;o (uvnan1+Unvagl""avnanz"'znvagz)' (18) 1
gOomIm, I 'm)=(~ 1)V h(nlin’ 1)

- a

which satisfiese,b,=[b,,H], leading to the corresponding 0

Bogoliubov-de Genne@8dG) equations. Such equations can X(I"mll,m|20), (21)
be simplified by taking the more appropriate variableg

=UntUn, Bin=vint o, Con=Uim=Un, Din=Vin  ypereay=fil2mae. In Eq. (21) the angular contribution is
—v,n. Then, the BdG equations take the form: given by

pectode ol 12

Byn=—%wnB,n, 19b
B = Tl OnBun (190 ><{5(2|+1)(2|’+1) vz

4 ' (22)

€,Con=HhwnC,n+ 2N, d? 2 {g(n’,0;n,0)C,pv
o whereas the coefficients(n,l;n’,|") constitute the radial

-g(0,0;n,n")D .}, (190 contribution and are of the form
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n+n’+3

I ——
8 1 2
h(n,I;n",I")= - . (23
34/5 202 n+1+3\ (n=1+2\ [n"+I"+3) [n'—1"+2
r r r r
2 2 2 2
|
Then the problem reduces to finding the eigenvalues of VIl. CONCLUSIONS

the following equation: In this paper we have analyzed the ground state and the

excitation spectrum of single- and two-component dipolar
condensates. For the case of single-component BECs we

€2F pim=N?F pim+ \/Egn 2 2 (_1)(l*l’)/2h have shqwn that their stability properties are determined by
'=11+2n'=I' the trapping geometry. In particular, for sufficiently pancake-
X (nl:n" 1)1 m{Im|20)F s (24) like traps the condensate is always stable and independent of

the number of particles. We have then analyzed the excita-
tion spectrum of the single-component condensate by analyz-
) ) ) o ) ) ing the response of the condensate to small perturbations and
where is defined in Eq(10), ande is in units of (:®)*.  comparing the results with analytical calculations based on a
From the analysis of the spectrum one can observe that fQf iational approach. We have discussed in detail the nature
{>{e=6.7 the energy of the lowest state of the subspacgs o instability and associated it with vanishing of fre-
n=2, m=0 becomes imaginary. Therefore, although thequency of one of the excitation modes. The scaling behavior

grounq state of thg mixture of antiparallel .dlpolar COMPO- ¢ this frequency was also analyzed. We have discussed dif-
nents is that of an ideal gas, the system will eventually be; . o : . X

. - ferent possible scenarios in which the dipole-dipole effects
come unstable fom> 7., due to the appearance of imagi-

nary excitation frequencies. The value &f compares very goul(_i ha;vehok?{servabl_e teffectt_s e\fl?hn n thle p reserllgeb of fa
well with the numerically found value of.,=7.3 for the ominant short-range interaction. ‘This analysis cou'd be o

onset of the instability. special _interest for ongoing experimgnts on atoms with large
Finally, it is interesting to analyze the situation in which Magnetic moments, such as chromifia9]. We have pro-

<1, since in this situation the states with differerdo not ~ vided guidelines for experimental parameters corresponding
mix, and one can analytically diagonalize in eactubspace. !0 largest discrepancies between the cases with and without
The first excited states afe units of (hw)?] dipole-dipole interactions. In the second part of the paper we
have analyzed the properties of a two-component BEC of

dipolar particles. In particular, we have studied the stability

5 of the ground state as a function of the relative density of

€(n=11=1m=0)=1+42/m{/15, 29 poth species as well as the appearance of phase separation in
the binary condensate. Finally, we have obtained the excita-
tion spectrum for this particular physical system and dis-

(n=1l=1m==1)=1-2\2/m¢/15, (26)  cussed the nature of its instability.
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