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Ground state and elementary excitations of single and binary Bose-Einstein condensates
of trapped dipolar gases
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We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped
dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we
discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the
dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas
composed of two antiparallel dipolar components.
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I. INTRODUCTION

The nature and stability of a Bose-Einstein condens
~BEC! @1,2# are strongly influenced by the interparticle inte
actions that are described by thes-wave scattering lengtha.
If a.0 the interactions are repulsive, and condensates
an arbitrary large number of particles are stable. On the c
trary, spatially homogeneous condensates witha,0 are ab-
solutely unstable with regard to local collapses@3#. The pres-
ence of a trapping potential changes the situation drastic
as revealed in successful experiments with magnetic
trapped atomic7Li ( a5214 Å) @2,4#. As found in theoret-
ical studies@5–7#, there will be a metastable BEC if th
number of condensed particles is sufficiently small, such
the spacing between the trap levels exceeds the mean
interparticle interactionn0ugu ~where n0 is the condensate
density, g54p\2a/m, and m is the atom mass!. In other
words, the BEC is stabilized if the negative pressure cau
by the interparticle attraction is compensated by the quan
pressure imposed by the trapping potential.

The effects of the interparticle interactions on the cond
sate properties have been mainly discussed for the cas
van der Waals~short-range! interactions. However, the BEC
in the presence of dipole-dipole interactions has rece
raised a considerable interest@8–16#. Novel physics is ex-
pected for dipolar BEC, since the dipole-dipole interactio
are long range, anisotropic, and partially attractive. The n
trivial task of achieving and controlling dipolar BECs is th
particularly challenging.

The interest in dipolar gases has been partially motiva
by the recent success in creating ultracold molecular clo
@17,18#. This success opens fascinating prospects to ach
quantum degeneracy in trapped gases of heteronuclear
ecules that could interact via electric dipole-dipole forc
after being oriented in a sufficiently high electric field. O
the other hand, the ultracold gases of atoms with large m
netic dipole moments, such as chromium@19–23# or eu-
ropium @24#, have also been a subject of growing interest.
this case, the dipole-dipole interactions are not expecte
be dominant, although for a relatively smalla the BEC may
reflect the interplay between short-range and dipole-dip
interactions@9,13#. Interestingly, these effects can be amp
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fied by reducinga via Feshbach resonances@25,26#. Similar
effects have been discussed in Refs.@8,11,12# for ground-
state atoms with electric dipole moments induced by high
electric fields~of the order of 106 V/cm). It has been also
suggested that laser-induced dipole-dipole interactions co
be achieved by exciting atoms to Rydberg states@10#. In this
case applications to quantum information processing h
been discussed~see, e.g., Ref.@27#!.

The stability of the condensate is significantly modifi
by the presence of dipole-dipole interactions@8–11,13#. In
particular, a BEC of particles dominantly interacting via d
pole forces is, similar to condensates witha,0, unstable in
a spatially homogeneous case and can be stabilized by
finement in a trap. It has been shown@10# that the sign and
the value of the dipole-dipole interaction energy is stron
influenced by the trapping geometry and, hence, the stab
diagram depends crucially on the trap anisotropy. This op
new, interesting possibilities for controlling and engineeri
macroscopic quantum states. In particular, for dipoles
ented along the axis of a cylindrical trap there exists a criti
value l * 50.4 for the square root of the ratio of the radial
axial frequencyl 5(vr /vz)

1/2. Pancake traps withl , l * pro-
vide mostly a repulsive mean field of the dipole-dipole inte
action, and thus the dipolar condensate in such traps wil
stable at any number of particlesN. For l . l * the stability
requiresN,Nc , where the critical valueNc at which the
collapse occurs is determined by the condition that~on aver-
age! the mean-field interaction energy is attractive and clo
in absolute value to\vr .

The study of the condensate properties would be inco
plete without the analysis of the excitation spectrum, wh
determines the dynamical behavior of the system in the
gime of weak perturbations. Zero-temperature excitation
quencies have been extensively studied in the case of
densates in dilute alkali gases, both experimentally@28,29#
and theoretically@30–32#. In this paper we discuss the low
lying collective excitation frequencies of trapped dipol
BECs, complementing the analysis of Refs.@11,12#. We first
consider the case of dominant dipole-dipole interactions,
later on we discuss the situation where the short-range in
action is also relevant. In particular, we discuss in detail
nature of instability and demonstrate that one of the exc
©2002 The American Physical Society13-1
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tions frequencies tends to zero at the criticality as a powe
(Nc2N)b. We discuss the qualitative character of the lo
lying modes, and show that the exponentb undergoes a
crossover from 1/4 forl @ l * to 2 at l . l * . To illustrate the
case of mixed short-range and dipole-dipole interactions,
present predictions for the excitation frequencies for the p
ticular case of a chromium gas.

The second part of the paper is devoted to the analysi
binary dipolar BECs. In recent years, the development
trapping techniques has allowed for creation of multicom
nent condensates, formed by atoms in different inter
~electronic! states@33,34#. The physics of multicomponen
BEC, far from being a trivial extension of the single
component one, presents novel and fundamentally diffe
scenarios for its ground-state wave function@35,36# and ex-
citations @37#. In particular, it has been experimentally o
served that a BEC can reach an equilibrium state chara
ized by phase separation of the species in different dom
@34#. The analysis of multicomponent BEC has been so
mostly limited to the case of short-range interparticle int
actions~a model long-range interaction has been conside
in Ref. @36#!. One of the main goals of this paper is to an
lyze the properties of multicomponent dipolar BEC. Such
mixture can be achieved in different physical contexts.
particular, it would be, in general, the case for experiment
ultracold polar molecules@38,41#, and in chromium@39# in
which different magnetic-moment species are simultaneo
trapped in an optical dipole trap. It would also be the case
atomic electric dipoles created by laser-induced pumping
two different Rydberg states. Finally, the same situat
would appear in condensates of heteronuclear HundA di-
atomic molecules, for which the direction of the magne
moment is correlated~parallel or antiparallel! with the direc-
tion of the molecular axis. Thus, if the magnetic moments
oriented in a magnetic field, the electric moments can
quire two possible directions. We show below that a bin
dipolar BEC of two antiparallel dipole components diffe
qualitatively from the case of a short-range interacting bin
BEC.

Our paper is organized as follows. In Sec. II we brie
review the ground-state properties of a single-compon
BEC of trapped dipolar gases@10#. Section III is devoted to
the analysis of the excitation spectrum of single-compon
trapped dipolar condensed gases. Section IV briefly discu
the ballistic expansion of a dipolar BEC. In Sec. V t
ground state of a BEC of two different dipolar species
considered. The excitation spectrum for this case is discu
in Sec. VI. We conclude in Sec. VII.

II. GROUND-STATE PROPERTIES
OF A SINGLE-COMPONENT DIPOLAR BEC

A. Description of the system

In this section we briefly review the results of Ref.@10#.
We consider a condensate of dipolar particles in a cylindr
harmonic trap. In the following we consider the case of el
tric dipoles, although the same physics is expected for m
netic ones@9#. All dipoles are assumed to be oriented alo
the trap axis by a sufficiently strong external field. Accor
02361
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ingly, the dipole-dipole interaction potential between two d
poles is given byVd(R)5(d2/R3)(123 cos2u), where d
characterizes the dipole moment,R is the vector between the
dipoles (R5uRu being its length!, andu the angle betweenR
and the dipole orientation. Similarly as in Refs.@8–10#, we
describe the dynamics of the condensate wave func
c(r ,t) by using the time-dependent Gross-Pitaevskii eq
tion ~GPE!:

i\
]

]t
c~r ,t !5H 2

\2

2m
¹21

m

2
~vr

2r21vz
2z2!1guc~r ,t !u2

1d2E dr 8
123 cos2 u

ur2r 8u3
uc~r 8,t !u2J c~r ,t !,

~1!

wherec(r ,t) is normalized to the total number of conde
sate particlesN. The third term in the rhs of Eq.~1! corre-
sponds to the mean field of short-range~van der Waals!
forces and the last term to the mean field of the dipole-dip
interaction. In this section, we omit the term
guc(r ,t)u2c(r ,t), assuming that the interparticle intera
tion is dominated by dipole-dipole forces (d2@ugu
54p\2uau/m) and the system is away from shape res
nances ofVd(R). The effects of the short-range interactio
on the excitation spectrum are discussed in detail in Sec.

The wave function of the relative motion of a pair o
dipoles is influenced by the dipole-dipole interaction at int
particle distancesur2r 8u&r * 52md2/\2. This influence is
ignored in the dipole-dipole term of Eq.~1!, as the main
contribution to the integral comes from distancesur2r 8u of
order the spatial size of the condensate, which we assum
be much larger thanr * .

Away from the shape resonances, the dipolar conden
is unstable in the spatially homogeneous case. For all dip
parallel to each other, by using the Bogoliubov method, o
finds an anisotropic dispersion law for elementary exc
tions: «(k)5@Ek

218pEkn0d2(cos2 uk21/3)#1/2, where Ek

5\2k2/2m, n0 is the condensate density, anduk is the angle
between the excitation momentumk and the direction of the
dipoles. The instability is clearly seen from the fact that
small k and cos2 uk,1/3, imaginary excitation energies«
emerge.

B. Numerical results

Equation~1!, contrary to the usually employed GPE wit
short-range interactions, is an integro-differential equati
The evaluation of the integral term deserves special at
tion, since the integrand diverges at relative interparticle d
tances tending to zero. Fortunately, the calculation of
integral term can be simplified by means of the convolut
theorem:

d2E dr 8
123 cos2 u

ur2r 8u3
uc~r 8!u25F 21$F @V#~q!F @ ucu2#~q!%,

~2!

where F and F 21 indicate the Fourier transform and th
3-2
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inverse Fourier transform, respectively. The Fourier tra
form of the dipole-dipole potential reads

F @V#~q!54pd2~123 cos2 a!Fcos~bq!

~bq!2
2

sin~bq!

~bq!3 G ,

~3!

wherea is the angle between the momentumq and the di-
pole direction, andb is a cutoff distance corresponding to th
atomic radius~a few Bohr radii!. Sinceb is much smaller
than any significant length scale of the system, one
safely perform the limit

lim
b→0

F„V~r !…5
4p

3
d2~3 cos2 a21!. ~4!

In order to evaluate the Fourier transform of Eq.~2!, F(ucu2)
is numerically evaluated by means of a standard fast Fou
transform~FFT! algorithm and multiplied byF„V(r )….

The ground state of the system is obtained by employ
a standard split-operator technique in imaginary time. T
split-operator technique is also based on a FFT algori
and, consequently, for each time step four FFTs are nee
two for the calculation of the integral term and two for th
evolution. We would like to stress that this procedure con
tutes a nontrivial computational task. Additionally, the FF
algorithm must be evaluated in Cartesian coordinates and
a consequence, computationally demanding fully thr
dimensional calculations are required.

To understand the influence of the trapping potential
the dipolar condensate, we have simulated Eq.~1! for various
values of the number of particlesN, dipole momentd, and
the trap aspect ratiol. We have found the conditions unde
which the condensate is stabilized by the trapping field
investigated static properties of this Bose-condensed sta

For a stationary condensate the wave functionc(r ,t)
5c0(r )exp(2imt/\), wherem is the chemical potential, an
the lhs of Eq.~1! becomesmc0(r ). The important energy
scales of the problem are the trap frequenciesvz , vr and the
dipole-dipole interaction energy per particle defined asV
5(1/N)*Vd(r2r 8)c0

2(r )c0
2(r 8)drdr 8. Accordingly, the trap

frequencies, and the~renormalized! number of particless
5Nr* /amax @with amax5(\/2mvmin)

1/2 being the maximal
oscillator length of the trap# form the necessary set of param
eters allowing us to determine the chemical potential a
give a full description of the ground state of a trapped dipo
condensate.

We have found that the dipolar condensate is stable ei
at V.0 or at V,0 with uVu,\vr . This requiresN,Nc ,
where the critical numberNc depends on the trap aspect ra
l 5(vr /vz)

1/2. The calculated dependenceNc( l ) clearly in-
dicates the presence of a critical pointl * .0.43@10#. In pan-
cake traps withl , l * , the condensate is stable at anyN,
becauseV always remains positive. For smallN, the shape of
the cloud is Gaussian in all directions. With increasingN, the
quantity V increases and the cloud first becomes Thom
Fermi in the radial direction and then, for a very largeN, also
axially. The ratio of the axial to radial size of the cloud,L
02361
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5Lz/Lr , continuously decreases with increasing number
particles and reaches a limiting value atN→` ~see Fig. 3 of
Ref. @10#!. In this respect, for a very largeN we have a
pancake Thomas-Fermi condensate.

For l>1, the mean-field dipole-dipole interaction is a
ways attractive. The quantityuVu increases withN and the
shape of the cloud changes. In spherical traps the cloud
comes more elongated in the axial direction, and neaN
5Nc the shape of the cloud is close to Gaussian with
aspect ratioL52.1. In cigar-shaped traps (l @1) especially
interesting is the regime where\vz!uVu!\vr . In this case
the radial shape of the cloud remains the same~Gaussian! as
in a noninteracting gas, but the axial behavior of the cond
sate will be governed by the dipole-dipole interaction whi
acquires a quasi-one-dimensional~quasi-1D! character. Thus,
one has a~quasi! 1D gas with attractive interparticle interac
tions and is dealing with a stable~bright! solitonlike conden-
sate where attractive forces are compensated by the kin
energy@41#. Lz decreases with increasingN. Near N5Nc ,
whereuVu is close to\vr , the axial shape of the cloud als
becomes Gaussian and the aspect ratio takes the valL
'3.0. For l * < l ,1, the dipole-dipole interaction energy
positive for a small number of particles and increases withN.
The quantityV reaches its maximum and further increase
N reducesV and makes the cloud less pancake shaped. At
critical pointN5Nc the shape of the cloud is close to Gaus
ian and the aspect ratioL,3.0.

In the previous analysis, the case of dominant dipo
dipole interactions was considered. However@9,13,8,11#, in
the general case the effects of the short-range interaction
comparable or even larger than those related to the dip
dipole interactions. In such situations the short-range te
must be maintained in Eq.~1!. Provided thata is sufficiently
small and positive, the system can become unstable and
dergo a collapse in a way similar to what was observed
experiments with7Li @2# and 85Rb @26#. For the case of
negativea, the dipolar gas is expected to be highly unstab
but the dipole-dipole interaction could be employed to sta
lize the gas by the trap geometry in a way analogous to
one presented in Ref.@10#.

III. EXCITATIONS OF A SINGLE-COMPONENT
DIPOLAR BEC

In this section we analyze the collective excitations o
dipolar BEC. Since this is a potentially unstable syste
there is a fundamental question about the qualitative
quantitative nature of this instability. Another importa
question concerns quantitative aspects, in particular how
evant are the effects of the dipole-dipole interaction in
excitation spectrum and to what extent they can observe
the experiments.

In Sec. III A, we briefly summarize the variational ap
proach introduced by Pe´rez-Garcı´a et al. @31# and later used
by Yi and You @11,12# to describe the low-lying excitation
spectrum of a dipolar condensate~for a different variational
method using the self-similarity assumption, see Ref.@41#!.
We employ the notation introduced in Refs.@11,12#. Sec.
III B is devoted to the analysis of the behavior of the ex
3-3
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tations close to the instability. In Sec. III C, we calcula
numerically the response of the system to small perturbat
and compare the results with those yielded by the metho
Sec. III B. Finally, in Sec. III C, we also discuss how th
effects of the dipole-dipole interactions can manifest the
selves in the excitation spectrum for various kinds of dipo
gases and trapping geometries.

A. Variational approach

The problem of solving the time-dependent GPE, Eq.~1!,
can be restated as a variational problem corresponding to
stationary point of the actionS5*dtdrL related to the La-
grangian density@11,12,31#:

L5
i

2
\Fc~r !

]c* ~r !

]t
2c* ~r !

]c~r !

]t G1
\2

2m
u“c~r !u2

1Vt~r !uc~r !u21
g

2
uc~r !u4

1
u2

2
uc~r !u2E dr 8

Y20~u!

ur2r 8u3
uc~r 8!u2, ~5!

whereu254Ap/5d2 andVt(r ) describes the trapping poten
tial. We consider the following Gaussian ansatz for the c
densate wave function:

c~x,y,z,t !5A~ t ! )
h5x,y,z

e2h2/2wh
2
eih2bh(t), ~6!

where in contrast to Ref.@11# we omit the possibility of the
sloshing motion of the condensate. By inserting the ans
~6! into Eq. ~5! and integrating over the spatial coordinate
one obtains the effective Lagrangian. From this effective
grangian one finds the equations of motion of the variatio
parameters, i.e., the corresponding Euler-Lagrange e
tions. In particular, ifwh5vhA\/mv, v5vx,y , vz5lvx ,
vx,y5v, P5A2/pNa/A\/mv, and t5vt, the Euler-
Lagrange equations take the following form:

d2

dt2 vh1lh
2vh5

1

vh
3 2P

]

]vh
F 1

vxvyvz
X11

u2

g E dr

3expS 2(
h

h2

2vh
2 D Y20~u!

r 3 CG , ~7!

wherelx,y51 andlz5l.This equation describes the motio
of a particle with coordinates (vx ,vy ,vz) in an effective po-
tential

U~vx ,vy ,vz!5
1

2
~lx

2vx
21ly

2vy
21lz

2vz
2!1

1

2S 1

vx
2 1

1

vy
2 1

1

vz
2D

1
P

vxvyvz
F11

u2

g E dr

3expS 2(
h

h2

2vh
2 D Y20~u!

r 3 G . ~8!
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Small amplitude oscillations around the stationary so
tion can be found by studying second derivatives ofU. This
procedure provides the excitation frequency for the first th
compressional excitation modes of the system@11#. The ge-
ometry of these modes is depicted in Fig. 1. For cylindri
traps with the axis along the dipole direction, the projecti
of the angular momentum,m, on thez axis is a good quan-
tum number. For modes 2 and 3 we havem50, whereas
m51 for mode 1. In the following we call mode 2 (3) th
breathing~quadrupole! mode.

B. The nature of the instability

To study the nature of the instability, one needs to de
mine which mode becomes unstable when the numbe
atoms reaches the critical value and to describe the beha
of the frequency of the corresponding mode close to the c
cality. These two issues have been first discussed for the
of short-range interacting Bose gases witha,0. Bergeman
@32# observed numerically that, as the ratiog of the nonlin-
ear interaction energy to the trap frequency approache
given critical valuegc , the frequency of the breathing mod
tends to zero and merges with the frequency of the Goldst
mode corresponding to the overall phase of the condens
Above the criticality, the breathing mode becomes unsta
and attains complex frequency. Singh and Rokhsar@30# ana-
lyzed this instability using self-similar solutions describin
the modes~equivalently one may employ the variational a
proach of the preceding section!. They have shown that clos
to the criticality the frequency of the breathing mode 2 va
ishes asug2gcu1/4.

In the case of a dipolar gas with dominant dipole intera
tions the situation is completely different and much mo
complex. Only for aspect ratios far above the criticality,l
@ l * ( l .1.29), the situation resembles that of a gas witha
,0. The mode corresponding to the lowest frequency is
breathing mode. This mode becomes unstable when the
rameters→sc . The scaling behavior of the frequency o
this mode can be analyzed employing the variational
proach of the preceding section@11#. We find thatv2 goes to
zero as (sc2s)b, with b.1/4. For intermediate values o
l . l * (0.75, l ,1.29) the exponentb is still 1/4, but the
geometry of the mode which drives the instability depen
on s. For s far below sc the mode corresponding to th
lowest frequency has a breathing symmetry, whereas as
approaches the critical value ofs the lowest mode become

FIG. 1. Graphical representation of oscillations modes of
condensate.
3-4
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GROUND-STATE AND ELEMENTARY EXCITATIONS OF . . . PHYSICAL REVIEW A 66, 023613 ~2002!
quadrupolelike. Forl close to l * ( l ,0.75) the situation
changes and the mode corresponding to the lowest frequ
is quadrupolarlike. Forl not too close tol * the exponentb is
still close to 1/4. However, asl approachesl * , the exponent
b departs from 1/4 towards a greater value, which becom
2 at l 5 l * . The latter prediction must be understood as
qualitative argument, since forl very close tol * , the system
enters a Thomas-Fermi regime where the Gaussian ansa
no more valid.

C. Numerical results

In this section we study the low-lying collective excit
tions of a trapped dipolar BEC by analyzing numerically t
response of a BEC after applying an external perturbat
We compare our numerical results with those obtained fr
the variational approach described above. In the followi
we employ the method introduced in Ref.@42# for the case of
a short-range interacting BEC. After generating the B
ground-state wave function using imaginary time evolut
of the GPE, we first slightly perturb the trapping potential
a periodic way:

V~r ,t !5
1

2
m (

h5x,y,z
@11Ah sin~vmodt1ah!#2vh

2h2,

~9!

wherevmod is the modulation frequency,Ah are the ampli-
tudes, andah are the initial phases. A perturbation of a ch
sen symmetry can be accomplished by properly selec
these parameters. In particular, sufficiently small amplitu
are necessary near the instabilities, since the system ca
easily driven into collapse. On the other hand, by sett
large amplitudes one may probe various nonlinear effe
@42,43#. The response of the system is enhanced by selec
vmod in the vicinity of expected excitation frequencies.

In a second stage, the condensate evolves in an un
turbed trap~i.e., Ah50). The condensate widths are mon
tored and subsequently Fourier transformed to reveal the
citation spectrum. Our aim is to determine the~potentially
small! deviations of the excitation frequencies with resp
to those expected for purely short-range interacting gase
precisely as they can be experimentally measured~typically
Dv/v trap.0.01 @28,29#!. Long integration times are nece
sary to accomplish the desired spectral resolution. This in
duces serious technical difficulties, since a large numbe
integration steps is needed to guarantee the energy cons
tion during the whole evolution. Note that additional comp
cations arise from the evaluation of the interaction integra
Eq. ~1! at each time step.

1. Dominant dipole-dipole interactions

For the case of dominant dipole-dipole interactions@10#,
the short-range part of Eq.~1! can be safely omitted. We
consider two different trap geometries that were employe
JILA in Ref. @28#, with a trap aspect ratiol 5821/4 ~referred
to as pancake JILA trap!, and a trap withl 581/4 ~referred to
as cigar JILA trap!. The latter trap has been recently em
ployed for experiments in85Rb @26#.
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In the following, we study the excitation frequencies as
function of the dipolar parameter

z5N
m

\2
Amvr

\
d2. ~10!

Note the relations52A2vr /vminz. Since in the pancake
JILA trap the breathing mode has a relatively high frequen
and it is not excited by the perturbation of the GPE, w
concentrate in this case on the modes 1 and 3 of Fig. 1.
results for the pancake JILA trap are presented in Fig. 2.
z50 the ideal-gas resultv/vr52 is retrieved for both
modes 1 and 3. Asz increases mode 1 is shifted upward
whereas the frequency of mode 3~quadrupole! goes down,
vanishing for a criticalzcr at which the system become
unstable. Probing the system in this regime is very difficu
since even a slight disturbance drives the collapse. Foz
.zcr'3.68, it is not possible to obtain stable ground-st
solutions of the time-independent GPE@10#. The variational
analysis reproduces the numerical results for relatively w
dipolar interactions. However, it does not describe well
numerical results close to the instability.

Figure 3 depicts a similar dependence for the cigar JI
trap. In this case the breathing mode is the lowest one.
frequency of mode 1 displays an upward shift whereas
of the quadrupole mode stays essentially untouched. Ag
the instability threshold is not correctly predicted by t
variational analysis.

2. Interplay between short-range and dipole-dipole interactions

Let us now consider the case in which the short-ran
interactions and the dipole-dipole ones have a compar
strength@8,9,13,12,11#. In particular, we have performed ou
simulations for the particular case of52Cr, which has drawn
some experimental interest@19–23#, since it possesses
large magnetic dipole moment of 6mB ~Bohr magnetons!.
The value ofa for this element is at the moment unknow
and consequently we have explored different values ofa in
the calculations below. In the following, the trap paramet

FIG. 2. Numerical results for the excitation frequencies
modes 1~squares! and 3~circles! as functions of the dipolar param
eterz for a gas of condensed dipoles in the pancake JILA trap. T
solid lines indicate the corresponding variational results.
3-5
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correspond to those of an ongoing experiment in Stuttg
@40#, namely,vz52p340 Hz andvr52p3485 Hz.

Figure 4 shows the three lowest modes for different v
ues ofa, for the case ofN510 000 atoms. Whena is smaller
than acrit , the system becomes unstable due to an un
anced attractive component of dipole-dipole interactio
@8,9,13,11#. When approachingacrit /aNa.0.23 from above,
the frequency of the lowest mode decreases to 0 and
system collapses. For 0.23,a/aNa,0.26aNa the lowest
mode~triangles! has a breathing geometry, whereas the hi
est one~circles! is quadrupolelike. The opposite is true fo
a/aNa.0.26aNa . The highest mode shows virtually no d
pendence on the scattering length whereas the frequenc
mode 1 is shifted upwards. Again, close to the instability,
results obtained from the variational calculation differ fro
those obtained numerically. Moreover, the behavior of

FIG. 3. Numerical results for the excitation frequencies
modes 1~squares!, 2 ~triangles!, and 3~circles! as functions of the
dipolar parameterz for a gas of condensed dipoles in the cigar JIL
trap. The solid lines indicate the corresponding variational resu

FIG. 4. Excitation frequencies of modes 1~filled squares!, high-
est ~filled triangles! and lowest~filled circles! as functions of the
scattering length~expressed in units of the corresponding value
sodium! for a condensate of 10 000 chromium atoms in a trap w
vz52p340 Hz andvr52p3485 Hz ~numerical results!. The
corresponding variational values are depicted by dashed lines. S
lines indicate variational data for the case with no dipole-dip
interactions and the corresponding numerical results are plo
with empty symbols~note that we have not been able to probe
lowest mode numerically!.
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lowest mode is not reproduced correctly even qualitative
Figure 4 also presents the excitation frequencies for the s
system in the absence of dipole-dipole interactions. Ap
from the obvious presence of the instability in the dipo
case~and the corresponding behavior of the lowest mode! we
observe large frequency differences for mode 1 between
cases with and without dipole-dipole interactions.

The above result suggests that the effects of dipole-dip
interactions may be detectable. Having discussed the rol
a, it is thus important to discuss the possible values ofN and
vr /vz , which could maximize the dipole-induced frequen
shifts.

Figure 5 shows the deviation between the case with
without dipole-dipole interactions, for the mode 1,vz /vr

540/485, anda5aNa . For this calculation we have em
ployed the variational method as it is very exact away fro
the instability. We observe that for number of atomsN
greater than 5000 the frequency shift is observable~i.e.,
greater than 0.01), and reaches its maximum (*3.5%) for
N.10 000 which should be the number available in ongo
experiments@40#. In this case, shifts for modes 2 and 3 a
substantially lower (.0.001).

Finally, we have analyzed~using the variational method!
the dependence of the spectrum on the trap aspect ratiol for
a5aNa andN510 000. The results are presented in Fig.
We observe that in pancake traps withl ,0.7, the quadrupole
mode experiences a shift of up to 10% with respect to
nondipolar case. We have confirmed this conclusion by p
forming an exact numerical simulation of the perturbed G
for l 50.58, a5aNa , andN510 000. For these paramete
the excitation frequency of mode 3 is 1.76vr (1.86vr) with
~without! dipole-dipole interactions. The remaining tw
modes also display large shifts over a wide range of asp
ratios.

IV. BALLISTIC EXPANSION OF A DIPOLAR BEC

In typical BEC experiments, the measurements are p
formed after removing the trapping potential and allowi
for a ballistic expansion of the condensate. It is the aim

f

.

r
h

lid
e
ed

FIG. 5. Difference of excitation frequency for mode 1 in th
absence and in the presence of dipole-dipole interactions, as a
tion of the total number of atomsN, for a5aNa and a trap aspec
ratio l 5A485/40~data from the variational analysis!.
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GROUND-STATE AND ELEMENTARY EXCITATIONS OF . . . PHYSICAL REVIEW A 66, 023613 ~2002!
this section to briefly discuss such an expansion by mean
the previously introduced variational approach. After eva
ating the minimum of the potential provided by Eq.~8!, i.e.,
the ground state of the trapped gas, we setlx,y,z50 in Eq.
~7! and evolve these equations using the ground state a
initial condition. In this section we restrict ourselves to t
case of dominant dipole-dipole interactions.

The ballistic expansion of a short-range interacting B
is characterized by an inversion of the aspect ratio of
condensate cloud, i.e., cigar-shaped condensates be
pancakelike after expansion, and vice versa. This is not n
essarily the case in dipolar condensates. Figure 7 shows
condensate aspect ratio for a spherical trap, before relea
the trap~dashed!, and once the aspect ratio reaches a stat
ary value after the expansion~solid!. The aspect ratio of the
cloud decreases during the expansion, but never beco
smaller than 1, i.e., the condensate keeps its original ci
shaped character during the expansion. A similar behavio
observed for 1, l ,1.12, where there exists a range ofz
values for which the BEC remains cigarlike. Forl * , l ,1
and for z close tozcr , the BEC also remains cigar shape

FIG. 6. Difference of excitation frequency for modes 1~dashed
line!, breathing~dotted line!, and quadrupolelike~solid line! be-
tween the cases of purely contact and mixed~contact and dipole-
dipole! interactions as a function of the trap aspect ratio for 10 0
atoms anda5aNa ~data from variational analysis!.

FIG. 7. Aspect ratio as a function ofs for a condensate initially
trapped in a spherical trap of frequencyv, before the expansion
~dashed! and after 48.5v21 ~solid!.
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during the time of flight. On the contrary, forl .1.12 the
cloud becomes pancakelike after expanding for allz; and for
l , l * , the initial pancake cloud always becomes cig
shaped.

V. GROUND STATE OF A BINARY DIPOLAR BEC

In the previous sections we have shown that various p
nomena are expected in dipolar BEC. One can therefore
pect that even a richer behavior can be displayed by a m
ticomponent dipolar BEC. In the case of two-compone
dipolar gases, the system properties depend on a large n
ber of control parameters, including the number of partic
in each component, the strengths and orientations of the
poles, and the trap geometries. In the following, for simpl
ity, we focus on the case of a BEC of two dipolar identic
components polarized in opposite directions. As discusse
Sec. I this should be the case for HundA molecules in a
magnetic field, where the magnetic moment is oriented
the field, but the~possibly large! electric moment can be
parallel or antiparallel to the direction of the applied ma
netic field. To simplify the analysis even further, we consid
only a spherical trap. Thus, the system is determined bz
and h5N1 /N, where as beforeN is the total number of
particles andN1 is the number of particles in the compone
1. The system can be described by a system of two cou
GPEs:

i ċ15H 2
¹2

2
1

r 2

2
11z@hV1~r !2~12h!V2~r !#J c1 ,

~11a!

i ċ25H 2
¹2

2
1

r 2

2
11z@2hV1~r !1~12h!V2~r !#J c2 ,

~11b!

where Vi(r )5*dr 8(123 cos2 u)uci(r 8,t)u2/ur2r 8u3. In the
above expression we have employed harmonic oscilla
units of lengthA\/mv. For equal population of the compo
nents ~h50.5! both ground-state wave functions are t
same. As a consequence, the nonlocal interaction terms
ish and the system behaves like an ideal gas, the ground-
wave functions being that of the corresponding harmo
oscillator. However, as the interaction strengthz increases,
the system becomes unstable. The reason of this instabili
rooted in the excitation spectrum and is discussed below

For each value ofh it is possible to compute a criticalzcr
above which no stable solution of Eqs.~11! exists. The cor-
responding stability diagram, resulting from a numerical s
lution of Eqs.~11!, is presented in Fig. 8. We observe that t
more symmetric the mixture is, the more stable it is.

For hÞ0.5 the ground state has a more complicated str
ture. In this respect it resembles solutions for short-ran
interacting binary condensates@35,36#. In particular, the
component whose self-interaction is stronger partially wra
around the other. However, contrary to short-range inter
ing binary BEC, due to the anisotropy of the dipole-dipo
interactions, the density dip in one component appears o

0

3-7
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K. GÓRAL AND L. SANTOS PHYSICAL REVIEW A66, 023613 ~2002!
along the radial direction, whereas alongz both components
possess Gaussian profiles. An example of such a structu
shown in Fig. 9.

In the analysis presented in this section we have negle
the influence of short-range interactions. Since the two co
ponents are identical except for the opposite dipole mome
the short-range interactions~both intercomponent and the in
tracomponent ones! are the same. Therefore, in the absen
of dipole-dipole interactions a miscible mixture is expecte
which differs from the ideal-gas Gaussian case conside
above~eventually acquiring a Thomas-Fermi profile!. How-
ever, in the same way as above, the dipole-dipole mean fi
will be exactly canceled forh50.5. Therefore, the cloud is
expected to remain in an unperturbed Thomas-Fermi pro
until thez coefficient reaches a critical valuezcr ~only quan-
titatively different from that obtained in absence of sho
range interactions!. For z.zcr the system becomes unstab

VI. EXCITATIONS OF A BINARY DIPOLAR BEC

In this section we analyze the excitation spectrum of
previously discussed gas of two oppositely oriented dipo

FIG. 8. Stability diagram for a binary condensate of opposit
polarized dipolar gases in a spherically symmetric trap. Above
line there are no stable ground-state solutions.

FIG. 9. Density profiles along the radial~upper graph! and axial
~lower graph! directions for a binary condensate of two opposite
polarized dipolar gases. Parameters areh50.8 andz54.8.
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components. We first discuss the homogeneous case,
then study the case of harmonically trapped binary dipo
BEC.

A. Homogeneous space

Let us consider two species of dipolesd15d1uz and d2
52d2uz with respective densitiesn1 and n2 in a homoge-
neous box of volumeV. The Hamiltonian in second quant
zation is

Ĥ5 (
ka51,2

\2k2

2m
aka

† aka

1
1

2 (
a51,2

(
k1 ,k2 ,k18 ,k28

g~k18 ,k28 ;k1 ,k2!ak
18a

†
ak

28a
†

ak2aak1a

2 (
k1 ,k2 ,k18 ,k28

g~k18 ,k28 ;k1 ,k2!ak
181

†
ak

282
†

ak22ak11 , ~12!

with

g~k18 ,k28 ;k1 ,k2!5E drE dr 8ck
18

* ~r !ck
28

* ~r 8!V~r2r 8!

3ck2
~r 8!ck1

~r !, ~13!

andaki the annihilation operator of a particle of thei th com-
ponent with momentumk. Performing the Bogoliubov ap
proximation (a01

† 5a015AN1 and a02
† 5a025AN2), one ob-

tains

Ĥ5 (
kÞ0

$@ek12B~ k̂!#ak1
† ak11@ek12l2B~ k̂!#ak2

† ak2

1B~ k̂!@~ak1
† a2k1

† 1ak1a2k1!1l2~ak2
† a2k2

† 1ak2a2k2!

22l~ak1a2k21ak1
† a2k21ak1

† ak21ak2
† ak1!#%, ~14!

with ek5\2k2/2m, An2d2
25lAn1d1

2, and B( k̂)

5(8p/3)A(p/5(n1d1
2)Y20( k̂). The diagonalization of the

Hamiltonian provides two different branches of quasiparti
excitations:

E15ek , ~15a!

E25S ek
21

32p

3
Ap

5
~11l2!~n1d1

2!Y20~ k̂!ekD 1/2

.

~15b!

For the case ofl→0, the spectrum of a homogeneou
single-component dipolar BEC is discussed in Sec. II.
observed, the spectra~15a! is that of a soft mode, wherea
the second branch~15b! is even more unstable than that of
single-component BEC.

B. Trapped case

For simplicity, we limit ourselves to the case of a sphe
cal trap with frequencyv, but similar arguments can be em

y
e

3-8
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GROUND-STATE AND ELEMENTARY EXCITATIONS OF . . . PHYSICAL REVIEW A 66, 023613 ~2002!
ployed for a cylindrical trap. We also considerud1u5ud2u and
h50.5 ~i.e., N15N25N/2). As we have already noted, i
this case the ground state of the system is the ground sta
a harmonic oscillator. It is therefore more convenient to
write the Hamiltonian in terms of the creation and annihi
tion operators of the harmonic oscillator modes for the dip
components 1 and 2:

Ĥ5(
n

\vn~an1
† an11an2

† an2!

1
N1d2

2 (
n1 ,n2Þ0

$g~n1 ,n2 ;0,0!an11
† an21

†

1g~0,0;n1 ,n2!an11an211g~n1 ,n2 ;0,0!an12
† an22

†

1g~0,0;n1 ,n2!an12an2212g~n1,0;n2,0!an11
† an21

12g~n1,0;n2,0!an12
† an22

22g~0,0;n1 ,n2!an11an22

22g~n1 ,n2 ;0,0!an11
† an22

† 22g~n1,0;0,n2!an11
† an22

22g~n1,0;0,n2!an12
† an21%, ~16!

wheren[(n,l ,m) denotes the set of spherical quantum nu
bers for the corresponding eigenstate of the harmonic o
lator, \vn is the energy of the eigenstaten, and

g~n1 ,n2 ;n3 ,n4!5E drE dr8cn1
* ~r !cn2

* ~r 8!V~r 2r 8!

3cn3
~r 8!cn4

~r !. ~17!

Let us perform the Bogoliubov transformation

bn5 (
nÞ0

~unnan11vnnan1
† 1ũnnan21 ṽnnan2

† !, ~18!

which satisfiesenbn5@bn ,Ĥ#, leading to the correspondin
Bogoliubov-de Gennes~BdG! equations. Such equations ca
be simplified by taking the more appropriate variablesAnn

5unn1ũnn , Bnn5vnn1 ṽnn , Cnn5unn2ũnn , Dnn5vnn

2 ṽnn . Then, the BdG equations take the form:

enAnn5\vnAnn , ~19a!

enBnn52\vnBnn , ~19b!

enCnn5\vnCnn12N1d2 (
n8Þ0

$g~n8,0;n,0!Cnn8

2g~0,0;n,n8!Dnn8%, ~19c!
02361
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enDnn52\vnDnn12N1d2 (
n8Þ0

$g~n,n8;0,0!Cnn

2g~n,0;n8,0!Dnn8%. ~19d!

In the following, we omit, for simplicity,n in the notation for
the A, B, C, andD coefficients. We observe that, like in th
homogeneous case, we have two different branches of
siparticles, one of them being a soft mode. The last t
equations are the BdG equations for the nonsoft mode. F
the properties of spherical harmonics and the 3j symbols,
it is possible to obtain that

g~0,0;nlm,n8l 8m8!5g~nlm,n8l 8m8;0,0!

5g~0,0;nlm,n8l 82m!dm8,2m

3g~nlm,0;n8l 8m8,0!

5g~n8l 8m8,0;nlm,0!

5g~0,0;nlm,n8l 82m!dm8,m .

Also, l 85 l ,l 62 must be fulfilled. Employing these prope
ties, and changing to the variablesFnlm5Cnlm2
(21)mDnl2m , Gnlm5Cnlm1(21)mDnl2m , one obtains
that Gnlm5(e/\vn)Fnlm , and

e2Fnlm5~\vn!2Fnlm14N1d2\vn

3 (
nÞ0

g~0,0;nlm,n8l 82m!Fn8 l 8m . ~20!

One can write

g~0,0;nlm,n8l 8m8!5~21!( l 82 l )/2
1

2A2a0
3

h~n,l ;n8,l 8!

3^ l 8mu l ,mu20&, ~21!

wherea05A\/2mv. In Eq. ~21! the angular contribution is
given by

^ l 8,mu lmu20&5~21!mS l 8l 2
2mm0D S l 8l 2

000D
3F5~2l 11!~2l 811!

4p G1/2

, ~22!

whereas the coefficientsh(n,l ;n8,l 8) constitute the radial
contribution and are of the form
3-9
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h~n,l ;n8,l 8!5
8

3A5

1

2(n1n8)/2

GS n1n813

2
D

AGS n1 l 13

2
DGS n2 l 12

2
DGS n81 l 813

2
DGS n82 l 812

2
D

. ~23!
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Then the problem reduces to finding the eigenvalues
the following equation:

e2Fnlm5n2Fnlm1A2zn (
l 85 l ,l 62

(
n8> l 8

~21!( l 2 l 8)/2h

3~nl;n8l 8!^ l 8mu lmu20&Fn8 l 8m , ~24!

wherez is defined in Eq.~10!, ande is in units of (\v)2.
From the analysis of the spectrum one can observe tha
z.zcr56.7 the energy of the lowest state of the subsp
n52, m50 becomes imaginary. Therefore, although t
ground state of the mixture of antiparallel dipolar comp
nents is that of an ideal gas, the system will eventually
come unstable forh.hcr due to the appearance of imag
nary excitation frequencies. The value ofzcr compares very
well with the numerically found value ofzcr.7.3 for the
onset of the instability.

Finally, it is interesting to analyze the situation in whic
z!1, since in this situation the states with differentn do not
mix, and one can analytically diagonalize in eachn subspace.
The first excited states are@in units of (\v)2#

e2~n51,l 51,m50!5114A2/pz/15, ~25!

e2~n51,l 51,m561!5122A2/pz/15, ~26!

e2~n52,l 5$2,0%,m50!541~26A102!A2/pz/21,
~27!

e2~n52,l 52,m561!5412A2/pz/21. ~28!

From these expressions it becomes clear that, for exampl
the subspace of states withn52, m50 ~which is an admix-
ture of the noninteracting quadrupole and monopole mod!
even forz;0.1 deviations of more than 1% are expecte
One can also observe that vortices with vorticity in the
pole direction are less energetic than those with vorticity
the plane perpendicular to the dipole direction.
02361
f

or
e

-
-

in

s
.
-
n

VII. CONCLUSIONS

In this paper we have analyzed the ground state and
excitation spectrum of single- and two-component dipo
condensates. For the case of single-component BECs
have shown that their stability properties are determined
the trapping geometry. In particular, for sufficiently pancak
like traps the condensate is always stable and independe
the number of particles. We have then analyzed the exc
tion spectrum of the single-component condensate by ana
ing the response of the condensate to small perturbations
comparing the results with analytical calculations based o
variational approach. We have discussed in detail the na
of the instability and associated it with vanishing of fr
quency of one of the excitation modes. The scaling beha
of this frequency was also analyzed. We have discussed
ferent possible scenarios in which the dipole-dipole effe
could have observable effects even in the presence o
dominant short-range interaction. This analysis could be
special interest for ongoing experiments on atoms with la
magnetic moments, such as chromium@39#. We have pro-
vided guidelines for experimental parameters correspond
to largest discrepancies between the cases with and wit
dipole-dipole interactions. In the second part of the paper
have analyzed the properties of a two-component BEC
dipolar particles. In particular, we have studied the stabi
of the ground state as a function of the relative density
both species as well as the appearance of phase separat
the binary condensate. Finally, we have obtained the exc
tion spectrum for this particular physical system and d
cussed the nature of its instability.
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