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Effects of chaotic energy-band transport on the quantized states of ultracold sodium atoms
in an optical lattice with a tilted harmonic trap
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We investigate the classical and quantum properties of ultracold sodium atoms in a one-dimensional optical
lattice and a three-dimensional harmonic trap. The energy versus crystal momentum dispersion relation for the
lowest energy band of the optical lattice, together with the harmonic potential, define an effective Hamiltonian
that we use to calculate classical atom paths. When one of the symmetry axes of the harmonic trap is aligned
with the optical lattice, the atoms follow stable trajectories. But tilting this symmetry axis away from the
optical lattice direction creates an unusual type of mixed stable-chaotic classical dynamics, which originates
from the intrinsically quantum-mechanical nature of energy bands. In this regime, the density of quantized
energy levels for the system exhibits periodic fluctuations associated with both stable and unstable periodic
classical orbits. One of the unstable orbits also produces well-defined scar patterns in a subset of eigenfunc-
tions. Wave functions with distinct spatial forms are identified and related directly to particular parts of the
classical phase space using a Wigner function analysis.
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[. INTRODUCTION gate directly both classical energy-band transpord the
corresponding quantized states, they are well suited to ex-
The dynamics of particles in a periodic potential haveperimental studies of the classical-quantum correspondence.
been explored in a series of recent experiments and theorethis feature of OLs is particularly important in the field of
ical studies of noninteracting alkali-metal atofdis-12] and ~ quantum chaos: the study of quantum systems with chaotic
Bose-Einstein condensatEs3—20 in optical lattices(OLS) classical analog$23]. For example, the first experimental
[21] formed by using two counterpropagating laser beams tgealization of a quanturd-kicked rotor, which has served as
set up an electromagnetic standing wave. The laser beanfsmodel system for the study of quantum chaos for many
produce a periodic time-independent potential and al3/ears[23], was achieved using ultracold atoms in phase-

energy ban siuctur for aoms that are cod enoush TOXIASY OLYTIZ S e o Pl tap e
= i i -
(=1 wK) for their de Broglie wavelength to extend acrossimeresting chaotic dynami¢g4,25.

several lattice periods. Detuning the lasers exerts an inertial . . : .
In recent work, we investigated the classical motion of

force on the atomg, directed along the axis of the O!‘ and Ofcold cesium atoms in the lowest energy band of an OL and
magnitude proportional to the rate of detunirdg. Provided confined by a three-dimensional harmonic tf26]. When
that this force is constant and weak enough to preserve th(c;n

energy-band structure, atoms confined to a single band pefopagation direction of the laser beams, the atoms follow
form sem|.cIaSS|caI Blogh oscillation22]. In contrast to regular classical paths. But tilting the symmetry axis away
electrons in crystal lattices, the atoms undergo almost ngom this direction induces a transition from stable regular
scattering during the Bloch period, which is typically a few motion to mixed stable-chaotic dynami@s]. An OL with a
milliseconds[1], and the optical potential can be switched tiited harmonic trap therefore provides a different type of
off rapidly at any time. This allows velocity-time curves for quantum chaotic system, in which the chaotic classical dy-
the Bloch oscillations to be measured directly in experimenhamics originate from an intrinsically quantum-mechanical
[1], and makes OLs ideal for studying classical energy-bangroperty of the OL: its energy bands. Similar dynamics have
transport. been reported for electrons in a semiconductor superlattice
In a full quantum-mechanical picture, the atom energywith a tilted magnetic field27]. But, to our knowledge, the
associated with motion along the OL is quantized into aquantized states corresponding to chaotic classical energy-
Wannier-Stark laddef2—-4] comprising equally spaced en- band transport have not yet been studied.
ergy levels, which correspond to quantizing the action of the In this paper, we investigate the quantized states of so-
classical Bloch oscillations. Wannier-Stark ladders have beedium atomg 28] in an OL with a tilted harmonic trap whose
observed for ultracold sodium atoms in an accelerating Olfrequencies are low enough to preserve the band structure.
whose phase is periodically modulated in order to drive in\\Ve show that the onset of chaotic motion for atoms confined
terband transition$2,3]. Since OLs can be used to investi- to the lowest energy band produces periodic fluctuations in
the density of quantized energy levels, which we associate
with both stable and unstable periodic classical paths. The
*Permanent address: Institute of Physics, Wroclaw University ofvave functions corresponding to subsets of energy levels
Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poembedded within the full spectrum exhibit strong “scar-
land. ring”: a concentration of probability density along an un-
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FIG. 1. Schematic diagram showing orientation of the OL and
tited harmonic trap. Ellipses show contours of potential energy in
the x-z plane for a sodium atom confined by a harmonic trap with
symmetry axes parallel to the and z, directions. The contours
range from 10 to 40 peV at 10 peV intervals. Thesymmetry axis
of the harmonic potential is tilted at an angleto the x axis and
laser field. Horizontal line indicates scale.

stable periodic orbif29]. We relate the eigenstates of the
system directly to the classical phase space structure by us-
ing a Wigner function analysig0]. There is a striking simi-
larity between the form of the atomic Wigner functions and
the corresponding classical Poincaections. We also con- - L
sider how the classical and quantum properties of the OL 1005 00 0.5 1.0
system might be explored in experiments on both individual Py (hi2d)

atoms and Bose-Einstein condensates.

FIG. 2. (a) Solid curve shows potential energh(x) of a sodium
atom in the OL. Gray rectangles show energy ranges of the first and
II. DESCRIPTION OF THE SYSTEM second energy bands of the Ob) E,(p,) dispersion relation cal-

. . . . . . _culated for the first energy band.
We investigated the motion of cold noninteracting sodium 9

atoms in a one-dimensional OL formed by two counterpropaspe time-independent Schtinger equation
gating laser beams of wavelengthaligned with thex axis

(Fig. 1). The potential energy of a sodium atom in the OL is p2+ p2
taken to beU(x) = U,sird(mx/d), whered=\/2=294.5 nm ( 2 z
and Uy=562.52 peV, as in recent experiment3]. The Ma
form of U(x) is shown by the solid curve in Fig.(®. A ~Aa _
magnetically induced three-dimensional harmonic trap pro%g/ hgre ﬂgngéeegeewgrmen;?rgnc\)glal:ztofﬁ“ t()n ;ntt?oi ' .a.n) d
vides an additional confining potential. The equipotential que th gy d'g ient t In th ’ ¢ sec-
surfaces of this trap are ellipsoids with three symmetry axe Yn(x, 2) is the corresponding eigenfunction. In the next sec

In our coordinate system, one of these axes is parallel to thtc?r:}ér\:v?ogsaetoi?(olr)b?s ?ﬁ”t\é;in Tgﬁgtgﬁ dCilﬁ\S/ZIsCt?l a';':?}';
y direction and the other tw@he x, and z, axes lie in the P 9

x-z plane at an anglé to thex andz axes(see Fig. 1 The transition to chaotic classical dynamics induced by tilting the

potential energy of an atom in the harmonic trap isharmonlc trap.
V1(X,Y,2) = tm,w3y?+V(x,z), where V(x,z)=3m,(w?x?
+w3z?), m, is the mass of the sodium atom,=x cosé
+2zsin 6, z,=z cosf—xsin 6 (see Fig. ], and the angular fre- In the absence of the harmonic trap, the OL potential pro-
quencies w;=1479 rads?, w,=4702 rads?, and w3  duces energy bands for motion along thelirection. The
=2561 rads?! are taken from experiments on sodium at- gray bands in Fig. @) indicate the energy ranges of the two
oms in theF =1, M= —1 state[31,32. The closed ellipses lowest energy bands]. In this paper, we consider the mo-
in Fig. 1 show equipotential curves ¥f(x,z) for 6=30°. tion of atoms confined to the first energy band at microkelvin
Motion in the harmonic potential along thyedirection is  temperatures. Figure(l)) shows the dispersion curve of en-
separable from that in the-z plane, which is described by ergy E, versus crystal momentum, for this band, calcu-

TV(X,2) +U(X) | n(x,2) =Enin(x,2), (1)

Ill. EFFECTIVE CLASSICAL HAMILTONIAN
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total energyH=235.8 peV. Whend=0° [Fig. 3a)], the

Hamiltonian for motion in thex-z plane is separable and the

; atom undergoes simple harmonic motion along ztdirec-

, tion. Along thex axis, the harmonic potential accelerates the
atom through the energy band, which also produces stable
periodic motion[26]. When 6+ 0°, the motion along the

e g and z directions is coupled and the orbital paths must be

\ calculated by solving Hamilton’s equations numerically. We
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d) , ,/l/ .«,'435\%}\\‘3”’%\ ; used a fourth-order Runge-Kutta method to obtain solutions
H\""&\'o;f;\\\ that remain accurate over time scales orders of magnitude
///’\b'«'///"'g. longer than the inverse trap frequencies. Our calculations

‘i"’ show that wherg+#0° there are two distinct types of orbit

whose form and stability depend on the initial conditions.
One type of orbit is shown in Fig.(B) for #=30°. This orbit

60 d resembles the simple regular motion found o 0° [Fig.
1 3(a)]. It is stable in the sense that a small change in the initial
17.7 um conditions produces no qualitative change in the form of the

trajectory. By contrast, the periodic orbit shown in Figc)3
for 6=30° is extremely unstable because an arbitrarily small
change in the initial conditions causes the atom path to de-
viate rapidly from the periodic orbit, and thereafter follow a
highly irregular path like that shown in Fig(®.

To quantify how the atom motion changes with the trap
orientation, Fig. 4 shows Poincasections, which display

. . . ) . slices through the classical phase sp&@sd, calculated for a
lated using Mathieu function33]. Without the harmonic -range of@ values between 0° and 90°. The scattered points

trap, the total energy of an atom in the lowest energy band i . .
E(p,.p,)=Ey(p )+p2/2m where p, Is the kinetic mo- Zhow the coordinate anq the porrespondlng mqmentum
Xz biEX zo o T z L componenp, at each turning point along thedirection for

mentum associated with motion along thelirection. The which p,=0 anddp, /dt<0. For 6=0° and 90°[Figs. 4a)

. : M M . .
translat|onal symmetry of.the OL, which leads to the_ formaTand 4f)], these points lie on a series of concentric ellipses
tion of the energy bands, is broken when the harmonic trap 'Eorresponding to simple harmonic motion along thdirec-

switched on. However, the trap frequenciesandws CON- o “For intermediate tilt angles, the system is characterized

sidered here are so low that within the region of space A%y a rich stable-chaotic classical phase spgs. 4b)—
cessible to the atoms, the harmonic potential energy variatiog(e)] Toward the left-hand sides of the Poin’cam:iions in

across a single period of the OL is much smaller than thq:i —1Eo o
: Figs. 4b) and 4c), calculated for6=15° and 30°, respec-
width (.)f the lowest energy band. Cons_equently, the harmor_n vely, there are crescent-shaped stable islands, comprising a
pot.ent!al can be trea}t_ed as a perturbation to the OL potentiake jes of nested invariant curved3] produced by regular
\C’th'Ch :jndtices :rags;tllons{hbetweerr]\ the 3}" tb?hnd states. .T'medrbits like that shown in Fig.(®). Crescents further from the
epencent perturbation theory shows that theé NarmonIC PQsapterg of these stable islands are more strongly curved. Near
tential continuously changes the average crystal momentu%e boundary with the chaotic seas in Figé)4and (c), the

of the atom, thereby causing it to move through the energy..oscents are so stron e
gly curved that their tips almost touch,
band of the unperturbed O22]. The rate of change of the ) \+ o ain separated by a hyperbolic fixed point, which cor-

crystal momentum islp/dt=—VV, wherep=(py,p), and responds to an unstable orbit. The crescent-shaped islands

the mean atom velocity=dE/dp. These two semiclassical enclose the chaotic seas in Figgbjdand 4c), which them-

equations of motion are well known in condensed matte';s.elves contain additional stable islands. Wl#eis increased

phystics[22];[r']|'hey a;rre (Equiv?lenf[ tol I—|_||ami!|ttCJn’§ equ_ations for to 45° [Fig. 4(d)], the additional islands disappear. Raisihg
an atom with an efiective classical Hamiftonian given by, ggo [Fig. 4(e)] increases the size of the chaotic sea, which

FIG. 3. Classical orbits in the-z plane calculated for atoms in
the first energy band of the OL with total enerly=235.8 peV
and 6=0° (a) and 30°(b)—(d). Orbits (c) and (d) both start from
rest but with slightly different initial positions. Axes inset show
orientation of symmetry axis, of the harmonic trap relative to the
(x) axis of the laser field. Horizontal line indicates scale.

2 now encloses all of the stable islands. Ass increased be-
H(X,2,Px,P,) = Ep(Py) + Pz +V(x,2). 2) yond_€_50°, these stable islands grow and there is a gradual
2m, transition to the completely regular phase space found for

0=90° [Fig. 4(f)].
Since the harmonic trap is weak and the gap between the first We emphasize that the classical phase space structure has
and second energy bands is lafgg@proximately 275 peV, an intrinsically quantum-mechanical origin associated with

Fig. 2], interband transitions can be neglected. the energy-band structure. Due to the different energy-
momentum dispersion relations for motion parallel and per-
IV. CLASSICAL ATOM DYNAMICS pendicular to the axis of the OL, the atoms have an aniso-

tropic and energy-dependent effective mass. When the
Figure 3 shows real-space classical trajectories irxtae  harmonic trap is tilted relative to the OL, this anisotropy
plane calculated for an atom in the lowest energy band witltouples the motion along theandz directions and thereby
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minimum-uncertainty Gaussian initial states whose position-
momentum spread is at this linfid4,35.

V. QUANTIZED ENERGY LEVEL SPECTRUM AND
EIGENSTATES OF THE ATOMS

To investigate how the onset of classical energy-band
transport affects the quantized states of the system, we cal-
culated the eigenvaluds, and corresponding eigenfunctions
¥n(x,2) of Eq. (1). We expanded the eigenfunctions

%(x,z):g e F(x—x)®,(2), 3)

over a basis comprising Wannier functiohix—x,) for the
first energy band, wherg, is the position of thdth mini-
mum in U(x), and the eigenfunctions®,(z) (r
=0,1,2,3...) of asimple harmonic oscillator of angular
frequencyws, centered az=0. The Wannier functions used
in our calculations are given Hy36]

d (hrzd _
f(X=x))= Hffhlzdequp)(x' /ﬁ)upx(x)dpx )

whereupx(x) is the Bloch function corresponding to crystal

momentump, in the first energy band. The Bloch functions
are obtained by numerical solution of Mathieu’s equation
. \ ' ‘ T = [33]. In this basis, the Hamiltonian Edq1) reduces to a
10 5 0 5 10 -10 -5 0 5 10 banded real symmetric matrix whose eigenvalues are the en-
z (um) z (um) ergy levelsk, . Here, we analyze the energy level spectrum
and eigenfunctions for the tilt angke=30° corresponding to
FIG. 4. Poincaresections ¢,p,) through the classical phase the mixed stable-chaotic phase space shown in Fig. 4
space calculated for atoms in the first energy band of the OL wittEigenstates for other system parameters corresponding to
6=0° (a), 15° (b), 30° (c), 45° (d), 60° (e), and 90°(f). Each  mixed stable-chaotic dynamics have similar properties.
section is constructed from 220 different trajectories with The horizontal lines in Fig. 5 show the quantized energy
=237.3 peV. Areas of black squares eqtial levels in the range 235.3 peVE,<237.6 peV. Over this
energy range, the classical phase space structure is almost
identical to that shown in Fig.(4). The energy level spec-
induces mixed stable-chaotic dynamics. We have found thdtum exhibits the complex aperiodic distribution characteris-
similar dynamics occur for a wide range of system paramdic of nonintegrable systemig23]. Despite this complexity,
eters and atom energies, and also for other alkali-metal atontg/o distinct features of the spectrum can be related directly
[26]. to the classical motion of an atom in the lowest energy band:
A similar type of chaotic energy-band transport has rethe number of energy level$(E) below a particular energy
cently been demonstrated for electrons in a semiconductdr, and long-range periodic fluctuations in the level density.
superlattice with a tilted magnetic fiel®7]. In this con- We now analyze each of these features in turn.
densed matter system, the onset of chaos can only be de- The number of energy levels below enefgys given by
tected by investigating its effect on the current-voltage charthe staircase function
acteristics of the superlattice. By contrast, for the atomic
system considered here, the classical trajectories could be _ o e
observed directly in time-resolved transport experiments N(E)’E O(E-Ey), @
similar to those used to detect Bloch oscillations for cesium
atomg[1]. Moreover, since the initial positions and velocities where ® (E—E,)) is the step function of unit height. The
of the atoms are well defined and can be precisely controlledolid curve in Fig. 6a) showsN(E) for the lowest 20 energy
[1,34,35, such experiments might also be used to map outevels. The curve contains stepped oscillatory structure,
Poincaresections for chaotic energy-band transport in thewhich originates from the energy quantization, superimposed
present system. The black squares in Fig. 4 show the fund@n a monotonically increasing background. We can therefore
mental phase space resolution limit ofwhich is, in prin-  expressN(E) as the sum of a rapidly fluctuating step func-
ciple, fine enough to allow experimental detection of thetion Nog(E) and a slowly varying “Weyl” [23] term
stable islands. It is now possible to prepare cold atoms ilN,\(E), which gives the average number of energy levels
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FIG. 5. Horizontal lines: energy eigenvalues for a sodium atom
in the system with#=30°. Longer lines mark the energies of the 00 '2 4
scarred energy eigenfunctions shown on the right of the figome T (ms)

five ploty with spatial axes inset. The S-shaped unstable periodic
orbits (black curvey are overlaid on the probability density plots FIG. 6. (a) N(E) (solid curve andNa\(E) (dashed curveplots
(white =0, black = high) of each scarred mode. The probability calculated for9=30°. (b) Fourier power spectrum @ ,<(E) in the
distribution of an unscarred modbottom plo is shown for com-  range 224.6 pe¥E<247.1 peV, shown as a function of tinfe
parison. In each wave function plot, the dashed ellipse shows thinset: periodic atom orbits corresponding to the peaks marked by
equipotential energy curve of the harmonic trap defined/tw,z) solid arrows. Ellipses show the equipotential energy curve of the
=E,—Ey(0). harmonic trap defined by(x,z) =E—E(0), with E=237.3 peV.

The origin of peaks 1-8dotted arrowsis discussed in the text.
belowE. We have calculated the Weyl term from the Hamil-

tonian Eq.(2) for classical energy-band transport using thefrom an effective classical Hamiltonian E(L), it gives a

formula[23] good approximation to thbl(E) staircase function obtained
1 from full quantum-mechanical calculations. This supports
_ - _ our claim in Sec. lll, that a classical picture of energy-band
Nav(E)= hZJ j f j O(E-H(x.z,px.p2) transport is valid becausdéis a slowly varying function ok
andz
X dpdp,dxdz 5 The density of quantized energy levels is given by
where the integrals are over the classically allowed region of
phase space at ener§y Analytical expressions for the inte- D(E)= dN(E) =D (E)+ Doy E) )
grals overx, z, andp, reduce Eq(5) to dE ’
2 1/2 4 . . .
B e whereD (E) =dNpy(E)/dE is a smooth monotonically in-
Nav(E) ; . :
my)  37(hwy)(fiws) creasing average level density abgg(E)=dNgg(E)/dE is
h/2d the remaining fluctuating contribution. In the semiclassical
><J [E—Ey(py]1¥2dpy, (6) limit, Dog(E) can be related to the periodic classical orbits
0

of the system using the trace formy23]

where the integral ovep, must be evaluated numerically
sinceE,(py) is not a simple function. The dashed curve in Dad(E)=1m> aexdiS (E)/% 8
Fig. 6(a) showsN(E). Even though this curve is derived os(E) 2 XIS (B)/A], ®
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where S;(E) is the classical action of thih orbit, and the atomic system considered here by using phase modulation of
expansion coefficients; depend on the orbital stability. the OL to induce interstate transitions and determine the
Each periodic orbit imposes a regular modulatioligg(E) ~ Probability of excitatior{2—4]. We expect that the large spa-

with an energy periodAE;=h[dS(E)/d E]‘1=h/Tj(E), tial overlap between a(_ijacent scarred states v_vould produce
whereT;(E) is the period of theith orbit. To identify the strong resonant transitions when the modulation frequency

periodic fluctuations iDo<(E) and the associated classical €quals 27/Ts. Such experiments might also provide infor-
orbits, we calculated the Fourier transform mation about fluctuations of the density of levels and about

the statistics of nearest-neighbor level spacings, which fol-

Em ) low the Brody distribution[46] for systems with mixed
F(T)=f0 Dos(E)G(E)exp(—iET/#)dE, (9 stable chaotic dynamics.

VI. WIGNER FUNCTION ANALYSIS OF THE
EIGENSTATES: LINKS WITH THE CLASSICAL
PHASE SPACE

whereE,, is the highest eigenvalue considered &\(E) is
the Welch window function, which we use to suppress ring-
ing in the Fourier transform37,3§.

The power spectrum df(T) shown in Fig. €b) reveals To relate the quantized states of the system directly to the
three peaksmarked by solid arrowsat timesT equal to the  corresponding classical phase space, for each eigenfunction
periods of the three distinct periodic classical orbits showny,(x,z) we calculated the Wigner functidi30]
inset in the figure. The orbits corresponding to the two left-

most peaks are stable, while that associated with the right- (= (= A A

hand peak is unstable. The dotted arrows in Fi) tdicate Wn(X,Z,Px,Pz) = ﬁf_wf_m‘ﬂn Xt 5.2t >

three additional peaks, labeled 1-3, in the range 5sms

<6 ms. Peaks 1 and 3 are harmonics of the maxim@ at Ny \,

=2.5 and 3 ms, respectively, which are marked by the two X ihn| X= DR E)

leftmost solid arrows in Fig. ®). There is no periodic orbit

corresponding to peak 2, which probably originates from X exd —i(Pxhxt PN/ JdN,dX,
complex “ghost” trajectoried39—41] like those previously (10)
identified for electrons in hydrogenic atorf89,41] and light

in chaotic optical cavitie$37,38|. where A, and \, are real variables. We reducéfl,, to a

We also investigated the relation between the classicdwo-dimensional function of andp, in the following way.
orbits and quantized eigenfunctions of the system. Many oFirst, in Eq.(10), we setp,= 0, so that the Wigner functions
the wave functions reflect the diffuse irregular forms of theare calculated over the same phase space plane as the clas-
chaotic classical paths such as the one shown in Kid). 3 sical Poincareections shown in Fig. 4. For this particufay
For example, the probability density plot for the bottom and specified phase space componenis,f, the value ofx
wave function in Fig. 5 has a highly complex antinode pat-used in Eq.(10) is determined uniquel{47] by E, and the
tern. Just like the chaotic classical paths, this wave functiofiorm of the classical Hamiltoniai =E,, given in Eq.(2)
extends throughout the classically allowed region bounde@48]. The two-dimensional Wigner function&/,(z,p,) give
by the dashed ellipse which shows the equipotentigd, z) a phase space representation of the eigenfunctions, and are
=E,—Ey(0) of the harmonic trap. By contrast, the wave analogous to classical Poincasectiong30,37,38. Figure 7
functions corresponding to regular subsets of energy levelshows W,(z,p,) calculated for the wave function in the
embedded in the complete spectrum are strongly localized aniddle (E,=236.45 peV) of the sequence of scarred states
“scarred” along unstable but periodic classical paf@®].  in Fig. 5. This Wigner function is the quantum analog of the
For example, the wave functions corresponding to the energioincare section shown in Fig. @). To help relate the
levels marked by the longer horizontal lines in Fig. 5 all Wigner function to the Poincarsection, the dotted curves in
exhibit clear scars of the S-shaped unstable periodic orbiFig. 7 show the perimeters of the two large stable islands in
shown overlaid and also in Fig.(8. The wave functions Fig. 4(c). The large absolute values @, (white and black
pertaining to energy levels between these scarred states gagions are centered on the pointd,p,9 (marked by the
erally reveal no trace of the scar pattern. Adjacent scarredross, which lies within the chaotic 9eahere the scarring
states in Fig. 5 are separated by an energy=0t53 peV, S-shaped orbit crosses thg=0 plane withdp, /dt<0. This
which equals the value df/Tg obtained from the period provides further evidence that the scar pattern originates
T<g=7.8 ms of the S-shaped orbits. from the S-shaped orbit.

Subsets of scarred wave functions also occur for electrons In Fig. 8, we use Wigner functions to relate wave func-
in hydrogenic atom$42], in the quantum well of semicon- tions with distinct spatial forms to particular regions of the
ductor resonant tunneling diodéRTDs) [43—45, and for  classical phase space. The plots on the left-hand side of the
the electromagnetic eigenmodes of analogous gradient réigure show the probability density distributions of four dif-
fractive index optical cavitie§37,38. In the RTDs, the ferent eigenfunctions, and those on the right-hand side show
scarred states control the rates of tunneling transitions intthe corresponding Wigner functions. At the energy corre-
the quantum well, and thereby generate pronounced resonasponding to each eigenfunction, the classical Poinsae
peaks in current versus voltage measurempi$ It might  tion is almost identical to that shown in Fig(ck The pe-
be possible to detect the sequence of scarred states in thieneters of the two large stable islands in this Poincare
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FIG. 7. Wigner functionW,(z,p,) (black <0, gray=0, white . ‘.,Q“'g' h
>0) corresponding to the third scarred wave function from the top P ‘.,?;a','q"wﬁw
in Fig. 5. Cross indicates the point where the S-shaped scarring ’ M““\\%w
orbit crosses th@,=0 plane withdp, /dt<0. Dotted curves show i m“““mt
perimeters of the two large stable islands in Fig)4 ! :‘”&&&0’!&" s
e
S o oo
section are shown by the dotted curves superimposed on the -
Wigner functions in Fig. 8. In Fig. @), the wave function is gy
localized along the overlaid stable linear periodic orbit, S
which lies at the center of the left-hand crescent-shaped /
stable island in Fig. @). The corresponding Wigner function !
is concentrated around this center pdmarked by the cross b ks, !
in Fig. 8@)], where the linear orbit crosses the=0 plane NS - -

with dp,/dt<0. Its form echoes some of the innermost FIG. 8. Left: probability densitv plots in th | i
crescent-shaped invariant curves in the left-hand stable is- /G- 8- Left: probability density plots in the-2 plane (coord-

. N . . nate axes shown top leffor eigenstates of the system with
land of Fig. 4c¢). The wave function in Fig. @) is localized —30° and .E,)=(670,235.7 peV)(a), (675, 235.9 peY (b).

along the two overlaid stable periodic paths, which reflec : .
o 674, 235.8 760, 238.0 d). Cl | path -
the symmetry of the system under a 180° rotation. At thet( ’ pey (©), (760, pey (d). Classical paths associ

) . . ated with wave functionga)—(c) are overlaid. Right: the corre-
outer turning points of these orbits, the atoms paths ar€onding Wigner function®,(z,p,) (black <0, gray =0, white

bounded by the-dashed ?qUipO.temial_ ‘?f the harmonic traF&0) with coordinate axes shown top right. The coordinate ranges
By contrast, the inner turning points originate from the effectyt the wigner functions are—9 um<z<9 um and —7

of the OL energy band structure on the atom motion. Thesg 10728 kgms 1<p,<7x10°2® kgms'!, as in Fig. 4c).
turning points occur when the atom’s crystal momentoyn  Crosses ir(a) and (b) indicate the points where the classical orbits
=+h/2d is at the edge of the first Brillouin zone, where the shown on the left of the figure cross tpe=0 plane withdp,/dt
gradient of the dispersion curvg,(p,) is zero[Fig. 2b)]. <0. Dotted curves on Wigner function plots show perimeters of the
Consequently, the mean velocity of the atom is also zero antivo large stable islands in Fig(e).

so there is a turning point in the classical motion alongxhe . . . L
direction. In a fully quantum-mechanical picture, the atom i which suggests that the corresponding eigenfunction is asso-
’ jiated with all of the orbits in this region of phase space,

stationary at the edges of the Brillouin zone because its wave

function is Bragg reflected by the OL and therefore takes théather thf'in a single periodic path_. .TO qon_clud_e this secti_on,
form of a standing wave. The right-hand orbit in Figh we consider the irregular probability distribution shown in

lies at the center of the right-hand stable island in Fig),4 9- 8d), whose Wigner function spreads throughout the
which is marked by the cross in the Wigner function of I:ig_chaotlc sea in Fig. (@), but has almost zero amplitude within

8(b). This Wigner function is concentrated within the right- the stable islands bounded by the dotted curves in Rid). 8

hand stable island and has maximal amplitude at its cente-l;he e>ét_?fnded nﬁture_ of t.h's W|gner fu_r:)ctlon Shﬁws that
point. The left-hand orbit in Fig. @) does not appear in many different chaotic trajectories contribute to the wave

either the Poincaresection or the Wigner function, since function pattern, which accounts for its complex diffuse

when p,=0 along this orbitdp,/dt>0 [47]. In Fig. &c), form.

the wave function is concentrated within the caustics of the

overlaid stable orbit, which lies near the perimeter of the

left-hand stable island in Fig.(d). The Wigner function in In summary, we have investigated the classical motion
Fig. 8c) extends throughout the left-hand stable island,and quantized states of ultracold sodium atoms in an OL with

VII. CONCLUSION
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a harmonic trap. When a symmetry axis of the trap is tiltedregime of chaotic energy-band transp@7].

relative to the OL, the atoms exhibit an unusual type of cha- Finally, we note that there is great current interest in the
otic motion determined by an effective classical Hamil-quantum properties of Bose-Einstein condensates in OLs
tonian, which originates from the energy band dispersionf13—-2@. Previous work has considered a one-dimensional
For the low trap frequencies considered here, the harmonigL aligned with a symmetry axis of a condensate in a har-
potential acts as a small slowly varying perturbation to themonic trap[15,19. For this geometry, numerical simulations
OL. Consequently, the atomic motion can be described by ame,18 and experiment§14] show that the collective dy-
effective classical Hamiltonian, ER), in which the energy-  namics of a condensate in an accelerating OL are very simi-
band structure of the unperturbed OL is supplemented by thgy to single-atom Bloch oscillatiorf4]. By analogy, we an-
harmonic trap potential. The periodic orbits of this Hamil- ticipate that the onset of chaos for single atoms in an OL
tonian have a pronounced effect on the quantized eigenstat@sth 3 tilted harmonic trap may also be manifest in the col-

of the system. In particular, they modulate the density ofiective time-dependent dynamics and excitations of a con-
energy levels and scar subsets of eigenstates. Both of theg@nsate in this system.

effects might be accessible to experimental study by using
phase modulation of the OL to drive transitions between the
first and second energy bands and thereby determine the
probability of excitation[2,3]. The possibility of detecting
both the classical trajectories and the quantized eigenstates, This work was supported by the U.K. Engineering and
plus the large number of controllable parameters, makes thehysical Sciences Research Cour(Gitant No. GR/R41132/
OL system particularly attractive for studying the dynamical01) and NATO linkage Grant No. PST.CLG.97690.
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