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Effects of chaotic energy-band transport on the quantized states of ultracold sodium atoms
in an optical lattice with a tilted harmonic trap

R. G. Scott, S. Bujkiewicz,* T. M. Fromhold, P. B. Wilkinson, and F. W. Sheard
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

~Received 18 October 2001; published 20 August 2002!

We investigate the classical and quantum properties of ultracold sodium atoms in a one-dimensional optical
lattice and a three-dimensional harmonic trap. The energy versus crystal momentum dispersion relation for the
lowest energy band of the optical lattice, together with the harmonic potential, define an effective Hamiltonian
that we use to calculate classical atom paths. When one of the symmetry axes of the harmonic trap is aligned
with the optical lattice, the atoms follow stable trajectories. But tilting this symmetry axis away from the
optical lattice direction creates an unusual type of mixed stable-chaotic classical dynamics, which originates
from the intrinsically quantum-mechanical nature of energy bands. In this regime, the density of quantized
energy levels for the system exhibits periodic fluctuations associated with both stable and unstable periodic
classical orbits. One of the unstable orbits also produces well-defined scar patterns in a subset of eigenfunc-
tions. Wave functions with distinct spatial forms are identified and related directly to particular parts of the
classical phase space using a Wigner function analysis.

DOI: 10.1103/PhysRevA.66.023407 PACS number~s!: 32.80.Pj, 03.65.Sq, 05.45.Mt, 05.60.Cd
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I. INTRODUCTION

The dynamics of particles in a periodic potential ha
been explored in a series of recent experiments and the
ical studies of noninteracting alkali-metal atoms@1–12# and
Bose-Einstein condensates@13–20# in optical lattices~OLs!
@21# formed by using two counterpropagating laser beam
set up an electromagnetic standing wave. The laser be
produce a periodic time-independent potential and
energy-band structure for atoms that are cold enoug
(&1 mK) for their de Broglie wavelength to extend acro
several lattice periods. Detuning the lasers exerts an ine
force on the atoms, directed along the axis of the OL and
magnitude proportional to the rate of detuning@1#. Provided
that this force is constant and weak enough to preserve
energy-band structure, atoms confined to a single band
form semiclassical Bloch oscillations@22#. In contrast to
electrons in crystal lattices, the atoms undergo almost
scattering during the Bloch period, which is typically a fe
milliseconds@1#, and the optical potential can be switche
off rapidly at any time. This allows velocity-time curves fo
the Bloch oscillations to be measured directly in experim
@1#, and makes OLs ideal for studying classical energy-b
transport.

In a full quantum-mechanical picture, the atom ene
associated with motion along the OL is quantized into
Wannier-Stark ladder@2–4# comprising equally spaced en
ergy levels, which correspond to quantizing the action of
classical Bloch oscillations. Wannier-Stark ladders have b
observed for ultracold sodium atoms in an accelerating
whose phase is periodically modulated in order to drive
terband transitions@2,3#. Since OLs can be used to inves

*Permanent address: Institute of Physics, Wroclaw University
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gate directly both classical energy-band transportand the
corresponding quantized states, they are well suited to
perimental studies of the classical-quantum corresponde
This feature of OLs is particularly important in the field o
quantum chaos: the study of quantum systems with cha
classical analogs@23#. For example, the first experimenta
realization of a quantumd-kicked rotor, which has served a
a model system for the study of quantum chaos for ma
years @23#, was achieved using ultracold atoms in phas
modulated OLs@5–12#. Cold ions in a Paul trap with a
standing-wave laser field have also been shown to exh
interesting chaotic dynamics@24,25#.

In recent work, we investigated the classical motion
cold cesium atoms in the lowest energy band of an OL a
confined by a three-dimensional harmonic trap@26#. When
one of the symmetry axes of the trap is aligned with t
propagation direction of the laser beams, the atoms fol
regular classical paths. But tilting the symmetry axis aw
from this direction induces a transition from stable regu
motion to mixed stable-chaotic dynamics@26#. An OL with a
tilted harmonic trap therefore provides a different type
quantum chaotic system, in which the chaotic classical
namics originate from an intrinsically quantum-mechani
property of the OL: its energy bands. Similar dynamics ha
been reported for electrons in a semiconductor superla
with a tilted magnetic field@27#. But, to our knowledge, the
quantized states corresponding to chaotic classical ene
band transport have not yet been studied.

In this paper, we investigate the quantized states of
dium atoms@28# in an OL with a tilted harmonic trap whos
frequencies are low enough to preserve the band struc
We show that the onset of chaotic motion for atoms confin
to the lowest energy band produces periodic fluctuations
the density of quantized energy levels, which we assoc
with both stable and unstable periodic classical paths.
wave functions corresponding to subsets of energy lev
embedded within the full spectrum exhibit strong ‘‘sca
ring’’: a concentration of probability density along an u
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SCOTTet al. PHYSICAL REVIEW A 66, 023407 ~2002!
stable periodic orbit@29#. We relate the eigenstates of th
system directly to the classical phase space structure by
ing a Wigner function analysis@30#. There is a striking simi-
larity between the form of the atomic Wigner functions a
the corresponding classical Poincare´ sections. We also con
sider how the classical and quantum properties of the
system might be explored in experiments on both individ
atoms and Bose-Einstein condensates.

II. DESCRIPTION OF THE SYSTEM

We investigated the motion of cold noninteracting sodiu
atoms in a one-dimensional OL formed by two counterpro
gating laser beams of wavelengthl aligned with thex axis
~Fig. 1!. The potential energy of a sodium atom in the OL
taken to beU(x)5U0sin2(px/d), whered5l/25294.5 nm
and U05562.52 peV, as in recent experiments@3#. The
form of U(x) is shown by the solid curve in Fig. 2~a!. A
magnetically induced three-dimensional harmonic trap p
vides an additional confining potential. The equipoten
surfaces of this trap are ellipsoids with three symmetry ax
In our coordinate system, one of these axes is parallel to
y direction and the other two~the xt and zt axes! lie in the
x-z plane at an angleu to thex andz axes~see Fig. 1!. The
potential energy of an atom in the harmonic trap
VT(x,y,z)5 1

2 mav2
2y21V(x,z), where V(x,z)5 1

2 ma(v1
2xt

2

1v3
2zt

2), ma is the mass of the sodium atom,xt5x cosu
1zsinu, zt5z cosu2xsinu ~see Fig. 1!, and the angular fre-
quencies v151479 rad s21, v254702 rad s21, and v3
52561 rad s21 are taken from experiments on sodium a
oms in theF51, MF521 state@31,32#. The closed ellipses
in Fig. 1 show equipotential curves ofV(x,z) for u530°.

Motion in the harmonic potential along they direction is
separable from that in thex-z plane, which is described b

FIG. 1. Schematic diagram showing orientation of the OL a
tilted harmonic trap. Ellipses show contours of potential energy
the x-z plane for a sodium atom confined by a harmonic trap w
symmetry axes parallel to thext and zt directions. The contours
range from 10 to 40 peV at 10 peV intervals. Thext symmetry axis
of the harmonic potential is tilted at an angleu to the x axis and
laser field. Horizontal line indicates scale.
02340
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the time-independent Schro¨dinger equation

S p̂x
21 p̂z

2

2ma
1V~x,z!1U~x! Dcn~x,z!5Encn~x,z!, ~1!

where p̂x , p̂z are momentum operators,En (n51,2,3, . . . )
is a quantized energy eigenvalue for (x, z) motion, and
cn(x, z) is the corresponding eigenfunction. In the next se
tion, we use Eq.~1! to derive an effective classical Hami
tonian for atom orbits in thex-z plane and investigate th
transition to chaotic classical dynamics induced by tilting t
harmonic trap.

III. EFFECTIVE CLASSICAL HAMILTONIAN

In the absence of the harmonic trap, the OL potential p
duces energy bands for motion along thex direction. The
gray bands in Fig. 2~a! indicate the energy ranges of the tw
lowest energy bands@3#. In this paper, we consider the mo
tion of atoms confined to the first energy band at microkel
temperatures. Figure 2~b! shows the dispersion curve of en
ergy Eb versus crystal momentumpx for this band, calcu-

d
n

FIG. 2. ~a! Solid curve shows potential energyU(x) of a sodium
atom in the OL. Gray rectangles show energy ranges of the first
second energy bands of the OL.~b! Eb(px) dispersion relation cal-
culated for the first energy band.
7-2
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EFFECTS OF CHAOTIC ENERGY-BAND TRANSPORT ON . . . PHYSICAL REVIEW A66, 023407 ~2002!
lated using Mathieu functions@33#. Without the harmonic
trap, the total energy of an atom in the lowest energy ban
E(px ,pz)5Eb(px)1pz

2/2ma , where pz is the kinetic mo-
mentum associated with motion along thez direction. The
translational symmetry of the OL, which leads to the form
tion of the energy bands, is broken when the harmonic tra
switched on. However, the trap frequenciesv1 andv3 con-
sidered here are so low that within the region of space
cessible to the atoms, the harmonic potential energy varia
across a single period of the OL is much smaller than
width of the lowest energy band. Consequently, the harmo
potential can be treated as a perturbation to the OL poten
which induces transitions between the OL band states. Ti
dependent perturbation theory shows that the harmonic
tential continuously changes the average crystal momen
of the atom, thereby causing it to move through the ene
band of the unperturbed OL@22#. The rate of change of the
crystal momentum isdp/dt52“V, wherep5(px ,pz), and
the mean atom velocityv5dE/dp. These two semiclassica
equations of motion are well known in condensed ma
physics@22#. They are equivalent to Hamilton’s equations f
an atom with an effective classical Hamiltonian given by

H~x,z,px ,pz!5Eb~px!1
pz

2

2ma
1V~x,z!. ~2!

Since the harmonic trap is weak and the gap between the
and second energy bands is large@approximately 275 peV,
Fig. 2~a!#, interband transitions can be neglected.

IV. CLASSICAL ATOM DYNAMICS

Figure 3 shows real-space classical trajectories in thex-z
plane calculated for an atom in the lowest energy band w

FIG. 3. Classical orbits in thex-z plane calculated for atoms in
the first energy band of the OL with total energyH5235.8 peV
and u50° ~a! and 30° ~b!–~d!. Orbits ~c! and ~d! both start from
rest but with slightly different initial positions. Axes inset sho
orientation of symmetry axisxt of the harmonic trap relative to th
~x! axis of the laser field. Horizontal line indicates scale.
02340
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total energyH5235.8 peV. Whenu50° @Fig. 3~a!#, the
Hamiltonian for motion in thex-z plane is separable and th
atom undergoes simple harmonic motion along thez direc-
tion. Along thex axis, the harmonic potential accelerates t
atom through the energy band, which also produces st
periodic motion@26#. WhenuÞ0°, the motion along thex
and z directions is coupled and the orbital paths must
calculated by solving Hamilton’s equations numerically. W
used a fourth-order Runge-Kutta method to obtain soluti
that remain accurate over time scales orders of magnit
longer than the inverse trap frequencies. Our calculati
show that whenuÞ0° there are two distinct types of orb
whose form and stability depend on the initial condition
One type of orbit is shown in Fig. 3~b! for u530°. This orbit
resembles the simple regular motion found foru50° @Fig.
3~a!#. It is stable in the sense that a small change in the ini
conditions produces no qualitative change in the form of
trajectory. By contrast, the periodic orbit shown in Fig. 3~c!
for u530° is extremely unstable because an arbitrarily sm
change in the initial conditions causes the atom path to
viate rapidly from the periodic orbit, and thereafter follow
highly irregular path like that shown in Fig. 3~d!.

To quantify how the atom motion changes with the tr
orientation, Fig. 4 shows Poincare´ sections, which display
slices through the classical phase space@23#, calculated for a
range ofu values between 0° and 90°. The scattered po
show the coordinatez and the corresponding momentu
componentpz at each turning point along thex direction for
which px50 anddpx /dt,0. Foru50° and 90°@Figs. 4~a!
and 4~f!#, these points lie on a series of concentric ellips
corresponding to simple harmonic motion along thez direc-
tion. For intermediate tilt angles, the system is characteri
by a rich stable-chaotic classical phase space@Figs. 4~b!–
4~e!#. Toward the left-hand sides of the Poincare´ sections in
Figs. 4~b! and 4~c!, calculated foru515° and 30°, respec
tively, there are crescent-shaped stable islands, comprisi
series of nested invariant curves@23# produced by regular
orbits like that shown in Fig. 3~b!. Crescents further from the
centers of these stable islands are more strongly curved. N
the boundary with the chaotic seas in Figs. 4~b! and ~c!, the
crescents are so strongly curved that their tips almost tou
but remain separated by a hyperbolic fixed point, which c
responds to an unstable orbit. The crescent-shaped isl
enclose the chaotic seas in Figs. 4~b! and 4~c!, which them-
selves contain additional stable islands. Whenu is increased
to 45° @Fig. 4~d!#, the additional islands disappear. Raisingu
to 60° @Fig. 4~e!# increases the size of the chaotic sea, wh
now encloses all of the stable islands. Asu is increased be-
yond 60°, these stable islands grow and there is a gra
transition to the completely regular phase space found
u590° @Fig. 4~f!#.

We emphasize that the classical phase space structure
an intrinsically quantum-mechanical origin associated w
the energy-band structure. Due to the different ener
momentum dispersion relations for motion parallel and p
pendicular to the axis of the OL, the atoms have an an
tropic and energy-dependent effective mass. When
harmonic trap is tilted relative to the OL, this anisotrop
couples the motion along thex andz directions and thereby
7-3
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SCOTTet al. PHYSICAL REVIEW A 66, 023407 ~2002!
induces mixed stable-chaotic dynamics. We have found
similar dynamics occur for a wide range of system para
eters and atom energies, and also for other alkali-metal at
@26#.

A similar type of chaotic energy-band transport has
cently been demonstrated for electrons in a semicondu
superlattice with a tilted magnetic field@27#. In this con-
densed matter system, the onset of chaos can only be
tected by investigating its effect on the current-voltage ch
acteristics of the superlattice. By contrast, for the atom
system considered here, the classical trajectories could
observed directly in time-resolved transport experime
similar to those used to detect Bloch oscillations for cesi
atoms@1#. Moreover, since the initial positions and velociti
of the atoms are well defined and can be precisely contro
@1,34,35#, such experiments might also be used to map
Poincare´ sections for chaotic energy-band transport in
present system. The black squares in Fig. 4 show the fu
mental phase space resolution limit of\ which is, in prin-
ciple, fine enough to allow experimental detection of t
stable islands. It is now possible to prepare cold atoms

FIG. 4. Poincare´ sections (z,pz) through the classical phas
space calculated for atoms in the first energy band of the OL w
u50° ~a!, 15° ~b!, 30° ~c!, 45° ~d!, 60° ~e!, and 90° ~f!. Each
section is constructed from 220 different trajectories withH
5237.3 peV. Areas of black squares equal\.
02340
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minimum-uncertainty Gaussian initial states whose positi
momentum spread is at this limit@34,35#.

V. QUANTIZED ENERGY LEVEL SPECTRUM AND
EIGENSTATES OF THE ATOMS

To investigate how the onset of classical energy-ba
transport affects the quantized states of the system, we
culated the eigenvaluesEn and corresponding eigenfunction
cn(x,z) of Eq. ~1!. We expanded the eigenfunctions

cn~x,z!5(
l ,r

cl ,r
n f ~x2xl !F r~z!, ~3!

over a basis comprising Wannier functionsf (x2xl) for the
first energy band, wherexl is the position of thel th mini-
mum in U(x), and the eigenfunctionsF r(z) (r
50,1,2,3, . . . ) of a simple harmonic oscillator of angula
frequencyv3, centered atz50. The Wannier functions use
in our calculations are given by@36#

f ~x2xl !5
d

hE2h/2d

h/2d

exp~ ipxxl /\!upx
~x!dpx ,

whereupx
(x) is the Bloch function corresponding to cryst

momentumpx in the first energy band. The Bloch function
are obtained by numerical solution of Mathieu’s equati
@33#. In this basis, the Hamiltonian Eq.~1! reduces to a
banded real symmetric matrix whose eigenvalues are the
ergy levelsEn . Here, we analyze the energy level spectru
and eigenfunctions for the tilt angleu530° corresponding to
the mixed stable-chaotic phase space shown in Fig. 4~c!.
Eigenstates for other system parameters correspondin
mixed stable-chaotic dynamics have similar properties.

The horizontal lines in Fig. 5 show the quantized ene
levels in the range 235.3 peV<En<237.6 peV. Over this
energy range, the classical phase space structure is al
identical to that shown in Fig. 4~c!. The energy level spec
trum exhibits the complex aperiodic distribution character
tic of nonintegrable systems@23#. Despite this complexity,
two distinct features of the spectrum can be related dire
to the classical motion of an atom in the lowest energy ba
the number of energy levelsN(E) below a particular energy
E, and long-range periodic fluctuations in the level dens
We now analyze each of these features in turn.

The number of energy levels below energyE is given by
the staircase function

N~E!5(
n

Q~E2En!, ~4!

where Q(E2En) is the step function of unit height. Th
solid curve in Fig. 6~a! showsN(E) for the lowest 20 energy
levels. The curve contains stepped oscillatory structu
which originates from the energy quantization, superimpo
on a monotonically increasing background. We can theref
expressN(E) as the sum of a rapidly fluctuating step fun
tion NOS(E) and a slowly varying ‘‘Weyl’’ @23# term
NAV(E), which gives the average number of energy lev

h

7-4
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EFFECTS OF CHAOTIC ENERGY-BAND TRANSPORT ON . . . PHYSICAL REVIEW A66, 023407 ~2002!
belowE. We have calculated the Weyl term from the Ham
tonian Eq.~2! for classical energy-band transport using t
formula @23#

NAV~E!5
1

h2E E E E Q„E2H~x,z,px ,pz!…

3dpxdpzdxdz, ~5!

where the integrals are over the classically allowed region
phase space at energyE. Analytical expressions for the inte
grals overx, z, andpz reduce Eq.~5! to

NAV~E!5S 2

ma
D 1/2 4

3p~\v1!~\v3!

3E
0

h/2d

@E2Eb~px!#
3/2dpx , ~6!

where the integral overpx must be evaluated numericall
sinceEb(px) is not a simple function. The dashed curve
Fig. 6~a! showsNAV(E). Even though this curve is derive

FIG. 5. Horizontal lines: energy eigenvalues for a sodium at
in the system withu530°. Longer lines mark the energies of th
scarred energy eigenfunctions shown on the right of the figure~top
five plots! with spatial axes inset. The S-shaped unstable perio
orbits ~black curves! are overlaid on the probability density plo
~white 50, black 5 high! of each scarred mode. The probabili
distribution of an unscarred mode~bottom plot! is shown for com-
parison. In each wave function plot, the dashed ellipse shows
equipotential energy curve of the harmonic trap defined byV(x,z)
5En2Eb(0).
02340
f

from an effective classical Hamiltonian Eq.~1!, it gives a
good approximation to theN(E) staircase function obtaine
from full quantum-mechanical calculations. This suppo
our claim in Sec. III, that a classical picture of energy-ba
transport is valid becauseV is a slowly varying function ofx
andz.

The density of quantized energy levels is given by

D~E!5
dN~E!

dE
5DAV~E!1DOS~E!, ~7!

whereDAV(E)5dNAV(E)/dE is a smooth monotonically in-
creasing average level density andDOS(E)5dNOS(E)/dE is
the remaining fluctuating contribution. In the semiclassi
limit, DOS(E) can be related to the periodic classical orb
of the system using the trace formula@23#

DOS~E!5Im(
j

ajexp@ iSj~E!/\#, ~8!

ic

he

FIG. 6. ~a! N(E) ~solid curve! andNAV(E) ~dashed curve! plots
calculated foru530°. ~b! Fourier power spectrum ofDOS(E) in the
range 224.6 peV<E<247.1 peV, shown as a function of timeT.
Inset: periodic atom orbits corresponding to the peaks marked
solid arrows. Ellipses show the equipotential energy curve of
harmonic trap defined byV(x,z)5E2Eb(0), with E5237.3 peV.
The origin of peaks 1–3~dotted arrows! is discussed in the text.
7-5
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SCOTTet al. PHYSICAL REVIEW A 66, 023407 ~2002!
whereSj (E) is the classical action of thej th orbit, and the
expansion coefficientsaj depend on the orbital stability
Each periodic orbit imposes a regular modulation inDOS(E)
with an energy periodDEj5h@dSj (E)/dE#215h/Tj (E),
whereTj (E) is the period of thej th orbit. To identify the
periodic fluctuations inDOS(E) and the associated classic
orbits, we calculated the Fourier transform

F~T!5E
0

Em
DOS~E!G~E!exp~2 iET/\!dE, ~9!

whereEm is the highest eigenvalue considered andG(E) is
the Welch window function, which we use to suppress rin
ing in the Fourier transform@37,38#.

The power spectrum ofF(T) shown in Fig. 6~b! reveals
three peaks~marked by solid arrows! at timesT equal to the
periods of the three distinct periodic classical orbits sho
inset in the figure. The orbits corresponding to the two le
most peaks are stable, while that associated with the ri
hand peak is unstable. The dotted arrows in Fig. 6~b! indicate
three additional peaks, labeled 1–3, in the range 5 ms&T
&6 ms. Peaks 1 and 3 are harmonics of the maxima aT
.2.5 and 3 ms, respectively, which are marked by the t
leftmost solid arrows in Fig. 6~b!. There is no periodic orbit
corresponding to peak 2, which probably originates fro
complex ‘‘ghost’’ trajectories@39–41# like those previously
identified for electrons in hydrogenic atoms@39,41# and light
in chaotic optical cavities@37,38#.

We also investigated the relation between the class
orbits and quantized eigenfunctions of the system. Many
the wave functions reflect the diffuse irregular forms of t
chaotic classical paths such as the one shown in Fig. 3~d!.
For example, the probability density plot for the botto
wave function in Fig. 5 has a highly complex antinode p
tern. Just like the chaotic classical paths, this wave func
extends throughout the classically allowed region boun
by the dashed ellipse which shows the equipotentialV(x,z)
5En2Eb(0) of the harmonic trap. By contrast, the wa
functions corresponding to regular subsets of energy le
embedded in the complete spectrum are strongly localize
‘‘scarred’’ along unstable but periodic classical paths@29#.
For example, the wave functions corresponding to the ene
levels marked by the longer horizontal lines in Fig. 5
exhibit clear scars of the S-shaped unstable periodic o
shown overlaid and also in Fig. 3~c!. The wave functions
pertaining to energy levels between these scarred states
erally reveal no trace of the scar pattern. Adjacent sca
states in Fig. 5 are separated by an energy of.0.53 peV,
which equals the value ofh/TS obtained from the period
TS.7.8 ms of the S-shaped orbits.

Subsets of scarred wave functions also occur for electr
in hydrogenic atoms@42#, in the quantum well of semicon
ductor resonant tunneling diodes~RTDs! @43–45#, and for
the electromagnetic eigenmodes of analogous gradien
fractive index optical cavities@37,38#. In the RTDs, the
scarred states control the rates of tunneling transitions
the quantum well, and thereby generate pronounced reso
peaks in current versus voltage measurements@44#. It might
be possible to detect the sequence of scarred states in
02340
-

n
-
t-

o

al
f

-
n
d

ls
or

gy
l
it

en-
d

ns

e-

to
ant

the

atomic system considered here by using phase modulatio
the OL to induce interstate transitions and determine
probability of excitation@2–4#. We expect that the large spa
tial overlap between adjacent scarred states would prod
strong resonant transitions when the modulation freque
equals 2p/TS . Such experiments might also provide info
mation about fluctuations of the density of levels and ab
the statistics of nearest-neighbor level spacings, which
low the Brody distribution@46# for systems with mixed
stable chaotic dynamics.

VI. WIGNER FUNCTION ANALYSIS OF THE
EIGENSTATES: LINKS WITH THE CLASSICAL

PHASE SPACE

To relate the quantized states of the system directly to
corresponding classical phase space, for each eigenfun
cn(x,z) we calculated the Wigner function@30#

Wn~x,z,px ,pz!5
1

h2E2`

` E
2`

`

cn* S x1
lx

2
,z1

lz

2 D
3cnS x2

lx

2
,z2

lz

2 D
3exp@2 i ~pxlx1pzlz!/\#dlxdlz ,

~10!

where lx and lz are real variables. We reducedWn to a
two-dimensional function ofz and pz in the following way.
First, in Eq.~10!, we setpx50, so that the Wigner functions
are calculated over the same phase space plane as the
sical Poincare´ sections shown in Fig. 4. For this particularpx
and specified phase space components (z,pz), the value ofx
used in Eq.~10! is determined uniquely@47# by En and the
form of the classical HamiltonianH5En given in Eq. ~2!
@48#. The two-dimensional Wigner functionsWn(z,pz) give
a phase space representation of the eigenfunctions, and
analogous to classical Poincare´ sections@30,37,38#. Figure 7
shows Wn(z,pz) calculated for the wave function in th
middle (En.236.45 peV) of the sequence of scarred sta
in Fig. 5. This Wigner function is the quantum analog of t
Poincare´ section shown in Fig. 4~c!. To help relate the
Wigner function to the Poincare´ section, the dotted curves i
Fig. 7 show the perimeters of the two large stable islands
Fig. 4~c!. The large absolute values ofWn ~white and black
regions! are centered on the point (zS ,pzS) ~marked by the
cross, which lies within the chaotic sea! where the scarring
S-shaped orbit crosses thepx50 plane withdpx /dt,0. This
provides further evidence that the scar pattern origina
from the S-shaped orbit.

In Fig. 8, we use Wigner functions to relate wave fun
tions with distinct spatial forms to particular regions of th
classical phase space. The plots on the left-hand side o
figure show the probability density distributions of four di
ferent eigenfunctions, and those on the right-hand side s
the corresponding Wigner functions. At the energy cor
sponding to each eigenfunction, the classical Poincare´ sec-
tion is almost identical to that shown in Fig. 4~c!. The pe-
rimeters of the two large stable islands in this Poinc´
7-6
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section are shown by the dotted curves superimposed on
Wigner functions in Fig. 8. In Fig. 8~a!, the wave function is
localized along the overlaid stable linear periodic orb
which lies at the center of the left-hand crescent-sha
stable island in Fig. 4~c!. The corresponding Wigner functio
is concentrated around this center point@marked by the cross
in Fig. 8~a!#, where the linear orbit crosses thepx50 plane
with dpx /dt,0. Its form echoes some of the innermo
crescent-shaped invariant curves in the left-hand stable
land of Fig. 4~c!. The wave function in Fig. 8~b! is localized
along the two overlaid stable periodic paths, which refl
the symmetry of the system under a 180° rotation. At
outer turning points of these orbits, the atoms paths
bounded by the dashed equipotential of the harmonic t
By contrast, the inner turning points originate from the effe
of the OL energy band structure on the atom motion. Th
turning points occur when the atom’s crystal momentumpx
56h/2d is at the edge of the first Brillouin zone, where th
gradient of the dispersion curveEb(px) is zero @Fig. 2~b!#.
Consequently, the mean velocity of the atom is also zero
so there is a turning point in the classical motion along thx
direction. In a fully quantum-mechanical picture, the atom
stationary at the edges of the Brillouin zone because its w
function is Bragg reflected by the OL and therefore takes
form of a standing wave. The right-hand orbit in Fig. 8~b!
lies at the center of the right-hand stable island in Fig. 4~c!,
which is marked by the cross in the Wigner function of F
8~b!. This Wigner function is concentrated within the righ
hand stable island and has maximal amplitude at its ce
point. The left-hand orbit in Fig. 8~b! does not appear in
either the Poincare´ section or the Wigner function, sinc
when px50 along this orbit,dpx /dt.0 @47#. In Fig. 8~c!,
the wave function is concentrated within the caustics of
overlaid stable orbit, which lies near the perimeter of t
left-hand stable island in Fig. 4~c!. The Wigner function in
Fig. 8~c! extends throughout the left-hand stable islan

FIG. 7. Wigner functionWn(z,pz) ~black !0, gray50, white
@0) corresponding to the third scarred wave function from the
in Fig. 5. Cross indicates the point where the S-shaped sca
orbit crosses thepx50 plane withdpx /dt,0. Dotted curves show
perimeters of the two large stable islands in Fig. 4~c!.
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which suggests that the corresponding eigenfunction is a
ciated with all of the orbits in this region of phase spac
rather than a single periodic path. To conclude this sect
we consider the irregular probability distribution shown
Fig. 8~d!, whose Wigner function spreads throughout t
chaotic sea in Fig. 4~c!, but has almost zero amplitude withi
the stable islands bounded by the dotted curves in Fig. 8~d!.
The extended nature of this Wigner function shows t
many different chaotic trajectories contribute to the wa
function pattern, which accounts for its complex diffu
form.

VII. CONCLUSION

In summary, we have investigated the classical mot
and quantized states of ultracold sodium atoms in an OL w

p
ng

FIG. 8. Left: probability density plots in thex-z plane~coordi-
nate axes shown top left! for eigenstates of the system withu
530° and (n,En)5(670,235.7 peV)~a!, ~675, 235.9 peV! ~b!,
~674, 235.8 peV! ~c!, ~760, 238.0 peV! ~d!. Classical paths associ
ated with wave functions~a!–~c! are overlaid. Right: the corre
sponding Wigner functionsWn(z,pz) ~black !0, gray 50, white
@0) with coordinate axes shown top right. The coordinate ran
of the Wigner functions are29 mm,z,9 mm and 27
310228 kg ms21,pz,7310228 kg ms21, as in Fig. 4~c!.
Crosses in~a! and~b! indicate the points where the classical orb
shown on the left of the figure cross thepx50 plane withdpx /dt
,0. Dotted curves on Wigner function plots show perimeters of
two large stable islands in Fig. 4~c!.
7-7
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a harmonic trap. When a symmetry axis of the trap is til
relative to the OL, the atoms exhibit an unusual type of c
otic motion determined by an effective classical Ham
tonian, which originates from the energy band dispersi
For the low trap frequencies considered here, the harm
potential acts as a small slowly varying perturbation to
OL. Consequently, the atomic motion can be described by
effective classical Hamiltonian, Eq.~2!, in which the energy-
band structure of the unperturbed OL is supplemented by
harmonic trap potential. The periodic orbits of this Ham
tonian have a pronounced effect on the quantized eigens
of the system. In particular, they modulate the density
energy levels and scar subsets of eigenstates. Both of t
effects might be accessible to experimental study by us
phase modulation of the OL to drive transitions between
first and second energy bands and thereby determine
probability of excitation@2,3#. The possibility of detecting
both the classical trajectories and the quantized eigenst
plus the large number of controllable parameters, makes
OL system particularly attractive for studying the dynamic
on

en
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regime of chaotic energy-band transport@27#.
Finally, we note that there is great current interest in

quantum properties of Bose-Einstein condensates in O
@13–20#. Previous work has considered a one-dimensio
OL aligned with a symmetry axis of a condensate in a h
monic trap@15,19#. For this geometry, numerical simulation
@16,18# and experiments@14# show that the collective dy-
namics of a condensate in an accelerating OL are very s
lar to single-atom Bloch oscillations@1#. By analogy, we an-
ticipate that the onset of chaos for single atoms in an
with a tilted harmonic trap may also be manifest in the c
lective time-dependent dynamics and excitations of a c
densate in this system.
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