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Adiabatic propagation in potential structures

Markku Jääskeläinen and Stig Stenholm
Laser Physics and Quantum Optics, Royal Institute of Technology, Roslagstullsbacken 21 SE-10691 Stockholm, Sweden

~Received 3 December 2001; published 26 August 2002!

In this work the adiabatic approximation is applied to the propagation of matter waves in confined geom-
etries like those experimentally realized in recent atom optical experiments. Adiabatic propagation along a
channel is assumed not to mix the various transverse modes. Nonadiabatic corrections arise from the potential
squeezing and bending. Here we investigate the effect of the former. Detailed calculations of two-dimensional
propagation are carried out both exactly and in an adiabatic approximation. This offers the possibility to
analyze the validity of adiabaticity criteria. A semiclassical~sc! approach, based on the sc Massey parameter is
shown to be inadequate, and the diffraction due to wave effects must be included separately. This brings in the
Fresnel parameter well known from optical systems. Using these two parameters, we have an adequate under-
standing of adiabaticity on the system analyzed. Thus quantum adiabaticity must also take cognizance of the
intrinsic diffraction of matter waves.

DOI: 10.1103/PhysRevA.66.023608 PACS number~s!: 03.75.Be, 03.75.Dg, 05.60.Gg, 03.65.Ge
ua
tu
ru
pt
sy
ns
ro
h

su

v
th
m

te
e
rs
tu
p

te
om
fu

rts
ti

or
m
s
be
ro
he
ne
ve
p
se

um
r
f
ati-
rent
ly
ted
n,

ues-
ex-
mic

tool
ice

s of
in
ow-
of
ell
to

f di-
ely
of

, but

nate
d for
has
in-

les
in

s.
o-
The

the
I. INTRODUCTION

The recent experimental progress in time-dependent q
tum dynamics has created an interest in localized quan
states propagating through various types of potential st
tures. In communication technology, the progress of an o
cal pulse through guiding structures serves as the model
tem for both communication and computation applicatio
In femtosecond laser-induced dynamics of molecular p
cesses, we have a well established area of research, w
vibrational states propagate along electronic potential
faces. The advances in cooling and trapping@1# of neutral
atoms have led to the possibility to confine atomic wa
functions to low-dimensional structures, thus creating
analog of electronic nanostructures but for neutral ato
Several techniques have been utilized@2#, among them mag-
netic confinement both inside hollow glass tubes@3# and
above current carrying wires@4#, light force trapping in hol-
low fibers@5#, and various other schemes based on the in
action of electromagnetic radiation with atoms. In confin
ment to atomic waveguide geometries with transve
dimensions around or below micrometer scales, the quan
nature of the atoms starts to influence the dynamics. Pro
gation in such potentials will take place in the form of mat
waves, we are in the regime of atom optics, and the phen
ena can be used to explore new features involving the
damental properties of quantum dynamics.

In waveguides for photons or their atomic counterpa
we assume that the wave packet describing the propaga
follows the channel smoothly and without too much dist
tion. The use of single-mode fibers is based on this assu
tion. Molecular vibrational states are supposed to progres
the Born-Oppenheimer surfaces without being too pertur
by nonadiabatic influences. Such assumptions derive f
some underlying smoothness of the guiding structures; w
this is not the case, the adiabaticity ceases to hold and
phenomena can be expected. It is the purpose of our in
tigations to consider such effects and attempt to find the
rameter regions where they may be neglected. The pre
paper reports our first results in this direction.
1050-2947/2002/66~2!/023608~11!/$20.00 66 0236
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The adiabatic theorem was formulated in the old quant
theory by Ehrenfest@6# and it formed the basis for late
works. Born and Fock@7,8# emphasized the importance o
adiabatic invariants in quantum mechanics. As a mathem
cal tool, adiabatic methods have been used in many diffe
contexts@9#, and they have usually turned out to be high
successful; in fact, often beyond what could be expec
from naı̈ve validity arguments. We here ask the questio
when a wave packet propagating according to Schro¨dinger’s
equation can be described by an adiabatic ansatz. This q
tion has become exceedingly interesting in the effort to
tend optical and electronic nanostructure devices to ato
states, for instance quantum point contacts@10# and direc-
tional couplers@11#.

Wave-packet dynamics has proved to be a very useful
for studies of dynamics in quantum systems, to dev
simple models and interpret experiments@12#. To simulate
realistic systems, one needs to consider many degree
freedom, which makes the numerical work difficult and
many cases well beyond the resources of even the most p
erful modern computers. Due to the exponential growth
Hilbert space with the number of degrees of freedom, w
known in quantum information theory, the amount of data
be processed increases exponentially with the number o
mensions. Any method that reduces this number is extrem
interesting and will find uses in diverse areas. The use
separated channels or modes offers such an approach
this requires certain adiabaticity assumptions to hold.

In molecular dynamics, Marcus@13#, Wu and Levine@14#
pioneered the use of separated variables in local coordi
systems along the reaction path. These may then be use
propagation of wave packets on the reaction surfaces. It
also been suggested that population inversion could be
duced by the curvature of the minimal path which coup
the states@15#. These techniques have become widely used
the theory of chemical reactions@16,17# as a method to re-
duce the numerical complexity of large physical problem

In this work, propagation of wave packets on tw
dimensional potential-energy surfaces is considered.
propagating state is assumed to be localized closely along
©2002 The American Physical Society08-1
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minimal path. An adiabatic basis of discrete eigenstate
used to reduce the complexity of the problem by reduc
the time-dependent Schro¨dinger equation to a set of equa
tions for closely coupled channels. When the physical
rameters of the problem allow adiabatic propagation, the
crete basis states decouple making it possible to mode
system as a number of independent one-dimensional w
packets propagating in their respective potential structu
As such the model could apply also to chemical react
pathways, optical communication@18#, and mesoscopic
structures@19#, but we essentially have in mind the recen
developed microstructures for confined atomic wave pack

In the lowest approximation, the center of the wa
packet may be assumed to progress along the classical m
mum of the potential valley. The transverse curvature
taken to provide a confining potential around this. The fi
adiabaticity criterion we attempt is a condition stating th
the time scale of this potential is shorter than that charac
izing the rate of change of the potential. This leads to
criterion for a parameter combination known from semicl
sical physics as the Massey parameter. We test this f
signature of adiabaticity, but our numerical work shows t
it does not provide enough resolution for this purpose; la
ranges of compliance with adiabaticity are possible for e
value of this parameter.

In order to progress, a more detailed analysis is requi
we find that we need two dimensionless variables to
down the region where our model system behaves adia
cally. One gives the rate of change of the potential struct
and the other one captures the diffractive spreading of
quantum state as compared with the rate of change of
potential structure. Thus we need both parameters to des
the propagation of wave packets in the model. As this o
involves squeezing of the channel, but no bending, it is o
a partial result; we hope to report on more general invest
tions in forthcoming publications.

The structure of the paper is as follows: Section II sets
the mathematical structure to be investigated. Section
gives our first attempt at an adiabaticity condition, which
tested in Sec. IV. Analyzing the results in Sec. V, we disco
the need for two dimensionless parameters, and we show
these give an adequate description of the adiabatic co
tions. Section VI summarizes and concludes the paper.

II. MATHEMATICAL FRAMEWORK

For a general quantum-mechanical problem with tim
independent Hamiltonian in a two-dimensional~2D! con-
figuration space the dynamics evolves according to the ti
dependent Schro¨dinger equation

i\
]C~x,y,t !

]t
52

\2

2m
¹2C~x,y,t !1V~x,y!C~x,y,t !.

~1!

In many cases of interest, the propagation will occur alo
the minimal valleys of the potential-energy surface. Assu
ing that these minima constitute a smooth, connected cur
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becomes possible to make a coordinate change to a Fr
frame @17# with the path lengths along the valley and the
distancej transverse to the minimal path as coordinat
These coordinates locally define a unique orthonormal co
dinate system at each point of the curve. Changing coo
nates from (x,y) to (s,j), the Laplacian operator transform
into

¹25
1

@11k~s!j#

]

]s S 1

@11k~s!j#

]

]sD
1

1

@11k~s!j#

]

]j S @11k~s!j#
]

]j D , ~2!

wherek(s) is the curvature of the minimal path. Under th
assumption that the minimal curve will bend sufficient
slowly, the Laplacian can be approximated by

¹2'
]2

]s2
1

]2

]j2
2

]k~s!

]s
j

]

]s
13k~s!

]k~s!

]s
j2

]

]s

22k~s!j
]2

]s2
1k~s!

]

]j
. ~3!

Thus curvature gives extra terms that are linear in the der
tives of C(s,j,t) with respect to the longitudinal and tran
verse coordinates. When these are neglected, we obtai
equation equivalent to a two-dimensional Schro¨dinger equa-
tion in Cartesian coordinates

i\
]C~s,j,t !

]t
52

\2

2m S ]2

]s2
1

]2

]j2D C~s,j,t !

1V~s,j!C~s,j,t !1 f S s,j,
]C

]s
,
]2C

]s2
,
]C

]j D .

~4!

We now assume that the time-independent Schro¨dinger
equation may be solved in the transverse direction at e
point along the minimal curve and make an ansatz using
stationary transverse eigenfunctions$hn(s,j)% as a basis se
together with a set of yet unknown longitudinal wave fun
tions,$fn(s,t)%. These are taken to depend also on time a
thus be responsible for propagation in the longitudinal dir
tion. This gives the expansion

C~s,j,t !5 (
n50

`

fn~s,t !hn~s,j!. ~5!

The set of transverse eigenfunctions satisfies a o
dimensional time-independent Schro¨dinger equation in the
transverse coordinate

En~s!hn~s,j!52
\2

2m

]2hn~s,j!

]j2
1U~s,j!hn~s,j!, ~6!
8-2
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and the potential is defined with respect to the local mini
of the potential along the transverse direction

U~s,j!5V~s,j!2V~s,0!. ~7!

In many situations, where the main interest lies in exp
ration of the phenomenology of model systems, deta
knowledge of the potential surface is unnecessary and
plified treatments will capture the interesting effects. Hav
an analytically solvable potential in the transverse direct
greatly simplifies the treatment as this makes it possible
evaluate several quantities of interest. In addition to ener
and eigenfunctions also matrix elements for transitions
be obtained as closed analytic expressions. The basic
tures of any potential having a minimum is reasonably w
captured by a harmonic-oscillator potential, given that
anharmonicities are weak. This is often the case in, e
molecular and chemical physics. Taylor expanding
potential-energy surface along the transverse coordinat
second order we obtain a parabolic potential

V~s,j!5V~s,0!1
1

2
mv~s!2j2, ~8!

where the transverse oscillator frequency is given by the
vature with respect to the transverse coordinate

v~s!5A1

m

]2V~s,0!

]j2
. ~9!

The approximation ~8! makes it possible to use th
harmonic-oscillator eigenfunctions as basis

hn~s,j!5S 1

Dj~s!Ap2nn!
D 1/2

e2j2/2Dj(s)2
HnS j

Dj~s! D ,

~10!

where the transverse oscillator width is given by

Dj~s!5A \

mv~s!
; ~11!

thus determined by the transverse curvature of the poten
energy surface at its bottom. We insert Eqs.~5!–~7! into Eq.
~4!, multiply by hm(s,j) and integrate over the transver
coordinate, which is thus eliminated by the orthonormality
the basis set. We obtain the expression

i\
]fm

]t
52

\2

2m

]2fm

]s2
1@V~s,0!1En~s!#fm

1 (
n50

`

Xnm~s!
]2fn

]s2
1Anm~s!

]fn

]s
1Bnm~s!fn ,

~12!

where we have introduced the off-diagonal mass matrix
ments
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Xn,m~s!5
\2

mE
2`

`

hn~s,j!k~s!jhm~s,j!dj, ~13!

and the kinetic couplings

An,m~s!52
\2

2mE
2`

`

hn~s,j!F @2k~s!j21#
]

]s
2

]k~s!

]s
j

13
]k~s!

]s
k~s!j2Ghm~s,j!dj, ~14!

and the potential couplings

Bn,m~s!5
\2

2mE
2`

`

hn~s,j!F @2k~s!j21#
]2

]s2
1

]k~s!

]s

3@j23k~s!j2#
]

]s
2k~s!

]

]jGhm~s,j!dj.

~15!

The couplings~14! introduce velocity dependent interac
tions.

III. ADIABATICITY CONDITIONS

If the potential-energy surface changes sufficiently slow
over lengths comparable with the de Broglie wavelengths
the wave packet, we expect that the couplings between tr
verse states will be negligible. As a consequence, the co
sponding one-dimensional equations will decouple result
in adiabatic following in the transverse states as the w
packet propagates in the longitudinal direction. For m
cases, the expansion of a smooth wave packet in the a
batic eigenbasis$hn(s,x)% converges rapidly, and allows u
to retain only a limited, in many cases small number of tra
verse levels. As we have already seen, there are two type
changes in the coordinate system that might cause nona
batic transitions. First there is curving of the minimal pa
along the path length. As this is similar to the Coriolis effe
in classical mechanics it will cause the wave packet to
displaced in the transverse direction, something that can
induced only by a parity breaking coupling between the le
els. This type of nonadiabaticity will, in other words, cau
transitions between adjacent levels. Second, there is
change in curvature of the transverse potential which w
cause the isopotential lines to converge or diverge along
longitudinal coordinate. This will only cause changes in
symmetric fashion and thus only connect levels with t
same parity, i.e., levels separated by at least another l
with different parity. Here only nonadiabaticity of the seco
type, i.e., squeezing, will be treated and displacement is
for further investigations.

In order to derive a condition for adiabaticity, we have
compare the time scales of internal dynamics of the tra
verse motion with the time scale of change in the transve
potential as the wave packet traverses along the mini
curve. In the spirit of dimensional analysis we make an e
mate of the influence of the potential parameters on the a
8-3
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baticity. For a harmonic oscillator the dynamic time scale
given by the oscillator frequency

T5
2p

v0
. ~16!

We consider the longitudinal motion to be that of a classi
point particle traveling along the potential minima, th
center-of-mass~cm! motion thus described by a given velo
ity. In a frame moving along with the particle, the transve
dynamics will then be governed by an harmonic oscilla
with time-dependent frequency

v„xCM~ t !…5v~x02vt !. ~17!

The time derivative of the frequency in the comoving fram
will be

]v„xCM~ t !…

]t
5

]v„xCM~ t !…

]x

]xCM~ t !

]t
5

]v„xCM~ t !…

]x
v

'
Dv

L
v, ~18!

where the final step was arrived at by taking the derivative
transverse frequency to be the amount of frequency cha
divided by the appropriate length scale. The time scale o
which sizable changes in the oscillator frequency occu
given by

Dt5
v

]v

]t

5
mLv0l

2p\Dv
, ~19!

where the final equality results from the use of Eq.~18! and
expressing the classical velocity in terms of the correspo
ing de Broglie wavelength. The adiabatic theorem states
transitions between levels will be negligible if the changes
the potential occur over a much longer time scale than tha
the internal dynamics. This gives us the condition

A[
T

Dt
5

~2p!2\Dv

mLlv0
2

!1. ~20!

This parameterA is known as the Massey parameter
semiclassical quantum mechanics@17#, and is frequently
used to indicate whether or not a system will evolve ad
batically under a perturbation. It can be seen from Eq.~20!
that, in order to allow adiabatic propagation of wave pack
in this potential, changes of the oscillator frequency m
occur over sufficiently long time scales and also that lar
level separations are preferred, as this makes the transv
time scale shorter thus allowing more rapid changes of
potential.

IV. NUMERICAL TEST OF ADIABATICITY

When the coupling between the levels in the harmon
oscillator model is weak enough to be neglected, the
problem can be described by the set of equations
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i\
]fn

]t
52

\2

2m

]2fn

]2s
1Ann~s!

]fn

]s

1F\v~s!S n1
1

2D1Bnn~s!Gfn , ~21!

where the potential-energy variation along the minimal cu
V(s,0) has been chosen to be zero as it will not influence
dynamics under consideration. We obtain an approxima
for the total wave function from Eq.~5! using the numerical
solution of Eq.~21!, and the transverse wave functions fro
Eq. ~10!. This is compared with the full numerical solution o
Eq. ~1!, and we test the validity of adiabaticity when th
parameterA of Eq. ~20! is varied. For a linear potential mini
mum, all curvature terms disappear and the Laplacian has
familiar Cartesian form. The solution of the coupled proble
will be the exact solution. Here we consider propagation
the ground-state mode as this is the case in many situat
of interest, such as quantum information applications a
interferometric measurements. A natural measure of the
ference between two wave functions in this case is theL2

norm @20,21# of their difference; here we use the square
convenience as this also measures probability in quan
mechanics

«~ t !5uuC2D~s,j,t !2C0~s,j,t !uu2

5E
2`

` E
2`

`

uC2D~s,j,t !2f0
A~s,t !h0~j,s!u2djds,

~22!

where f0
A(s,t) is the longitudinal wave function obtaine

from solving Eq. ~21! with only one channel, thus corre
sponding to adiabatic propagation in the transverse grou
state mode. IfC2D(s,j,t) is calculated using the coupled s
of equations in Eq.~12! the expression for«(t) simplifies to

«~ t !5E
2`

`

uf0~s,t !2f0
A~s,t !u2ds1 (

n51

`

Pn~ t !, ~23!

wherePn(t) denotes the total probability of population in th
transverse moden at timet. It is seen that«(t), in addition to
the probability of being excited to higher transverse mod
also measures the redistribution of ground-state probab
in the longitudinal direction, due to interaction with the oth
modes. To test for adiabaticity with respect to changes in
transverse curvature, we choose a potential with a grou
state energy varying along the minimal path as

V~s,j!5
1

2
mv~s!2j2, ~24!

where the oscillator frequencyv(s) is taken to be of the
form

v~s!5v01
Dv

11exp~2s/L !
. ~25!
8-4
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For Dv.0 this potential has an increasing transverse
cillator frequency along the longitudinal coordinate and w
resemble a narrowing bottleneck. In this situation the lo
coordinate frame given by (s,j) coincides with the usua
Cartesian coordinates (x,y). The coupling matrix element
simplify considerably in this case, and they can be calcula
explicitly giving
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An,m~s!5
\2

8m

vs~s!

v~s!
~A~m11!~m12!dn,m12

2Am~m21!dn,m22!, ~26!

and
Bn,m~s!52
\2

8m H S vs~s!

v~s! D 2

~A~m11!~m12!~m13!~m14!dn,m1422~m21m11!dn,m

1Am~m21!~m22!~m23!dn,m24!1Fvss~s!

v~s!
1S vs~s!

v~s! D 2G~A~m11!~m12!dn,m122Am~m21!dn,m22!J ,

~27!
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vs~s!5
]v~s!

]s
, vss~s!5

]2v~s!

]s2
, ~28!

are the derivatives of the oscillator frequency taken with
spect to the longitudinal coordinate. Because the potentia
Eq. ~24! resembles a bottleneck, the wave packet has
squeeze itself into a more tightly confined region wh
propagating. Depending on whether or not the change in
cillator frequency is slow enough at the kinetic energy un
consideration, the wave packet may either penet
smoothly into the narrow region, or be reflected to a deg
depending on its kinetic energy. In general it acquires tra
verse breathing due to nonadiabatic transitions.

The Eqs.~1! @or equivalently Eq.~12!# and ~21! have no
known analytical solution for the potential under consid
ation, so we have to resort to numerical methods for furt
studies. For clarity all equations have been given in dim
sional form up to this point. In the numerical work present
further on, dimensionless units are used for convenience

The choice of dimensionless unities for mass, time, a
oscillator frequency together with the special choice for
two physical constants is equivalent to introducing a spe
rescaling. The dimensionful variables of length and time a
also of the oscillator frequency are rescaled according to

s→ s

S
,

j→ j

X
,

t→ t

T
,

v→ v

V
. ~29!
-
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to
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e
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This scaling introduced into Eq.~4! together with Eq.~24!
for the transverse binding potential gives us in the new r
caled variables

i
]C

]t
5

\T

mS2 S 2
1

2

]2C

]s2 D 1
\T

mX2 S 2
1

2

]2C

]j2 D
1S mTX2

\ D 1

2
v~s!2j2C. ~30!

The terms dependent on the curvature are omitted here
the prefactors multiplying each term on the right-hand s
of Eq. ~30! now have to be set to unity to comply with ou
choice of dimensionless units. From the resulting equati
we get the following relations among the scale paramete

S5X5A\V

m
,

T5
1

V
. ~31!

There is thus only one scale parameter that can be ch
arbitrarily, the other will follow. From the form of Eqs.~31!
we see that requiring the three dimensionless prefactor
Eq. ~30! to equal unity is consistent with choosing this o
physical scale parameter~length, time, or oscillator fre-
quency! and letting the other two~since the two length scale
are equal! be the characteristic values for a harmonic osc
lator which is determined by the first parameter choice
should be noted that this choice of harmonic oscillator d
not have to coincide with the actual one given by the tra
verse binding potential. It only serves as a reference for
scaling procedure whereas the physical binding potential
be given in terms of this reference for the numerical simu
tions.

A numerical example of wave-packet propagation is illu
trated in Figs. 1–4, where a potential of the bottleneck ty
described in Eqs.~24! and ~25! has been used with the d
8-5
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mensionless parameter valuesv0510, Dv520, andL52.
In addition the longitudinal momentum has been chosen
be k540.

The diagonal potential couplings together with the tra
verse eigenenergies, i.e.,En(s)1Bnn(s), act as effective
one-dimensional potentials in the adiabatic limit, and th
are here referred to as adiabatic energies. For the bottle
potential they experience an increase with longitudinal d
tance as is shown by solid lines in Fig. 1 for the modesn
50, 2, and 4. This increase is directly proportional to t
mode number for harmonic transverse potentials, thus aff
ing the higher modes more with the higher mode numb
The nonadiabatic dynamics is determined by the strengt
the couplings, given by Eqs.~13!–~15! which also show an

FIG. 1. The three lowest adiabatic energies in dimension
units, i.e.,En(s)1Bnn(s) for n50, 2, and 4~solid lines!, together
with the couplings between the ground state and the other two
els as functions of the longitudinal distance, also in dimension
units. Shown here are dottedA20(s), dash dotteduB20(s)u, and
dasheduB40(s)u. It is seen that the potential couplingB20(s) has a
zero fors50, where the transverse oscillator frequency has an
flection point.

FIG. 2. Snapshots taken at the timest50, t50.2, andt50.4 of
a Gaussian wave packet with longitudinal widthDs58 propagating
through the bottleneck potential given by Eq.~24!. The wave packet
adjusts itself in the transverse direction as it progresses throug
bottleneck, and no signs of nonadiabaticity can be seen. Both c
dinates are in the dimensionless units used in the numerical wo
explained in Sec. IV.
02360
to

-

y
ck
-

t-
r.
of
increasing strength for higher modes. In Fig. 1 the poten
and kinetic couplings between the ground state andn52 and
n54, are shown as functions of the longitudinal distance
is seen that whereas the kinetic couplingA20(s), shown dot-
ted, and the potential couplingB40(s), shown dashed, go
through a maximum and decrease away from the cente
the bottleneck, the potential couplingB20(s), shown dash
dotted, has a zero at the inflection points50.

A wave packet propagating through the potential struct
given by Eqs.~24! and ~25! will have to squeeze itself in
through the bottleneck, if the kinetic energy is sufficient, a
adjust its width to the more tightly confining transverse o
cillator frequency. This is seen in Fig. 2 where the probab
ity density for a Gaussian wave packet of lengthDs58 is
shown at three consecutive times while propagating in a
tential with the dimensionless parameters given above.

The dynamics of the longitudinal wave functions can
seen in Fig. 3 that shows contour plots of the probabi
densityufn(s,t)u2 of the three lowest even longitudinal wav
functions. The ground-state mode is seen to propag
through the bottleneck with negligible retardation and no v
ible depletion due to excitation into higher modes. The fi
even excited state starts to be populated as the wave pa
for the ground-state mode approaches the region around
inflection point where the couplings peak, as can be see

s

v-
s

-

he
r-

as

FIG. 3. Contour plots of the probability density,ufn(s,t)u2 for
the three lowest even longitudinal wave functions. The contour l
els give the probability density at 80%, 8%, and 0.8% of the pe
value in each mode. The ground-state mode, shown in~c!, is seen to
propagate through the bottleneck with negligible retardation and
visible depletion due to excitation. The first even excited staten
52, shown in~b!, starts to be populated as the wave packet for
ground state mode approaches the region arounds50 where the
couplings peak, as can be seen in Fig. 1. The population peak
the wave packet in the ground-state mode passess50, and dimin-
ishes after that, and we are left with a remnant population due
nonadiabatic transitions as the wave packet leaves the intera
region. For the highest moden54, shown in~a!, the spatiotemporal
evolution is similar as the one forn52, albeit at a smaller value o
the probability density; see Fig. 4. Both the time axis and long
dinal coordinate are in the dimensionless units used here.
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Fig. 1. The population peaks as the wave packet in
ground-state mode passes the region arounds50, and di-
minishes after that, and we are left with a remnant popula
due to nonadiabatic transitions as the wave packet leave
interaction region. For the highest mode shown here,n54,
the spatiotemporal evolution is similar to that forn52, al-
beit at a smaller value of the probability density.

The temporal behavior of the total level populations, s
Fig. 4, reflects the spatial structure of the couplings toge
with the fact that the wave packet is spatially localized o
a finite region along the longitudinal coordinate and intera
most strongly over only a limited longitudinal interval. Th
bulk of probability density resides in the ground-state mo
and when this mode propagates through the bottleneck,
seen in Figs. 2 and 3, the populations of the higher mo
increase until the inflection point is reached aroundt'0.2,
and then start to decrease. After passing the inflection po
the populations decrease until most of the wave packet
propagated out of the interaction region around the bot
neck, and then saturate at their asymptotic values when
further transitions can take place.

As the potential is given by Eq.~24! together with Eq.
~25!, the problem contains no less than four parameters:
going oscillator frequencyv0, change in oscillator frequenc
Dv, length scaleL for change of the transverse frequenc
and the initial longitudinal momentumk. A random scan has
been performed where the four dimensionless parame
were varied over an accessible region of the parameter s
in such a way that the points were equidistributed on a lo
rithmic scale for each parameter. All four quantiti
(v0 ,Dv,L,k) were varied over at least two orders of ma

FIG. 4. Total level populations for the four lowest even tran
verse modes versus propagation time. The temporal behavior o
level populations reflects the spatial structure of the couplings
the fact that the wave packet is spatially localized along the lon
tudinal coordinate. As the bulk of probability density, which resid
in the ground-state mode, propagates through the bottleneck,
seen in Figs. 2 and 3, the populations in the higher modes incr
until the inflection point ats50 is reached aroundt'0.2, and starts
to decrease after that. Beyond the passage of the inflection p
the populations decrease until most of the wave packet has pr
gated out of the interaction region around the bottleneck, and
settle at their asymptotic values as no more transitions can
place. The time axis is in dimensionless units.
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nitude in a region considered to be of physical interest
applications of wave-packet methods. The intervals of va
tion for the parameters were

1021<v0<10, ~32!

1023<Dv<10, ~33!

1021<L<10, ~34!

10<k<160. ~35!

In order to explore the phenomenology of this simp
propagation model, 6000 parameter combinations were c
sen randomly in the parameter space delimited by Eqs.~32!–
~35!, and a wave packet was propagated numerically thro
the bottleneck potential using a pseudospectral met
@22,23# for both a 2D wave packet and an adiabatic wa
packet in the ground state. The resulting deviation in no
between the two wave packets was calculated using Eq.~22!.
A scatter plot of the resulting norm difference versus adia
ticity parameterA, is shown in Fig. 5 where it can be see
that A'0.8 an upper limit below which the wave pack
within a probability of more than 0.99, stays in the groun
state mode. It is also seen that even if the majority of
cases considered here behave largely as expected from
simplified analysis of adiabaticity in Sec. III, there is, how
ever, a large number of cases having excitations far be
what would be expected from using the Massey param
alone.

V. INTERPRETATIONS

The parameter scans have to be analyzed in order to
any possible regularities that might indicate how adiabatic
will manifest itself in our simple model system. Our fir
attempt was to plot in Fig. 5 the norm difference versus
adiabaticity parameter defined asA in Eq. ~20!. This in itself
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a-

en
ke

FIG. 5. Scatter plot of the total excited population« versus the
Massey parameterA as given by Eq.~20!. The data has been shade
according to three intervals for the Fresnel parameterN as defined
in Eq. ~37!. It is clearly seen that although the spread in« is large
when plotted versus the adiabaticity parameter, we still can
whether or not there will be adiabatic propagation simply by cal
lating the Fresnel number and checking whether or not this is sm
8-7
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does, however, not show more than a general trend as
results cover a substantial region of the parameter sp
Thus for a given value of the Massey parameterA, the spread
is too large to allow us to conclude whether or not we will
in the adiabatic regime by using only this single paramete
a measure. An investigation in terms of other dimensionl
parameters reveals that there exists additional structure in
dataset. For a given value of the relative change in oscilla
energyDv/v0, we wish to determine what maximum wav
packet momenta can be used and over which length sc
the potential may change in order to avoid nonadiabatic tr
sitions into higher transverse states.

It is reasonable to assume that the free spreading of
wave packet ultimately will be limiting the change of th
potential in the transverse direction and still allows adiaba
propagation. The free spreading is governed by the tra
verse momentum distribution, which in turn is related to t
initial width of the potential. The situation is very similar t
beam diffraction in optics and laser theory@24#, where field
distributions evolve into fully opened beams over distan
larger than or comparable with the Rayleigh length

zR5
a2

l
, ~36!

wherea is the width of the aperture. The number of Fresn
zones contributing to the diffraction pattern at a distancez is
given by the Fresnel number, which for a square apertur
given by the expression

N5
zR

z
5

a2

zl
. ~37!

Small Fresnel numbers correspond to the far-field z
where the transverse distribution is determined by the c
tribution from a single Fresnel zone only.

In the case of matter waves the diffraction situation m
be illustrated in Fig. 6 for a wave packet propagating throu
a potential that is changing in the transverse direction. T

FIG. 6. Schematic picture showing the definition of the ang
used in the derivation of the diffraction criterium. The diffractio
angleQD is defined by the opening angle for a hypothetical co
here shown dashed, swept out by the equiprobability lines of a w
packet propagating through the potential whereas the pote
opening angleQVis shown solid. This is defined by the solid equ
potential lines. Units on both axes are taken to be dimensionle
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equipotential lines, shown solid in Fig. 6, diverge at an an
QV for which we have, using the lengthL and the initial and
final oscillator widths, the expression

tan~QV!5
1

L S 1

Av0

2
1

Av01Dv
D

5
1

Av0L S 12
1

A11
Dv

v0

D . ~38!

For a wave packet propagating in a widening potential,
equiprobability lines traced out during the evolution will d
verge and given that the widening is not too rapid, adju
ment to the new width will take place. An upper limit fo
how fast this spreading can be, is set by the free spread
which will occur at a rate corresponding to an angleQD
shown in Fig. 6. This is taken to be equivalent to the diffra
tion angle of a free Gaussian beam of widthDj, given by

tanQD5
DkT

k
5

1

kDj
5

Av0

k
5

l

2p
Av0, ~39!

where the widths of the transverse distributions in mom
tum and coordinate space are related by

DjDkT51, ~40!

since the transverse probability distribution will be a min
mal uncertainty state given that the evolution is adiaba
Using Eqs.~38! and~39! and requiring that the beam diffrac
tion angle should be larger than the potential changing an
which is a minimal requirement for adiabatic following, w
have

tanQV

tanQD
5

2p

Llv0 S 12
1

A11
Dv

v0

D [NgS Dv

v0
D ,1,

~41!

where the Fresnel number for this situation is given in
mensionally correct units as

N5
\

mLlv0
. ~42!

In order to relate this to the case of potential narrowing,
consider the time-reversal symmetry of quantum mechan
In the current situation this implies that a wave packet m
ing to the left in Fig. 6 must obey the same adiabatic
conditions as one moving to the right as the time reversa
equivalent to momentum reversal for the plane-wave com
nents of the wave packet. It is thus seen that the transv
evolution of a wave packet is limited by diffraction no matt
if the change is to a wider or a narrower potential.

We see from Eq.~41! that the ratio is given by the produc
of the Fresnel number and a function of the relative cha
of the oscillator width. The functiong(Dv/v0) varies be-
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ADIABATIC PROPAGATION IN POTENTIAL STRUCTURES PHYSICAL REVIEW A66, 023608 ~2002!
tween zero~for Dv/v050) and 2p, which is rapidly ap-
proached for large arguments. For small changes of the tr
verse momentum, the functiong(Dv/v0) can be Taylor
expanded, giving an additional factor ofDv/v0 making the
ratio in Eq.~41! identical with the Massey parameter as d
fined by Eq.~20!. In Fig. 5 the data from our random sca
has been divided into three sets with respect to the value
the Fresnel parameterN, which clearly orders the differen
combinations in a systematic way. Is is seen that adiabat
can be achieved even when the Massey parameter is la
than unity, provided that the Fresnel parameter is sm
enough. It appears that it is not primarily a local criteriu
given by Eq.~20! which decides if adiabatic propagation w
take place, but rather whether or not the changes are
that the Fresnel parameter is small. Thus it is more the q
tion of whether or not the changes occur over a length s
comparable to or larger than the Rayleigh length. This is
length a free beam requires in order to redistribute its tra
verse momentum components into its new angular distr
tion; this is set by diffraction. The numerical searches,
described in the previous sections, have shown that adi
ticity in this system is governed by the value of the Fres
parameter given by Eq.~42!.

To investigate our findings, a limited region of parame
space has been chosen for a structured scan with higher
lution in order to explore the transition region where ad
batic behavior begins to dominate. An ordered and syst
atic scan involving all four parameters would be too tim
consuming and also difficult to analyze, consequently
longitudinal momentum and transverse oscillator freque
were set to fixed values whereas the increase of the tr
verse frequency and the corresponding length scale were
ied, which brings the scan down to two dimensions. T
should not be considered a limitation since it has been s
in the random scan that the phenomenology is captured
two dimensionless parameters. The values were chosen

v055, ~43!

0<Dv<20, ~44!

531022<L<5, ~45!

k570. ~46!

The results of this scan are shown in Fig. 7, a contour p
for the deviation parameter« as function of Fresnel param
eterN and frequency squeezeDv/v0 for the region in ques-
tion. For large values of the Fresnel parameter, the equ
viation lines become straight lines implying independence
this parameter. The deviation is in this case a function
only the frequency squeeze, indicating that large values
the Fresnel parameter corresponds to the sudden limit a
deviation only depends on the amount of squeezing and
longer on the rate at which it is done. For smaller values
the Fresnel parameter, especially below unity, the devia
rapidly decreases and the equideviation lines bend tow
allowing higher values of frequency squeeze. We see tha
low values of the Fresnel parameter, it will be possible
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perform substantial frequency squeezes and still retain
most all of the population in the lowest transverse mode, t
achieving adiabatic propagation in the potential under c
sideration.

As indicated by the vertical equideviation lines in Fig.
we can reach the limit opposite to the adiabatic, viz.
sudden approximation, for large values of the Fresnel par
eter when the transverse states change rapidly. In this
the wave packet may be considered to have propagated
the narrow region without any readjustment of its sha
Then the wave packet will behave in the transverse direc
like a squeezed state, and the expansion into the diffe
modes can be carried out@25# simply by projecting the in-
coming Gaussian ground state onto the outgoing, m
tightly confined, oscillator states. An estimate for the exci
tion is then given by subtracting the absolute value squa
of the projection

«sudden[ih~v0!2h~v01Dv!i25^@h0~v0!2h~v0

1Dv!#u@h0~v0!2h~v01Dv!#&

52@12^h0~v0!uh0~v01Dv!&#

52F 12S A11Dv/v0

11
1

2
Dv/v0

D1/2G . ~47!

For large values of the Fresnel parameter, this should g
a reasonable approximation to the deviation from adiab
following in the ground-state mode.

From the data in Fig. 5 we choose the ones with Fres
parameterN.10, and in Fig. 8 we show the deviation vers
frequency squeeze,Dv/v0 together with the analytical esti
mate given by Eq.~47! for comparison. It is seen that th
simple estimate by Eq.~47! is reasonable over most of th
interval. It is not clear to us to what extent the small discre

FIG. 7. Contour levels of«, the difference in norm versus
change in Fresnel parameterN and frequency squeezeDv/v0. Here
it can clearly be seen that the excitation, which has been take
measure for deviation from adiabaticity, has a strong dependenc
the Fresnel parameter. It appears that very large frequency sque
can be achieved only if the Fresnel parameter is kept small, wh
does not necessarily imply that the Massey parameter is small. B
axes are dimensionless.
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ancy seen in Fig. 8 is due to numerical inaccuracies in
wave-packet calculations, especially deriving from the fini
ness of the spatial simulation region.

VI. CONCLUSIONS

We have explored the propagation of longitudinal wa
packets in a potential with spatially changing transverse
cillator frequency for various parameter combinations cov
ing a large region of the physically relevant parameter spa
We can conclude that the adiabaticity or Massey param
alone does not decide whether or not adiabatic propaga
will take place. Instead of one parameter two are seen to
necessary, the relative change in oscillator energy and
Fresnel parameterN5\/mLlv0. Using these two param
eters adiabaticity can be achieved even for cases when
Massey parameterA takes on values much greater than uni
The criteria given by Eq.~20! has earlier been shown to b
connected to the fastest changes allowed by diffraction@26#.
We have here shown that the maximal angle, as allowed
diffraction can be reached in different ways and that the e
lution will be adiabatic only in the cases when the transit
occurs over a length scale comparable with or larger than
Rayleigh length, which corresponds to the Fresnel param
as given by Eq.~42! being smaller than unity.

The consequences for different applications can be e
mated with straightforward estimates. For electrons in se
conductors, for instance, in a quantum wire configurati
coherent phenomena are limited to time scales set by sca
ing events, which for GaAs in bulk samples results in coh
ence times on the order oftf'200 fs. Assuming that this
limits the length scales over which adiabatic propagation w
occur we have

L'vtf5
2p\

ml
tf . ~48!

FIG. 8. A scatter plot of the norm difference versus sque
parameterDv/v0 for parameter combinations with Fresnel para
eterN.10. Also shown is the analytic estimate using the project
between ingoing and outgoing transverse ground states to calc
the norm difference as given by Eq.~47!. The agreement can b
seen to be reasonable although a systematic deviation resultin
an underestimate of about 10–20 % with respect to Eq.~47! is
present for smaller frequency squeezes. Both axes are dimen
less.
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Inserting this into our expression for the Fresnel parame
and requiring this to be smaller than one gives us

N5
\

mLlv0
5

1

2pv0tf
<1. ~49!

This result is determined by the diffraction condition he
combined with the time interval set by incoherent pheno
ena. Then the condition that the wave packet propag
adiabatically simplifies to the condition that at least one
ternal oscillation time should have passed within this tim
interval. Expressing the Fresnel parameter in terms of
ground-state width, here denoted byDj, we have

N5
\

mLlv0
5

Dj2

Ll
. ~50!

Inserting the expression above for the lengthL, we find for
the ground-state width the expression

Dj<A\2ptf

m
. ~51!

Assuming, as for instance in GaAs, an effective mass of 0
electron masses, results in an upper limit ofDj<100 nm,
roughly consistent with present day experimental conditio
if the longitudinal extent is at least of the order of the coh
ence length. For quantum point contacts, this might not
the case, and adiabaticity will have to be decided by num
cal simulations for the relevant conditions.

For atom optics in effectively one-dimensional geom
etries, the width of the ground state is roughly tenths
microns and the de Broglie wave length around or bel
1 mm for temperatures in magneto-optically trapped R
bidium. This gives us, using Eq.~50!, a Fresnel paramete
below unity for length scales around at least tens of nano
eters, clearly not a restriction for present day experiment

In optical waveguide theory, the main interest lies in t
situations where only a single mode will contribute to t
propagation, although optoelectronic components with
pered guides may enter the region of multimode propagat
For a single-mode fiber, nonadiabaticity inevitably leads
losses due to coupling with continuum states lying above
confining barrier provided by the refractive indices of cla
ding and core@18#. Criteria for achieving adiabatic, i.e., loss
less, propagation have been derived@27# and have been
found to be related to classical diffraction effects. These
sults are consistent with those given here although the e
tromagnetic propagation equations are different.

We have found that a condition for adiabaticity in ato
optics is determined by diffraction rather than from the Ma
sey parameter that is based on semiclassical considerat
This suggests two conclusions: Firstly it may be conclud
that quantum mechanics appears to be more robust with
spect to nonadiabatic perturbations than one may expec
ing arguments from classical mechanics. Secondly, the
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sults indicate that there is a fundamental relation betw
diffraction and adiabaticity in quantum mechanics, som
thing that derives from the fact that the wave nature is
portant in quantum dynamics whereas this aspect is abse
l.,
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the classical mechanics of particles. The adiabatic appr
mation is thus seen to provide further insights into the fu
damentals of quantum mechanics, just as it did in the e
developments of the theory.
ys.
,

,

r-

-
8

i-

ix,
@1# H.J. Metcalf and P. van der Straten,Laser Cooling and Trap-
ping ~Springer, New York, 1999!.

@2# C.S. Adams, M. Sigel, and J. Mlynek, Phys. Rep.240, 143
~1994!; J.P. Dowling, and J. Gea-Banaloche, Adv. At., Mo
Opt. Phys.37, 1 ~1996!; E.A. Hinds, and I.G. Hughes, J. Phy
D 32, R119~1999!.

@3# M. Key, I.G. Hughes, W. Rooijakkers, B.E. Sauer, E.A. Hind
D.J. Richardson, and P.G. Kazansky, Phys. Rev. Lett.84, 1371
~2000!.

@4# J. Reichel, W. Ha¨nsel, and T.W. Ha¨nsch, Phys. Rev. Lett.83,
3398 ~1999!; D. Müller, D.Z. Anderson, R.J. Grow, P.D.D
Schwindt, and E.A. Cornell,ibid. 83, 5194~1999!; N.H. Dek-
ker, C.S. Lee, V. Lorent, J.H. Thywissen, S.P. Smith, M. D
dic, R.M. Westervelt, and M. Prentiss,ibid. 84, 1124 ~2000!;
R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier,
J. Schmiedmayer,ibid. 84, 4749~2000!.

@5# M.J. Renn, D. Montgomery, O. Vdovin, D.Z. Anderson, C.
Wieman, and E.A. Cornell, Phys. Rev. Lett.75, 3253~1995!;
H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K.I. Lee, and W. Jh
ibid. 76, 4500~1996!.

@6# P. Ehrenfest, Ann. Phys.~Berlin! 51, 327 ~1916!.
@7# M. Born, Z. Phys.40, 167 ~1926!.
@8# V. Fock, Z. Phys.49, 323 ~1928!; M. Born and V. Fock,ibid.

51, 165 ~1928!.
@9# Quantum Dynamics of Simple Systems, edited by G.-L. Oppo,

S.M. Barnett, E. Riis, and M. Wilkinson~SUSSP Publications
Edinburgh/IOP, London, 1996!.

@10# J.H. Thywissen, R.M. Westervelt, and M. Prentiss, Phys. R
Lett. 83, 3762~1999!.

@11# E. Andersson, M.T. Fontenelle, and S. Stenholm, Phys. Re
59, 3841~1999!.

@12# Dynamics of Molecules and Chemical Reactions, edited by
,

-

d

v.

A

J.Z. H. Zhang and R.E. Wyatt~Dekker, New York, 1996!; N.
Balakrishnan, C. Kalyanaraman, and N. Sathyamurthy, Ph
Rep. 280, 80 ~1997!; B.M. Garraway and K.A. Suominen
Rep. Prog. Phys.58, 365 ~1995!.

@13# R.A. Marcus, J. Chem. Phys.45, 4493~1966!.
@14# S.-F. Wu and R.D. Levine, Mol. Phys.22, 881 ~1971!.
@15# G.L. Hofacker and R.D. Levine, Chem. Phys. Lett.9, 617

~1971!.
@16# R.D. Levine, and R.B. Bernstein,Molecular Reaction Dynam-

ics and Chemical Reactivity~Oxford University Press, Oxford
1987!.

@17# M.S. Child, Molecular Collision Theory~Dover, New York,
1996!.

@18# A.W. Snyder and J.D. Love,Optical Waveguide Theory~Chap-
man and Hall, London, 1983!.

@19# T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Scho¨n, and
W. Zwerger, Quantum Transport and Dissipation~Wiley-
VCH, Weinheim, 1998!.

@20# J.C. Strikwerda,Finite Difference Schemes and Partial Diffe
ential Equations~Chapman and Hall, New York, 1989!.

@21# F. Riesz and B. Sz.-Nagy,Functional Analysis~Dover, New
York, 1990!.

@22# B. Forngren,A Practical Introduction to Pseudospectral Meth
ods~Cambridge University Press, Cambridge, England, 199!.

@23# H. Tal-Ezer and R. Kosloff, J. Chem. Phys.81, 3967~1984!.
@24# A. Siegman,Lasers~University Science Book, Sausolito, Cal

fornia, 1986!.
@25# C. Aslangul, Am. J. Phys.63, 1921~1995!.
@26# A. Yacoby and Y. Imry, Europhys. Lett.11, 663 ~1990!.
@27# J.D. Love, W.M. Henry, W.J. Stewart, R.J. Black, S. Lacro

and F. Gonthier, IEE Proc.-J: Optoelectron.138, 355 ~1991!;
J.D. Love, Electron. Lett.23, 993 ~1987!.
8-11


