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Axisymmetric vortices in spinor Bose-Einstein condensates under rotation
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The relative stability of various axisymmetric vortices in a spinor Bose-Einstein condensate withF51 is
examined within extended Bogoliubov theory. This yields the phase diagram in the plane of external rotation
frequency vs magnetization. We compare antiferromagnetic, nonmagnetic, and ferromagnetic cases. The exci-
tation spectrum is evaluated under rotation to investigate the local stability of the possible vortices and the
vortex nucleation frequency.
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I. INTRODUCTION

Much attention has been focused on Bose-Einstein c
densation~BEC! realized in atomic gases@1–4#. The atomic
species investigat ed include the isotopes87Rb and85Rb and
also 23Na, 7Li, H, 4He, and 41K ~see Refs.@1–8#!. These
systems provide one with unique opportunities to investig
novel states of superfluid matter waves. When an atomic
is cooled in an applied external magnetic field, the cond
sate is described by a scalar order parameter. The mag
optic trapping method is widely used to study BEC. Recen
it has become possible to trap an atomic gas using pu
optical methods, thus the resulting BEC retains its origi
atomic hyperfine state. Specifically,23Na @9# and 87Rb @10#
both with F51 are successfully Bose condensed via opti
trapping. This system, dubbed spinor BEC, is now descri
by a multicomponent order parameter.

Ohmi and Machida@11#, and Ho@12# have independently
introduced the basic Hamiltonian for describing this spin
BEC by extending the Bogoliubov formalism to study t
fundamental properties of this interesting multicompon
BEC, pointing out the richness of the topological defect co
figurations such as thel-vector textures and domain-wa
structures. Zhang and Walls@13# also introduced Hamil-
tonian for the spinor BEC to describe behavior of the BE
with a radio frequency field in a magnetic trap. These
analogous to those found in theA andB phases of superfluid
3He @14–16#. An advantage of the dilute BEC systems wi
respect to strongly interacting liquid helium~for 4He, there
exists no microscopic theory; for3He, there is a BCS-like
microscopic theory, generalized forp-wave pairing! is that
for the dilute gas one can make controlled approximatio
treating the interparticle interactions as small perturba
parameter. Moreover, it is possible to directly visualize
condensate in atomic gases using optical methods. Spi
condensate is easily controlled by external magnetic fi
The BEC systems are quite versatile also in that the inte
tion parameter can be adjusted over a large range — eve
sign can be changed. Finally, the condensate in BEC sys
can exhibit several spin states, e.g., with the hyperfine s
F51 andF52.

*Electronic address: tomoya@focus.hut.fi
1050-2947/2002/66~2!/023602~8!/$20.00 66 0236
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Theoretical studies of vortices and other topological d
fects in spinor BECs was initiated by Ohmi and Machi
@11# and Ho@12#. Systematic investigations on vortices we
followed by Yip @17# who considered both axisymmetric an
nonaxisymmetric vortices, and by Isoshimaet al. @18#, who
only considered axisymmetric vortices and their excitat
spectra. Leonhardt and Volovik@19#, Stoof @20#, Marzlin
et al. @21#, Zhou @22#, and Martikainen and Suominen@23#
examined exotic topological defect structures in spin
BECs. Robinset al. @24# examined instability of the ferro-
magnetic spinor BEC.

Here we continue our studies of spinor BECs@11,25–29#;
in particular, those on vortices withF51 @18#. We investi-
gate the vortex phase diagram in the plane spanned by
magnetization ~which is given a priori when a three-
component atomic gas is prepared! and the external rotation
We consider both the antiferromagnetic and ferromagn
cases. The former is realized in23Na while the latter is ex-
pected for87Rb. The nonmagnetic situation in which the sp
channel interactiongs50 is studied as the limiting case fo
ugsu!gn (gs andgn are the interaction constants for the sp
and density channels!. We restrict our calculations to axisym
metric vortices with winding numbers less than or equal
unity @18#.

The organization of this paper is as follows: After givin
a brief introduction to the Hamiltonian for the system and t
extended Gross-Pitaevskii~GP! equation, we enumerate th
possible vortices allowed by axisymmetry in Sec. II. To i
vestigate the relative stability of the various vortex stru
tures, the free energies of the different vortices are compa
as functions of magnetization and rotation frequency in S
III. Section IV presents the excitation spectra for each vor
by solving the associated Bogoliubov equations extende
an order parameter with three components in order to inv
tigate whether a given vortex state is stable against collec
modes. This yields a local stability criterion for each vort
type. This consideration extends our previous works
nucleation criteria@30–34#. The final Sec. V presents a sum
mary and discussion.

II. POSSIBLE TYPES OF AXISYMMETRIC VORTICES

We treat the system of a Bose condensate with inte
degrees of freedomF51. Hence the condensate order p
©2002 The American Physical Society02-1
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TOMOYA ISOSHIMA AND KAZUSHIGE MACHIDA PHYSICAL REVIEW A 66, 023602 ~2002!
rameter is characterized by three components withmF
51,0,21. External rotation of the system around the rotat
axis, perpendicular to the disk-shaped two-dimensio
plane, is denoted by the angular velocityV that has a sens
(1 or 2).

We start with the system Hamiltonian@11,12#

H5E dr F(
j

C j
†$2C¹21V~r !2m j%C j

1
gn

2 (
jk

C j
†Ck

†CkC j

1
gs

2 (
a

(
jklm

C j
†Ck

†~Fa! j l ~Fa!kmC lCm

2V•(
j

C j
†~r3p!C j G ~1!

with C5\2/(2ma). The interaction is characterized by th
two kinds of channels; the density channel:gn54p\2(a0
12a2)/(3ma), and the spin channel:gs54p\2(a2
2a0)/(3ma). The atomic mass isma . The scattering lengths
a0 and a2 characterize collisions between atoms with to
spin 0 and 2. The subscripts area5(x,y,z) and i , j ,k,l
5(0,61). The latter correspond to the above three spec
The scalar fieldV(r ) is the harmonic confining potentia
The angular-momentum matricesFa are

Fx5
1

A2 S 0 1 0

1 0 1

0 1 0
D ,

Fy5
i

A2 S 0 21 0

1 0 21

0 1 0
D ,

Fz5S 1 0 0

0 0 0

0 0 1
D . ~2!

The chemical potentialsm i obeym12m05m02m21. We
introduce m5m0 and m85m12m0. The Gross-Pitaevski
equation for this system, extended to the three compon
becomes

(
j

F $2C¹21V~r !2~m1m8 j !%d jk1gn(
l

uf l u2d jk

1gs(
a

~Fa! jk(
lm

~Fa! lmf l* fm

2 i\V•“3rd jkGfk50. ~3!

The total energy of the condensate is given by
02360
n
al

l
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E5E d2r F(
j

f j* „2C¹21V~r !…f j1
gn

2 (
jk

uf j u2ufku2

1Es2 i\V•(
j

f j* ¹f j3r G , ~4!

where

Es5
gs

2 (
a

S (
jk

f j* ~Fa! jkfkD 2

. ~5!

Since we treat a cylindrically symmetric disk-shaped tw
dimensional system, the condensate wave functionf j may
be decomposed in the form

f j~r ,u!5f j~r !g j~u!5f j~r ! exp@ i ~a j1b ju!#, ~6!

where the condensate wave functionsf j (r ) ( j 50,61) are
expressed in terms of cylindrical coordinates. The phase
the condensate wave functions are determined such tha
energyEs in Eq. ~5! is minimized. The minimizing of the
above spin-dependent term,

Es~r !5
gs

2
@2f0

2~r !$f1
2~r !1f21

2 ~r !1f1~r !f21~r !

3~g1g21g0*
21g1* g21* g0

2!%1$f21
2 ~r !2f1

2~r !%2#

~7!

leads to the condition

g1g21g0*
2561, ~8!

where the upper~lower! sign is used for the ferromagneti
~antiferromagnetic! casegs,0 (gs.0), respectively. This
condition may be rewritten in terms ofa andb as

2a05a11a211np, ~9!

2b05b11b21 , ~10!

wheren is an integer. We takea615a050 in the following
since they have no effect in the discussion below. The pha
of the three components are now expressed in the form

S g1

g0

g21

D 5S exp~ ibu!

1

6exp~2 ibu!
D exp~ ib0u! ~11!

using b[b12b05b02b21. In Fig. 1, the various lines
show the possible combinations of theb i , giving rise to the
vortex types that we consider in the following. If we restri
our consideration to the phase coefficient, or the wind
number being less than 2, there are nine possible comb
tions of theb i . There is one vortex-free configuration an

the other combinations are~1,0,-1!, ~1,1,1!, and (1,12 ,0)
where the winding numbers of the three componentsf1 , f0,
andf21 are denoted in this order. The latter vortex config
ration is only realized in a form (1,x,0) wheref0 vanishes
2-2
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AXISYMMETRIC VORTICES IN SPINOR BOSE- . . . PHYSICAL REVIEW A 66, 023602 ~2002!
~whereb i is fractional!. It should be noted that the restrictio
for the winding number to be less than 2 is reasonable,
cause a vortex with a higher winding number is unstable
easily breaks up into vortices with unit winding number.

Vortex with winding-number combination (2,1,0) is di
cussed by Mizushima@35# and Isoshima and co-worker
@26,29#.

III. RELATIVE STABILITY OF VARIOUS VORTICES

We compare the energies of the various vortices enlis
above inV vs magnetization plane. This comparison defin
‘‘relative stability.’’ A vortex type with lowest free energy is
relatively stable. There are eight candidates for the poss
vortex type, allowed by axisymmetry. Three of them a
(1,0,21), (1,1,1), and (1,x,0) where ‘‘x’’ denotes that this
component vanishes identically as mentioned above. The
one is named Alice vortex after the Alice string@19#. By
interchanging the roles off1 and f21, we can obtain two
more vortices: (21,0,1) and (0,x,1). The remaining combi-
nations (0,x,1), (21,x,0), and (21,21,21) always have
higher energies than those of (0,x,1), (1,x,0), and (1,1,1),
respectively, when the external angular velocityV is posi-
tive. Thus, in what follows, we consider the vortices, (1
21), (1,1,1), (1,x,0), (21,0,1), and (0,x,1) for V>0 and
M /N>0.

The mass of a87Rb atom isma51.443310225 kg. This
value is used in the following. We use the scattering leng
a055.531029 m anda255.84331029 m for the antifer-
romagnetic case. The ratio of the interaction coefficients
gs /gn510.02. Another set for the ferromagnetic case isa0
55.531029 m anda255.18231029 m, whose ratio of the
interaction coefficients isgs /gn520.02. The coefficient of
the magnetic term vanishes whena05a255.531029 m. The
ratio becomesgs /gn50. The amplitude of the ratiougs /gnu
50.02 is for a Na atom.

For each vortex type and thegs and m8, the chemical
potentialm is determined such that the linear density of t
particle number becomes 23103 (mm)21. We use a har-
monic potential withn5200 Hz for radial confinement. Al
the energies are scaled by the trap frequencyhn. The angular
velocity V is normalized by 2pn below.

The spatial profile of the condensate wave functions

FIG. 1. Possible allowed vortex configurations under axisy
metry. Each condensatef i ( i 51,0,21) has the phaseb i . The
vortices (1,0,21), (1,x,0), and (1,1,1) are treated in this paper.
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each vortex is determined by the above GP Eq.~3!, which is
expressed as

(
k

F H 2C¹21V~r !2~\Vb01m!2 j ~\Vb1m8!

1gn(
l

uf l u2nJ d jk

1gs(
a

~Fa! jk(
lm

~Fa! lmf l* fmGfk50. ~12!

When we varyV andm8, the condensate wave functionsf i
are determined by a single parameter\Vb1m8 because the
variation of\Vb0 is canceled by that of the chemical pote
tial m.

The energy of the system Eq.~4! is rewritten as

E5E d2r F(
j

f j* $2C¹21V~r !%f j1
gn

2 (
jk

uf j u2ufku2

1Es~r !G2(
j

\V~b01 j b!Nj5Einner2\VL, ~13!

where the number of particles in thej th component isNj
5*d2r uf j u2. The total particle number in the system isN
5( jNj , and the total angular momentum isL5( j (b0
1 j b)Nj . The energyEinner, the magnetizationM5( j jN j ,
andL are functions of thef j and, therefore, are functions o
\Vb1m8. The critical angular velocityVc for a given mag-
netization between two vortex types~1! and ~2! is simply
determined by

\Vc~M !5
Einner

(1) 2Einner
(2)

L (1)2L (2)
. ~14!

The range ofM that a vortex state can take depends on
interaction constantgs and the winding number. For ex
ample, the (1,1,1) vortex does not have an intermed
value of M /N in the cases withgs50 ~nonmagnetic case!
and 20.02gn ~ferromagnetic case!. This behavior is well
known for the uniform spinor condensate@11,12#. Whengs
520.02gn , the magnetization range21,M /N,0 is not
allowed for the (1,x,0) vortex. This range may be improve
with improved numerical accuracy@32,36#.

Figure 2 shows the phase diagrams with the lowest ene
in the plane ofM /N andV for the three cases; the antife
romagnetic (gs50.02gn), the nonmagnetic (gs50), and the
ferromagnetic cases (gs520.02gn). The critical angular ve-
locity Vc(M ) in Eq. ~14! determines the boundaries of ea
domain. When the system is antiferromagnetic or nonm
netic, the (0,x,1) vortex has the lowest energy aroundV
50 for M /N51. This is because the (0,x,1) vortex almost
reduces to the vortex-free single-component state without
vortex winding in the full polarization limit.

The (1,0,21) vortex is lowest in energy aroundV50
with M /N50, irrespective of the magnetism. The conde
sate simply becomes a vortex-free system for the ferrom

-

2-3
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TOMOYA ISOSHIMA AND KAZUSHIGE MACHIDA PHYSICAL REVIEW A 66, 023602 ~2002!
netic case. For the antiferromagnetic case, the nonrotatinf0
component without winding number dominates and thef1
and f21 components that have opposite winding numb
are small.

This (1,0,21) vortex and the Alice vortex compete in th
region aroundV;0.6,M /N;0.8. The curve between them
reflects the kinetic energy of the (1,0,21) vortex when there
is no magnetic term (gs50). The amplitudes of the conden
sate wave functionsf1(r ) andf0(r ) of the (1,0,21) vortex
for the magnetizationM /N(.0) are equal tof1(r ) and
f21(r ) of the (1,x,0) vortex for the magnetization 2M /N
21. The (1,0,21) and the (1,x,0) vortex have the angula

FIG. 2. Phase diagrams in theV vs M /N plane. Each area
partitioned by various points shows the vortex type that has
lowest energyE(V). ~a! Antiferromagnetic case (gs50.02gn). ~b!
Nonmagnetic case (gs50). ~c! Ferromagnetic case (gs5
20.02gn). The (1,1,1) vortex is absent from the phase diagrams~b!
and ~c! because this vortex cannot have a stable configuration
21,M /N,1. The (0,x,1) Alice vortex is not stabilized and it is
thus excluded from the phase diagram~c!. Gray areas are discusse
in Sec. IV C. There is no negative excitation in those areas.
02360
s

momentaL5M andL5(M1N)/2, respectively. The critica
Vc in Eq. ~14! becomes

\Vc~M !52
Einner8 ~M !2Einner8 ~~M1N!/2!

M2N
, ~15!

whereEinner8 (M ) is Einner of the (1,0,21) vortex for 0,M
,N. The behavior ofVc is still complicated because bot
the numerator and the denominator approach zero wheM
approachesN.

IV. LOCAL STABILITY

There is another stability criterion for a vortex. The exc
tation spectrum for a stable vortex must be positive defin
In other words, if the lowest excited state in the spectr
becomes negative as a function ofV, the given vortex be-
comes locally unstable.

A. Excitation spectrum

The excitation spectrum is obtained by solving the follo
ing Bogoliubov equation extended to the three-compon
BEC case:

(
k

$Ajkuq~r ,k!2Bjkvq~r ,k!%5«quq~r , j !,

(
k

$Bjk* uq~r ,k!2Ajk* vq~r ,k!%5«qvq~r , j !, ~16!

where

Ajk5$2C¹21V~r !2~m1 j m8!%d jk

1gnH(
l

uf l u2d jk1f jfk* J
1gs(

a
(
lm

@~Fa! jk~Fa! lmf l* fm

1~Fa! jm~Fa! lk~f l* fm!#2 i\V•“3rd jk , ~17!

Bjk5gnf jfk1gs(
a

(
lm

~Fa! j l f l~Fa!kmfm , ~18!

whereuq(r ,i ) and vq(r ,i ) are theqth eigenfunctions with
the spin componenti and «q corresponds to theqth eigen-
value. The normalization condition for theuq(r ,i ) and
vq(r ,i ) is

(
i
E $uuq~r ,i !u22uvq~r ,i !u2%dr51. ~19!

In our disk-shaped system, the wave functions ha
the phase uq(r , j )5uq(r , j )eiu(qu1b01 j b) and vq(r , j )
5vq(r , j )eiu(qu2b02 j b). Then Eqs.~16!–~18! are written as

e

r

2-4
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AXISYMMETRIC VORTICES IN SPINOR BOSE- . . . PHYSICAL REVIEW A 66, 023602 ~2002!
(
j

$Xi j
1uq~r , j !22Zi j vq~r , j !%5~«q1\Vqu!uq~r ,i !,

~20!

(
j

$2Zi j* uq~r , j !2Xi j
2vq~r , j !%5~«q1\Vqu!vq~r ,i !,

~21!

where

Xi j
65F2CH d2

dr2
1

1

r

d

dr
1

@qu6~b01b j !#2

r 2 J
1V~r !2~m1 j m8!1gn(

k
ufku2Gd i j

1gn~f j* f i !6\V~b01b j !d i j . ~22!

Zi j 5gnf if j1gs(
a

(
kl

fkf l~Fa! i l ~Fa! jk . ~23!

The excitation energy«q varies as a function of the angu
lar velocity V as determined by Eqs.~16! and ~21!. The
critical values for local stability are defined by

Vc
15 min

qu.0
~«q /qu!, ~24!

Vc
25max

qu,0
~«q /qu!. ~25!

The critical velocityVc
1 defined above corresponds to th

instability of the surface excitations; namely, the energy
the excitation modes forqu.0 become negative~see the
paper@31# by Isoshima and Machida for the one-compone
BEC!. The critical velocityVc

2 corresponds to the local in
stability where the core excitation modes withqu,0 become
negative upon varyingV. In the following, we determine
Vc

6 , yielding a stability region in theV vs M /N plane where
the all excitation modes are positive definite for a given v
tex configuration. Namely, we evaluateVc

6 for the vortex
types (1,0,21), (1,1,1), and (1,x,0) as functions ofV and
M /N.

When there is a mode withqu50 and«,0, the system
has an instability regardless of external rotation and the d
nition of Vc

6 becomes meaningless. There are few mo
found with «,0 for qu50. The value is at210212,«,0.
There is also a complex mode withqu50. The real part is
small@Re(«),10310213# while the imaginary part is of the
order ofO(0.01). We ignore them as the modes degene
with the condensate.

B. Local stability region

Let us investigateVc
6 for the (1,0,21), (1,x,0), and

(1,1,1) vortices. Figures 3~a!, 3~b!, and 3~c! show the local
stability regions for each vortex where all the excitati
02360
f

t

-

fi-
s

temodes have positive eigenvalues. Figure 4 shows the ra
shape andqu of the wave functions that correspond to th
critical valueVc

6 .

1. Similarity to scalar system

TheVc
6 of the (1,0,21) vortex forM /N561 and of the

Alice vortex for M /N51 may be understood as those of

FIG. 3. Local stability regions bounded byVc
6 for the two types

of vortices, (1,0,21) and (1,x,0). ~a! Antiferromagnetic case (gs

50.02gn). ~b! Nonmagnetic case (gs50). ~c! Ferromagnetic case
(gs520.02gn). The solid line and the dashed line show the upp
critical Vc

1 and the lower criticalVc
2 for a (1,0,21) vortex. The

dashed-dotted line and the dotted line show the upper criticalVc
1

and the lower criticalVc
2 for the (1,x,0) Alice vortex. The lower

critical V is higher than the upper criticalV for 20.5,M /N
,0.5 in the (1,0,21) vortex. The range21,M /N,20.1 for the
(1,x,0) vortex is inhibited because of the ferromagnetic interacti
When the imaginary part of« is finite, its real part is used in Eqs
~24! and ~25!. These regions are indicated with the crosses a
pluses. Gray areas are equivalent to those in Figs. 2. Both of
relative and local stability criteria are satisfied there.
2-5
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TOMOYA ISOSHIMA AND KAZUSHIGE MACHIDA PHYSICAL REVIEW A 66, 023602 ~2002!
vortex in a scalar BEC. TheVc
6 in Fig. 3 reduces to those o

the one-component vortex system forM /N51 because the
fully polarized case is nothing but a one-component B
with a single vortex. When we decreaseM /N towards21,
the (1,0,21) vortex becomes a single-component syst
again with the opposite winding number and the critic
Vc

6’s have opposite signs.
As seen in Fig. 4, the modes responsible forVc

1 are lo-
calized on the edge of the condensate (r .3 mm) and have
a large angular momentumqu.7 whenM /N.0.9 in both

FIG. 4. Spatial variations of( i(uuq(r ,i )u21uvq(r ,i )u2) as a
function of the radial direction corresponding to the collective mo
at Vc

6 for eachM /N is plotted. The~dotted! lines correspond toVc
2

(Vc
1). When the eigenfunctionsui and v i are a complex number

the sum of the real part( i$Re@uq(r ,i )#21Re@vq(r ,i )#2% is plotted
instead. Inset of each figure shows the angular-momentum indequ

of the mode corresponding toVc
1 . When M /N51, the mode of

Vc
1 has a peak at the edge of the condensate (r;2 mm) and the

mode atVc
2 has a peak at the vortex center (r 50). These repro-

duce the result of the scalar BEC. WhenM /N51, qu57 and it
reduces to 1 asM /N decreases.~a! (1,0,21) vortex in the ferro-
magnetic case.~b! (1,0,21) vortex in the antiferromagnetic cas
~c! (1,x,0) vortex in the nonmagnetic case.
02360
l

the (1,0,21) and (1,x,0) vortices. This implies a surface
instability mode similar to the surface mode in a scalar v
tex. The mode remains at the edge of the condensate
M /N.0.8.

The angular momenta of the modes ofVc
2 are 21 over

most of the regions: for 0,M /N<1 in the (1,0,21) vortex
and for 21,M /N<1 in the Alice vortex. This mode is
localized at the center when the condensate has a large
gular momentum@M /N51 in Figs. 4~a!, 4~b!, and 4~c!#.
This feature arises from the localized core state in a sc
vortex.

2. Characteristic of spinor system

The spatial extent of the modes ofVc
2 , which are local-

ized around the core for largeM /N expands asM /N de-
creases. This is shown forM /N50 in Figs. 4~a! and 4~b!,
and forM /N521 in Fig. 4~c!. This is common to both the
(1,0,21) and (1,x,0) vortices. The wave function has
shape similar to that of the condensate and a spin struc
different from the condensate. Thus this instability atVc

2

means a spin-flip instability. This is also true forVc
1 of the

(1,0,21) vortex for 20.5,M /N,0.5. The shape of the
wave functions is similar to that of the condensate. This
not the situation in the antiferromagnetic case. The wa
function of Vc

1 indicates a single vortex of the21 compo-
nent rather than the nonvortex21 component, as shown in
Fig. 4~b!.

According to Figs. 3~a!–3~c!, the critical valuesVc
1 and

Vc
2 of the (1,0,21) vortex are close to each other for

20.5,M /N,0.5. There is no range ofV to stabilize the
system in the ferromagnetic case becauseVc

2.Vc
1 . This

range is quite narrow in the antiferromagnetic case~e.g.,
0.261,uVu,0.263 forM /N560.2).

The (1,x,0) vortex reduces to the vortex-free system ne
M /N521. As shown in Figs. 3~a! and 3~b!, there is an
instability for V50 unlike the vortex-free scalar system
Figure 4~c! shows the shape of the wave functionsu andv of
Vc

2 . The shape resembles that of the condensate. This in
bility indicates that the whole condensate may have the11
component without winding number. The winding-numb
combination of the (1,x,0) vortex turns into (0,0,0). When
m8 is large and negative,Vc

1 andVc
2 become about 0.5 and

20.3, respectively. Therefore, the system is stable forV
50 just like the vortex-free scalar system. TheVc

6 shift,
depending onm8, even whenM /N has the fixed value21.
This is because our calculation does not include the mag
tization from the noncondensate.

3. Complex eigenvalues

Complex eigenvalues emerge when two levels with
opposite angular momenta and the same eigenvalues ha
to appear. The complex eigenvalues of Bogoliubov equati
have been reported for multiply quantized vortex of sca
BEC @37# and vortex states of binary BEC@38#. When the
eigenvalue«q has a complex value, the left-hand side of E
~19! becomes zero. We still adopt the real part of such eig

e
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values because continuity of the real eigenvalues and the
part of complex eigenvalues as shown in Fig. 3 seems ph
cally meaningful.

4. The (1,1,1) vortex

As for the (1,1,1) vortex, neither the ferromagnetic n
the nonmagnetic states can assume intermediate value
magnetization andM /N becomes61. Even at each magne
tization, Vc

6 varies with the chemical potentialm8. The
maximum value ofVc

2 is about 1.8~in trap units!. The wave
function corresponding toVc

2 is localized at the center an
has a spin component different from that of the condens
The minimum value ofVc

1 is about 0.4. BecauseVc
2 is

always larger, the (1,1,1) vortex is always unstable in
sense of local stability.

This is also the case for the antiferromagnetic syste
Vc

2.1.8 andVc
1.0.4 mean that the (1,1,1) vortex is lo

cally unstable. When the chemical potentialm8 is large
enough, these critical valuesVc

6 reduce toVc
150.6 and

Vc
250.3.

C. Relative stability and local stability

We have obtained two sets of phase diagrams. Figu
2~a!, 2~b!, and 2~c! show type of vortex with lowest energyE
in Eq. ~4!. Figures 3~a!, 3~b!, and 3~c! show areas in which
there is no negative excitation level«q for each type of vor-
tex. We have named these two stabilities ‘‘global~or relative!
stability’’ and ‘‘local stability’’ in Ref. @33#.

Among these stabilities, the local stability gives critic
angular velocity that is close to the experimental results@34#
in scalar system. On the other hand, the relative stabilit
traditionally used for4He system. Both of these two stabil
ties are satisfied in gray areas of Figs. 2 and 3. A vortex
the winding-number combination has lowest energyE and
does not have a negative excitation level that leads the vo
state to collapse.

The relationship between relative stability and local s
bility is simple in single-component system~see Fig. 4 in
Ref. @33#!. When a system has local stability and does
have relative stability, it is ‘‘metastable.’’

V. DISCUSSION

We have determined the vortex phase diagram in
plane of external rotation frequencyV vs relative magneti-
an

ys

n,

i-
d

02360
eal
si-

r
of

e.
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.

es

l

is

f

ex

-

t

e

zationM /N of a spinor BEC system for the cases of antife
romagnetic (gs.0), nonmagnetic (gs50), and ferromag-
netic (gs,0) interactions. By solving the extended Gros
Pitaevskii equation for the spinorF51 BEC with the three
components (mF51,0,21), we have investigated the rela
tive stability of the possible axisymmetric vortices, which a
classified according to their winding numbers for each co
ponent; namely, (1,0,21), (1,x,0), and (1,1,1) for
(f1 ,f0 ,f21). The excitation spectra are also studied to fi
the stability regions for each vortex in theV andM /N plane.
This allows us to estimate the vortex nucleation frequency
the actual experiment~for details, see Refs.@31,34# for the
correspondence between local stability and nucleation
quency!.

Yip @17# has studied the two nonaxisymmetric vortices
addition to the present axisymmetric vortices within the G
equation under a particular rotation frequency (V;0.4 in
our notation! for the antiferromagnetic case only. This corr
sponds to Fig. 2~a! for V;0.4. Although the lowerM /N
region (0,M /N,0.2) is occupied by a nonaxisymmetr
vortex, in the remaining region the (1,x,0) vortex is stabi-
lized over the nonaxisymmetric vortex, coinciding with o
result. We believe that the present phase diagram rem
valid over a broad region even taking into account nona
symmetric vortices. This is because a large part of Yi
phase diagram is covered by axisymmetric vortices~see Fig.
1 in Yip’s paper @17#!. In the future we aim to take into
account the nonaxisymmetric vortex in addition to t
present axisymmetric ones. This kind of a calculation m
be performed with the help of the excitation spectrum, wh
signals the instability towards a more stable vortex confi
ration, for each vortex and is needed to predict the exp
mentally realized vortices in a spinor BEC.

Note added. Recently Mizushimaet al. @35# pointed out
that the~0,1,2! type of vortex has a wide stable area in t
ferromagnetic system. This vortex is stable at aroundV
50.3 in Fig. 2~c!.
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