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Shape of vortices for a rotating Bose-Einstein condensate
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For a Bose-Einstein condensate placed in a rotating trap, we study the simplified energy of a vortex line
derived by Aftalion and RiviergPhys. Rev. /64, 043611(2001)] in order to determine the shape of the vortex
line according to the rotational velocity and the elongation of the condensate. The energy reflects the compe-
tition between the length of the vortex, which needs to be minimized taking into account the anisotropy of the
trap, and the rotation term, which pushes the vortex along tieés. We prove that if the condensate has the
shape of a pancake, the vortex stays straight along thés, while in the case of a cigar, the vortex is bent.
We study the local stability of the straight vortex and find an estimate for the critical angular speed at which
bent vortices are nucleated. When vortices are nucleated, we prove that they must have some finite length.
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I. INTRODUCTION We let d=(%/mw,)*? be the characteristic lengthy,
=awy, 0,=Bw,. We define a small nondimensional pa-

Dilute Bose-Einstein condensates have recently beerametere, which characterizes the fact that we are in the
achieved in confined alkali-metal gases, and the study ofhomas-Fermi regime, by
vortices is one of the key issues. One type of experiments
consists in imposing a laser beam on the magnetic trap hold- ) d
ing the atoms to create a harmonic anisotropic rotating po- e%\e= A47Na’
tential[1—4]. Vortices are nucleated and the number of vor-
tices depends on the rotational velocity. It has been observeghereN is the number of particles anal is the scattering
experimentally{ 1] that when the first vortex is nucleated, the length. In the ENS experimeiit,2], ¢ =1.74x 102, while
contrast is not 100%, which means that the vortex line is nofn the MIT experimen{4], e=3.52< 10" 3. We rescale dis-
straight but bending. Numerical computations of the Grosstances byd/\s and the chemical potentiat, so that the
Pitaevskii equation have shown evidence of vortex bendingiew chemical potentiab, is given by

[5].

The aim of this paper is to characterize the dependence of o
the shape of the vortex line on the elongation of the trap and po=285 . 2
the rotational velocity. In particular, using a simplified en- y

ergy for a vortex line derived in6] from the Gross-

Pitaevskii energy, we study the stability and instability of the

straight vortex and we prove that when the condensate has

cigar shape the first vortex is bent, while when it is pancake p(1)=po—(a®x2+y2+ B222) 3)

shaped, the first vortex is straight and lies on the axis of

rotation. We also show that vortices cannot be nucleated t0ge the Thomas-Fermi limit of the wave function in rescaled

close to the boundary, because they have a minimal lengthynits. Then, we have obtained [if] a simplified expression
In [6], we have derived a simplified expression for thefor the energy of a vortex line, which is

energy of several vortex lines in a rotating trap from the

usual Gross-Pitaevskii energy describing the steady state of shwym|Ine|E[ ]

the condensate,

In these units, we havey=0.42 andp,=0.46, respectively,
fgr the ENS and MIT experiments. We let

with
h? T
En($)= | 5 IVIP+AD - (14,V $xx) €ly1- [ pai-0 [ pz @
Y Y
SO Wt 2gt samlelt @) i i i &
2 < Wl g 2930 : where(} is related to the experimental rotational velodily
by
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The energyE[ y] reflects the competition between the vortex jeast()p,>1. In the regiorD; , we will see that the vortex is
energy due to its lengtkfirst term) and the rotation term. ¢jose to the axis for alB. On the other hand, in the region
Note th.at the rotation term is an oriented integrdk (npt D, , the vortex goes to the boundary along the quickest path:
dl), which actually forces the vortex to be along thexis, it g is small, perpendicularly to the boundary, which gives
while the other term wants to minimize the length. This isyjse to a bent vortex, and #>1, the vortex stays along the
why, according to the geometry of the trap, the shape of thgyis of rotation.
vortex varies. _ , The organization of the paper is the following. First we
This energy is similar to that obtained [if] in the study  gydy the local stability of the straight vortex: S is large,
of the dynamics of the vortex line. Note that the energy thathen the straight vortex is a local minimizer. That is, wifgn
we actually derive irf6] is slightly more involved than Eq. gets |arge, the vortices tend to be straight, whilg i small
(4). In the regime of the experiments, it is reasonable tOpen the straight vortex loses local stability and the first vor-
restrict to this expressiof), taking into account the fact that oy t9 pe nucleated is bent. Next we study the critical fre-

the vortex core is sufficiently smallt is of sizee in our  qency for nucleation of curved vortices, and then the mini-
units) and neglecting the interaction of the curve with itself. i otion ofE[ y] in D; and D, according to the value g8.

We are interested only in t_he presence of the first vortexiye finally derive that a minimizer of the energy has a mini-
when there are several vortices, the energy has an extra tergy, length.

due to the repulsion between the lines.
In this scaling, the energy of the vortex-free solution is

. . II. STABILITY AND INSTABILITY OF THE STRAIGHT
zero. Thus, a vortex line is energetically favorable wheiB

are such that infE[ y]<0. The aim of this paper is to study VORTEX

the shape of the vortex lineg minimizing E[ y]. We define In this section, we study the stability of the straight vor-
the domainD={p>0}. This is the domain where the con- tex. Here and in the rest of this sectiop=p(0,z)=p,
densate lies. All the analysis will be made Th In what  — 32z%. We parametrize the straight vortex @g(z) =(0,2)

follows, we assume that we are at a veloclysuch that  for —z,,,<7Z<Zmax, With Zmna=Vpo/ 8. One can compute
there is a vortex line, and we want to find conditions®n E[y.] and derive that it is 0 fol)py,=5/4. We have two
and the elongatiorB for the line to be stable and either aims: first to show that fog small, when the straight vortex
straight or bent. has zero energy or small negative energy, that is (fpg
First of all, it has been observed numericdlbj that the  close to 5/4, then it is unstable. Then, we want to prove on
vortex line lies in the plane closest to the axis of rotation andhe contrary that ifg is fixed and() is sufficiently big, the
we can provide a rigorous justification. straight vortex is stable.
Theorem 1If a<1, then the energy is minimized when  We consider perturbations of the straight vortex of the
the vortex line lies in they(,z) plane, that is, the plane clos- form ys(z) = (v (2),z+ 5°W(z))+ O(83) for |z| <z We
est to the axis. require thatw be chosen so thai(ys(* zm.)) =0, thereby
Indeed, if we have a curvey parametrized asy(t) respecting the condition that the vortex line terminates at the
= (x(1),y(1),z(t)), then we can define the new curyét)  boundary of the cloud. _ .
=(0y(1),2(t)) by Z(t)=2z(t) and y(t)= Va?x2+y2. Then Writing a Taylor-series expansion f@&, one finds that
p(¥(1)=p(¥(1)). Sincea<1, y?<x*+y?, hencep(y)|Yl e
—Qp(7)z=p(y)|y|— Qp(y)z. It follows that the energy of ELys]=Elyslt 5 (0Bl ysv)+ (&%), 0

the new curveE[y] is less than or equal tB[ y]. If a=1,
that is, the cross section is a disc, then our arguments impl
that the vortex line is planar, but of course all transversal Zimax
planes are equivalent. (v,E”[ys]v)=f 2(2Qp—1)v?+pv'2dz.  (8)
From now on, we will assume that the curve lies in the
plane {/,z), so thatp, given by Eq.(3), only depends oy
andz. Recall from the expression & Eq.(4), that forE[ y]
to be negative, we negs— Qp? to be negative somewhere
that is,Qp>1. For fixed(), we define the regions

vhere

~ Zmax

To get this it is necessary to integrate by parts and use the
fact that the straight vortex solves the Euler-Lagrange equa-

' tions for E. In particular, this eliminates all terms involving
w. No boundary terms arise from integration by parts be-

L . o , causep(ys) =0 at the end points. In the case=0, this
Di={(y,2:0p(y,2)> 1}, Dor=D\D). © equation has been studied [i].

We will refer to these sets as the inner regibp and the We say that the straight vortex is stable if, E"[ ys]v)

outer regionD, . In the outer region, the energy of a vortex >0 for all v, and unstable if«,E"[ ys]v) <0 for somev.

per unit arc length is necessarily positive, sinee Qp? Theorem 2The straight vortex is stable if

>0, whereas in the inner region, for appropriately oriented

vortices it can be negative singe- Qp?<0. One can see Qp >§+ i 9)

easily that fory to have a negative energy, part of the vortex 074 4,32'

line has to lie in the inner region, that is, close to the center

of the cloud. Note that foD; to be nonempty, we need at The straight vortex is unstable < 1/y/3 and
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0
1+

5| a9

Qpp<st — (10) (1—e>2(0+4><—5 ((1—6)—/32
Po 6 Gﬁz . QPO
fl;?r somede[0,1). Itis helpful to writed as §=1— 582 for

Note that the ltwo vzalues are consistent in the sense th D me»n>0 to be determined. Then EG.4) can be written in
they both scale like 3° when B is small. For(} large, one
tt%rms ofn, as

expects several vortices in the condensate, but the fact tha
straight vortex is stable gives an indication that fbiarge,
each vortex should be nearly straight, which is consistent 0pe<5
with the observationg3]. Recall that the stabilization of the

cloud requires that the rotation is not stronger than the trap- o
ping potential, which reads in our notations This is satisfied if

1+(B%2)— (32 1 1 3
21 | Qpy< (B )2( 7) e (1_ )
(1+a®)elineg] 7B n

(15

1+(B%2)— (3/27,)>
nBA5— B> |

a<

(16)

Given the experimental values, E(@) cannot hold in the ) _
ENS experiment but there is a range(dfin the MIT experi- ~ The extremum is achieved foy close to 3, so we can take
ment. If 8 is big, then the straight vortex can be stabilized. 7=3 to find that Eq(10) is a sufficient condition for insta-

Remark 11t is interesting to see what happens in Theo-bility. Becaused=1— 78>0, this conclusion only holds if
rem 2 when(p,=5/4, that is, when the straight vortex has 8<1/\/3. For larger values of3, one can make different
zero energy. The first inequality yields thatdf>1/\/2, then ~ choices ofé to find thresholds for instability.
the straight vortex is stable for af} such thatQp,>5/4, To derive the sufficient condition for stability, note that
that is, whenE[ ys]<O0. If 8>1, we will see thaty, is not  for everyz,
just stable but in fact minimizeg. The second inequality

implies that if 8</2/13~0.39, then the straight vortex is 3e _ @:1_ 17)
unstable at the velocit§)p,=5/4 at whichE[ ys]=0. As a 2po  2po

result, for these values @, the first vortex to nucleate &3
increases is a bent vortex. Note that it has been observed
[8] that for 8= 1/2, the ground state of the system exhibits a

ultiplying v? by the expression on the left and integrating
y parts, we obtain

bent vortex. Numerical results ¢6] also show that bent 2o Zae [302 2
vortices are energetically favorable whgns small. f vde=J p 2—+—vu’ dz (18
All this indicates that by varying the elongation of the ~Zmax “Zmax L<P0 PO
condensate, one may hope to go from a situation where the. _
first vortex is bent to a situation where it is straight. §|n0e|z|/poszmaxlpo—1//3\/% for |2 <Zmax,
To prove the instability of the straight vortex, we will find , , 3 1
explicit perturbationsy for which (v,E"[ vs]Jv)<0. These f max Uzdzgf max ol — 2+ lv||o’| |dz.
also indicgte the shape qf good test.functions. ~Zmax ~Zmax | 2P0 Bpo
We define a perturbation (depending on a parametér (19

which for now we regard as fixed
9 sy Now we use the inequalitpb<a?/2+b?/2 to deduce

0 if Z<6Zpa0
( ) . (11) fzmm 2d fzmax ( 3 2 1( )2 d
v(z)= P vedz= —+ v+ = (v’ Z
(Z_ - 0) (1-9) b 22 0Zmar. ~ Zmax ‘Zmaxp 2po 2p0,32 2
max (20)
Herev is normalizgd S0 that(zy,.) =1. For this choice ob, In particular, if
a lengthy but straightforward calculation shows that
o Qpg>ot 2 21)
" = % 07T 5
(0. E"[7sJ0)= 355 [(1 0)(6+4) 4" 4p
5 0 then this implies thaty,E"[ ys]v)>0 for all v. This com-
-=—(1-0-p41+5 (12 pletes the proof of Theorem 2.
on 2
ZQPS/Z Ill. SHAPE OF THE VORTEX ACCORDING TO g
= 308 A(6). (13 In this section we prove that when the condensate cloud
has a pancake shape, then the straight vortex is always mini-
It follows that the straight vortex is unstable if mizing among vortices with negative energy.
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Recall thatD={p>0} and we writey(t) = (y(t),z(t)) to
denote a generic vortex line represented by a continuous Lip-

(p—Qp?)dz= f
d(D,
schitz function froml =[0,1] into D such thaty(0),y(1) (

(p—Qp?)dz. (26)
v)

Yi i

e dD. And by Stokes'’s theorem,
For such a curvey, let |, ;={tel:y(t)eD;} andl,,
=N\l ;. And let y; be the restriction ofy(-) to | ,;, and f —0p? dz=J 1-20 dvdz (2
similarly v, . a(DiﬂV)(p p) Dimv( p)pydydz (27)
The definition ofl, , implies that p(y(t))— Qp?(y(t))
>0 fOI’tE|70, and as a consequence The definition of D; implies that 1-20p<0, and so this

integral is clearly minimized ifD,NV is just the subset of
P ¥ = QP2 Z= | YO [p (1) = Qp2((1))],  Piv Wherepy=0, so that

(22)

f (p—sz)dzkf (1-2Qp)pydydz
which is positive inl, ,. Thus if y is such that  ; is empty, ADiNV) {(y.2)eD; :y<0}
then clearlyE[ y]>0 and it is energetically favorable not to (28)

have a vortex. This is the case, in particular, fopy<1 Again using Stokes's theorem and the fact that( p? van-
since therD; is empty. We may thus restrict our attention t0 jsnes ongD.

., we find that this is equal to
the casd , , nonempty.
Proposition 1.For all 8 and all(}, in the inner region, the z
straight vortex minimizes the energy, that gy, f
=inf{E[ y;]}, wherey; is the restriction ofy(-) to l,;, is
attained by the straight vortex. where (0+z,) are the points where the axis intersects

Proposition 2.For =1, in the outer region, the straight D, . Combining these inequalities, we find that
vortex minimizes the energy, that is, the infimuwh, of

{E[ o1}, where vy, is the restriction ofy(-) to | is at-
tained by the straight vortex.

Note that in the outer region, Proposition 2 only holds for
B>1.1f <1, the situation is somewhat more complicated:|t is easy to see that equality holds in E88), and hence in
Jy,pdl is minimized by a path that join®; to 9D along the  Eq. (30), exactly wheny is the straight vortex, and so we
y axis, whereas- [, p?dz is minimized by the straight vor- have proved Proposition 1. .
tex running along the axis. The minimizer of the full energy _ 10 Prove Proposition 2, fixy such thatl,; is nonempty.
reflects the competition between these two terms, and hendg'® Peginning and end of must lie in the outer region, and

" [p(02)-Qp%(02)]dz, (29

7,01

pd|—Qp2dz>fz* [p(02)—Qp%(02)]dz. (30)

Yi

is bent. y intersects the inner region, $9 , must consist of at least
We always have two components. Letg,,b;) denote the first such compo-
nent and é,,b,) denote the last, and writg; and y, to
E[y]=E[ %]+ E[ yo]=M;+ M, . (23) denote the corresponding portions gf, so thaty, is pa-

rametrized asy;=(y,2):(a;,b1)—D,, with yi(a;) e D
In particular, as a corollary of the above propositions we2"d 71(b1) € 7D;. We need to show tha, and y, both
deduce the following theorem. have more energy th.an the corresponding parts of the _stralght
Theorem 3For =1 vortex. We will consider onlyy,, as the argument foy, is
’ exactly the same.
Defineys=(0,{) to be a parametrization of the part of the
straight vortex joining (0y Zma to (0,—z,), where z,,

=\po/ B:

E[y]=Inf(OE[¥s]), (249

where vy, is the straight vortex along the axis. If E[ y]

<0, the equality in Eq(24) can happen only ify is the _ 1 _

straight vortex. {(t)=— E[y(t)2+'822(t)2]1/2’ {(t)= max{(s).
To prove Proposition 1, first note that assst

(31)
f pdl—Qp2d22f pldz—Qp2dz= | (p—Qp?)dz Recall that we havey,=(y(t),z(t)). The definjtion_is ar-
Yi Yi Yi ranged so that—/(t) is nondecreasing anflyd=¢. To

(25 prove the proposition, it thus suffices to show that

Since we have assumed thatloes not self-intersect, we can p(v) |71l = Qp2(v1)z=p(y9)| v — Qp3(vs) . (32
identify y with the (oriented boundary of an open s®tC D.

Then 3 can be identified with DNV |f f(t)>7(t), this is clear, because thgr=0, so the right-
=9(D;NV)\(dD,NV). Sincep— Qp?=0 precisely orvD;, hand side vanishes while the left-hand side is non-negative,
this implies that by the defining property of the outer regi@n, .
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And if £(t)=7(t), thenp(y,1(t))=p(ys(t)), and so in this ~ Point on the boundary is a= ¢+ g for B small. For this
case G=1—-Qp(y1(t)=1—Qp(ys(t))<1. So we only special testfunctiory, we can computé&[ y] to find that it is
need to show that less than

on 53

|yl —cz=|yd —c¢ (33 23
8 4

25
368+218%—4B% | — §+3,8—,32+ 10—8Qpy.

for anyce[0,1]. We will apply it toc=Qp(ys(t)).
To do this, first note that Thus, for 8 small, we find an upper bound for the critical
velocity which yields a negative energy for such a test func-

o1y tion:
=(y.2)|=| 2| | (39
a\B (220+ 9683)

So Po= 203+ 768)

2 1/2 —4,,2, 2
. +
1y |y (B
52 B4 B*2y2+22
_ o N 0.38[7].
Since3>1, we conclude thaf|<|y,|. Also, it is clear that As a conclusion, we have shown that there is a critical

|z|<]y4|. So if 0<a=<1, then value of Q called Q. with Q.pp~1.08, such that a bent
) . _ ) . vortex has negative energy and less energy than a straight
[yil—cz=|yil(1-c)=¢(1—c)=|ys|—c{,  (36)  vortex.

12 In the condition of the ENS experiment, this yiel€lsp,

(85  <1.08, that is, in the original variablsee Eq.(5)], &/w,
<<0.385, which is very close to the value found numerically

|£1=1v]

which proves Eq(33), and hence Proposition 2. V. MINIMAL LENGTH
IV. ESTIMATE ON Q¢ In the caseB<1, that is, when the vortex line is bent, we
) ) ) . will prove that the vortex has a minimum length. This is
‘We would like to derive a more precise estimate of therg|ated 1o the fact that the vortex has to go to the center of the
critical velocity for which a bent vortex minimizes the en- ¢joud and spend some time in the inner region.
ergy E[ y]. We have seen that fdE[ y] to be negative, we For an open set)CD with a Lipschitz boundary, we

need at leasllpo>1 so that the inner regio®; is NON-  onqow gU with an orientation in the standard way, so that
empty. Note that(lp,=1 is exactly the two-dimensional gigkes’s theorem holds.

critical velocity at the plang=0 for the existence of a vor- e will prove the following isoperimetric-type inequality.
tex. But a bent vortex cannot be a minimizerijfy] exactly Theorem 4 For every 0< <1,

atQpy=1, since the inner regio®; has to have some criti-

cal size so that the vortex energy in the inner region provides 3/2

a sufficient contribution to compensate the positive part due ’ LUPZGZ $(2\//3—0)1/2( Lup(ﬂ) (39

to the length in the outer region. On the other hand, for
Qpy=5/4, the straight vortex has 0 energy. Thus, the critical
velocity to obtain a bent vortex is1Q .pq<5/4. We want to for every connected open sUbSeCD.

obtain a sharper estimate by using appropriate test functions. Rema”.( 2_The exponent 3/2.'3 the best possible. An in-
To find good test functions, note that equality similar to Eq(39) is valid for 3>1, but the proof

needs to be modified a bit. For the straight radial vortex,

5
A'(0)=30%+40—|T— ——(2+ ) (37) f 16 (po)° 4 (pg)¥?
20 2dz=— and dl== ,
po 20 15 B 378
and soA has a local maximum at (40)
2 \/25 5 and so
- _ _ _p2
0*_ 3+ 9 Gon(l ﬁ )1 (38) —3p
R ( f pzdz) ( J pdl|  ~0528p)". (41
which lies in the interval (0,1) for the parameter range that au au

we care about. _ . o
Note thaté, is an increasing function of, which is  This shows that the constant (20)"” in Eq. (39) is fairly

consistent with numerical calculations showing that forclose to sharp fog<p<1, say.

larger values of), the minimizing path stays close to te (1) We use Stokes'’s theorem to calculate

axis over a longer interval. Fa@t= 6, , we compute the en-

ergy of the path which is straight betweer — ¢ and ¢ and f p%d ZZZJ ppydydﬁzj ppydydz (42
goes to the boundary along a straight line. The optimal end au U u-
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where U™ ={(y,z) e U:y<0}, since pp,<0 for (y,z)eD
such thaty=0.
So the coarea formula implies that

ey
2dz<2J Y Vp|dydz
Lup u*p|VP|| p| y

:sz S(J |Py| d
e\ 20 cUp0y.2=51 Vo

where p, =inf{p(y,2):(y,2) eU} and p*=sudp(y,2)
:(y,z) e U}. Thus

‘ f p?dz
U

s

(43

Py
<|p*—p |su;(sf —dl).
T Ty evnya =3 Vol
(44)

Thus to prove the theorem it suffices to establish the follow-

ing two claims:

Py f
S o—dl< dl 45
f{(y,z)eu:p(y,zrs}lel o’ 49
for everys, and
12
|p*—p*|<<2@1’2( Lu”d') : (46)

(2) We first prove Eq.(45). Fix somese (p, ,p*) and
write I's to denote{(y,z) e U~ :p(y,z)=s}. Also, letT', de-
note JUN{p=s}.

First assume for simplicity thdts is connected, so that it
consists of the short arc of the ellipgp=s} joining two
points, saypo=(Yg,Zp) and p;=(yy,z;) with zg<z;. We
can represent's as the image of the mapping

2—(y(2),2)=(~[s-B*2°1"%2), zp<z<z;.

(47)

Differentiating the identity p(y(z),z)=s we find that
pyY'(2)+p,=0. Thus

2 2.\ 1/2
:[1+y’(z)2]1’2:((py+pz)) :||Vp||
5 .
Py

Py
(48)

d
S0

It follows that

Z1
sf idlzsf dz.
(v, eUn(y.0=5V Z

On the other hand, the one-dimensional measuré ofs

certainly greater thamp;—po|=2z,—2,, and p=s on T,
and so

(49

ff p(z,y)dI=sI(T=s(z,—z;). (50)

PHYSICAL REVIEW A66, 023611 (2002

This proves Eq(45) if I' is connected. If not, one can apply
the same argument on each connected compondny .of

(3) Next we prove Eq(46). Let g, andg* be points in
dU such thatp(q,)=p,., p(gq*)=p*. Since we have as-
sumed that) is connectedgU contains a path joining, to
g*. In fact it contains two such paths. If we wrifgto denote
the set of all Lipschitz paths if® joining the level sefp
=p,} and the level sefp=p*}, it follows that

J pd1=2 iande.
au b%

yeP
Arguments in the proof of Proposition 2 show that {8r
<1, inf,_p[,pdl is attained by a path that goes in a straight
line along they axis. Thus

(51)

Yx
inffponzf (po—Yy?)dy, (52
yePYY y*
where y, =Vpo—ps«, Y*=Vpo—p*. And since y, ,y*
<\po
fy*( Y — fy*( —~y?)2ydy
y* Po 2\/[)—0 y* Po
1 (p* 1
= pdp= [(p*)?=(ps)?]-
2\po! o 4\po ’
(53

Sinceb?—a?=(b—a)? when 0<a<b, we deduce that Eq.
(46) holds. This concludes the proof of the theorem.

A short calculation starting from Ed39) shows that if
E[ v]<O0 then

1
dl>———+—. 54
L” ~(20%po) (59

We expect that even for a configuration with multiple vorti-
ces, each vortex line will satisfy a lower bound of the type
(54). In a configuration with several vorticeg, the energy
derived in[6] is ZE[ y]+1(«,;), where

(v )= | [In[dist(x,;)][dI.
Yk

Adding a vortex to a stable configuration with- 1 vortices
requires

E[yal+ 2 (¥, 7)) <0,

Since | >0, this implies, in particular, thaE[ v,]<0 and
hence the bound on the length.

VI. CONCLUSION

We have studied the shape of the first vortex line to be
nucleated in a harmonic anisotropic rotating potential, ac-
cording to() and the elongation of the cloyél. We investi-
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gate the stability of the straight vortex and obtain that wherenergy between the rotation and the inhomogeneity of the
Q) is large, the straight vortex is a local minimum of the trap, which makes the geometry of the experiment very im-
energy. We prove that when a vortex is nucleated, it is closg@ortant. In the casg@>1 (pancakg the vortex stays straight
to the axis of rotation where the condensate density is highalong thez axis while in the case wherg is small (cigan),

and that near the boundary, where the density is low, thé¢he vortex is bending. In the case @f being small, this
shape of the vortex depends on whether the cloud has a cigatiows us to establish a lower bound for the length of an
or a pancake shape. This shape reflects the competition in tlemergetically stable vortex line.
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