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Electron scattering by trapped fermionic atoms
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Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study
theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the
corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic
state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the
elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-
Einstein condensate~BEC!. For the inelastic scattering process, on the other hand, the differential cross section
is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped
fermionic atoms display the effect of ‘‘Fermi surface,’’ that is, only the energy levels near the Fermi energy
have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as
the 7/6 power of the atomic number. These results are fundamentally different from those of the electron
scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems.
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I. INTRODUCTION

The recent experimental observations of Bose-Eins
condensation of trapped cold alkali-metal gases such as
bidium, sodium, lithium, and hydrogen@1# have stimulated
numerous new areas in theoretical as well as experime
physics. This impressive progress not only opened the wa
investigate several macroscopic quantum phenomena
also offered the chance to apply relevant techniques in v
ous fields. In particular, the study of the trapped ultrac
fermions of alkali-metal atomic gases with one spin state
two spin states has become an interesting topic@2,3#. The
relevant investigations on the optical properties@4–6#, sta-
tistical properties@7–9#, collective excitations@10#, super-
fluid phase transition@11,12#, and other properties@13# of
trapped fermions have been undertaken. Like the trap
bosonic atoms, the trapped Fermi gases of alkali-metal at
provide a very intriguing path to study several basic phys
problems such as the phase separation, phase trans
atomic optics, and some statistical topics in condensed m
ter physics.

It is well known that the bosons and fermions are subj
to the corresponding Bose-Einstein and Fermi-Dirac sta
tics, which state that all the bosons can occupy a single qu
tum state when the temperature meets the condition of p
transition, however, fermions do not due to the Pauli’s exc
sion principle. Therefore a very low temperature for t
trapped fermionic atoms, at least below the Fermi tempe
ture TF of the trapped atoms, is desired to investigate
bound quasiparticles and the superfluid phase transitio
the fermionic system of alkali-metal atoms. To date, the
perimental condition of quantum degeneracy has been
tained in the40K system@2#, where the lowest temperature
about 0.2TF @14#. The experimental realization of trappe
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fermionic atoms due to DeMarco and Jin in 1999 have n
opened a new way of investigating the quantum degene
gases. Needless to say, study of the trapped fermionic at
is a challenging topic for both experimental and theoreti
physics.

In this paper we consider the electron scattering by
fermionic alkali-metal atoms trapped in a three-dimensio
~3D!, spherically symmetric harmonic potential. As an effe
tive method, the scattering techniques have been used to
termine the structure as well as to extract relevant inform
tion of the object. In general, scattering refers to t
scattering of light, electron, neutron, and atom. As poin
out by Javanainen@4# and Ruostekoski@5# in the off-resonant
light scattering of the trapped atoms, the spectrum of
scattered light is closely related to the statistics of
trapped atoms, and the quantum degeneracy of the atom
the atomic velocity distribution can be reflected in the sc
tered spectrum. Moreover, the statistical correlation and
collision interaction between the atoms play an import
role in many problems. In the present work, the elastic a
inelastic scattering processes of the electrons by the trap
fermionic atoms are studied. We obtain the differential cro
sections and then calculate the stopping power for the c
when the state of center of mass~c.m.! and the internal state
are excited both separately and simultaneously. It is sho
that the differential cross sections for the elastic scatter
process are essentially different from those of the trap
Bose-Einstein condensate~BEC!, which displays the effect
of ‘‘Fermi surface’’ and reflects the intrinsic difference b
tween fermions and bosons. Interestingly, the experimen
electron scattering from atoms confined in a magnetic opt
trap ~MOT! have been undertaken in 1995@15#, thus using
the trapped fermionic atoms as a target, from which the p
cess of electron scattering can be studied.

The remainder of this article is organized as follows.
Sec. II the statistical property of the fermionic alkali-met
atoms trapped in a 3D spherical harmonic potential is o
lined to obtain the equations satisfied by the wave funct
ic
©2002 The American Physical Society10-1
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of a single particle in the Hartree-Fock approximation.
Sec. III, the scattering of an incident electron beam from
trapped atoms is introduced. In Sec. IV, the differential cr
sections for the elastic and the inelastic scattering proce
are calculated. In Sec. V, the stopping power of the electr
is obtained for the cases that the c.m. and the internal s
are excited separately or simultaneously. In Sec. VI, so
problems associated with experimental consideration are
cussed and the main results of this paper are summarize

II. HARTREE-FOCK DESCRIPTIONS OF TRAPPED
FERMIONIC ATOMS

In this section we concentrate our attention on conside
the statistical properties of the fermionic gases consisting
N alkali-metal atoms trapped in a 3D spherical harmo
potential. The Hamiltonian of this system can be written

H5(
a

E drWca
†~rW !F2

\2

2ma
¹21

1

2
mav2r 2Gca~rW !

1
1

2 (
a,a8

E drWdrW8ca
†~rW !ca8

†
~rW8!V~rW2rW8!

3ca8~rW8!ca~rW !, ~1!

where v is the angular frequency of the trap,ma is the
atomic mass, the sum is over the possible spin states,
V(rW2rW8) is the interaction potential between the atoms at
positionsrW and rW8. Hereca

†(rW) and ca(rW) are the field op-
erators of atoms that create or annihilate an atom with
spin statea at a positionrW and satisfy the anticommutatio
relations,

$ca~rW !,ca8
†

~rW8!%5d~rW2rW8!da,a8 ,

$ca~rW !,ca8~rW8!%5$ca
†~rW !,ca8

†
~rW8!%50. ~2!

In this system the trapped fermionic atoms are just l
the special ‘‘artificial molecules,’’ for which the trap can b
considered as a ‘‘nucleus,’’ whereas the atoms play the
of the bound ‘‘electrons.’’ Without loss of generality, choo
ing the following Hartree-Fock state as the ground state
the N-particle system

fHF5
1

AN!
(P nPP̂ @f1,a

e0 ~rW1!f2,a
e0 ~rW2!•••fn,a

e0 ~rWn!

3f1,b
e0 ~rWn11!f2,b

e0 ~rWn12!•••fm,b
e0 ~rWN!#, ~3!

where the sum is over all the atoms and all the permutat
of indicesP @p1 ,p2•••pN#, nP is the corresponding parity o
the permutation,f i ,a

e0 (r i) denotes thei th single-particle wave
function occupied by thei th atom having the spin stateua&
(ua& and ub& denote the two spin states of an atom! and the
internal ground stateue0& labeled bye0, and the relation (n
1m)5N holds true. This configuration of the ground sta
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can be described by the well-known Slater determinant
guarantees the antisymmetry of the wave function of
trapped fermionic atoms.

Starting with this equation, for the case that all trapp
atoms possess the same spin state, which will be consid
in this paper, we get the equation satisfied by the wave fu
tion of a single particle,

H ĥ01(
i 51

N

@ Ĵi~rW !2K̂ i~rW !#J f i
e0~r !5« if i

e0~rW !, ~4!

where ĥ052 (\2/2ma) ¹21 1
2 mav2r 2, and the operators

Ĵi(rW) and K̂ i(rW) are defined as

K̂ i~rW !f l
e0~rW !5E drW8@f i

e0~rW8!#* V~rW2rW8!f l
e0~rW8!f i

e0~rW !

~5!

Ĵi~rW !5E drW8V~rW2rW8!uf i
e0~rW8!u2. ~6!

In Eqs.~4!–~6!, the spin index is omitted.~Here, for simplic-
ity, we describe the detailed procedure in the Append
where the equations which allow the trapped atoms to p
sess two spin states are derived. The atoms with diffe
spin states trapped in a MOT are an interesting topic
shown by DeMarco and Jin@2#.!

For the low temperature system under study, the inter
tion potential between the atoms is usually represented b

V~rW2rW8!5
4p\2as

ma
d~rW2rW8!, ~7!

with the negatives-wave scattering lengthas . Such an inter-
action makes the terms( i 51

N @ Ĵi(rW)2K̂ i(rW)#f i
e0(r ) exactly

cancelled in the Hartree-Fock approximation and th
higher-order correlation interactions should be taken into
count. When the interatomic interactions are weak,
ground state configuration of the trapped atoms can alw
be expressed as

ufg&5
1

AN!
(P nPP̂ @w1

e0~rW1!w2
e0~rW2!3•••3wN

e0~rWN!#,

~8!

wherewn
e0(rW)5^rWuñ& ^ ue0& denotes that the internal state

an atom is in the internal ground stateue0& and its c.m. state

^rWuñ& is in the (n21)th state of the harmonic oscillator de
noted by^rWun21&. Here we use the symbol^rWuñ& to stand
for ^rWun21&, i.e., ^rWuñ&5^rWun21&, for convenience.

Thenth energy level of a particle trapped in the potent
1
2 mv2r 2 is known as«n5(n1 3

2 )\v with n5nx1ny1nz
and its degeneracy~atoms have same spin state! is

gn5
1

2
~n11!~n12!. ~9!
0-2
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When the temperature of the system is so low that the en
levels belown* are filled by atoms, wheren* is the lowest
unoccupied energy level, i.e., the trapped atoms posse
closed shell structure, thenn* should be subject to the equa
tion

(
n50

n* 21

gn5
1

6
n* ~n* 11!~n* 12!5N. ~10!

In this paper we consider thatN is large enough thatn*
>(6N)1/3 and thus the corresponding Fermi energyeF be-
comes

eF5~6N!1/3\v, ~11!

which provides an estimation of the energy shell for t
ground state configuration, and hence the energy leveln*
21) can be called the Fermi energy level of the trapp
atoms.

III. SCATTERING OF AN ELECTRON BY TRAPPED
FERMIONIC GASES

Now let us consider the scattering of an electron by
trapped fermionic gases of alkali-metal atoms with nucl
chargeZe. Suppose that an incident electron with massme

and momentum\kW i ~or, velocityyW i5\kW i /me) is scattered by
the trapped atoms into the state of momentum\kW f . The
interaction between the incident and the trapped atom
then described byHint5( i 51

N Vi , where

Vi52
Ze2

urW2XW i u
1(

j 51

Z
Ze2

urW2xW i j u
. ~12!

Here XW i is the position of thei th nucleus andxW i j is the
position of thej th electron bounded by the atom. Note th
the spin-orbit and spin-spin interactions are ignored.

Under these interactions, the incident electron will
scattered by the trapped atoms and the trapped atoms e
remain in the ground state configuration or become exc
to one of its excited states. The former case correspond
the elastic scattering process whereas the latter to inel
scattering. For the latter, in particular, the atomic inter
state and the c.m. state of an atom can be excited e
separately or simultaneously. The initial and final states
the electron-atom system can be written, respectively, as

uF i&5ukW i& ^ ufg& ~13!

and

uF f&5ukW f& ^ uf f&, ~14!

where kW i5L2(3/2) exp(ıkWi•rW) and kW f5L2(3/2) exp(ıkW f•rW) are
the normalized initial and final states of the incident electr
and ufg& and uf f& are the initial and final states of th
trapped atoms before and after scattering. The elastic sca
ing process, on the other hand, corresponds to the cond
02361
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thatkf5ki anduf f&5ufg&, wherekf5ukW f u andki5ukW i u. The
inelastic scattering corresponds touf f&Þufg& and kiÞukW i u,
which means that the incident electron transfers part of
kinetic energy to the trapped atoms.

For simplicity we consider only the case of single-partic
excitation. Then for the inelastic scattering, the final state
be chosen as

uf f&5
1

AN
(
l 51

N H 1

AN!
(P nPP̂ @w1

e0~rW1!w2
e0~rW2!3•••

3w l 21
e0 ~rW l 21!w l 11

e0 ~rW l 11!•••wN
e0~rWN!wn

ek~rW l !#J ,

~15!

where wn
ek(rW l) denotes that thel th atom is in thenth (n

>n* ) c.m. state and the atomic internal state is in the s
uek& labeled byek . This stands for the excitation transition o
the l th atom from the statew l

e0(rW l) to the statewn
ek(rW l) due to

the interaction. In fact, atoms in any energy level below
Fermi energy have the same possibility of being excited
the incident electron, which is reflected by the permutat
operations and the factor (1/AN) ( l 51

N $•••%. Obviously, the
c.m. state and the internal electric state of the trapped a
can be excited either separately or simultaneously, and
case ofn5 l andek5e0 just corresponds to the initial stat
given by Eq.~8!.

Starting with the standard expression of the differen
cross section, we find

ds

dV
5S meL

2p\2D 2
kf

ki
uTi f u2, ~16!

whereTi f describes the transition between the initial and
final states represented by operatorT:

T5(
i

Vi1(
i , j

ViG0Vj1(
i , j ,k

ViG0VjG0Vk1•••,

~17!

with G0(z)51/(z2H0), whereH0 is the unperturbed Hamil-
tonian of the incident electron and the trapped atoms.

From the expression of the operatorT, it can be found that
the electron scattering contains direct scattering as wel
multiple scattering processes. As a matter of fact, it is p
sible that the scattering process leads to the exchange o
incident electron with the bound electrons or the rearran
ment of the atomic electrons. However, rigorous calculat
of the transition matrix elements is a nontrivial task a
therefore use of approximate methods is necessary. In
paper we discuss the fast electron scattering and the velo
of the incident electrony i is considered to be large compare
to that of the atomic bound electrons~typically, the velocity
of a bound electron is of the order ofc/137 with the light
velocity c). For the slow electron scattering, on the oth
hand, the system may make many successive transitions
0-3
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thus the exchange effect and the rearrangement of ato
electrons should be taken into account.

In the high energy limit, however, the exchange and
rearrangement of the atomic electrons can be ignored du
the little overlap between the relatively fast incident ele
trons and the atomic electrons in the momentum space. C
sequently the first Born approximation can be employed
discuss relevant problems. In fact, the main requirement
the validity of the Born approximation isZe2/\y i!1 and
thus in the high energy regime the Born approximation p
vides satisfactory results. Therefore we obtain

Ti f 5
1

L3E drW exp~ ıqW •rW !^F f u(
i 51

N

Vi uF i&, ~18!

whereqW 5kW i2kW f denotes the change of wave vector of t
incident electron in the scattering process. SubstitutinguF i&
in Eq. ~13! anduF f& in Eq. ~14! into Eq.~18! and integrating
over rW, we find

Ti f 5
4pe2

q2L3
^F f u(

i 51

N F (
j 51

Z

eıqW •xW i j 2ZeıqW •XW iG uF i&. ~19!

Making use of the coordinate transformation between
relative motion of electrons and the c.m. motion for thei th
atom, we obtain

rW i5XW i1(
j 51

Z mexW i j
e

ma
, ~20!

where rW i is the c.m. position of thei th atom andxW i j
e 5(xW i j

2XW i) is the relative position of thej th electron.
Note that alkali-metal atoms are all hydrogenlike and th

have only one valence electron outside the closed shell,
so their inner rare-gas structure is spherically symmet
Then in the summation of Eq.~20!, only the position of the
valence electron can be retained. In addition, because
mass of electrons is much less than that of atoms, the
tained term related to the position of the valence electron
Eq. ~20! becomes negligibly small. SorW i>XW i and the term

@( j 51
Z exp(ıqW•xWij)2Zexp(ıqW•Xi

W)# in Eq. ~19! becomes

exp(ıqW•Xi
W)@(j51

Z exp(ıqW•xWij
e)2Z#.

As a result, Eq.~19! can be rewritten as

Ti f 5
4pe2

q2L3
^F f u(

i 51

N FeıqW •rW iS (
j 51

Z

eıqW •xW i j
e
2ZD G uF i&. ~21!

In Eq. ~21!, the position of electrons and atomic c.m. a
decoupled, which is the starting point of calculating the d
ferential cross sections for the elastic and the inelastic s
tering processes.

IV. DIFFERENTIAL SCATTERING CROSS SECTIONS
AND FERMI SURFACE EFFECT

The differential scattering cross section is an import
physical quantity to describe the scattering characteristics
02361
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this section we will present the corresponding expression
the differential cross sections for the elastic as well as
inelastic electron scattering by the trapped fermionic atom

For the elastic scattering process, no energy is transfe
from the incident electron to the trapped atoms. Thus all
atoms remain in the ground state configuration andkf5ki ,
this leads to the equation

Ti f 5
4pe2Z

q2L3 (
l 51

N

^ l̃ uexp~ ıqW •rW !u l̃ &@F0~qW !21#, ~22!

where Fk(qW ) is the form factor of the alkali-metal atom
defined by

Fk~qW !5
1

Z
^eku(

j 51

Z

exp~ ıqW •xW j
e!ue0&, ~23!

with ue0& and uek& being the configurations of the groun
state and thekth excited state of the bounded electrons,
spectively. For the inelastic scattering process, on the o
hand, the atomic internal state and the c.m. state can be
cited separately or simultaneously and from Eq.~21! we find

Ti f 5
4pe2Z

q2L3AN
(
l 51

N

^ñuexp~ ıqW •rW !u l̃ &Fk~qW !

~n>n* or kÞ0!. ~24!

Substituting Eqs.~22! and ~24! into Eq. ~16!, the differ-
ential cross sections for the elastic and the inelastic scatte
processes can be obtained immediately,

dsel

dV
5

4Z2a0
2

~qa0!4U(l 51

N

^ l̃ uexp~ ıqW •rW !u l̃ &U2

uF0~qW !21u2,

~25!

ds inel

dV
5

4Z2a0
2kf

N~qa0!4ki
U(

l 51

N

^ñuexp~ ıqW •rW !u l̃ &U2

uFk~qW !u2

~n>n* or kÞ0!, ~26!

wherea05\2/mee
2 is the Bohr radius. It is obvious that th

differential cross sections for the elastic and inelastic scat
ing processes are closely related to the matrix eleme
Anm5^nuexp(ıqW•rW)um& and therefore we must execute furth
calculations in order to describe the scattering in detail. B
low the theory of the displaced number state@16# will be
used to carry out these results.

Here, for this purpose, we outline some properties of
displaced number states by considering an example of a
dimensional harmonic oscillator with the HamiltonianH̄
5\v(a†a1 1

2 ), wherea† anda are the creation and annih
lation operators. The displaced number state associated
this harmonic oscillator is

uh,m&5D̂~h!um&, ~27!
0-4
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where um& is the mth eigenstate ofH̄ and D̂(h) is the dis-
placed operator, which has the form

D̂~h!5exp~ha†2h* a! ~28!

and satisfies the relations

D̂~h!aD̂ †~h!5a2h, D̂~h!D̂ †~h!51,

D̂~h!a†D̂† ~h!5a†2h* , D̂ †~h!D̂~h!51. ~29!

Here the quantityh is called the translational parameter th
may be real or complex. In particular, whenh50, the dis-
placed number state reduces to the well-known cohe
state. As an interesting application of the theory of the d
placed number state@16#, the following matrix elements

^nuD̂~h!um&5S m!

n! D 1/2

hn2m expS 2
1

2
uhu2DL m

n2m~ uhu2!

~30!

can be obtained when the conditionn>m holds, where
L m

n2m is the associated Lagurerre polynomial with the arg
ment uhu2.

In order to evaluate the matrix element^nuexp(ıqW•rW)um&,
we rewrite it in the following form:

Anm5)
j

^nj ueıqj r j umj& ~ j 51,2,3!, ~31!

where the indexj ( j 51,2,3) corresponds to thex, y, and z
component of the corresponding physical quantity. For
3D spherically symmetric harmonic potential, we have

r j5~aj
†1aj !l, l5A \

2mav
,

exp~ ıqj r j !5D̂j~h j !, h j5ıqjl. ~32!

Combining Eqs.~30!–~32!, we then find

Anm5)
j

S mj !

nj !
D 1/2

h j
nj 2mje2(1/2)uh j u

2L mj

nj 2mj~ uh j u2!.

~33!

For convenience, we define the following quantities

Bel5U(
l 51

N

^ l̃ ueıqW •rWu l̃ &U2

5U (
m50

n* 21

gmA mmU2

,

Binel5U(
l 51

N

^ñueıqW •rWu l̃ &U2

5U (
m50

n* 21

gmA nmU2

, ~34!

where the degeneracy of the trapped energy levels in the
potential has been taken into account. Thus the differen
cross sections for the elastic and the inelastic scattering
cesses can be explicitly given by
02361
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dsel

dV
5

4Z2a0
2

~qa0!4
uF0~qW !21u2Bel ~35!

and

ds inel

dV
5

4Z2a0
2kf

N~qa0!4ki

uFk~qW !u2Binel ~n>n* or kÞ0!,

~36!

where the factorsBel andBinel can be explicitly expressed a

Bel5U (
m50

n* 21

gm)
j

Lmj

0 (uh j u2)U2

exp~2q2l2!, ~37!

Binel5U (
m50

n* 21

gm)
j

S mj !

nj !
D 1/2

h j
nj 2mjL mj

nj 2mj(uh j u2)U2

3exp~2q2l2!. ~38!

Let us suppose thath j and uh j u2 are small quantities.
Then, making use of the expression of the associated La
erre polynomial with the argumentx,

L n
k~x!5(

i 50

n
~n1k!!

~n2 i !! ~k1 i !! i !
~2x! i , ~39!

and ignoring high-order small quantities, we have

Bel>UN2 (
m50

n* 21

gmS (
j

mj uh j u2DU2

exp~2q2l2!. ~40!

Without loss of generality, settingqj
25 1

3 q2, we find Bel

>N2u12 (q2l2/3N) (m50
n* 21mgmu2exp(2q2l2), which can be

further reduced to N2u12 (q2l2n* @(n* )221#(n*
12)/24N) u2. Recalling thatn* >(6N)1/3, we can finally ob-
tain

Bel>N2u12 1
4 ~6N!1/3q2l2u2exp~2q2l2!. ~41!

In the following we will derive the relationship betwee
the factorBinel and the number of trapped atoms. Similar
discussion will be made assuming thath j and uh j u2 are
small. From Eq.~38!, it is obvious that for smallh j and
uh j u2, as the difference between the quantum numbersnj and
mj is increased, the magnitude of the term becomes sm
After a direct calculation, neglecting the high order term
one obtains

A nm>e2(q2l2/2)S ıql

A3
D n2mS 12

mq2l2

6 D)
j

S nj !

mj !
D 1/2

,

~42!

where we have usedqj
25 1

3 q2. From this equation, we find
that the main contributions come from the energy levels n
the leveln due to the factor (ıql/A3)n2m. The maxima of
Anm can therefore be obtained by arranging the terms in s
a way that the difference of quantum number is (n2m) at
0-5
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one direction and zero at another two directions, the co
sponding maxima for givenn andm can be expressed as

A nm
max5e2(q2l2/2)An!

m! S ıql

A3
D n2mS 12

mq2l2

6 D . ~43!

This result shows that for a given energy leveln, when the
other energy levels lie nearby, the corresponding contri
tions toA nm

max are increased.
Note that n>n* , m<(n* 21), and the Fermi energy

level (n* 21) is the nearest energy level ton. Thenn should
take the value ofn* and the energy levelm5n* 21 offers
the crucial contribution, which is the leading term and a
the most important term in the factorBinel . This indicates
that atoms distributed in the Fermi energy level (n* 21) or
nearby play a key role in the inelastic scattering proce
This is just like the effect of the ‘‘Fermi surface’’ in th
condensed matter physics, in which it has been manife
that only the electrons near the ‘‘Fermi surface’’ are clos
related to the electric, optical, and transport properties o
solid. In fact, the system consisting of trapped atoms can
thought of as an ‘‘artificial molecule’’ from the viewpoint o
the orbital theory in chemistry, which states that the high
occupied orbit and the lowest unoccupied orbit play a k
role in chemical reaction and determine the chemical pr
erties of matter. In a word, this is the intrinsic nature
fermions and the trapped fermionic atoms again display
kind of feature in the mesoscopic level.

Based on the considerations mentioned above, we ha

Binel>
q2l2

12 U~n* !5/2S 12
1

6
n* q2l2D U2

exp~2q2l2!

5
N~6N!2/3q2l2

2 F12
1

6
q2l2~6N!1/3G2

exp~2q2l2!.

~44!

Substituting this equation into Eq.~36! yields

ds inel

dV
5

2Z2a0
2kf

~qa0!4ki

uFk~qW !u2q2l2~6N!2/3exp~2q2l2!

3F12
1

6
q2l2~6N!1/3G2

, ~45!

which is proportional to the2
3 power of the number of the

trapped atoms. Comparing the differential cross section
the elastic and inelastic scattering process of trapped fe
onic atoms with that of atomic BEC@17#, we find

dsel /dVuF

dsel /dVuB
5F12

1

4
~6N!1/3q2l2G2

, ~46!

ds inel /dVuF
ds inel /dVuB

5
62/3

12 F12
1

6
~6N!1/3q2l2G2

N2(1/3), ~47!
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where all the conditions such as the atomic number and
initial and final states of the incident electrons are set to
identical.

It can be observed that both the elastic and the inela
differential cross sections of trapped fermionic atoms
smaller than those of atomic BEC. The elastic scattering
electrons by the atomic BEC is a kind of coherent scatter
because the differential cross section is proportional to
square of atomic numberN. However, for the electron scat
tering by the trapped fermionic atoms, the differential cro
section is proportional to the factor N2u1
2 (6N)1/3q2l2/4 u2, for which this kind of coherence is ab
sent. For the inelastic scattering process, the ratio of the
responding differential cross sections displays a scaling
havior of N2(1/3). This result arises due to the differen
statistics that the Fermi and the Bose gases obey. In the s
of off-resonant light scattering by the trapped atoms, J
anainen@4# and Ruostekoski@5# have pointed out that the
spectrum of the scattered light is closely related to the sta
tics of atoms. Indeed, this conclusion can be similarly rec
ered in the electron scattering by trapped atoms.

V. STOPPING POWER OF ELECTRON SCATTERING

In the inelastic scattering process, the kinetic energy
the incident electron is transferred to the trapped fermio
atoms and this leads to the excitation of the c.m. state or
atomic internal state. Hence the stopping power or the ene
loss of the incident electron is an important quantity, whi
can be derived in terms of the differential cross section of
inelastic scattering given by Eq.~45!. As is usually the case
in scattering problems, we are interested in the energy los
the incident electron along the travel path denoted
2dE/dx, which can be expressed as

2
dE

dx
5ra(

k,n
~Eek ,n2Ee0 ,g!E

qmin

qmaxds inel

dq
dq, ~48!

wherera is the density of the trapped atoms,qmin andqmax
are the corresponding integral limits, andEe0 ,g and Eek ,n

denote the energies of the initial state and the excited s
respectively.

Note that

q25uqW u25ki
21kf

222kikf cosu, ~49!

with u being the angle betweenkW i andkW f . This then leads to

ds inel

dq
5

2pq

kikf

ds inel

dV
. ~50!

Therefore we obtain

2
dE

dx
5

8praZ2

N~kia0!2 (
k,n

~Eek ,n2Ee0 ,g!E
qmin

qmax
uFk~qW !u2Binel

dq

q3
.

~51!

For the case that only the atomic internal state is excit
the energy difference (Eek ,n2Ee0 ,g) is equal to (Eek

2Ee0
).
0-6
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Moreover, the factorBinel becomes equal toBel since the c.m.
state does not change. Thus the stopping power under
condition becomes

2
dE

dx U
n5g

5
4praZe4

Nmey i
2 E

qmin

qmaxBel

dq

q
. ~52!

In obtaining this equation, the well-known result

(
k

~Eek
2Ee0

!uFk~qW !u25
1

Z

\2q2

2me
, ~53!

proposed by Gottfried and Bethe@18#, has been used.
For the case that only the trapped energy level is exci

no change occurs in the atomic internal state and thus
total energy difference is the same as the energy differe
between the c.m. states. Then from the result(n(En

2Eg)u( l 51
N ^ñueıqW •rWu l̃ &u2, as stated in Sec. IV, we can on

consider the Fermi energy level so that

(
n

~En2Eg!U(
l 51

N

^ñueıqW •rWu l̃ &U2

>
N\v~6N!2/3q2l2

2
,

~54!

where the term exp(2q2l2) has been expanded in a seri
form and the terms containing the high order ofq2l2 has
been omitted. Therefore for the case that only the c.m. s
is excited, we have

2
dE

dx U
k50

5
2praZ2e4

mey i
2

me

ma
~6N!2/3E

qmin

qmax
uF0~qW !u2

dq

q
.

~55!

For the case that the c.m. as well as the internal states
excited simultaneously, on the other hand, with the total
ergy difference (Eek ,n2Ee0 ,g) being decomposed as (Eek

2Ee0
)1(En2Eg), we obtain

2
dE

dx
5

2praZe4~6N!2/3

mey i
2 S 11

Zme

ma
D E

qmin

qmax
e2q2l2 dq

q
.

~56!

In obtaining this we have used the following relations

(
n

Binel>
N~6N!2/3q2l2

2
exp~2q2l2! ~57!

and

(
k

uFk~qW !u251. ~58!

Note that Eq.~57! can be derived from Eq.~44! by consid-
ering the effect of ‘‘Fermi surface’’ mentioned above a
with the terms containing high order ofq2l2 being omitted.
Equation~58! is an identity because the interpretation of t
left-hand side of this equation stands for the sum of pr
02361
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abilities that the ground internal state of an atom is excited
all possible excited states, which must be equal to 1.

Following the Bethe’s treatment with respect to the in
gral limits, that is,qmax52ki andqmin5ki2kf , one can ex-
pand the exponential function in Eq.~56! in the series form
and then integrate overq to obtain

2
dE

dx
5

2praZe4~6N!2/3

mey i
2 S 11

Zme

ma
D lnS 2mey i

2

I D , ~59!

where I is a semiempirical parameter that is related to
average excitation energy and in this equation only the le
ing term is listed.

For the fermionic atoms trapped in the 3D potential d
cussed in this paper, the densityra of atoms can be ex-
pressed as@7,20#

ra5
8

p2

N

RF
3 S 12

r 2

RF
2D 3/2

, ~60!

whereRF5(48N)1/6L with L5A\/mav is called the Fermi
radius of the density distribution. Substituting the express
of atomic density into Eq.~59! yields

2
dE

dx
5

4A2Ze461/6

pL3mey i
2 S 12

r 2

RF
2D 3/2

N7/6S 11
Zme

ma
D

3 lnS 2mey i
2

I D . ~61!

This shows that the dependence of the stopping power on
number of trapped atoms isN7/6, which is proportional to the
7
6 power of the atomic number. Note that for the trapp
atomic BEC@17#, the stopping power is proportional to the7

5

power of the atomic number. The different dependence of
stopping power between the trapped fermionic atoms and
atomic BEC on the atomic number is a characteristic pr
erty, which essentially originates from the different statist
that the atoms obey. It should be noted that some elabo
methods and techniques are necessary to probe the differ
between components of75 and 7

6 when one measures th
stopping power since distinguishing them is not easy, a
thus these components keep only theoretical interest.

VI. DISCUSSION AND SUMMARY

Having obtained several quantities related to the elect
scattering by the trapped fermionic atoms, an important
direct problem arises: how to test these theoretical res
through an experiment? As is well known, the curre
trapped potentials used to confine atoms are almost M
then one should consider how to effectively avoid the infl
ence of the magnetic field on the incident electron be
when one tries to realize such an experiment.

In 1995, Schappe@15# and his co-workers first performe
the electron scattering experiment using the ground-state
atoms trapped in a MOT as a target, they measured the
scattering cross section for the collision between electron
0-7
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Rb atoms with the incident energy in the range of 7–500
by controlling the time sequence. Since the atoms trappe
MOT are very sensitive to the atomic recoil, some ato
therefore would escape from the trap due to electron-a
collision when the incident electrons are applied on the s
tem. In their excellent experiment, in order to ensure that
incident electrons are not distorted by the magnetic fie
they first turned off the magnetic field and shifted the mod
lation frequency of trapping lasers, after a short time
electron beam is pulsed on the system. Second, the tra
fectively remains off after the end of the electron beam fo
long time (to f f) to allow some recoiling atoms due to th
electron-atom collision to leave the trap. Third, the trap
turned on again for a time (ton), which allows the remaining
atoms to be recaptured, and finally, they measured the n
ber of the trapped atoms and obtained some information

After this experiment, this kind of technique has be
used to study the electron-impact ionization using Rb ato
trapped in a MOT as a target@19#. Likewise, it is possible
that through this method with a proper time sequence,
experiments of electron scattering from trapped bosonic
fermionic atoms can be performed, in particular for the dilu
trapped atomic system in which the interparticle interactio
are rather weak, and therefore some related topics ca
investigated.

In conclusion, we have studied the electron scattering
the fermionic atoms trapped in a 3D spherically symme
harmonic potential. The corresponding differential cross s
tions for the elastic and the inelastic scattering processes
obtained. Moreover the stopping power is calculated by c
sidering the c.m. state and the atomic internal state is exc
separately or simultaneously. Several interesting prope
of the trapped fermionic atoms are noteworthy in compari
with the electron scattering by the atomic BEC. First, for t
elastic scattering process, unlike the coherent property ex
ited in the elastic scattering by the atomic BEC, such a
herence effect is absent for trapped fermionic atoms. Sec
for the inelastic scattering process, the trapped fermionic
oms show the effect of ‘‘Fermi surface’’ like that in the co
densed matter physics, that is, the Fermi energy level or
nearby energy levels have the most important contributi
to the scattering process. In particular, the dependence o
differential cross section on the number of the trapped ato
scales asN2/3, which is also due to the effect of ‘‘Ferm
surface’’ of trapped atoms and hence the trapped fermio
atoms manifest the effect of ‘‘Fermi surface’’ in the meso
copic level. Third, the stopping power of the electron sc
tering by the trapped fermionic atoms is found to be prop
tional to the 7

6 power of the atomic number, which i
obviously different from theN7/5 power dependence of th
stopping power for the electron scattering by the atom
BEC.

Note that in this paper, only the fast electron scatter
process is studied, which allows the exchange effect and
rearrangement of the atomic electron to be neglected. In
dition, the spin-spin and the spin-orbit interactions are
taken into account. However, these interactions may bec
non-negligible and they may lead to different influences
the scattering results at different velocity ranges of the in
02361
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dent electron. Some further works will be performed by co
sidering the effect of these factors. Nevertheless, those
sults that are detailed here will be useful for experimen
studies of the scattering properties of the trapped fermio
atoms.
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APPENDIX: EQUATIONS FOR TRAPPED FERMIONIC
ATOMS WITH TWO SPIN STATES

Here we give the equations describing trapped fermio
atoms with two spin states in a MOT. With the use of Eq
~1! and~3!, the energy corresponding to the configuration
the ground state can be given by

EHF5(
i 51

n FHii
a1

1

2 (
l 51

n

~Jil
aa2Kil

aa!1(
l 51

m

Jik
abG

1(
j 51

m FH j j
b 1

1

2 (
k51

m

~Jjk
bb2K jk

bb!1(
l 51

n

Jjl
baG ,

~A1!

where

Hii
a5E drW@f i ,a

e0 ~rW !#* S 2
\2¹2

2ma
1

1

2
mav2r 2Df i ,a

e0 ~rW !,

H j j
b 5E drW@f j ,b

e0 ~rW !#* S 2
\2¹2

2ma
1

1

2
mav2r 2Df j ,b

e0 ~rW !,

Jil
aa5E drWdrW8uf i ,a

e0 ~rW !u2V~rW2rW8!uf l ,a
e0 ~rW8!u2,

Jjk
bb5E drWdrW8uf j ,b

e0 ~rW !u2V~rW2rW8!ufk,b
e0 ~rW8!u2,

~A2!

Kil
aa5E drWdrW8@f i ,a

e0 ~rW !f l ,a
e0 ~rW8!#*

3V~rW2rW8!f i ,a
e0 ~rW8!f l ,a

e0 ~rW !,

K jk
bb5E drWdrW8@f j ,b

e0 ~rW !fk,b
e0 ~rW8!#*

3V~rW2rW8!f j ,b
e0 ~rW8!fk,b

e0 ~rW !,

Jik
ab5E drWdrW8uf i ,a

e0 ~rW !u2V~rW2rW8!ufk,b
e0 ~rW8!u2,

Jjl
ba5E drWdrW8uf j ,b

e0 ~rW !u2V~rW2rW8!uf l ,a
e0 ~rW8!u2.

Minimizing the energy given by Eq.~A1!, one can obtain
the equations satisfied by the wave function of a single a
@21# with different spin states
0-8
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ĤHF
a f i ,a

e0 ~r !5« i
af i ,a

e0 ~rW !,

ĤHF
b f j ,b

e0 ~r !5« j
bf j ,b

e0 ~rW !, ~A3!

where

ĤHF
a 5ĥ01(

i 51

n

@ Ĵi
a~rW !2K̂ i

a~rW !#1(
l 51

m

Ĵi
b~rW !,

ĤHF
b 5ĥ01(

j 51

m

@ Ĵ j
b~rW !2K̂ j

b~rW !#1(
i 51

n

Ĵi
a~rW !, ~A4!

ĥ052
\2

2ma
¹21

1

2
mav2r 2.

Here ĤHF
a (ĤHF

b ) is the Hamiltonian of atoms with the spi
stateua& (ub&) in the Hartree-Fock approximation. In obtain
ing Eq. ~A3!, we also have used the following definitions
the operators

K̂ i
a~rW !f l ,a

e0 ~rW !5E drW8@f i ,a
e0 ~rW8!#* V~rW2rW8!f l ,a

e0 ~rW8!f i ,a
e0 ~rW !,

K̂ j
b~rW !fk,b

e0 ~rW !5EdrW8@f j ,b
e0 ~rW8!#* V~rW2rW8!fk,b

e0 ~rW8!f j ,b
e0 ~rW !,
02361
Ĵi
a~rW !5E drW8V~rW2rW8!uf i ,a

e0 ~rW8!u2,

Ĵ j
b~rW !5E drW8V~rW2rW8!uf j ,b

e0 ~rW8!u2, ~A5!

where« i
a and « j

b are the single particle energies given, r
spectively, by

« i
a5(

i 51

n FHii
a1(

l 51

n

~Jil
aa2Kil

aa!1(
l 51

m

Jik
abG ,

« j
b5(

j 51

m FH j j
b 1 (

k51

m

~Jjk
bb2K jk

bb!1(
l 51

n

Jjl
baG . ~A6!

In general, Eq.~A6! does not have exact solutions and th
can be only solved in a self-consistent manner. With the h
of this equation, it is straightforward to give Eq.~4! in Sec.
II.
.
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