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Superfluidity versus Bose-Einstein condensation in a Bose gas with disorder
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We investigate the phenomenon of Bose-Einstein condensation and superfluidity in a Bose gas at zero
temperature with disorder. By using the diffusion Monte Carlo method, we calculate the superfluid and the
condensate fraction of the system as a function of density and strength of disorder. In the regime of weak
disorder we find agreement with the analytical results obtained within the Bogoliubov model. For strong
disorder the system enters an unusual regime where the superfluid fraction is smaller than the condensate
fraction.
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The study of disordered Bose systems has attracted in
recent past considerable attention both theoretically and
perimentally. The problem of boson localization, t
superfluid-insulator transition, and the nature of element
excitations in the presence of disorder have been the ob
of several theoretical investigations@1# and Monte Carlo nu-
merical simulations@2,3#, both based on Hubbard or equiv
lent models on a lattice. More recently, the problem of Bo
systems with disorder has also been addressed in the
tinuum. On one hand, the dilute Bose gas with disorder
been studied within the Bogoliubov model@4–6#. On the
other hand, path integral Monte Carlo~PIMC! techniques
have been applied to the study of the elementary excitat
in liquid 4He @7# and the transition temperature of a har
sphere Bose gas@8#, in the presence of randomly distribute
static impurities. Disordered Bose systems are produced
perimentally in liquid4He adsorbed in porous media, such
Vycor or silica gels~aerogel, xerogel!. The suppression o
superfluidity and the critical behavior at the phase transit
have been investigated in these systems in a classic seri
experiments@9#, and the elementary excitations of liqu
4He in Vycor have been recently studied using neutron
elastic scattering@10#. Furthermore, the recent achieveme
of Bose-Einstein condensation~BEC! in alkali-metal vapors
has sparked an even larger interest in the physics of de
erate Bose gases and their macroscopic quantum prope
such as long-range order and superfluid behavior~for a re-
view see Ref.@11#!.

In this work we investigate the effects of disorder on BE
and superfluidity in a Bose gas at zero temperature. A
model for disorder a uniform random distribution of sta
impurities is assumed. This choice provides us with a reas
able model for4He adsorbed in porous media and might a
be relevant for trapped Bose condensates in the presen
heavy impurities. In addition, the quenched-impurity mod
allows us to derive analytical results in the weak-disor
regime and can be implemented in a quantum Monte C
simulation.

The present work is divided in two parts. In the first pa
following the analysis of Ref.@4#, the properties of the sys
tem are investigated within the Bogoliubov approximatio
Results for the effects of disorder on the ground-state ene
superfluid density, and condensate fraction are discusse
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the second part, we resort to the diffusion Monte Ca
~DMC! technique that solves exactly the many-body Sch¨-
dinger equation for the ground state of a boson system.
using this technique, we verify that the results of the Bog
liubov model apply only to dilute systems with weak diso
der and we investigate the crossover to the regime of str
disorder, where the suppression of superfluidity and BEC
to the random potential is large. In this regime we find th
the system exhibits the unusual feature of a superfluid c
ponent smaller than the condensate component.

Bogoliubov model.The starting point is the Bogoliubov
Hamiltonian of a homogeneous dilute Bose gas

H05E01(
p

epap
†ap , ~1!

written in terms of the quasiparticle annihilation and creat
operatorsap ,ap

† . These operators are related to the parti
operatorsap ,ap

† through the well-known canonical transfo
mation ap5upap1vpa2p

† , with coefficients up
2511vp

2

5(ep
01gn01ep)/2ep and upvp52gn0/2ep . The elemen-

tary excitation energies obey the usual Bogoliubov spectr
ep5@(ep

0)212gn0ep
0#1/2, with ep

05p2/2m the free particle
energy, n0 the condensate density, andg54p\2a/m
the coupling constant fixed by thes-wave scattering
length a. The constant term E0 /N5@4pna3

1512Ap(na3)3/2/15#\2/(2ma2) is the ground-state energ
per particle expressed in terms of the gas parameterna3,
with n5N/V the total particle density. This result include
the zero-point motion of the elementary excitations.

Disorder is introduced in the system by adding toH0 the
perturbationH85*d3r V(r )n(r ) produced by the externa
field V(r )5( i 51

Nimp v(ur2r i u) associated with the impurities
Here, Nimp counts the impurities with fixed positionr i and
v(r ) is the two-body particle-impurity potential. For dilut
systems and small concentrations of impurities the pair
tential v(r ) can be expressed as a pseudopotentialv(r )
5gimpd(r ). The coupling constantgimp52p\2b/m is fixed
by the particle-impuritys-wave scattering lengthb and by
the reduced mass of the pair, which coincides with the p
ticle massm if the impurity is infinitely massive. Assuming a
uniform random distribution of impurities with densitynimp
©2002 The American Physical Society03-1
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5Nimp /V and Gaussian correlated disorder, we obtain t
the statistical properties of disorder are described by the
erage valuê V0&51/V*d3r ^V(r )&5gimpnimp , and by the
correlation functionC(s)51/V*d3r ^V(r )V(r1s)&, whose
Fourier transform is given by ^VpV2p&
51/V*d3s e2 ip•s/\C(s)5gimp

2 nimp /V. The notation ^•••&
stands here for average over disorder configurations.
model is described by three parameters:~i! the gas paramete
na3, ~ii ! the concentration of impuritiesx5Nimp /N, and~iii !
the ratio of scattering amplitudesb/a. The first parameter is
related to the strength of interactions, the other two to
strength of disorder. Within the Bogoliubov model all re
evant properties of the system depend on disorder thro
the combinationR5x(b/a)2, which gives a measure of th
strength of disorder.

The perturbation termH8 can be written in momentum
space asH85NV01(pV2prp , where rp is the density-
fluctuation operator. Within the Bogoliubov approximatio
we write rp.AN0(ap1a2p

† )5AN0(up1vp)(ap1a2p
† ),

whereN0 is the number of atoms in the condensate. The to
HamiltonianH5H01H8 is given by a combination of linea
and quadratic terms in the quasiparticle operatorsap ,ap

† and
can be diagonalized by means of the operator shift@4# ap

5bp2AN0Vp(up1vp)/ep . One finds

H5E1(
p

epbp
†bp . ~2!

To lowest order, the elementary excitation energies are
affected by the random field, whereas the ground-s
energy is given by E5E01N@gimpnimp

2gimp
2 nimp(1/V)(p2m/(p214mgn0)#. The term propor-

tional to gimp
2 is ultraviolet divergent, but the difficulty is

overcome if one takes into account the second-order cor
tion to the particle-impurity coupling constantgimp→gimp

1gimp
2 (1/V)(p2m/p2. The final result for the ground-stat

energy per particle in units of\2/2ma2 reads

E

N
5

EMF

N
1~na3!3/2F512Ap

15
116p3/2RG , ~3!

where EMF /N54p(na3)@11x(b/a)# is the mean-field
contribution. Notice that the model ofd-correlated disorder
of Refs.@4–6# does not allow the calculation of the groun
state energy, since the renormalization ofgimp is a crucial
step.

The depletion of the condensate and the nonsuperfl
component of the gas can be obtained from the Hamilton
~2! by calculating, respectively, the momentum distributi
and the long-wavelength behavior of the static transve
current-current response function@4,5#. For the condensate
fraction, one finds

N0

N
512

8

3Ap
~na3!1/22

Ap

2
~na3!1/2R ~4!

in which the first term gives the quantum depletion due
interaction and the second term accounts for the effec
02360
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disorder. Differently fromN0 /N, the superfluid fraction is
equal to unity in the absence of disorder and one has

rs

r
512

4

3

Ap

2
~na3!1/2R. ~5!

As it has been anticipated, both the result for the ene
beyond mean field~3! and results~4! and ~5! depend on
disorder through the scaling parameterR5x(b/a)2. Another
interesting consequence of the above results is that, du
the coefficient 4/3 in Eq.~5!, disorder is more efficient in
depleting the superfluid than the condensate fraction@4#. In
addition, it is predicted that for any value ofna3 there exists
a critical strength of disorderRc516/p.5.1 for which
rs /r,N0 /N. The results of the Bogoliubov model are e
pected to be valid for dilute systems and weak disord
However, it is not clear whether these results still apply
R.Rc in a range of densities where the difference betwe
rs /r and N0 /N can be significant. These questions ha
been addressed using the DMC method.

DMC simulation.We consider a system ofN spinless
bosons of massm andNimp impurities placed at random in
box with periodic boundary conditions. The Hamiltonian
the system is given by

H52~\2/2m!(
i 51

N

¹ i
21(

i , j
u~ ur i2r j u!

1(
i 51

N

(
,51

Nimp

v~ ur i2r ,u!,

whereu(r ) and v(r ) are, respectively, the particle-partic
and particle-impurity two-body potential. For both potentia
we use a hard-sphere model: particles have diametera and
impurities have diameter 2b2a, where b is the range of
v(r ). Impurities have fixed positionr , and overlap between
impurities is avoided. Importance sampling is used throu
the trial wave function cT(R)[cT(r1 , . . . ,rN)
5) i , j f (r i j )) i ,,g(r i ,). The Jastrow factors,f (r ) of a pair of
particles andg(r ) of a particle-impurity pair, are calculate
using the same technique as in Ref.@12#. Average over dis-
order is obtained by repeating the simulation for differe
configurations of impurities. A number between 5 and
independent configurations has proven to be enough.
direct output of the DMC algorithm is the ground-state e
ergy, which is exactly apart from statistical uncertainty~for
further details on the DMC method see Ref.@13#!. The su-
perfluid fractionrs /r can be calculated by extending to ze
temperature the winding-number technique employed
PIMC calculations@14#, as discussed for bosons on a latti
in Ref. @3#. The superfluid fraction is obtained as the ratio
two diffusion constantsrs /r5Ds /D0, whereD05\2/2m is
the diffusion constant in imaginary time of a free particle a

Ds5 lim
t→`

N

6t

E dR f ~R,t!@Rc.m.~t!2Rc.m.~0!#2

E dR f ~R,t!

, ~6!
3-2
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is the diffusion constant of the ‘‘center of mass~c.m.!’’ of the
systemRc.m.5(1/N)( i 51

N r i . In the above equation,f (R,t) is
the probability density of walkers generated by the DM
algorithm during integration in imaginary timet. One can
prove that the above result forrs /r is exact and does no
depend on the choice of the trial wave function@15#. Finally,
the condensate fraction is obtained from the long-range
havior of the one-body density matrix:N0 /N5 lim

r→`
r(r )

~see Ref.@13# for further details!. We performed calculations
for values ofN516, 32, and 64 and no significative finite
size effects were found.

Results.In Fig. 1, results for the energy beyond mean fie
as a function of the gas parameter and for different stren
of disorder are presented. ForR52, we find good agreemen
with Eq. ~3! over a wide range of densities. By increasingR,
deviations start to appear at lower densities. In particular,
the largest valueR5100, we do not find agreement for de
sities larger thanna3.1025.

In Fig. 2, we show results forrs /r and N0 /N. For R
52 the superfluid fraction follows the analytical predictio
~5! up to large values ofna3. On the contrary, the condensa
fraction is more sensitive to the increase of density and
viates earlier from the Bogoliubov result~4!. The valueR
512.5 corresponds to a strength of disorder above the c
cal value (Rc55.1), where the Bogoliubov model predic
rs /r,N0 /N. We do not see this behavior. In fact, althou
the agreement betweenrs /r and Eq.~5! is good up to rela-
tively large values ofna3, the depletion of the condensa
becomes very soon larger than predicted by Eq.~4! and, as a
consequence, we find eitherrs /r.N0 /N at very low densi-
ties or rs /r.N0 /N for larger densities. The results forR
5100 correspond to a regime of strong disorder where
goliubov model cannot be applied. In this regime,rs /r and
N0 /N first decrease together with increasing density a
then, forna3>1024, a clear gap appears with the superflu
fraction significantly smaller than the condensate fraction.

FIG. 1. Energy per particle beyond mean field. The results fo
given strength of disorderR are obtained for a fixed concentrationx
and a fixed ratiob/a as shown in the figure. The error bars a
smaller than the size of the symbols. The solid lines correspon
Eq. ~3!. Energies are in units of\2/2ma2.
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our knowledge this is the first direct realization of a syste
exhibiting this unusual feature.

The crossover from weak-to-strong disorder is bet
shown in Fig. 3. In the figure, we present results forrs /r
andN0 /N as a function ofR at the densityna351024. By
increasing the strength of disorder, superfluid and conden
fractions first decrease together, and for large values ofR the
strong disorder regime of Fig. 2 wherers /r,N0 /N is
achieved. At large density the situation is different as sho
in Fig. 4, wherena351022. Already in the absence of dis
order, interaction effects give rise to a sizable depletion
the condensate~about 20%! and by adding disorder no clea
evidence of a regime wherers /r,N0 /N is observed. An
interesting result that emerges from Figs. 2–4 is that
behavior of the superfluid fraction is well described by t

a

to

FIG. 2. Superfluid fractionrs /r ~solid symbols! and condensate
fractionN0 /N ~open symbols!. Disorder parameters are as in Fig.
Solid lines correspond to Eq.~5! and dashed lines to Eq.~4!.

FIG. 3. Superfluid fractionrs /r ~solid symbols! and condensate
fraction N0 /N ~open symbols! for na351024. The strength of dis-
orderR has been varied by changing the concentrationx of impu-
rities with a fixed ratiob/a55. The solid line corresponds to Eq
~5! and the dashed line to Eq.~4!. Inset: Scaling behavior as
function of the ratiob/a for given values of the strengthR. Error
bars have approximately the size of the symbols.
3-3
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Bogoliubov prediction~5! also for high densities, providedR
is small. On the contrary, the condensate fraction is m
more sensitive to the value of the gas parameter and ag
ment with Eq.~4! is found only in the regime where bot
na3!1 andAna3R!1.

In the regime whereN0 /N andrs /r agree with the ana
lytical predictions@results~4!,~5!#, the scaling behavior on
the parameterR is evident. An important result of our analy
sis concerns the fact that the scaling behavior extends
beyond the region where results~4! and ~5! apply. This is

FIG. 4. Superfluid fractionrs /r ~solid symbols! and condensate
fraction N0 /N ~open symbols! for na351022. The strength of dis-
orderR has been varied by changing the concentrationx of impu-
rities with a fixed ratiob/a52. The solid line corresponds to Eq
~5! and the dashed line to Eq.~4!. Inset: Same as in Fig. 3.
02360
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explicitly shown in the insets of Figs. 3 and 4, where we va
both the ratio b/a and the concentrationx with R
5x(b/a)2 fixed. At small density~Fig. 3! we find that, even
in the case of strong disorderR5100, deviations from scal-
ing are relatively small. At large density~Fig. 4! we still find
good scaling forR52, whereas forR54 a dependence on
the value ofb/a becomes evident.

Due to the constraint of nonoverlapping impurities sy
tems with larger strengths of disorder cannot be stud
Nevertheless, we have investigated the occurrence of a q
tum phase transition by analyzing the dependence of the
sults forrs /r andN0 /N on the size of the system. Our DMC
calculations show no significant finite-size effects and
results shown in Figs. 3 and 4 are thus appropriate to
thermodynamic limit. We conclude that within our model
nonoverlapping impurities there is no quantum phase tra
tion for a critical value of disorder.

In conclusion, we have investigated BEC and superflu
ity in a Bose gas with disorder as a function of density a
strength of disorder. We have shown that dilute systems w
weak disorder can be correctly described using the Bogo
bov model. For strong disorder we find that the system
hibits the unusual feature of a superfluid fraction sign
cantly smaller than the condensate fraction, in qualitat
agreement with the prediction of Bogoliubov model.
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