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Axisymmetric vortices in spinor Bose-Einstein condensates under rotation
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The relative stability of various axisymmetric vortices in a spinor Bose-Einstein condensatg swithis
examined within extended Bogoliubov theory. This yields the phase diagram in the plane of external rotation
frequency vs magnetization. We compare antiferromagnetic, nonmagnetic, and ferromagnetic cases. The exci-
tation spectrum is evaluated under rotation to investigate the local stability of the possible vortices and the
vortex nucleation frequency.
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I. INTRODUCTION Theoretical studies of vortices and other topological de-
fects in spinor BECs was initiated by Ohmi and Machida
Much attention has been focused on Bose-Einstein corn-L1] and Ho[12]. Systematic investigations on vortices were
densationBEC) realized in atomic gasd4—4]. The atomic  followed by Yip[17] who considered both axisymmetric and
species investigat ed include the isoto§&b and®Rb and  nonaxisymmetric vortices, and by Isoshimgal. [18], who
also 2Na, “Li, H, “He, and*K (see Refs[1-8]). These only considered axisymmetric vortices and their excitation
systems provide one with unique opportunities to investigatepectra. Leonhardt and Volovikl9], Stoof [20], Marzlin
novel states of superfluid matter waves. When an atomic gagt al. [21], Zhou [22], and Martikainen and Suomind@23]
is cooled in an applied external magnetic field, the condenexamined exotic topological defect structures in spinor
sate is described by a scalar order parameter. The magnetdECs. Robinset al. [24] examined instability of the ferro-
optic trapping method is widely used to study BEC. Recentlymagnetic spinor BEC.
it has become possible to trap an atomic gas using purely Here we continue our studies of spinor BE[G$,25-29;
optical methods, thus the resulting BEC retains its originain particular, those on vortices with=1 [18]. We investi-
atomic hyperfine state. SpecificallfNa [9] and 8 Rb[10]  gate the vortex phase diagram in the plane spanned by the
both with F=1 are successfully Bose condensed via opticamagnetization (which is given a priori when a three-
trapping. This system, dubbed spinor BEC, is now describegomponent atomic gas is preparesd the external rotation.
by a multicomponent order parameter. We consider both the antiferromagnetic and ferromagnetic
Ohmi and Machid411], and Ho[12] have independently cases. The former is realized fiiNa while the latter is ex-
introduced the basic Hamiltonian for describing this spinorpected for®’Rb. The nonmagnetic situation in which the spin
BEC by extending the Bogoliubov formalism to study the channel interactioms=0 is studied as the limiting case for
fundamental properties of this interesting multicomponenigs| <g, (gs andg, are the interaction constants for the spin
BEC, pointing out the richness of the topological defect con-and density channelsWe restrict our calculations to axisym-
figurations such as thévector textures and domain-wall metric vortices with winding numbers less than or equal to
structures. Zhang and Wallgl3] also introduced Hamil- unity [18].
tonian for the spinor BEC to describe behavior of the BEC The organization of this paper is as follows: After giving
with a radio frequency field in a magnetic trap. These area brief introduction to the Hamiltonian for the system and the
analogous to those found in tieandB phases of superfluid extended Gross-PitaevsKiGP) equation, we enumerate the
3He [14-16. An advantage of the dilute BEC systems with possible vortices allowed by axisymmetry in Sec. II. To in-
respect to strongly interacting liquid heliu(for “He, there  vestigate the relative stability of the various vortex struc-
exists no microscopic theory; fotHe, there is a BCS-like tures, the free energies of the different vortices are compared
microscopic theory, generalized fprwave pairing is that  as functions of magnetization and rotation frequency in Sec.
for the dilute gas one can make controlled approximationslil. Section IV presents the excitation spectra for each vortex
treating the interparticle interactions as small perturbativédy solving the associated Bogoliubov equations extended to
parameter. Moreover, it is possible to directly visualize thean order parameter with three components in order to inves-
condensate in atomic gases using optical methods. Spin digate whether a given vortex state is stable against collective
condensate is easily controlled by external magnetic fieldmodes. This yields a local stability criterion for each vortex
The BEC systems are quite versatile also in that the interadype. This consideration extends our previous works of
tion parameter can be adjusted over a large range — even itgicleation criterid30—34. The final Sec. V presents a sum-
sign can be changed. Finally, the condensate in BEC systentigary and discussion.
can exhibit several spin states, e.g., with the hyperfine spins

F=1 andF=2. Il. POSSIBLE TYPES OF AXISYMMETRIC VORTICES
We treat the system of a Bose condensate with internal
*Electronic address: tomoya@focus.hut.fi degrees of freedomr=1. Hence the condensate order pa-
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rameter is characterized by three components with On

=1,0,— 1. External rotation of the system around the rotation E= f dzf{z ¢F (—CVZ+ V()¢ + > > o2 dil?

axis, perpendicular to the disk-shaped two-dimensional ! Ik

plane, is denoted by the angular velocitythat has a sense

(+ or —). +Eg—ih Q- $FV e Xr
We start with the system Hamiltonidt1,12] !

: (4

where
H=f dr[E W= CV24+V(r) - u} ¥, 2
J‘ 33(3 o
Es=3 > ( < é; (Fa)jkd’k> : ®)
In tpt
- 2 % RIS Since we treat a cylindrically symmetric disk-shaped two-
dimensional system, the condensate wave funciformay

n % Ea: %;n W?‘PE(FQ)H(FQ)km‘I’ﬂPm be decomposed in the form
' bi(r,0)= (1) y(0)=¢;(r) exili(a;+B;0)],  (6)

(1)  where the condensate wave functiongr) (j=0,=1) are
expressed in terms of cylindrical coordinates. The phases of
the condensate wave functions are determined such that the
energyEs in Eqg. (5) is minimized. The minimizing of the
above spin-dependent term,

Q- /(rxp)¥,
J

with C=%2/(2m,). The interaction is characterized by the
two kinds of channels; the density channgl=4#2(a,
+2a,)/(3m,), and the spin channel:g;=47%?%(a,
—ag)/(3my). The atomic mass is1, . The scattering lengths Os 5 5 )

a, and a, characterize collisions between atoms with total Es(r)= §[2¢o(f){¢1(f)+¢_1(f)+¢1(f)¢—1(r)
spin 0 and 2. The subscripts are=(x,y,z) andi,j,k,l

=(0,=1). The latter correspond to the above three species. X(y1y_ 1782+ v v  1ya) +{ % 1(r) — ¢2(1)}?]
The scalar fieldV(r) is the harmonic confining potential. @
The angular-momentum matric€s, are
leads to the condition
0 1 0
szi 1 0 1], 717717’522 *1, 8
2
V2 0 1 0 where the uppetlower) sign is used for the ferromagnetic
(antiferromagnetic caseg,<0 (gs>0), respectively. This
0O -1 O condition may be rewritten in terms of and 8 as
i
Fy:ﬁ 10 ~1J, 2= a1t a_t+nm, 9)
0 1 0
2Bo=P1tB-1, (10
1 00 . . . :
wheren is an integer. We take. ;= ay=0 in the following
F={ 0 0 0]. 2 since they have no effect in the discussion below. The phases
0 0 1 of the three components are now expressed in the form
The chemical potentialg; obey puq— po=pmo— 1. We V1 expi o)
introduce u=pug and u' = w,— po. The Gross-Pitaevskii _ 1 .
equation for this system, extended to the three components Yo . expli Bof) (1)
*texp —iBo)
becomes Y-1

. using B=B1—Bo=Bo— B_1. In Fig. 1, the various lines
{=CVZ+V(N) —(ptp J)}5Jk+9n2| |¢I|251k show the possible combinations of t8g, giving rise to the
vortex types that we consider in the following. If we restrict

>

. our consideration to the phase coefficient, or the winding
+gs§ (Fa)Jk% (F)im®i ém number being less than 2, there are nine possible combina-
tions of theB;. There is one vortex-free configuration and
RO VX8| dy=0 3) the other combinations arél,0,-1, (1,1,), and (1},0)
| P = where the winding numbers of the three components ¢,

and ¢ _, are denoted in this order. The latter vortex configu-
The total energy of the condensate is given by ration is only realized in a form (%,0) where¢, vanishes

023602-2



AXISYMMETRIC VORTICES IN SPINOR BOSE. .. PHYSICAL REVIEW A 66, 023602 (2002

2 @ each vortex is determined by the above GP @g. which is
expressed as
SN (1,1,1)
1 - & > —CV2HV(N) = (hQ B+ )~ (hQB+ ")
K
§ \Alice\
0 N © +0n |¢||2”} ik
[
(1,0,-1)
-1
N 0.3 (FOS (Fmd! dn| =0, (12)
B+1 BO B—l “

FIG. 1. Possible allowed vortex configurations under axisym-When we vary() andy’, the condensate wave functiors
metry. Each condensaté; (i=1,01) has the phas@,. The are determined by a single paramefi¢t 3+ " because the
vortices (1,0-1), (1x,0), and (1,1,1) are treated in this paper. Variation ofz ()3, is canceled by that of the chemical poten-

tial w.
(whereg; is fractiona). It should be noted that the restriction ~ The energy of the system E) is rewritten as
for the winding number to be less than 2 is reasonable, be-
cause a vortex with a higher winding number is unstable and _ [ , * 2 On 2 4 12
easily breaks up into vortices with unit winding number. E=] d7 EJ: G- CVHV(N} e+ 2 % |17l &
Vortex with winding-number combination (2,1,0) is dis-

cussed by Mizushimd35] and Isoshima and co-workers .
2629, +EN)| =3 A8+ BN, =EimerAOL, (13
IIl. RELATIVE STABILITY OF VARIOUS VORTICES where the number of particles in théh component iSNj

_ 2 ) 2 . . E
We compare the energies of the various vortices enlisted /d rld)ll - The total particle number in the systemNs

. s : . - “=3:N,, and the total angular momentum Is=2. (B,
above inQ) vs magnetization plane. This comparison def|nes+ /Ja)lil The energyE; the maanetizatiom =2-'JN-
“relative stability.” A vortex type with lowest free energy is anL aJré functionsgof {F}g and thgrefore are funcjtjiorllé of
relatively stable. There are eight candidates for the possibl%QB+M, The critical ang]ular \;elocity) f(,)r a given mag-
vortex type, allowed by axisymmetry. Three of them are "7~ "™ ¢ o
(1,0—1), (1,1,1), and (k,0) where X" denotes that this netization between two vortex typd$) and (2) is simply

component vanishes identically as mentioned above. The lagFterm|ned by

one is named Alice vortex after the Alice striid9]. By (1) @
interchanging the roles ap, and ¢_,, we can obtain two AO(M)= inner~ Einner (14)
more vortices: {-1,0,1) and (&,1). The remaining combi- ¢ LO—L® -~

nations (0x,1), (—1x,0), and -1,—1,—1) always have
higher energies than those of X@,), (1x,0), and (1,1,1), The range ofM that a vortex state can take depends on the
respectively, when the external angular velodilyis posi- interaction constang, and the winding number. For ex-
tive. Thus, in what follows, we consider the vortices, (1,0,ample, the (1,1,1) vortex does not have an intermediate
-1), (1,1,1), (1%,0), (—1,0,1), and (&,1) for =0 and value of M/N in the cases witlgs=0 (nonmagnetic cage
M/N=0. and — 0.0, (ferromagnetic cage This behavior is well
The mass of #'Rb atom ism,=1.443<10 % kg. This  known for the uniform spinor condensdtel,17. Wheng,
value is used in the following. We use the scattering lengths= —0.02y,,, the magnetization range 1<M/N<O0 is not
2,=5.5x10"° m anda,=5.843x10 ° m for the antifer- allowed for the (1x,0) vortex. This range may be improved
romagnetic case. The ratio of the interaction coefficients isvith improved numerical accurady2,36.
0<s/9,= +0.02. Another set for the ferromagnetic casas Figure 2 shows the phase diagrams with the lowest energy
=5.5x10 °m anda,=5.182<10 °m, whose ratio of the in the plane ofVi/N andQ for the three cases; the antifer-
interaction coefficients igs/g,= —0.02. The coefficient of romagnetic §¢;=0.02,,), the nonmagneticg;=0), and the
the magnetic term vanishes whag=a,=5.5x10"°m. The  ferromagnetic caseg(= —0.02y,,). The critical angular ve-
ratio becomegs/g,=0. The amplitude of the ratifgs/g,|  locity Q.(M) in Eq. (14) determines the boundaries of each
=0.02 is for a Na atom. domain. When the system is antiferromagnetic or nonmag-
For each vortex type and thgs and n’, the chemical netic, the (0%,1) vortex has the lowest energy aroufid
potential u is determined such that the linear density of the=0 for M/N=1. This is because the Q1) vortex almost
particle number becomes>x210® (um)~1. We use a har- reduces to the vortex-free single-component state without the
monic potential withv=200 Hz for radial confinement. All  vortex winding in the full polarization limit.
the energies are scaled by the trap frequéneyThe angular The (1,0;-1) vortex is lowest in energy around=0
velocity ) is normalized by Zrv below. with M/N=0, irrespective of the magnetism. The conden-
The spatial profile of the condensate wave functions insate simply becomes a vortex-free system for the ferromag-
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FIG. 2. Phase diagrams in the@ vs M/N plane. Each area
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momentaL=M andL = (M +N)/2, respectively. The critical
Q. in Eqg. (14) becomes

(M) =E{nel (M+N)/2)
M—N '

|nne

Q(M)=2 (15

whereE; (M) is Ejer Of the (1,0,-1) vortex for 0<M
<N. The behavior of(}. is still complicated because both
the numerator and the denominator approach zero vithen
approached\.

IV. LOCAL STABILITY

There is another stability criterion for a vortex. The exci-
tation spectrum for a stable vortex must be positive definite.
In other words, if the lowest excited state in the spectrum
becomes negative as a function @f the given vortex be-
comes locally unstable.

A. Excitation spectrum

The excitation spectrum is obtained by solving the follow-
ing Bogoliubov equation extended to the three-component
BEC case:

; {AjUqg(r,K) = Bjyvg(r,K)}=squq(r, ),

partitioned by various points shows the vortex type that has the

lowest energye((}). (a) Antiferromagnetic caseg=0.02,). (b)
Nonmagnetic case g(=0). (c) Ferromagnetic case g{=
—0.029,). The (1,1,1) vortex is absent from the phase diagrémns

and (c) because this vortex cannot have a stable configuration for

—1<M/N<L1. The (0x,1) Alice vortex is not stabilized and it is
thus excluded from the phase diagréoh Gray areas are discussed
in Sec. IV C. There is no negative excitation in those areas.

netic case. For the antiferromagnetic case, the nonrotaijng
component without winding number dominates and #he
and ¢_, components that have opposite winding numbers
are small.

This (1,0,-1) vortex and the Alice vortex compete in the ¥
region around)~0.6 M/N~0.8. The curve between them
reflects the kinetic energy of the (1;01) vortex when there
is no magnetic termgs=0). The amplitudes of the conden-
sate wave functiong,(r) and ¢q(r) of the (1,0;-1) vortex
for the magnetizatiorM/N(>0) are equal to¢,(r) and

1(r) of the (1x,0) vortex for the magnetizationN2/N
—1 The (1,0,-1) and the (1,0) vortex have the angular

Ek) {Bhuq(r.K)—Afug(r, k) =equq(r.j),  (16)
where
Aj={—CV2+V(r)—(u+ju')} oKk
+0n §|: |¢I|25jk+¢j¢:
+9:2 2 [(FjFo)imd
+(F)im(F)i( @ ¢m)]—17Q-V X1 8, (17)
Bjk:gn¢j¢k+gs§ % (Fo)j&i(F)km®m, (18

where uq(r i) andvg(r,i) are theqth eigenfunctions with

the spin componernitand e, corresponds to thgth eigen-

alue. The normalization condition for thay(r,i) and
vg(r,i) is

Z f{|uq(r,i)|2—|vq(r,i)|2}dr=1. (19

In our disk-shaped system, the wave functions have
the phase uq(r,j)=uq(r,j)e'™@*Potif) and v(r,j)
=v,4(r, j)e'(’(qﬂ Po-18) Then Eqs.(16)—(18) are writien as
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; {Xiiuqg(r,§) = 2Zijuq(r.i)} = (eq+hQamuq(r i),
(20)
2 {2Z5ug(r,) = Xijug(r.)} = (et hQAg4(ri), a
i 02t (l’&ﬂ)
2D 04
//
where -06 ¢ . . .
-1 -0.5 0 05 1
oo ol @1 d Tast (Bt BT @ M
Dl B PR TR ' |
VD= (p+in)+0n 2 [hd?| 5 _
£ o
+0n( ] 1) R Q(Bot B)) 5 - (22) @ 5l (1,01
0.4 f ,’
Zij:gn¢i¢j+gsE % o d(Fi(Fj- (23 ™ ‘
-1 0.5 0 0.5 1
The excitation energy, varies as a function of the angu- () W
lar velocity ) as determined by Eq€16) and (21). The
critical values for local stability are defined by
Q¢ =min(eq/gy), (24 _
qg>0 g
- a
Q. =max(eq/qy). (25
qg<0
The critical velocityQ); defined above corresponds to the

instability of the surface excitations; namely, the energy of - p2 0 0.5 1

the excitation modes fog,>0 become negativésee the © N

paper[31] by Isoshima and Machida for the one-component

BEC). The critical velocity(), corresponds to the local in- ~ FIG. 3. Local stability regions bounded by; for the two types
stability where the core excitation modes wih<0 become  ©f vortices, (1,0-1) and (1x,0). (@) Antiferromagnetic casegt
negative upon varying). In the following, we determine = 0-08). (b) Nonmagnetic caseg¢=0). (c) Ferromagnetic case
Qct , yielding a stability region in th€ vs M/N plane where (gs=—0.027,,). The solid line and the dashed line show the upper

o o - . critical Q7 and the lower critica); for a (1,0;-1) vortex. The
the all excitation modes are positive definite for a given vor- . . o
. . + dashed-dotted line and the dotted line show the upper crifical
tex configuration. Namely, we evaluafe; for the vortex

: and the lower criticak)_ for the (1x,0) Alice vortex. The lower
types (1,0-1), (1,1,1), and (%,0) as functions of) and  yitical () is higher than the upper criticall for —0.5<M/N
M/N. <0.5in the (1,0;-1) vortex. The range- 1<M/N< —0.1 for the
When there is a mode with,=0 ande <0, the system (1 x,0) vortex is inhibited because of the ferromagnetic interaction.
has an instability regardless of external rotation and the defiwhen the imaginary part of is finite, its real part is used in Egs.
nition of Qf becomes meaningless. There are few mode$24) and (25). These regions are indicated with the crosses and
found with e<0 for g,=0. The value is at- 10 ?<¢<0. pluses. Gray areas are equivalent to those in Figs. 2. Both of the
There is also a complex mode with,=0. The real part is relative and local stability criteria are satisfied there.
small[Re(e)<10x 10~ 3] while the imaginary part is of the
order ofO(0.01). We ignore them as the modes degeneratg,qdes have positive eigenvalues. Figure 4 shows the radial
with the condensate. shape andj, of the wave functions that correspond to the

critical valueQ); .
B. Local stability region

Let us investigateQ); for the (1,0-1), (1x,0), and
(1,1,1) vortices. Figures(8), 3(b), and 3c) show the local The()_ of the (1,0~ 1) vortex forM/N=+1 and of the
stability regions for each vortex where all the excitationAlice vortex for M/N=1 may be understood as those of a

1. Similarity to scalar system

023602-5



TOMOYA ISOSHIMA AND KAZUSHIGE MACHIDA PHYSICAL REVIEW A 66, 023602 (2002

the (1,0;-1) and (1x,0) vortices. This implies a surface-

6 4
g4 instability mode similar to the surface mode in a scalar vor-
L I Qb7 tex. The mode remains at the edge of the condensate for
luf? + fwi? %02 040608 1 M/N>0.8.

The angular momenta of the modes(f are —1 over
most of the regions: for @ M/N=<1 in the (1,0,-1) vortex
and for —1<M/N=<1 in the Alice vortex. This mode is
localized at the center when the condensate has a large an-
gular momentum{ M/N=1 in Figs. 4a), 4(b), and 4c)].
This feature arises from the localized core state in a scalar
vortex.

2. Characteristic of spinor system

The spatial extent of the modes 8f; , which are local-
ized around the core for largel/N expands asvi/N de-
creases. This is shown foM/N=0 in Figs. 4a) and 4b),
and forM/N=—1 in Fig. 4c). This is common to both the
(1,0-1) and (1x,0) vortices. The wave function has a
shape similar to that of the condensate and a spin structure
different from the condensate. Thus this instability(at
means a spin-flip instability. This is also true @ of the
(1,0,—-1) vortex for —0.5<M/N<0.5. The shape of the
wave functions is similar to that of the condensate. This is
not the situation in the antiferromagnetic case. The wave
function of Q. indicates a single vortex of the 1 compo-
nent rather than the nonvortexl component, as shown in
Fig. 4(b).

According to Figs. 8)-3(c), the critical values}_ and
Q. of the (1,0;-1) vortex are close to each other for
—0.5<M/N<0.5. There is no range di to stabilize the
system in the ferromagnetic case beca@ke>(Q . . This
range is quite narrow in the antiferromagnetic césey.,
0.261<|Q1|<0.263 forM/N=*0.2).

The (1x,0) vortex reduces to the vortex-free system near

FIG. 4. Spatial variations of;(|ug(r,i)|?+|vg(r.i)?) as a _ P .
function of the radial direction corresponding to the collective mode.M/N 1. As shown in Figs. @ and 3b), there is an

atQ; for eachM/N is plotted. The(dotted lines correspond t6); EStjrbe"Lt()é) ?f:oiv)v: t?]eusnf?{a(eetgfetf:/g:’/f/ea)\(/-ér?uen(?[(i:cf:rllza dsysc;[fem.
(7). When the eigenfunctions; andv; are a complex number, 9 P v

the sum of the real pa;{Reug(r i) 1%+ Revy(r,i)]2} is plotted Q.C. . Thg shape resembles that of the condensate. This insta-
instead. Inset of each figure shows the angular-momentum iglex Pility indicates that the whole condensate may have-ttie

of the mode corresponding €@ . WhenM/N=1, the mode of ~COmponent without winding number. The winding-number
Q7 has a peak at the edge of the condensateX um) and the ~combination of the (X,0) vortex turns into (0,0,0). When
mode atQ has a peak at the vortex center<0). These repro- ' is large and negative) | and(), become about 0.5 and

duce the result of the scalar BEC. WhatVN=1, q,=7 and it —0.3, respectively. Therefore, the system is stable (or
reduces to 1 a#/N decreasesia) (1,0,-1) vortex in the ferro- =0 just like the vortex-free scalar system. The shift,
magnetic case(b) (1,0,-1) vortex in the antiferromagnetic case. depending onu’, even wherM/N has the fixed value- 1.

(©) (1x,0) vortex in the nonmagnetic case. This is because our calculation does not include the magne-

. . tization from the noncondensate.
vortex in a scalar BEC. Th@. in Fig. 3 reduces to those of

the one-component vortex system fd/N=1 because the

fully polarized case is nothing but a one-component BEC 3. Complex eigenvalues

with a single vortex. When we decrease/N towards—1, Complex eigenvalues emerge when two levels with the

the (1,0;-1) vortex becomes a single-component systemppposite angular momenta and the same eigenvalues happen

again with the opposite winding number and the criticalto appear. The complex eigenvalues of Bogoliubov equations

Qs have opposite signs. have been reported for multiply quantized vortex of scalar
As seen in Fig. 4, the modes responsible fof are lo- BEC [37] and vortex states of binary BE[38]. When the

calized on the edge of the condensate-8 wm) and have eigenvalues, has a complex value, the left-hand side of Eq.

a large angular momentuin,=7 whenM/N>0.9 in both  (19) becomes zero. We still adopt the real part of such eigen-
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values because continuity of the real eigenvalues and the reaationM/N of a spinor BEC system for the cases of antifer-
part of complex eigenvalues as shown in Fig. 3 seems phystomagnetic ¢,>0), nonmagnetic g.=0), and ferromag-
cally meaningful. netic (gs<0) interactions. By solving the extended Gross-
Pitaevskii equation for the spinét=1 BEC with the three
components ir=1,0,—1), we have investigated the rela-
As for the (1,1,1) vortex, neither the ferromagnetic nortive stability of the possible axisymmetric vortices, which are
the nonmagnetic states can assume intermediate values déssified according to their winding numbers for each com-
magnetization an®/N becomes+ 1. Even at each magne- ponent; namely, (1,6;1), (1x,0), and (1,1,1) for
tization, O varies with the chemical potentigh’. The  (¢;,¢o.¢_1). The excitation spectra are also studied to find
maximum value of)_ is about 1.8in trap unit3. The wave the stability regions for each vortex in tieandM/N plane.
function corresponding t6). is localized at the center and This allows us to estimate the vortex nucleation frequency in
has a spin component different from that of the condensatehe actual experimerfor details, see Ref§31,34 for the
The minimum value ofQ); is about 0.4. Becaus®_ is  correspondence between local stability and nucleation fre-
always larger, the (1,1,1) vortex is always unstable in thequency.
sense of local stability. Yip [17] has studied the two nonaxisymmetric vortices in
This is also the case for the antiferromagnetic systemaddition to the present axisymmetric vortices within the GP
Q. =1.8 andQ)/ =0.4 mean that the (1,1,1) vortex is lo- equation under a particular rotation frequendy~0.4 in
cally unstable. When the chemical potentjal is large  our notation for the antiferromagnetic case only. This corre-
enough, these critical valueQ_ reduce toQ/=0.6 and sponds to Fig. @) for Q~0.4. Although the loweM/N
Q.=0.3. region (0<M/N<0.2) is occupied by a nonaxisymmetric
vortex, in the remaining region the Q) vortex is stabi-
C. Relative stability and local stability lized over the nonaxisymmetric vortex, coinciding with our

We have obtained two sets of phase diagrams. Figurersesu“' We believe that the present phase diagram remains

2(a), 2(b), and Zc) show type of vortex with lowest enerdy valid over a brgad regiqn even taking into account nongx,i-
in Eq. (4). Figures 8a), 3(b), and 3c) show areas in which Symmetric vortices. This is because a large part of Yip's
there is no negative excitation leve] for each type of vor- Phase diagram is covered by axisymmetric vortice= Fig.
tex. We have named these two stabilities “globairelative 1 in Yip's paper[17]). In the future we aim to take into
stability” and “local stability” in Ref. [33]. account the nonaxisymmetric vortex in addition to the

Among these stabilities, the local stability gives critical Present axisymmetric ones. This kind of a calculation must
angular velocity that is close to the experimental req#§  be performed with the help of the excitation spectrum, which
in scalar system. On the other hand, the relative stability isignals the instability towards a more stable vortex configu-
traditionally used for*He system. Both of these two stabili- ration, for each vortex and is needed to predict the experi-
ties are satisfied in gray areas of Figs. 2 and 3. A vortex ofmentally realized vortices in a spinor BEC.

4. The (1,1,1) vortex

the winding-number combination has lowest enekgyyand Note addedRecently Mizushimeet al. [35] pointed out
does not have a negative excitation level that leads the vortethat the(0,1,2 type of vortex has a wide stable area in the
state to collapse. ferromagnetic system. This vortex is stable at aro@hd

The relationship between relative stability and local sta-=0.3 in Fig. Zc).
bility is simple in single-component systefsee Fig. 4 in
Ref. [33]). When a system has local stability and does not
have relative stability, it is “metastable.” ACKNOWLEDGMENTS

V. DISCUSSION The authors thank T. Ohmi, T. Mizushima, T. Kita, M. M.
We have determined the vortex phase diagram in thé&alomaa, S. M. M. Virtanen, and T. Simula for useful dis-

plane of external rotation frequendy vs relative magneti- cussions.
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