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Superfluidity versus Bose-Einstein condensation in a Bose gas with disorder
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We investigate the phenomenon of Bose-Einstein condensation and superfluidity in a Bose gas at zero
temperature with disorder. By using the diffusion Monte Carlo method, we calculate the superfluid and the
condensate fraction of the system as a function of density and strength of disorder. In the regime of weak
disorder we find agreement with the analytical results obtained within the Bogoliubov model. For strong
disorder the system enters an unusual regime where the superfluid fraction is smaller than the condensate
fraction.
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The study of disordered Bose systems has attracted in thbe second part, we resort to the diffusion Monte Carlo
recent past considerable attention both theoretically and exXDMC) technique that solves exactly the many-body Sehro
perimentally. The problem of boson localization, thedinger equation for the ground state of a boson system. By
superfluid-insulator transition, and the nature of elementarysing this technique, we verify that the results of the Bogo-
excitations in the presence of disorder have been the objelittbov model apply only to dilute systems with weak disor-
of several theoretical investigatiofis] and Monte Carlo nu- der and we investigate the crossover to the regime of strong
merical simulation$2,3], both based on Hubbard or equiva- disorder, where the suppression of superfluidity and BEC due
lent models on a lattice. More recently, the problem of Bosdlo the random potential is large. In this regime we find that
systems with disorder has also been addressed in the cothe system exhibits the unusual feature of a superfluid com-
tinuum. On one hand, the dilute Bose gas with disorder hagonent smaller than the condensate component.
been studied within the Bogoliubov modgt—6]. On the Bogoliubov modelThe starting point is the Bogoliubov
other hand, path integral Monte Car(®IMC) techniques Hamiltonian of a homogeneous dilute Bose gas
have been applied to the study of the elementary excitations
in liquid *He [7] and the transition temperature of a hard-
sphere Bose gd$8], in the presence of randomly distributed
static impurities. Disordered Bose systems are produced ex-
perimentally in liquid*He adsorbed in porous media, such aswritten in terms of the quasiparticle annihilation and creation
Weor or silica gels(aerogel, xerogel The suppression of operatorsa,,, ). These operators are related to the particle
superflwdlty and Fhe crlt_lcal behavior at the phase FranS'F'O’bperatorsap,ag through the well-known canonical transfor-
have been investigated in these systems in a classic series gt ;.o apzupap+vpaT_ with coefficients u2=1+v2

experiments[9], and the elementary excitations of liquid I(Eg+gn0+6p)/26p and U, = —gno/2e,. The elemen-

4 . . . .
He in Wcor have been recently studied using neutron in- o . )
elastic scattering10]. Furthermore, the recent achievementtary excitation energies obey the usual Bogoliubov spectrum

Zr(.0\2 0712 \pji 0_ .2 ;
of Bose-Einstein condensatigBEC) in alkali-metal vapors ep_[(ep) +29noep] » With €~—P /_2m the free pgrt'de
nergy, Ny the condensate density, and=4nh“a/m

has sparked an even larger interest in the physics of dege I tant fixed by th tteri
erate Bose gases and their macroscopic quantum properti € coupiing constant Tixe y h&wave sca e”gg
ength a  The constant term Ey/N=[4wna

\S/:Jec\:lc :eselcl)?ne%[rﬂr]l)qe order and superfluid behatfor a re +51zﬁ(na3)3’2/15]ﬁ2/(2ma2) is the ground-state energy
In this work we investigate the effects of disorder on BECPET particle expressed in terms of the gas pararmaair
and superfluidity in a Bose gas at zero temperature. As with n=N/\( the tqtal particle density. This res_ult includes
model for disorder a uniform random distribution of static the zero-point motion of the elementary excitations.
impurities is assumed. This choice provides us with a reason- Disorder is mtrooguced in the system by addingg the
able model for*He adsorbed in porous media and might a|50perturbat|0nH,\|’.:fd r V(r)n(r) produced by the external
be relevant for trapped Bose condensates in the presence figld V(r)==""Pv(|r—r;|) associated with the impurities.
heavy impurities. In addition, the quenched-impurity modelHere, N;,,, counts the impurities with fixed position and
allows us to derive analytical results in the weak-disordew(r) is the two-body particle-impurity potential. For dilute
regime and can be implemented in a quantum Monte Carlsystems and small concentrations of impurities the pair po-
simulation. tential v(r) can be expressed as a pseudopotential
The present work is divided in two parts. In the first part, = g;,,,6(r). The coupling constargimp=2wﬁ2b/m is fixed
following the analysis of Refl4], the properties of the sys- by the particle-impuritys-wave scattering length and by
tem are investigated within the Bogoliubov approximation.the reduced mass of the pair, which coincides with the par-
Results for the effects of disorder on the ground-state energyicle massamif the impurity is infinitely massive. Assuming a
superfluid density, and condensate fraction are discussed. imiform random distribution of impurities with density,,

H0=E0+E epagap, (1)
p
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=Nimp/V and Gaussian correlated disorder, we obtain thatlisorder. Differently fromNy/N, the superfluid fraction is
the statistical properties of disorder are described by the awequal to unity in the absence of disorder and one has
erage valug(Vo)=1N[d (V(r))=GimpNimp, and by the
correlation functionC(s)=1N[d% (V(r)V(r+s)), whose Ps 4 \m 31/
Fourier  transform  is  given by (V,V_p) ra 1-3 5 (a)™R. ®)
=1N[d® e 'P9C(s)=gf Nimp/V. The notation(- - -)
stands here for average over disorder configurations. ThAs it has been anticipated, both the result for the energy
model is described by three parametéisthe gas parameter beyond mean field3) and results(4) and (5) depend on
na’, (i) the concentration of impuritieg=N;y,/N, and(iii)  disorder through the scaling paramefger x(b/a)?. Another
the ratio of scattering amplituddga. The first parameter is interesting consequence of the above results is that, due to
related to the strength of interactions, the other two to thehe coefficient 4/3 in Eq(5), disorder is more efficient in
strength of disorder. Within the Bogoliubov model all rel- depleting the superfluid than the condensate fradidnin
evant properties of the system depend on disorder througaddition, it is predicted that for any value o&? there exists
the combinatiorR= y(b/a)?, which gives a measure of the a critical strength of disordeR,=16/r=5.1 for which
strength of disorder. ps!/p<Ng/N. The results of the Bogoliubov model are ex-
The perturbation terniH’ can be written in momentum pected to be valid for dilute systems and weak disorder.
space asH'=NVy+Z,V_,p,, wherep, is the density- However, it is not clear whether these results still apply for
fluctuation operator. Within the Bogoliubov approximation R>R; in a range of densities where the difference between
we write p,=\No(ay+a’ )= No(up+v,)(epta’,),  ps/p and No/N can be significant. These questions have
whereN, is the number of atoms in the condensate. The totabeen addressed using the DMC method.
HamiltonianH =H,+H' is given by a combination of linear ~ DMC simulation.We consider a system dfl spinless
and quadratic terms in the quasiparticle operatq,rsxg and  bosons of mase andN;q, impurities placed at random in a
can be diagonalized by means of the operator $Hifta, box with pe_nod_lc boundary conditions. The Hamiltonian of
= Bp— NV (Up+v,)/€,. One finds the system is given by

N
H=E+2> €818, ) H:—(h2/2m)_21 VZ+ > u(lri—r;))
p 1= i<j

. . N N;
To lowest order, the elementary excitation energies are not 1P

affected by the random field, whereas the ground-state +§1 glv(“i_rf“'

energy is given by E=Eo+ N[JimpNimp

~ Oinpimp(1V) = p2m/ (p>+4mgry)]. The term propor- whereu(r) ando(r) are, respectively, the particle-particle
tional to gﬁnp is ultraviolet divergent, but the difficulty is and particle-impurity two-body potential. For both potentials
overcome if one takes into account the second-order correave use a hard-sphere model: particles have diansetad
tion to the particle-impurity coupling constagmy— Gimp impurities have diameteri2-a, whereb is the range of
+gﬁ.np(1N)2p2m/p2. The final result for the ground-state v (r). Impurities have fixed position, and overlap between

energy per particle in units df?/2ma? reads impurities is avoided. Importance sampling is used through
the trial wave function ¢(R)=¢(rq, ... .ry)
E_ Ewr 3+ 3/ 512\7 W =1T;;f(rij)M; (9(ri¢). The Jastrow factorg(r) of a pair of
N- N F(na)T g F16mTR, 3 particles andg(r) of a particle-impurity pair, are calculated

using the same technique as in Ref2]. Average over dis-
where Eyr/N=4m(na®)[1+ x(b/a)] is the mean-field order is obtained by repeating the simulation for different
contribution. Notice that the model @correlated disorder configurations of impurities. A number between 5 and 10
of Refs.[4—6] does not allow the calculation of the ground- independent configurations has proven to be enough. The
state energy, since the renormalizationggf,, is a crucial ~ direct output of the DMC algorithm is the ground-state en-
step. ergy, which is exactly apart from statistical uncertaifiyr

The depletion of the condensate and the nonsuperfluifurther details on the DMC method see REf3]). The su-

component of the gas can be obtained from the Hamiltoniaperfluid fractionps/p can be calculated by extending to zero
(2) by calculating, respectively, the momentum distributiontemperature the winding-number technique employed in
and the long-wavelength behavior of the static transvers@IMC calculationd 14], as discussed for bosons on a lattice
current-current response functigd,5]. For the condensate in Ref.[3]. The superfluid fraction is obtained as the ratio of
fraction, one finds two diffusion constantgs/p=D4/D,, whereDy=7%2%/2m is

the diffusion constant in imaginary time of a free particle and

N 8
Vo _ 1— (na3)1/2—ﬁ(na3)1/2R (4)

N 3\/; 2 N de f(RyT)[Rc.m.(T)_Rc.m.(o)]2
in which the first term gives the quantum depletion due to 0T J dR f(R.7)
interaction and the second term accounts for the effect of 7
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FIG. 1. Energy per particle beyond mean field. The results for a ) ) _

given strength of disordeR are obtained for a fixed concentratign FIG. 2. Superfluid fractioms/p (solid symbols and condensate
and a fixed ratiob/a as shown in the figure. The error bars are fractionNo/N (open symbols Disorder parameters are as in Fig. 1.
smaller than the size of the symbols. The solid lines correspond t§0lid lines correspond to E@5) and dashed lines to E¢4).
Eq. (3). Energies are in units df?/2ma’.

our knowledge this is the first direct realization of a system
is the diffusion constant of the “center of magsm)” of the ~ exhibiting this unusual feature. _ ,
systemR, = (LN)=\_;r; . In the above equatioi(R, 7) is The crossover from weak-to-strong disorder is better

c.m. 1= [ 1 . . .

the probability density of walkers generated by the DMCShown in Fig. 3. In the figure, we present results fqfp

. . — — 4

algorithm during integration in imaginary time One can gnd NO/.N as a function OR. at the de”S'tW"?‘ 107" By

prove that the above result far./p is exact and does not increasing the strength of disorder, superfluid and condensate
S

. ' ) fractions first decrease together, and for large valudstbe
depend on the choice of the trial wave funct{d®]. Finally, strong disorder regime of Fig. 2 wherg/p<No/N is

the condensate fraction is obtained from the long-range beschieved. At large density the situation is different as shown
havior of the one-body density matriko/N=Ilim __p(r) iy Fig. 4, wherena®=10"2. Already in the absence of dis-

(see Ref[13] for further detaily. We performed calculations order, interaction effects give rise to a sizable depletion of
for values ofN=16, 32, and 64 and no significative finite- the condensatéabout 20% and by adding disorder no clear
size effects were found. evidence of a regime whergs/p<Ny/N is observed. An

ResultsIn Fig. 1, results for the energy beyond mean fieldinteresting result that emerges from Figs. 2—-4 is that the
as a function of the gas parameter and for different strength@ehaV'Or of the superfluid fraction is well described by the
of disorder are presented. Har=2, we find good agreement
with Eq. (3) over a wide range of densities. By increasRg 1.0
deviations start to appear at lower densities. In particular, for
the largest valu&= 100, we do not find agreement for den-
sities larger thama®>10""°.

In Fig. 2, we show results fops/p and Ng/N. For R
=2 the superfluid fraction follows the analytical prediction 0.6
(5) up to large values afia®. On the contrary, the condensate
fraction is more sensitive to the increase of density and de-
viates earlier from the Bogoliubov resul#). The valueR 0.4
=12.5 corresponds to a strength of disorder above the criti-
cal value R;=5.1), where the Bogoliubov model predicts g2
ps/p<Ng/N. We do not see this behavior. In fact, although
the agreement betwegn/p and Eq.(5) is good up to rela-
tively large values oha?, the depletion of the condensate 0.0 0 1'50
becomes very soon larger than predicted by BEgand, as a R
consequence, we find e'thﬁglpzNO_/_N at very low densi- FIG. 3. Superfluid fractioms/p (solid symbol$ and condensate
ties or ps/p>Ngy/N for Iarger densities. The results f&  faction No/N (open symbolsfor na®=10"*. The strength of dis-
=100 correspond to a regime of strong disorder where BogrgerR has been varied by changing the concentrafioof impu-
goliubov model cannot be applied. In this reginpg/p and rities with a fixed ratiob/a=5. The solid line corresponds to Eq.
No/N first decrease together with increasing density ands) and the dashed line to E@4). Inset: Scaling behavior as a
then, forna®=10"4, a clear gap appears with the superfluid function of the ratiob/a for given values of the strengtR. Error
fraction significantly smaller than the condensate fraction. Tars have approximately the size of the symbols.
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FIG. 4. Superfluid fractiops/p (solid symbol$ and condensate
fractionNg /N (open symbolsfor na®=10"2. The strength of dis-

orderR has been varied by changing the concentrajioof impu-

rities with a fixed ratiob/a=2. The solid line corresponds to Eg.

(5) and the dashed line to E¢4). Inset: Same as in Fig. 3.

Bogoliubov predictior(5) also for high densities, providerl

is small. On the contrary, the condensate fraction is mucr&
more sensitive to the value of the gas parameter and agre
ment with Eq.(4) is found only in the regime where both

na3<1 andna’R<1.

In the regime wheréy,/N andps/p agree with the ana-
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explicitly shown in the insets of Figs. 3 and 4, where we vary
both the ratio b/a and the concentrationy with R

= y(b/a)? fixed. At small densityFig. 3) we find that, even

in the case of strong disord&= 100, deviations from scal-
ing are relatively small. At large densitig. 4) we still find
good scaling foR=2, whereas foR=4 a dependence on
the value ofb/a becomes evident.

Due to the constraint of nonoverlapping impurities sys-
tems with larger strengths of disorder cannot be studied.
Nevertheless, we have investigated the occurrence of a quan-
tum phase transition by analyzing the dependence of the re-
sults forps/p andNg /N on the size of the system. Our DMC
calculations show no significant finite-size effects and the
results shown in Figs. 3 and 4 are thus appropriate to the
thermodynamic limit. We conclude that within our model of
nonoverlapping impurities there is no quantum phase transi-
tion for a critical value of disorder.

In conclusion, we have investigated BEC and superfluid-
ity in a Bose gas with disorder as a function of density and
strength of disorder. We have shown that dilute systems with
weak disorder can be correctly described using the Bogoliu-
bov model. For strong disorder we find that the system ex-
hibits the unusual feature of a superfluid fraction signifi-
antly smaller than the condensate fraction, in qualitative
ﬁgreement with the prediction of Bogoliubov model.
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