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Electron scattering by trapped fermionic atoms
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Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study
theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the
corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic
state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the
elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-
Einstein condensaf®EC). For the inelastic scattering process, on the other hand, the differential cross section
is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped
fermionic atoms display the effect of “Fermi surface,” that is, only the energy levels near the Fermi energy
have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as
the 7/6 power of the atomic number. These results are fundamentally different from those of the electron
scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems.
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I. INTRODUCTION fermionic atoms due to DeMarco and Jin in 1999 have now
opened a new way of investigating the quantum degenerate
The recent experimental observations of Bose-Einsteigases. Needless to say, study of the trapped fermionic atoms
condensation of trapped cold alkali-metal gases such as ris a challenging topic for both experimental and theoretical
bidium, sodium, lithium, and hydroggri] have stimulated physics.
numerous new areas in theoretical as well as experimental In this paper we consider the electron scattering by the
physics. This impressive progress not only opened the way tfermionic alkali-metal atoms trapped in a three-dimensional
investigate several macroscopic quantum phenomena b(8D), spherically symmetric harmonic potential. As an effec-
also offered the chance to apply relevant techniques in varitive method, the scattering techniques have been used to de-
ous fields. In particular, the study of the trapped ultracoldtermine the structure as well as to extract relevant informa-
fermions of alkali-metal atomic gases with one spin state anéion of the object. In general, scattering refers to the
two spin states has become an interesting tpi8]. The  scattering of light, electron, neutron, and atom. As pointed
relevant investigations on the optical propertids-6], sta-  out by Javanainef#] and RuostekosKb] in the off-resonant
tistical properties[7—9], collective excitationd10], super- light scattering of the trapped atoms, the spectrum of the
fluid phase transitiod11,12, and other propertiegl3] of  scattered light is closely related to the statistics of the
trapped fermions have been undertaken. Like the trappeglapped atoms, and the quantum degeneracy of the atoms or
bosonic atoms, the trapped Fermi gases of alkali-metal atontae atomic velocity distribution can be reflected in the scat-
provide a very intriguing path to study several basic physicatered spectrum. Moreover, the statistical correlation and the
problems such as the phase separation, phase transitiafullision interaction between the atoms play an important
atomic optics, and some statistical topics in condensed matele in many problems. In the present work, the elastic and
ter physics. inelastic scattering processes of the electrons by the trapped
It is well known that the bosons and fermions are subjecfermionic atoms are studied. We obtain the differential cross
to the corresponding Bose-Einstein and Fermi-Dirac statissections and then calculate the stopping power for the cases
tics, which state that all the bosons can occupy a single quanvhen the state of center of ma&sm.) and the internal state
tum state when the temperature meets the condition of phagge excited both separately and simultaneously. It is shown
transition, however, fermions do not due to the Pauli’s excluthat the differential cross sections for the elastic scattering
sion principle. Therefore a very low temperature for theprocess are essentially different from those of the trapped
trapped fermionic atoms, at least below the Fermi temperaBose-Einstein condensatBEC), which displays the effect
ture T of the trapped atoms, is desired to investigate theof “Fermi surface” and reflects the intrinsic difference be-
bound quasiparticles and the superfluid phase transition itween fermions and bosons. Interestingly, the experiment of
the fermionic system of alkali-metal atoms. To date, the exelectron scattering from atoms confined in a magnetic optical
perimental condition of quantum degeneracy has been olirap (MOT) have been undertaken in 19985], thus using
tained in the*®™K system[2], where the lowest temperature is the trapped fermionic atoms as a target, from which the pro-
about 0.7 [14]. The experimental realization of trapped cess of electron scattering can be studied.
The remainder of this article is organized as follows. In
Sec. Il the statistical property of the fermionic alkali-metal
* Author to whom correspondence should be addressed. Electron&toms trapped in a 3D spherical harmonic potential is out-
address: whjhe@snu.ac.kr lined to obtain the equations satisfied by the wave function
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of a single particle in the Hartree-Fock approximation. Incan be described by the well-known Slater determinant that
Sec. lll, the scattering of an incident electron beam from thegguarantees the antisymmetry of the wave function of the
trapped atoms is introduced. In Sec. 1V, the differential crosdrapped fermionic atoms.

sections for the elastic and the inelastic scattering processes Starting with this equation, for the case that all trapped
are calculated. In Sec. V, the stopping power of the electronatoms possess the same spin state, which will be considered
is obtained for the cases that the c.m. and the internal statés this paper, we get the equation satisfied by the wave func-
are excited separately or simultaneously. In Sec. VI, somé&on of a single particle,

problems associated with experimental consideration are dis-
cussed and the main results of this paper are summarized.

N
ﬁo+i21[3i<r*>—“i<r*>]}¢?°<r>=ei¢?°<r*>, @

II. HARTREE-FOCK DESCRIPTIONS OF TRAPPED

FERMIONIC ATOMS where hy=— (£2%/2m,) V?+ im,w??, and the operators

In this section we concentrate our attention on considering;(r) andK;(r) are defined as
the statistical properties of the fermionic gases consisting of
N alkali-metal atoms trapped in a 3D spherical harmonic T T T T e
potential. The Hamiltonian of this system can be written as  Ki(M) @71 = | dr'{2(r) PV =r") ¢>(r') ()
5

h? 1 -
— HVZ‘F Emawzrz ¢a(r)
a

H=>, detﬂl(F)

30) = [ V-l gl ©
1
- Sacr gt et 2 e
* 2 E j drdr’ g (1) ¢, (FOV(r=r’) In Egs.(4)—(6), the spin index is omittedHere, for simplic-
o _ ity, we describe the detailed procedure in the Appendix,
Xt (1) iho(r), (1)  where the equations which allow the trapped atoms to pos-
sess two spin states are derived. The atoms with different
where o is the angular frequency of the tram, is the  spin states trapped in a MOT are an interesting topic as
atomic mass, the sum is over the possible spin states, arsthown by DeMarco and Jir2].)
V(r—r") is the interaction potential between the atoms at the For the low temperature system under study, the interac-
positionsr andr’. Here z//L(F) and %(;) are the field op- tion potential between the atoms is usually represented by

erators of atoms that create or annihilate an atom with the

spin statex at a positionF and satisfy the anticommutation V(F —r')=
relations,

mh?ag
ma

S(r—r", (7)

with the negatives-wave scattering lengthg. Such an inter-
action makes the term&[L;[J;(r)—K;(r)]1¢(r) exactly

- T cancelled in the Hartree-Fock approximation and thus
{a(0), o (r)={ta(r), ¢, (r")}=0. (2 higher-order correlation interactions should be taken into ac-

count. When the interatomic interactions are weak, the

In this system the trapped fermionic atoms are just likeground state configuration of the trapped atoms can always
the special “artificial molecules,” for which the trap can be pe expressed as

considered as a “nucleus,” whereas the atoms play the role

of the bound “electrons.” Without loss of generality, choos- 1

ing the following Hartree-Fock state as the ground state of ¢ )= —= >, vpP[@(r) e3Ary) X - X o1 y)],
the N-particle system VNI 7

(WD), (T =800 =) 0

(8
1 - - - - - .
¢HF:W > vpP[ ()0 () - b0 (o) where g °(r)=(r|n)®|ey) denotes that the internal state of
-7 an atom is in the internal ground std&g) and its c.m. state
X ¢i()/g(Fn+l)¢goB(Fn+2)‘ . .¢eoﬁ((N)] 3 (r|n) is in the (1—1)th state of the harmonic oscillator de-
) p m, !

noted by(r|n—1). Here we use the symbgf|n) to stand
where the sum is over all the atoms and all the permutationfor (r|n—1), i.e., (r/n)=(r|n—1), for convenience.
of indicesP[p1,p,2- - - Pn], vpis the corresponding parity of Thenth energy level of a particle trapped in the potential
the permutationg ™ (r;) denotes théth single-particle wave 3Mw’r® is known ase,=(n+3)%iw with n=n,+n,+n,
function occupied by théth atom having the spin stafe) ~ and its degeneracatoms have same spin state
(la) and|B) denote the two spin states of an ajoamd the L
internal ground stat labeled byey, and the relation _
+m)= Ngholds true?a'lgrais configuyat(i)on of the ground rgtate g”_f(n+ bn+2). ©
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When the temperature of the system is so low that the energatk,=k; and|¢;)=| bg), wherek;=| k¢ andk;=|ki|. The

* T * >
levels belown* are filled by atoms, where* is the lowest inelastic scattering corresponds [i;) #| bg) and ki # [Ki,

unoccupied energy level, i.e., the trappeq atoms possess,d,ich means that the incident electron transfers part of its
closed shell structure, thert should be subject to the equa- kinetic energy to the trapped atoms

tion For simplicity we consider only the case of single-particle
Nt 1 L excitation. Then for the inelastic scattering, the final state can
> gnzgn*(n*+1)(n*+2)=N. (10 be chosen as
n=0 N
. . . _ 1 2 1 E 7 €/ ey,
In this paper we consider tha is large enough than* |¢f>_\/_N AN vpP e (r) e, (1) X -
=(6N)Y and thus the corresponding Fermi enekgybe- |
comes ) ) . )
X0 (M- e (M) ed(re(r)]
er=(6N) Yo, (11) A A N
which provides an estimation of the energy shell for the (15
ground state configuration, and hence the energy lavel ( o> o
~1) can be called the Fermi energy level of the trappedVN€re ¢,(r) denotes that théth atom is in thenth (n
atoms. =n*) c.m. state and the atomic internal state is in the state
le,) labeled bye, . This stands for the excitation transition of
Ill. SCATTERING OF AN ELECTRON BY TRAPPED thelth atom from the state;°(r)) to the statep *(r|) due to
FERMIONIC GASES the interaction. In fact, atoms in any energy level below the

) ) Fermi energy have the same possibility of being excited by

Now let us consider the scattering of an electron by thgne incident electron, which is reflected by the permutation
trapped fermionic gases of glkgll—metal atoms Wlth ”“CIearoperations and the factor ({K) =N_,{- - -}. Obviously, the
chargeZe Supptzse that an 'nE'dent electron with masgs c.m. state and the internal electric state of the trapped atom
and momentunik; (or, velocityv;=7k;/me) is scattered by  can be excited either separately or simultaneously, and the
the trapped atoms into the state of momentfiky. The case ofn=I ande,=¢, just corresponds to the initial state
interaction between the incident and the trapped atoms igiven by Eq.(8).
then described by, =3 ,V;, where Starting with the standard expression of the differential

cross section, we find

z
z¢e?
Vi=— — = +2 — (12 do meL
dQ 2ah?

2
Ky
) E|Tif|21 (16)

Here )Zi is the position of theith nucleus anob_fij is the

position of thejth electron bounded by the atom. Note thatwhereT;; describes the transition between the initial and the

the spin-orbit and spin-spin interactions are ignored. final states represented by operator

Under these interactions, the incident electron will be

scattered by the trapped atoms and the trapped atoms either

remain in the ground state configuration or become excited TZZ Vi+i§j: ViGOViJr;J.:k ViGoVjGoVit - -+,

to one of its excited states. The former case corresponds to ' o 17)

the elastic scattering process whereas the latter to inelastic

scattering. For the latter, in particular, the atomic internalwith G,(z)=1/(z—H,), whereH, is the unperturbed Hamil-

state and the c.m. state of an atom can be excited eith@épnian of the incident electron and the trapped atoms.

separately or simultaneously. The initial and final states of From the expression of the operalgrit can be found that

the electron-atom system can be written, respectively, as the electron scattering contains direct scattering as well as
multiple scattering processes. As a matter of fact, it is pos-

| D)= Iﬁi)®|¢g) (13)  sible that the scattering process leads to the exchange of the
incident electron with the bound electrons or the rearrange-
and ment of the atomic electrons. However, rigorous calculation
. of the transition matrix elements is a nontrivial task and
|D¢)=|ks) @] ps), (14)  therefore use of approximate methods is necessary. In this

paper we discuss the fast electron scattering and the velocity
where ki=L~ P exp(k-r) and k;=L~ @ exp(k:r) are of the incident electrom is considered to be large compared
the normalized initial and final states of the incident electronjo that of the atomic bound electroftypically, the velocity

and [¢4) and |¢y) are the initial and final states of the of a bound electron is of the order of137 with the light
trapped atoms before and after scattering. The elastic scatterelocity c). For the slow electron scattering, on the other
ing process, on the other hand, corresponds to the conditidmand, the system may make many successive transitions and
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thus the exchange effect and the rearrangement of atomtbis section we will present the corresponding expressions of

electrons should be taken into account. the differential cross sections for the elastic as well as the
In the high energy limit, however, the exchange and thdnelastic electron scattering by the trapped fermionic atoms.

rearrangement of the atomic electrons can be ignored due to For the elastic scattering process, no energy is transferred

the little overlap between the relatively fast incident elec-from the incident electron to the trapped atoms. Thus all the

trons and the atomic electrons in the momentum space. Comtoms remain in the ground state configuration &pdk; ,

sequently the first Born approximation can be employed tdhis leads to the equation

discuss relevant problems. In fact, the main requirement for

the validity of the Born approximation i€e?/Av;<1 and 47e?Z

thus in the high energy regime the Born approximation pro- Tit=

vides satisfactory results. Therefore we obtain

L3 lE<I|exmq NDMIFo(@)-1], (22

1 ) . N where F(q) is the form factor of the alkali-metal atoms
Tif:Ff drexrxlq-r)(d)f|i21 Vi|®;), (18)  defined by

- .. .1 - -

whereq=k;—k; denotes the change of wave vector of the Fu(q)= Z<ek|2 exp(1q-x})|€g), (23
incident electron in the scattering process. Substitutiing =1

in Eq. (13) and|®;) in Eq. (14) into Eq.(18) and integrating

overr, we find with |eg) and |e,) being the configurations of the ground

state and thdth excited state of the bounded electrons, re-
spectively. For the inelastic scattering process, on the other

N z

T = 4776 E E eui-iij_zéa-ii D). (19 hgnd, the atomic intgrnal state and the c.m. state can be ex-
q2L3 =1|j=1 cited separately or simultaneously and from Ex{) we find
Making use of the coordinate transformation between the 4me2z N L .
relative motion of electrons and the c.m. motion for tkte Tit=—3 > (nlexp(ig-n)[TYF(q)
atom, we obtain Q*L3N =2
z mex (n=n* or k#0). (29
=X+ E (20
My Substituting Eqs(22) and (24) into Eq. (16), the differ-
R R . ential cross sections for the elastic and the inelastic scattering
wherer; is the c.m. position of théth atom andxiej = (Xjj processes can be obtained immediately,
—X;) is the relative position of th¢th electron.
Note that alkali-metal atoms are all hydrogenlike and they ~ dog 47%a2 N 2 - )
have only one valence electron outside the closed shell, and  §q a0’ 2 (Tlexp(1g-1)[T)| |Fo(a)—1/2,
so their inner rare-gas structure is spherically symmetric. (25)

Then in the summation of E@20), only the position of the

valence electron can be retained. In addition, because the 5 2
mass of electrons is much less than that of atoms, the re- d‘Tinel_ 4Z%agks
tained term related to the position of the valence electron in dQ N(qag)*k; |1
Eq (20) becomes negligibly small. Sq=X; and the term

[=7 lexp(lq x))—Zexp(a-X)] in Eg. (19 becomes (n=n* or k#0), (26)

expa- X[ =, exp(g-x;) —Z].
As a result Eq(19) can be rewritten as

N

E (nlexp(1q-1)[T)

2
|Fk(Q)|2

wherea,=#2/m.e? is the Bohr radius. It is obvious that the

differential cross sections for the elastic and inelastic scatter-
ing processes are closely related to the matrix elements

el r'( E eldXj—7 )}ld)i). (1)  Aym=(n|exp(g-r)|m) and therefore we must execute further
calculations in order to describe the scattering in detail. Be-

low the theory of the displaced number stdié] will be

used to carry out these results.

Here, for this purpose, we outline some properties of the

placed number states by considering an example of a one-

dimensional harmonic oscillator with the Hamiltoniath

=hw(a'a+3), wherea' anda are the creation and annihi-

lation operators. The displaced number state associated with

this harmonic oscillator is

The differential scattering cross section is an important .
physical quantity to describe the scattering characteristics. In | 7,m)="D(7)|m), (27)

47Te

Tif L3 (‘I’f|2

In Eqg. (21), the position of electrons and atomic c.m. are
decoupled, which is the starting point of calculating the dif-
ferential cross sections for the elastic and the inelastic Sca&s
tering processes.

IV. DIFFERENTIAL SCATTERING CROSS SECTIONS
AND FERMI SURFACE EFFECT
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where|m) is the mth eigenstate oH and 25( n) is the dis-
placed operator, which has the form

D(n)=exp na'—y*a) (28)
and satisfies the relations
D(maD'(n=a—n, DD (n=1,
D(pa'D' (g =a’—»*, DI(pD(n)=1. (29

Here the quantityy is called the translational parameter that

may be real or complex. In particular, wher=0, the dis-

placed number state reduces to the well-known coherent

PHYSICAL REVIEW 86, 023610 (2002

2,2

do—el 0 > 2
o m“:o(@—ﬂ By,

(39

and

done  4Z%a2k; -
dge:N(qao(;4k_|Fk(Q)|zBinel (n=n* or k#0),

(36)

where the factor#, and ;¢ can be explicitly expressed as

state. As an interesting application of the theory of the dis-

placed number stafel 6], the following matrix elements

I 1/2 1
) med - 31| el

(30

<n|f>(n>|m>=(

can be obtained when the conditiotem holds, where

n*—1 2
Ba=| 2, onll Lo(Im)) exa—a®a?), @7
n*-1 m 112 2
Binelz 2 gmH (n_]|) 7];1] mj‘cm. mj(lnj|2)
m=0 j j )
X exp(—g°\2). (39

Let us suppose thay; and |7;|? are small quantities.
Then, making use of the expression of the associated Lagur-

L1 ™ is the associated Lagurerre polynomial with the argu-erre polynomial with the argumemt

ment| 7|2

In order to evaluate the matrix elemefrt|exp(q:r)jm),
we rewrite it in the following form:

An=1I1 (njle9milm)  (j=1,2,3, (31)
J

where the indeX (j=1,2,3) corresponds to the y, andz

n

Eﬁ(x)=2 (n+k)!

2 moniennt 9" (39

and ignoring high-order small quantities, we have
2
exp(—g2\?). (40)

n*—1

BeIE N— 2 Im
m=0

Eﬂmmﬂ

]

component of the corresponding physical quantity. For the

3D spherically symmetric harmonic potential, we have

=(al+a)\, \= f
=@+ ah A=\

exp(1q;r;)=Dj(7;), 7;=10;\. (32
Combining Eqs(30)—(32), we then find
m: 1\ 12 ,
Anm:H (ﬁ) 7];‘J‘mje—(1/2)\n,-| ﬁmj_mj(|7]j|2)_
(33

For convenience, we define the following quantities

N 2 |-t 2
Be= E <||e|q~r||> = 2 ImAmm|
=1 m=0
N g2 |t 2
BineI: Zl <n|elq~r||> = m§=:0 gm-Anm ’ (34)

Without loss of generality, setting]]?:%qz, we find By
=N2|1— (¢2\%3N) =" 'mgy|2exp(—2\?), which can be
further reduced to N2[1— (g?\2n*[(n*)2—1](n*
+2)/24N) |2. Recalling than* = (6N) we can finally ob-
tain
Bo=N?|1- £ (6N) 2% 2exp( —g?\?).  (4D)

In the following we will derive the relationship between
the factorB;,e and the number of trapped atoms. Similarly,
discussion will be made assuming that and |#;|* are
small. From Eq.(38), it is obvious that for smallp; and
| 7;%, as the difference between the quantum numbeend
m; is increased, the magnitude of the term becomes small.

After a direct calculation, neglecting the high order terms,
one obtains

P S M

3

where we have usequzéqz. From this equation, we find

where the degeneracy of the trapped energy levels in the 3that the main contributions come from the energy levels near
potential has been taken into account. Thus the differentiaghe leveln due to the factor IGA/+/3)"" ™. The maxima of
cross sections for the elastic and the inelastic scattering prod,, can therefore be obtained by arranging the terms in such

cesses can be explicitly given by

a way that the difference of quantum number iis-(m) at
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one direction and zero at another two directions, the correwhere all the conditions such as the atomic number and the
sponding maxima for given andm can be expressed as initial and final states of the incident electrons are set to be

identical.
- nt fign " mPA2 It can be observed that both the elastic and the inelastic
AM= o= (@°12) _| — ( - ) (43)  differential cross sections of trapped fermionic atoms are
mt\ V3 6 smaller than those of atomic BEC. The elastic scattering of

electrons by the atomic BEC is a kind of coherent scattering
This result shows that for a given energy lewelwhen the because the differential cross section is proportional to the
other energy levels lie nearby, the corresponding contribusquare of atomic numbé¥. However, for the electron scat-

tions to A 2* are increased. tering by the trapped fermionic atoms, the differential cross
Note thatn=n*, m=<(n*—1), and the Fermi energy Section is  proportional to the factor N2|1
level (n* — 1) is the nearest energy leveltoThenn should  — (6N)*3g?\?/4 |2, for which this kind of coherence is ab-

take the value oh* and the energy levah=n* —1 offers  sent. For the inelastic scattering process, the ratio of the cor-
the crucial contribution, which is the leading term and alsoresponding differential cross sections displays a scaling be-
the most important term in the factd?, .. This indicates havior of N~(3). This result arises due to the different
that atoms distributed in the Fermi energy levef (- 1) or  statistics that the Fermi and the Bose gases obey. In the study
nearby play a key role in the inelastic scattering processof off-resonant light scattering by the trapped atoms, Jav-
This is just like the effect of the “Fermi surface” in the anainen[4] and Ruostekoski5] have pointed out that the
condensed matter physics, in which it has been manifestegPectrum of the scattered light is closely related to the statis-
that only the electrons near the “Fermi surface” are closelytics of atoms. Indeed, this conclusion can be similarly recov-
related to the electric, optical, and transport properties of £red in the electron scattering by trapped atoms.

solid. In fact, the system consisting of trapped atoms can be

thought of as an “artificial molecule” from the viewpoint of V. STOPPING POWER OF ELECTRON SCATTERING

the orbital theory in chemistry, which states that the highest . . . N

occupied orbit and the lowest unoccupied orbit play a key, In the inelastic scattering process, the kinetic energy of

role in chemical reaction and determine the chemical propzhe incident glectron is transfer_req to the trapped fermionic
erties of matter. In a word. this is the intrinsic nature of &0MS and this leads to the excitation of the c.m. state or the
fermions and the trapped fermionic atoms again display thi tomic mter_nal_ state. Hence t_he stqppmg power or Fhe energy
kind of feature in the mesoscopic level oss of the incident electron is an important quantity, which
Based on the considerations mentiohed above. we havean be derived in terms of the differential cross section of the

inelastic scattering given by E@5). As is usually the case

22 1 9 in scattering problems, we are interested in the energy loss of
Binel= q (n*)5’2( 1— Znp* qz)\z) exp — g2\2) the incident electron along the travel path denoted by
' 12 6 —dE/dx, which can be expressed as
N(GN)ZBQZ)\Z[ 1 2 dE do
=——————|1- —g®2\%(6N)3| exp(—g2\?). _9E_ _ maxd Tinel
2 g4 M (ON)T] exp(=ama?) dx Py (EanEe) | —ggda. (48
(44 _ :
wherep, is the density of the trapped atontg,, and g,ay
Substituting this equation into E€36) yields are the corresponding integral limits, ah‘Qo,g and Ee, n
denote the energies of the initial state and the excited state,
_ 2.2 respectively.
dUlneI: 2Z aokf |Fk(a)|2q2)\2(6N)2/Sexq_q2)\2) Note that
dQ  (qap)*k, .
. ) q%=|q|?=k?+k?— 2k;k; cosé, (49)
x| 1= —q2x2(6N)1’3} : (45 . T
6 with @ being the angle betwedq andk; . This then leads to
which is proportional to thé power of the number of the d‘TineI: 27q doinel (50)
trapped atoms. Comparing the differential cross sections of dq kiki dQ °
the elastic and inelastic scattering process of trapped fermi- _
onic atoms with that of atomic BECL7], we find Therefore we obtain
2
doe/dQ 1 vy 2| _94E_ BmpaZ” Ee, n—E fqmaxF 9)|28, da
m_ 1—2(6N) (0 1) Nl I (46) dx N(kiao)z ;} ( e.n eo,g) qmin| k(Q)| |nelq3-
(51)
doine/dQ e _ i’g 1- E(GN)USC]Z)\Z 2N*(1’3) 47) For the case that only the atomic internal state is excited,
dojne/dQlg 12 6 ' the energy diﬁerenceE(ek'n— Ee()'g) is equal to Eek— Eeo).
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Moreover, the factoB;,, becomes equal t8,, since the c.m.  abilities that the ground internal state of an atom is excited to
state does not change. Thus the stopping power under thil possible excited states, which must be equal to 1.

condition becomes Following the Bethe's treatment with respect to the inte-
gral limits, that is,qma= 2k; andg,i,=k;— ks, one can ex-
dE AmpaZe* [amax  dQ pand the exponential function in E(p6) in the series form
i ez f el (52)  and then integrate oveyto obtain
n=g NmMevi Jdmin
4 2/3 2
- . . 6N Zm, ALRY;
In obtaining this equation, the well-known result - d_E: 27mpaZ€ (6N) 1+ —2In e 59
1 ( )
dx mev_2 a |
. 14%¢? I
; (Ee,— Ee0)|Fk(Q)|2=Z o (53)  wherel is a semiempirical parameter that is related to the
e

average excitation energy and in this equation only the lead-

proposed by Gottfried and Bethi&8], has been used. ing term is listed. _ o

For the case that only the trapped energy level is excited, FOF the fermionic atoms trapped in the 3D potential dis-
no change occurs in the atomic internal state and thus the!SSed in this paper, the densjy of atoms can be ex-
total energy difference is the same as the energy differendressed ag7,20]
between the c.m. states. Then from the reshli(E,

Tl 2\ 312
—Eg)|E,N:1<n|e'q‘r|I)|2, as stated in Sec. IV, we can only pa:%% _r_2 , (60)
consider the Fermi energy level so that 7 Rp Rr

N | Nho(6N)Z3g2\2 whereRg= (48N)Y8L with L= \A/m,w is called the Fermi
> (En—Eg)| > (n[e9T)| = > , radius of the density distribution. Substituting the expression
n =1 (54 of atomic density into Eq(59) yields
4n1/6 2\ 302
where the term exp{g°\?) has been expanded in a series _ d_E: 4\2z¢'6 - N7/e< 1+ Zme)
form and the terms containing the high ordergfi? has dx  7L3mg? R2 a
been omitted. Therefore for the case that only the c.m. state 5
is excited, we have 2me]
XIn | . (61
dE 2mwp,Z%e* my oy [(Omax - . dq
A T o (6N) fq [Fo(a)] q This shows that the dependence of the stopping power on the
k=0 el a min

(55) number of trapped atoms ¢’/ which is proportional to the
¢ power of the atomic number. Note that for the trapped

For the case that the c.m. as well as the internal states aéomic BEC[17], the stopping power is proportional to the
excited simultaneously, on the other hand, with the total enPower of the atomic number. The different dependence of the

ergy difference E, ,—E. o) being decomposed as{ stopping power between t_he trapped_fermionic atoms and the
ke 0 K atomic BEC on the atomic number is a characteristic prop-
- Eeo) +(E,—Eg), we obtain

erty, which essentially originates from the different statistics
that the atoms obey. It should be noted that some elaborate
fqmaxeqzkzﬂ methods and techniques are necessary to probe the difference
i q’ between components &f and § when one measures the
(56) stopping power since distinguishing them is not easy, and
thus these components keep only theoretical interest.

_dE_ 27TpaZe4(6N)2/3< . Zme)
dx mevi2 a

In obtaining this we have used the following relations
VI. DISCUSSION AND SUMMARY

N(GN)Zlng)\z
2 BrE——5——exp(—a\%)  (57) . . y
n Having obtained several quantities related to the electron
scattering by the trapped fermionic atoms, an important and
and direct problem arises: how to test these theoretical results
through an experiment? As is well known, the current
E |Fk(ﬁ)|2=1- (58) trapped potentials used to confine atoms are almost MOT,
K then one should consider how to effectively avoid the influ-

ence of the magnetic field on the incident electron beam
Note that Eq.57) can be derived from Eq44) by consid- when one tries to realize such an experiment.
ering the effect of “Fermi surface” mentioned above and In 1995, Schappgl5] and his co-workers first performed
with the terms containing high order gfA? being omitted.  the electron scattering experiment using the ground-state Rb
Equation(598) is an identity because the interpretation of theatoms trapped in a MOT as a target, they measured the total
left-hand side of this equation stands for the sum of probscattering cross section for the collision between electron and
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Rb atoms with the incident energy in the range of 7—500 e\dent electron. Some further works will be performed by con-

by controlling the time sequence. Since the atoms trapped isidering the effect of these factors. Nevertheless, those re-
MOT are very sensitive to the atomic recoil, some atomssults that are detailed here will be useful for experimental

therefore would escape from the trap due to electron-atortudies of the scattering properties of the trapped fermionic
collision when the incident electrons are applied on the sysatoms.

tem. In their excellent experiment, in order to ensure that the

incident electrons are not distorted by the magnetic field, ACKNOWLEDGMENTS

they first turned off the magnetic field and shifted the modu- g \york was supported by the Creative Research Initia-
lation frequency of trapping lasers, after a short time th;es of the Korea Ministry of Science and Technology. H.W.
electron beam is pulsed on the system. Second, the trap eleynowiedges the support of the Brain Korea 21 Project.
fectively remains off after the end of the electron beam for a
long time (,7) to allow some recoiling atoms due to the \ppeNDIX: EQUATIONS FOR TRAPPED FERMIONIC
electron—atom.colhsmr? to leave t.he trap. Third, the.tr.ap is ATOMS WITH TWO SPIN STATES
turned on again for a timet{,), which allows the remaining
atoms to be recaptured, and finally, they measured the num- Here we give the equations describing trapped fermionic
ber of the trapped atoms and obtained some information. atoms with two spin states in a MOT. With the use of Egs.
After this experiment, this kind of technique has been(1) and(3), the energy corresponding to the configuration of
used to study the electron-impact ionization using Rb atom#he ground state can be given by
trapped in a MOT as a targgt9]. Likewise, it is possible N N m
that through this method with a proper time sequence, the Ep=> S geem ke £ S gus
experiments of electron scattering from trapped bosonic and HF & =y il i~ Tk
fermionic atoms can be performed, in particular for the dilute
trapped atomic system in which the interparticle interactions "
are rather weak, and therefore some related topics can be +le
investigated.
In conclusion, we have studied the electron scattering by (A1)
the fermionic atoms trapped in a 3D spherically symmetric
: : . : ; where
harmonic potential. The corresponding differential cross sec-
tions for the elastic and the inelastic scattering processes are . . 2y2
obtained. Moreover the stopping power is calculated by con- Hfi':J df[(ﬁ?‘)a(r)]*( ~om +§maw2f2) ¢ (),
. . . . . . ! a ’
sidering the c.m. state and the atomic internal state is excited
separately or simultaneously. Several interesting properties
of the trapped fermionic atoms are noteworthy in comparison Hﬁ = J dF[ ¢je"ﬁ(F)]*( -
with the electron scattering by the atomic BEC. First, for the '
elastic scattering process, unlike the coherent property exhib-
ited in the elastic scattering by the atomic BEC, such a co- f,‘“:f drdr’ [ (N[AV(r—r")| ¢ ()],
herence effect is absent for trapped fermionic atoms. Second, ’ ’
for the inelastic scattering process, the trapped fermionic at-
oms show the effect of “Fermi surface” like that in the con- Jjﬁkﬁ:f drd F'|¢f0B(F)|2v(F— F’)|¢§0ﬁ(F')|2,
densed matter physics, that is, the Fermi energy level or the ' ’

Hii+

N| -

N -

B
HE +

m n
> (IP-KEA+ 2 If,
k=1 =1

h2v?
2m, 2

nearby energy levels have the most important contributions (A2)
to the scattering process. In particular, the dependence of the ﬁ“:J drdF’[¢f0a(r)¢f0a(r’)]*
differential cross section on the number of the trapped atoms ' '
I 213 which is al he eff f “Fermi e > =
scales adN“”, which is also due to the effect of “Fermi XV(F—T )¢ﬁ°a(r )¢ﬁ°a(f)y

surface” of trapped atoms and hence the trapped fermionic
atoms manifest the effect of “Fermi surface” in the mesos-

copic level. Third, the stopping power of the electron scat- Kﬁfzf drdr'[¢%(r) (1" )]*

tering by the trapped fermionic atoms is found to be propor- ' '

tional to the § power of the atomic number, which is XV(F — ;/)d)f«‘o(p)d)io (r)
i.B B

obviously different from theN”> power dependence of the
stopping power for the electron scattering by the atomic R . o .
BEC. Ji‘ff=j drdr'|¢ﬁf;(r)|ZV(r—r')|¢‘k*f>ﬁ(r’)|2,
Note that in this paper, only the fast electron scattering
process is studied, which allows the exchange effect and the . R . R
rearrangement of the atomic electron to be neglected. In ad- Jﬁa=f drdr’ | ;%) [PV(r=r")[¢°(r")]%.
dition, the spin-spin and the spin-orbit interactions are not
taken into account. However, these interactions may become Minimizing the energy given by EqA1), one can obtain
non-negligible and they may lead to different influences orthe equations satisfied by the wave function of a single atom
the scattering results at different velocity ranges of the inci{21] with different spin states
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ALedr (=2l o (1), 3?<F>=J drv(r=r)[gper2,
Hfed) )= $735(r), (A3)

h I8¢ FV(r—r")| o (r

where J].B(r):f dr’V(r—r’)|¢jf)B(r’)|2, (A5)

wheree{* and sf are the single particle energies given, re-

R S . spectively, b
Al—ho+ D [0 -RED]+ S, 3a),  (agy oo

n m
h a aa__ aa ap
2ma 2 . “ H||+|Zl (‘]I| il )+|21 ‘]Ik }

Here H{- (HAp) is the Hamiltonian of atoms with the spin

state| @) (| 8)) in the Hartree-Fock approximation. In obtain- m n
ing Eq. (A3), we also have used the following definitions of ef=2 |HE+ > (IFP-KEH+> ). (AB)
the operators =1 k=1 =1

kia(f)fi’ﬁoc((f):f dr'f e (r)IFVr=r")é°(r")¢%(r),  In general, Eq(A6) does not have exact solutions and thus
can be only solved in a self-consistent manner. With the help
of this equation, it is straightforward to give E@) in Sec.

Rf(F>¢§?B(F>=de'[¢f?ﬁ(F'>]*V<F—F'>¢E?B<F'>¢f?ﬁ<r*>, L.
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