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Shape of vortices for a rotating Bose-Einstein condensate

Amandine Aftalion*
CNRS and Laboratoire Jacques-Louis Lions, Universite´ Paris 6, 175 rue du Chevaleret, 75013 Paris, France

Robert L. Jerrard†

Mathematics Department, University of Illinois at Urbana Champaign, Urbana, Illinois 61801
~Received 22 April 2002; published 27 August 2002!

For a Bose-Einstein condensate placed in a rotating trap, we study the simplified energy of a vortex line
derived by Aftalion and Riviere@Phys. Rev. A64, 043611~2001!# in order to determine the shape of the vortex
line according to the rotational velocity and the elongation of the condensate. The energy reflects the compe-
tition between the length of the vortex, which needs to be minimized taking into account the anisotropy of the
trap, and the rotation term, which pushes the vortex along thez axis. We prove that if the condensate has the
shape of a pancake, the vortex stays straight along thez axis, while in the case of a cigar, the vortex is bent.
We study the local stability of the straight vortex and find an estimate for the critical angular speed at which
bent vortices are nucleated. When vortices are nucleated, we prove that they must have some finite length.
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I. INTRODUCTION

Dilute Bose-Einstein condensates have recently b
achieved in confined alkali-metal gases, and the study
vortices is one of the key issues. One type of experime
consists in imposing a laser beam on the magnetic trap h
ing the atoms to create a harmonic anisotropic rotating
tential @1–4#. Vortices are nucleated and the number of v
tices depends on the rotational velocity. It has been obse
experimentally@1# that when the first vortex is nucleated, th
contrast is not 100%, which means that the vortex line is
straight but bending. Numerical computations of the Gro
Pitaevskii equation have shown evidence of vortex bend
@5#.

The aim of this paper is to characterize the dependenc
the shape of the vortex line on the elongation of the trap
the rotational velocity. In particular, using a simplified e
ergy for a vortex line derived in@6# from the Gross-
Pitaevskii energy, we study the stability and instability of t
straight vortex and we prove that when the condensate h
cigar shape the first vortex is bent, while when it is panca
shaped, the first vortex is straight and lies on the axis
rotation. We also show that vortices cannot be nucleated
close to the boundary, because they have a minimal len

In @6#, we have derived a simplified expression for t
energy of several vortex lines in a rotating trap from t
usual Gross-Pitaevskii energy describing the steady stat
the condensate,
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We let d5(\/mvy)
1/2 be the characteristic length,vx

5avy , vz5bvy . We define a small nondimensional p
rameter«, which characterizes the fact that we are in t
Thomas-Fermi regime, by

«2A«5
d

4pNa
,

whereN is the number of particles anda is the scattering
length. In the ENS experiment@1,2#, «51.7431022, while
in the MIT experiment@4#, «53.5231023. We rescale dis-
tances byd/A« and the chemical potentialm0 so that the
new chemical potentialr0 is given by

r052«
m0

\vy
. ~2!

In these units, we haver050.42 andr050.46, respectively,
for the ENS and MIT experiments. We let

r~r !5r02~a2x21y21b2z2! ~3!

be the Thomas-Fermi limit of the wave function in rescal
units. Then, we have obtained in@6# a simplified expression
for the energy of a vortex lineg, which is

«\vypu ln «uE@g#

with

E@g#5E
g
r dl2VE

g
r2dz, ~4!

whereV is related to the experimental rotational velocityṼ
by

V5
Ṽ

vy

1

~11a2!«u ln «u
. ~5!
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The energyE@g# reflects the competition between the vort
energy due to its length~first term! and the rotation term
Note that the rotation term is an oriented integral (dz not
dl), which actually forces the vortex to be along thez axis,
while the other term wants to minimize the length. This
why, according to the geometry of the trap, the shape of
vortex varies.

This energy is similar to that obtained in@8# in the study
of the dynamics of the vortex line. Note that the energy t
we actually derive in@6# is slightly more involved than Eq
~4!. In the regime of the experiments, it is reasonable
restrict to this expression~4!, taking into account the fact tha
the vortex core is sufficiently small~it is of size « in our
units! and neglecting the interaction of the curve with itse
We are interested only in the presence of the first vort
when there are several vortices, the energy has an extra
due to the repulsion between the lines.

In this scaling, the energy of the vortex-free solution
zero. Thus, a vortex line is energetically favorable whenV,b
are such that infgE@g#,0. The aim of this paper is to stud
the shape of the vortex linesg minimizing E@g#. We define
the domainD5$r.0%. This is the domain where the con
densate lies. All the analysis will be made inD. In what
follows, we assume that we are at a velocityV such that
there is a vortex line, and we want to find conditions onV
and the elongationb for the line to be stable and eithe
straight or bent.

First of all, it has been observed numerically@5# that the
vortex line lies in the plane closest to the axis of rotation a
we can provide a rigorous justification.

Theorem 1.If a<1, then the energy is minimized whe
the vortex line lies in the (y,z) plane, that is, the plane clos
est to the axis.

Indeed, if we have a curveg parametrized asg(t)
5„x(t),y(t),z(t)…, then we can define the new curveg̃(t)
5„0,ỹ(t),z̃(t)… by z̃(t)5z(t) and ỹ(t)5Aa2x21y2. Then

r„g(t)…5r„g̃(t)…. Sincea,1, ẏ̃2< ẋ21 ẏ2, hencer(g̃)u ġ̃u
2Vr(g̃) ż̃<r(g)uġu2Vr(g) ż. It follows that the energy of
the new curveE@ g̃# is less than or equal toE@g#. If a51,
that is, the cross section is a disc, then our arguments im
that the vortex line is planar, but of course all transver
planes are equivalent.

From now on, we will assume that the curve lies in t
plane (y,z), so thatr, given by Eq.~3!, only depends ony
andz. Recall from the expression ofE, Eq. ~4!, that forE@g#
to be negative, we needr2Vr2 to be negative somewhere
that is,Vr.1. For fixedV, we define the regions

Diª$~y,z!:Vr~y,z!.1%, DoªD\Di . ~6!

We will refer to these sets as the inner regionDi and the
outer regionDo . In the outer region, the energy of a vorte
per unit arc length is necessarily positive, sincer2Vr2

.0, whereas in the inner region, for appropriately orien
vortices it can be negative sincer2Vr2,0. One can see
easily that forg to have a negative energy, part of the vort
line has to lie in the inner region, that is, close to the cen
of the cloud. Note that forDi to be nonempty, we need a
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leastVr0.1. In the regionDi , we will see that the vortex is
close to the axis for allb. On the other hand, in the regio
Do , the vortex goes to the boundary along the quickest p
if b is small, perpendicularly to the boundary, which giv
rise to a bent vortex, and ifb.1, the vortex stays along th
axis of rotation.

The organization of the paper is the following. First w
study the local stability of the straight vortex: ifV is large,
then the straight vortex is a local minimizer. That is, whenV
gets large, the vortices tend to be straight, while ifb is small
then the straight vortex loses local stability and the first v
tex to be nucleated is bent. Next we study the critical f
quency for nucleation of curved vortices, and then the m
mization ofE@g# in Di andDo according to the value ofb.
We finally derive that a minimizer of the energy has a mi
mal length.

II. STABILITY AND INSTABILITY OF THE STRAIGHT
VORTEX

In this section, we study the stability of the straight vo
tex. Here and in the rest of this section,r5r(0,z)5r0
2b2z2. We parametrize the straight vortex asgs(z)5(0,z)
for 2zmax,z,zmax, with zmax5Ar0/b. One can compute
E@gs# and derive that it is 0 forVr055/4. We have two
aims: first to show that forb small, when the straight vortex
has zero energy or small negative energy, that is, forVr0
close to 5/4, then it is unstable. Then, we want to prove
the contrary that ifb is fixed andV is sufficiently big, the
straight vortex is stable.

We consider perturbations of the straight vortex of t
form gd(z)5„dv(z),z1d2w(z)…1O(d3) for uzu,zmax. We
require thatw be chosen so thatr„gd(6zmax)…50, thereby
respecting the condition that the vortex line terminates at
boundary of the cloud.

Writing a Taylor-series expansion forE, one finds that

E@gd#5E@gs#1
d2

2
~v,E9@gs#v !1O~d3!, ~7!

where

~v,E9@gs#v !5E
2zmax

zmax
2~2Vr21!v21rv82dz. ~8!

To get this it is necessary to integrate by parts and use
fact that the straight vortex solves the Euler-Lagrange eq
tions for E. In particular, this eliminates all terms involvin
w. No boundary terms arise from integration by parts b
causer(gd)50 at the end points. In the caseV50, this
equation has been studied in@8#.

We say that the straight vortex is stable if (v,E9@gs#v)
.0 for all v, and unstable if (v,E9@gs#v),0 for somev.

Theorem 2. The straight vortex is stable if

Vr0.
3

4
1

1

4b2
. ~9!

The straight vortex is unstable ifb,1/A3 and
1-2
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Vr0,
1

6
1

1

6b2
. ~10!

Note that the two values are consistent in the sense
they both scale like 1/b2 whenb is small. ForV large, one
expects several vortices in the condensate, but the fact th
straight vortex is stable gives an indication that forV large,
each vortex should be nearly straight, which is consist
with the observations@3#. Recall that the stabilization of th
cloud requires that the rotation is not stronger than the tr
ping potential, which reads in our notations

V,
1

~11a2!«u ln «u
.

Given the experimental values, Eq.~9! cannot hold in the
ENS experiment but there is a range ofV in the MIT experi-
ment. If b is big, then the straight vortex can be stabilize

Remark 1. It is interesting to see what happens in The
rem 2 whenVr055/4, that is, when the straight vortex ha
zero energy. The first inequality yields that ifb.1/A2, then
the straight vortex is stable for allV such thatVr0.5/4,
that is, whenE@gs#,0. If b.1, we will see thatgs is not
just stable but in fact minimizesE. The second inequality
implies that if b,A2/13'0.39, then the straight vortex i
unstable at the velocityVr055/4 at whichE@gs#50. As a
result, for these values ofb, the first vortex to nucleate asV
increases is a bent vortex. Note that it has been observe
@8# that forb&1/2, the ground state of the system exhibits
bent vortex. Numerical results of@5# also show that ben
vortices are energetically favorable whenb is small.

All this indicates that by varying the elongation of th
condensate, one may hope to go from a situation where
first vortex is bent to a situation where it is straight.

To prove the instability of the straight vortex, we will fin
explicit perturbationsv for which (v,E9@gs#v),0. These
also indicate the shape of good test functions.

We define a perturbationv ~depending on a parameteru,
which for now we regard as fixed! by

v~z!5H 0 if z<uzmax,

S z

zmax
2u D ~12u!21 if z>uzmax.

~11!

Herev is normalized so thatv(zmax)51. For this choice ofv,
a lengthy but straightforward calculation shows that

~v,E9@gs#v !5
2Vr0

3/2

30b F ~12u!2~u14!

2
5

Vr0
~12u!2b2S 11

u

2D G ~12!

5:
2Vr0

3/2

30b
D~u!. ~13!

It follows that the straight vortex is unstable if
02361
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~12u!2~u14!,
5

Vr0
S ~12u!2b2F11

u

2G D ~14!

for someuP@0,1). It is helpful to writeu asu512hb2 for
someh.0 to be determined. Then Eq.~14! can be written in
terms ofh, as

Vr0,5S 11~b2/2!2~3/2h!

hb2~52hb2!
D . ~15!

This is satisfied if

Vr0,
11~b2/2!2~3/2h!

hb2
5

1

2h
1

1

hb2 S 12
3

2h D .

~16!

The extremum is achieved forh close to 3, so we can tak
h53 to find that Eq.~10! is a sufficient condition for insta-
bility. Becauseu512hb2>0, this conclusion only holds if
b<1/A3. For larger values ofb, one can make differen
choices ofu to find thresholds for instability.

To derive the sufficient condition for stability, note th
for everyz,

3r

2r0
2

~zr!8

2r0
51. ~17!

Multiplying v2 by the expression on the left and integratin
by parts, we obtain

E
2zmax

zmax
v2dz5E

2zmax

zmax
rF3v2

2r0
1

z

r0
vv8Gdz. ~18!

Sinceuzu/r0<zmax/r051/bAr0 for uzu,zmax,

E
2zmax

zmax
v2dz<E

2zmax

zmax
rF 3

2r0
v21

1

bAr0

uvuuv8uGdz.

~19!

Now we use the inequalityab<a2/21b2/2 to deduce

E
2zmax

zmax
v2dz<E

2zmax

zmax
rF S 3

2r0
1

1

2r0b2D v21
1

2
~v8!2Gdz.

~20!

In particular, if

Vr0.
3

4
1

1

4b2
, ~21!

then this implies that (v,E9@gs#v).0 for all v. This com-
pletes the proof of Theorem 2.

III. SHAPE OF THE VORTEX ACCORDING TO b

In this section we prove that when the condensate cl
has a pancake shape, then the straight vortex is always m
mizing among vortices with negative energy.
1-3
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Recall thatD5$r.0% and we writeg(t)5„y(t),z(t)… to
denote a generic vortex line represented by a continuous
schitz function fromI 5@0,1# into D̄ such thatg(0),g(1)
P]D.

For such a curveg, let I g,iª$tPI :g(t)PDi% and I g,o
5I \I g,i . And let g i be the restriction ofg(•) to I g,i , and
similarly go .

The definition of I g,o implies thatr„g(t)…2Vr2
„g(t)…

.0 for tPI g,o , and as a consequence

r„g~ t !…uġ~ t !u2Vr2
„g~ t !…ż>uġ~ t !u@r„g~ t !…2Vr2

„g~ t !…#,
~22!

which is positive inI g,o . Thus if g is such thatI g,i is empty,
then clearlyE@g#.0 and it is energetically favorable not t
have a vortex. This is the case, in particular, forVr0,1
since thenDi is empty. We may thus restrict our attention
the caseI g,o nonempty.

Proposition 1.For all b and allV, in the inner region, the
straight vortex minimizes the energy, that is,Mi
5 inf$E@g i #%, whereg i is the restriction ofg(•) to I g,i , is
attained by the straight vortex.

Proposition 2.For b>1, in the outer region, the straigh
vortex minimizes the energy, that is, the infimumMo of
$E@go#%, wherego is the restriction ofg(•) to I g,o , is at-
tained by the straight vortex.

Note that in the outer region, Proposition 2 only holds
b.1. If b,1, the situation is somewhat more complicate
*go

rdl is minimized by a path that joinsDi to ]D along the

y axis, whereas2*go
r2dz is minimized by the straight vor

tex running along thez axis. The minimizer of the full energy
reflects the competition between these two terms, and he
is bent.

We always have

E@g#5E@g i #1E@go#>Mi1Mo . ~23!

In particular, as a corollary of the above propositions
deduce the following theorem.

Theorem 3.For b>1,

E@g#> inf~0,E@gs# !, ~24!

where gs is the straight vortex along thez axis. If E@gs#
,0, the equality in Eq.~24! can happen only ifg is the
straight vortex.

To prove Proposition 1, first note that

E
g i

rdl2Vr2dz>E
g i

rudzu2Vr2dz>E
g i

~r2Vr2!dz.

~25!

Since we have assumed thatg does not self-intersect, we ca
identify g with the~oriented! boundary of an open setV,D.
Then g i can be identified with Diù]V

5](DiùV)\(]DiùV̄). Sincer2Vr250 precisely on]Di ,
this implies that
02361
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~r2Vr2!dz5E
](DiùV)

~r2Vr2!dz. ~26!

And by Stokes’s theorem,

E
](DiùV)

~r2Vr2!dz5E
DiùV

~122Vr!rydydz. ~27!

The definition ofDi implies that 122Vr,0, and so this
integral is clearly minimized ifDiùV is just the subset of
Di , wherery.0, so that

E
](DiùV)

~r2Vr2!dz>E
$(y,z)PDi :y,0%

~122Vr!rydydz.

~28!

Again using Stokes’s theorem and the fact thatr2Vr2 van-
ishes on]Di , we find that this is equal to

E
2z

*

z
* @r~0,z!2Vr2~0,z!#dz, ~29!

where (0,6z* ) are the points where thez axis intersects
]Di . Combining these inequalities, we find that

E
g i

rdl2Vr2dz>E
2z

*

z
* @r~0,z!2Vr2~0,z!#dz. ~30!

It is easy to see that equality holds in Eq.~28!, and hence in
Eq. ~30!, exactly wheng is the straight vortex, and so w
have proved Proposition 1.

To prove Proposition 2, fixg such thatI g,i is nonempty.
The beginning and end ofg must lie in the outer region, and
g intersects the inner region, soI g,o must consist of at leas
two components. Let (a1 ,b1) denote the first such compo
nent and (a2 ,b2) denote the last, and writeg1 and g2 to
denote the corresponding portions ofgo , so thatg1 is pa-
rametrized asg15(y,z):(a1 ,b1)→Do , with g1(a1)P]D
and g1(b1)P]Di . We need to show thatg1 and g2 both
have more energy than the corresponding parts of the stra
vortex. We will consider onlyg1, as the argument forg2 is
exactly the same.

Definegs5(0,z) to be a parametrization of the part of th
straight vortex joining (0,2zmax) to (0,2z* ), where zmax

5Ar0/b:

z̃~ t !52
1

b
@y~ t !21b2z~ t !2#1/2, z~ t !5 max

a<s<t
z̃~s!.

~31!

Recall that we haveg15„y(t),z(t)…. The definition is ar-
ranged so thatt°z(t) is nondecreasing anduġsu5 ż. To
prove the proposition, it thus suffices to show that

r~g1!uġ1u2Vr2~g1!ż>r~gs!uġsu2Vr2~gs!ż. ~32!

If z(t). z̃(t), this is clear, because thenż50, so the right-
hand side vanishes while the left-hand side is non-negat
by the defining property of the outer regionDo .
1-4
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And if z(t)5 z̃(t), thenr„g1(t)…5r„gs(t)…, and so in this
case 0<12Vr„g1(t)…512Vr„gs(t)…<1. So we only
need to show that

uġu2cż>uġsu2cż ~33!

for any cP@0,1#. We will apply it to c5Vr„gs(t)….
To do this, first note that

ż5 ż̃5
1

z̃
S yẏ

b2
1zżD 5~ ẏ,ż!F1

z̃
S y

b2
,zD G . ~34!

So

u żu<uġuF 1

z̃2 S y2

b4
1z2D G 1/2

5uġuS b24y21z2

b22y21z2D 1/2

. ~35!

Sinceb.1, we conclude thatu żu<uġ1u. Also, it is clear that
użu<uġ1u. So if 0<a<1, then

uġ1u2cż>uġ1u~12c!>ż~12c!5uġsu2cż, ~36!

which proves Eq.~33!, and hence Proposition 2.

IV. ESTIMATE ON VC

We would like to derive a more precise estimate of t
critical velocity for which a bent vortex minimizes the e
ergy E@g#. We have seen that forE@g# to be negative, we
need at leastVr0.1 so that the inner regionDi is non-
empty. Note thatVr051 is exactly the two-dimensiona
critical velocity at the planez50 for the existence of a vor
tex. But a bent vortex cannot be a minimizer ofE@g# exactly
at Vr051, since the inner regionDi has to have some criti
cal size so that the vortex energy in the inner region provi
a sufficient contribution to compensate the positive part
to the length in the outer region. On the other hand,
Vr055/4, the straight vortex has 0 energy. Thus, the criti
velocity to obtain a bent vortex is 1,Vcr0,5/4. We want to
obtain a sharper estimate by using appropriate test functi
To find good test functions, note that

D8~u!53u214u2F72
5

2Vr0
~21b2!G ~37!

and soD has a local maximum at

u* 52
2

3
1A25

9
2

5

6Vr0
~12b2!, ~38!

which lies in the interval (0,1) for the parameter range t
we care about.

Note thatu* is an increasing function ofV, which is
consistent with numerical calculations showing that
larger values ofV, the minimizing path stays close to thez
axis over a longer interval. Foru5u* , we compute the en
ergy of the path which is straight betweenz52u andu and
goes to the boundary along a straight line. The optimal
02361
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point on the boundary is atz5u1b for b small. For this
special test functiong, we can computeE@g# to find that it is
less than

Vr0

8 S 53

4
236b121b224b3D2

25

8
13b2b211028Vr0 .

Thus, for b small, we find an upper bound for the critica
velocity which yields a negative energy for such a test fu
tion:

Vr05
~220196b!

~203176b!
.

In the condition of the ENS experiment, this yieldsVr0

,1.08, that is, in the original variable@see Eq.~5!#, Ṽ/vy
,0.385, which is very close to the value found numerica
0.38 @7#.

As a conclusion, we have shown that there is a criti
value of V called Vc with Vcr0'1.08, such that a ben
vortex has negative energy and less energy than a stra
vortex.

V. MINIMAL LENGTH

In the caseb,1, that is, when the vortex line is bent, w
will prove that the vortex has a minimum length. This
related to the fact that the vortex has to go to the center of
cloud and spend some time in the inner region.

For an open setU,D with a Lipschitz boundary, we
endow]U with an orientation in the standard way, so th
Stokes’s theorem holds.

We will prove the following isoperimetric-type inequality
Theorem 4. For every 0,b<1,

U E
]U

r2dzU<~2Ar0!1/2S E
]U

rdl D 3/2

~39!

for every connected open subsetU,D.
Remark 2. The exponent 3/2 is the best possible. An

equality similar to Eq.~39! is valid for b.1, but the proof
needs to be modified a bit. For the straight radial vortex,

E
]U

r2dz5
16

15

~r0!5/2

b
and E

]U
rdl5

4

3

~r0!3/2

b
,

~40!

and so

S E
]U

r2dzD S E
]U

rdl D 23/2

'0.52b1/2~r0!1/4. ~41!

This shows that the constant (2Ar0)1/2 in Eq. ~39! is fairly
close to sharp for14 <b,1, say.

~1! We use Stokes’s theorem to calculate

E
]U

r2dz52E
U

rrydydz<2E
U2

rrydydz, ~42!
1-5
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where U25$(y,z)PU:y,0%, since rry<0 for (y,z)PD
such thaty>0.

So the coarea formula implies that

E
]U

r2dz<2E
U2

r
uryu
u“ru

u“rudydz

52E
r
*

r*
sS E

$(y,z)PU2:r(y,z)5s%

uryu
u“ru

dl D ds,

~43!

where r* 5 inf$r(y,z):(y,z)PU% and r* 5sup$r(y,z)
:(y,z)PU%. Thus

U E
]U

r2dzU<ur* 2r* usup
s

S sE
$(y,z)PU:r(y,z)5s%

ry

u“ru
dl D .

~44!

Thus to prove the theorem it suffices to establish the follo
ing two claims:

sE
$(y,z)PU:r(y,z)5s%

ry

u“ru
dl<E

]U
rdl ~45!

for everys, and

ur* 2r* u<~2Ar0!1/2S E
]U

rdl D 1/2

. ~46!

~2! We first prove Eq.~45!. Fix somesP(r* ,r* ) and
write Gs to denote$(y,z)PU2:r(y,z)5s%. Also, let G̃s de-
note]Uù$r>s%.

First assume for simplicity thatGs is connected, so that i
consists of the short arc of the ellipse$r5s% joining two
points, sayp05(y0 ,z0) and p15(y1 ,z1) with z0,z1. We
can representGs as the image of the mapping

z°„y~z!,z…5~2@s2b2z2#1/2,z!, z0,z,z1 . ~47!

Differentiating the identity r„y(z),z…5s we find that
ryy8(z)1rz50. Thus

U d

dz
„y~z!,z…U5@11y8~z!2#1/25S ~ry

21rz
2!

ry
2 D 1/2

5
u“ru
uryu

.

~48!

It follows that

sE
$(y,z)PU:r(y,z)5s%

ry

u“ru
dl5sE

z0

z1
dz. ~49!

On the other hand, the one-dimensional measure ofG̃s is
certainly greater thanup12p0u>z12z0, and r>s on G̃s ,
and so

E
G̃s

r~z,y!dl>sl~ G̃s!>s~z22z1!. ~50!
02361
-

This proves Eq.~45! if Gs is connected. If not, one can app
the same argument on each connected component ofGs .

~3! Next we prove Eq.~46!. Let q* andq* be points in
]U such thatr(q* )5r* , r(q* )5r* . Since we have as
sumed thatU is connected,]U contains a path joiningq* to
q* . In fact it contains two such paths. If we writeP to denote
the set of all Lipschitz paths inD joining the level set$r
5r* % and the level set$r5r* %, it follows that

E
]U

rdl>2 inf
gPP

E
g
rdl. ~51!

Arguments in the proof of Proposition 2 show that forb
<1, infgPP*grdl is attained by a path that goes in a straig
line along they axis. Thus

inf
gPP

E
g
rdl5E

y*

y
* ~r02y2!dy, ~52!

where y* 5Ar02r* , y* 5Ar02r* . And since y* ,y*
<Ar0,

E
y*

y
* ~r02y2!dy>

1

2Ar0
E

y*

y
* ~r02y2!2ydy

5
1

2Ar0
E

r
*

r*
rdr5

1

4Ar0

@~r* !22~r* !2#.

~53!

Sinceb22a2>(b2a)2 when 0,a,b, we deduce that Eq
~46! holds. This concludes the proof of the theorem.

A short calculation starting from Eq.~39! shows that if
E@g#,0 then

E
g
rdl.

1

~2V2Ar0!
. ~54!

We expect that even for a configuration with multiple vor
ces, each vortex line will satisfy a lower bound of the ty
~54!. In a configuration with several vorticesgk , the energy
derived in@6# is (E@gk#1I (gk ,g j ), where

I ~gk ,g j !5E
gk

u ln @dist~x,g j !#udl.

Adding a vortex to a stable configuration withn21 vortices
requires

E@gn#1( I ~gn ,g j !,0.

Since I .0, this implies, in particular, thatE@gn#,0 and
hence the bound on the length.

VI. CONCLUSION

We have studied the shape of the first vortex line to
nucleated in a harmonic anisotropic rotating potential,
cording toV and the elongation of the cloudb. We investi-
1-6
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gate the stability of the straight vortex and obtain that wh
V is large, the straight vortex is a local minimum of th
energy. We prove that when a vortex is nucleated, it is cl
to the axis of rotation where the condensate density is h
and that near the boundary, where the density is low,
shape of the vortex depends on whether the cloud has a
or a pancake shape. This shape reflects the competition i
ys

J

Sc

et

02361
n

e
h,
e
ar

the

energy between the rotation and the inhomogeneity of
trap, which makes the geometry of the experiment very
portant. In the caseb.1 ~pancake!, the vortex stays straigh
along thez axis while in the case whereb is small ~cigar!,
the vortex is bending. In the case ofb being small, this
allows us to establish a lower bound for the length of
energetically stable vortex line.
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