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Stationary cantilever vibrations in oscillating-cantilever-driven adiabatic reversals:
Magnetic-resonance-force-microscopy technique

G. P. Berman,1 D. I. Kamenev,1 and V. I. Tsifrinovich2
1Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
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~Received 11 February 2002; published 9 August 2002!

We consider theoretically the novel technique in magnetic-resonance-force microscopy that is called
‘‘oscillating-cantilever-driven adiabatic reversals.’’ We present an analytical and numerical analysis for the
stationary cantilever vibrations in this technique. For reasonable values of parameters, we estimate the resonant
frequency shift as 6 Hz per the Bohr magneton. We analyze also the regime of small oscillations of the
paramagnetic moment near the transversal plane and the frequency shift of the damped cantilever vibrations.
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I. INTRODUCTION

Magnetic-resonance-force microscopy~MRFM! based on
a cyclic adiabatic inversion~CAI! is considered one of the
most promising roads to the ultimate goal of a single-s
detection in solids~see, for example,@1,2#!. Typically, CAI is
generated using the frequency modulation of the exte
radio-frequency~rf! field. In this case, a paramagnetic m
ment of a sample follows the effective magnetic field in t
rotating system of coordinates~RSC!, and influences the can
tilever vibrations.

Recently, a new technique called ‘‘oscillating-cantileve
driven adiabatic reversals’’~OSCAR! has been suggested an
implemented in@3#. In this technique, the cantilever drive
by an external force causes the CAI of the paramagn
moment of a sample. The backreaction of the paramagn
moment causes the frequency shift of the cantilever vib
tions, which is supposed to be detected. The main purpos
this paper is a theoretical analysis of the stationary vibrati
of the cantilever in the OSCAR technique. Our considerat
is based on the classical equations of motion for the s
cantilever system.

The paper is organized as follows. In Sec. II we introdu
the model. The linear OSCAR regime is considered in S
III, and the nonlinear regime is analyzed in Sec. IV. A p
turbative approach and numerical results are presente
Sec. V. In Sec. VI, we analyze the damped oscillations of
cantilever in the absence of the external force. In Sec. V
we give a brief summary of our results.

II. HAMILTONIAN AND EQUATIONS OF MOTION

A schematic setup of the studied system is shown in F
1. A spherical ferromagnetic particle with magnetic mome
mW F , is attached to the cantilever tip. A small paramagne
cluster with magnetic moment,mW , which must be detected, i
placed on the surface of a nonmagnetic sample beneath
tip of the cantilever. The whole system is placed into the h
permanent magnetic field,BW 01DBW , oriented in the positivez
direction. The external force,F(t), drives the cantilever vi-
brations along thez axis. The transversal rotating magne
field, BW 1(t), is applied to the paramagnetic cluster. We pla
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the origin of our coordinate system at the equilibrium po
tion of the cantilever tip.

We consider the cantilever tip as an oscillator with t
effective mass,m* , and the effective spring constant,ks .
The classical Hamiltonian for the cantilever with the ferr
magnetic particle and the paramagnetic cluster has the f

H5
pz

2

2m*
1

ksz
2

2
2zF~ t !2

m0mF

2p~d1z!3 mz

2mW ~BW 01DBW 1BW 1!, ~1!

where pz and z are the momentum and coordinate of t
cantilever tip, andm0 is the permeability of the free space
Putting F(t)5F0cos(nt1q0) and taking into consideration
the finite quality factor,Q, of the cantilever, we write the
equation of motion for the cantilever,

z̈1vc
2z1

qmz

~d1z!4 1
vc

Q
ż5 f 0cos~nt1q0!, ~2!

where vc5(ks /m* )1/2 is the unperturbed cantilever fre
quency,f 05F0 /m* , and

FIG. 1. A schematic setup of the system under considerat
BW 01DBW is the uniform permanent magnetic field,BW 1 is the rotating
rf magnetic field,F(t) is an external force acting on the cantilev
in thez direction,mW F is the magnetic moment of the ferromagne
particle,mW is the magnetic moment of the paramagnetic cluster,
d is the equilibrium distance between the center of the ferrom
netic particle and the cluster.
©2002 The American Physical Society05-1
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q5
3m0mF

2pm*
. ~3!

Next, we assume that the rf fieldBW 1 rotates in the (x,y)
plane with the frequency

v05g@B01Bd~0!#. ~4!

Hereg is the gyromagnetic ratio of the paramagnetic clus
Bd(z) is the dipole magnetic field produced by the ferroma
netic particle at the point of location of the paramagne
cluster,

Bd~z!5
m0mF

2p~d1z!3 , ~5!

andBd(0) is the value ofBd(z) at the equilibrium position
of the cantilever,z50. The equation of motion for the para
magnetic momentmW in the RSC has the form

mẆ 5g@mW 3BW eff#. ~6!

HereBW eff is the effective magnetic field in the RSC with th
x componentB1 and thez componentDB1Bd8(z), where
Bd8(z) is the oscillatory part of the dipole field produced b
the ferromagnetic particle on the cluster,

Bd8~z!5Bd~z!2Bd~0!. ~7!

III. THE LINEAR OSCAR REGIME: SMALL
OSCILLATIONS OF µ¢

In this section we consider the linear OSCAR regim
Suppose that initially an auxiliaryp/2 pulse changes the d
rection of the paramagnetic moment,mW , from 1z to 1x of
the RSC. We also assume that the oscillatory part of
dipole field, Bd8(z), is small compared to the rf field,B1.
Certainly we assume that the unperturbed cantilever
quencyvc!gB1 to keep the conditions of CAI. In the qua
sistatic approximation a paramagnetic moment,mW , follows

the effective fieldBeff . Putting in Eq.~6! mẆ 50, we obtain
for uzu!d

mx~ t !'m, my~ t !50, mz~ t !5
m

B1
FDB2

3m0mFz~ t !

2pd4 G .
~8!

These equations describe small~linear! oscillations ofmW near
thex axis. Substituting the last expression in Eq.~8! into Eq.
~2!, we derive an approximate equation for the cantile
oscillations,

z̈1vc*
2z1

vc*

Q*
ż5 f 0cos~nt1q0!. ~9!

Here,
02340
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vc* 5vc1Dvc ,

Dvc52
3m0mFm

pm* vcB1d5S DB1
3m0mF

8pd3 D ,

Q* 5QS 11
Dvc

vc
D . ~10!

Equation~9! describes the motion of the linear oscillat
with the effective frequency,vc* , and the effective quality
factor,Q* . Due to the backreaction of the paramagnetic m
ment on the cantilever, the effective frequency and the qu
ity factor of the cantilever depend on the permanent m
netic field, DB ~in our approximation,DB!B1). If DB.
23m0mF /(8pd3), then both the frequency and the quali
factor of the cantilever decrease. In the opposite case,
increase.

IV. NONLINEAR ADIABATIC REGIME: ADIABATIC
REVERSALS OF µ¢

To increase the backreaction ofmW , it is important to pro-
vide large oscillations~adiabatic reversals! of the paramag-
netic moment. In this section, we consider stationary vib
tions of the cantilever in the nonlinear OSCAR regime. It
convenient to write the equations of motion in the dime
sionless form,

Z91Z1
lMz

~11aZ!4 1
1

Q
Z85

1

Q
cos@~11r!t1q0#,

Mx85~d2xZ!M y , ~11!

M y85«Mz2~d2xZ!Mx ,

Mz852«M y ,

where we introduced the dimensionless timet5vct; a prime
denotes differentiation overt, Z5z/A is the dimensionless
coordinate,A5 f 0Q/vc

2 is the unperturbed~in the absence of
the magnetic momentMW ) amplitude of the stationary canti
lever vibrations in the resonant regime~when n5vc), MW

5mW /m is the dimensionless magnetic moment, andd
5gDB/vc . The parametera5A/d is small,a;0.01. The
dynamics is controlled by the following dimensionless p
rameters:

l5
3m0mFm

2pd4QF0
,

x5
3gm0mFQ f0

2pvc
3d4 , ~12!

«5
gB1

vc
, r5n/vc21.

Parameterl can be expressed in a simpler form,
5-2
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l5
Fm

ksA
, ~12a!

where Fm53m0mFm/2pd4 is the magnetic force betwee
the ferromagnetic particle at equilibrium (z50) and the
paramagnetic cluster.

Suppose that the paramagnetic moment,MW , points ini-
tially in the direction of the effective magnetic field,BW eff ,
and the cantilever points in the opposite direction,Z(0)
521. In this case the quasistatic motion ofMW is given by
the expressions

Mx~t!5
«

A«21~d2xZ!2
,

M y50, ~13!

Mz~t!5
d2xZ

A«21~d2xZ!2
.

Substituting Eqs.~13! into the first equation in Eqs.~11!, we
obtain the nonlinear equation forZ,

Z91Z2
lxZ

A«21~xZ!2
1

1

Q
Z85

1

Q
cos@~11r!t1q0#,

~14!

where we neglected the termaZ in the denominator in the
third term on the left-hand side and putd50. The third term
in Eq. ~15! corresponds to the modification of the potent
energy of the cantilever, due to the interaction with the m
netic moment,MW , by the value

dU~Z!52
l

x
A«21~xZ!2.

Now, we present an approximate ‘‘semiquantitativ
analysis of the stationary oscillations described by Eq.~14!.
The approximate solution for the stationary driven oscil
tions of the cantilever, described by Eq.~14!, can be written
in the form

Z5a~r!sin@~11r!t1q0#. ~15!

We define the frequency shift as the shift of the maximu
amax(r1), of the amplitude,a5a(r), caused by the paramag
netic cluster. In order to estimateamax, we replace

Z2;sin2@~11r!t1q0#

5 1
2 $12cos@2~11r!t12q0#%→ 1

2

in the denominator in the third term in Eq.~14!, and neglect
the term cos@2(11r)t12q0# because it is nonresonant. The
Eq. ~14! takes the form
02340
l
-

’

-

,

Z91F 12
lx

A«21
x2

2
G Z1

1

Q
Z85

1

Q
cos@~11r!t1q0#.

~16!

The position,r1, of the maximum of the amplitude,amax, of
the driven oscillations~the frequency shift! is

r12r052
lx

2A«21
x2

2

'2
l

A2
, ~17!

wherer0521/4Q2 is the position of the maximum of the
amplitude in the absence of the paramagnetic sample, an
suppose thatx@«. The frequency shift~18! can be consid-
ered in connection with the change of the effective spr
constant,Dks , which can be expressed in a very simp
form,

Dks'2m* vcDn5A2Fm /A, ~17a!

whereDn5n2vc .
For estimation of the value of the frequency shift, t

following parameters were used:D51.531027 m is the di-
ameter of the ferromagnetic particle with the volumeV
51.8310221 m3, m0mF /V'1.1 T, kc'1023 N/m,
vc/2p'105 Hz, A'1 nm, d'100 nm, andB1'1023 T.
For these values of parameters, we obtain

«'280, x'2.53103,

l'8.531025~m/mB!, a50.01, ~18!

wherem/mB is the paramagnetic moment expressed in un
of the Bohr magneton. The corresponding frequency shif

r12r0'2631025~m/mB!. ~19!

This gives the frequency shift26 Hz per one Bohr magne
ton.

V. PERTURBATION APPROACH

The qualitative estimation presented above can be s
ported by application of the approach based on the pertu
tion theory developed by Bogoliubov and Mitropolskii in@4#.
We look for the solution of Eq.~14! in the form

Z5a~t!cos@c#1lu1~a,c!, ~20!

wherec5(11r)t1q(t). The functionu1(a,c) is the sum
of the Fourier terms with the phases 3c, 5c, 7c, . . . . The
amplitudes of these terms decrease with increasing Fou
number,n, as 1/(2n11)2. The first nonvanishing term is
small and equalsu1(a,c)'0.02 cos(3c). This allows us to
neglect the contribution ofu1(a,c) into the expression forZ
in Eq. ~20!.
5-3
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The slow varying amplitude,a(t), and the phase,q(t),
in the first order of the perturbation theory satisfy the tw
coupled differential equations,

da

dt
52

l

2pE0

2p xa cosc sincdc

A«21~xa cosc!2

2
a

2Q
2

1

Q~21r!
sinq, ~21!

dq

dt
52

1

8Q2 2r2
l

2paE0

2p xa cos2cdc

A«21~xa cosc!2

2
1

aQ~21r!
cosq. ~22!

Note that the integral on the right-hand side of Eq.~21! is
equal to zero. The integral on the right-hand side of Eq.~22!
can be expressed through the elliptic integrals as~see the
Appendix!

4E
0

p/2 xa cos2cdc

A«21~xa cosc!2
54F1

k
E~k!2p2kK~k!G , ~23!

where k51/A11p2, and K(k) and E(k) are the complete
elliptic integrals, respectively, of the first and second kin
p5«/(ax). When p2!1, one can decomposeK(k) and
E(k) as

K~k!'C1~C21!
k82

4
1•••,

E~k!'11S C2
1

2D k82

2
1•••, ~24!

where k82512k2'p, C5 ln(4/k8)' ln(4/p). From Eqs.
~23! and~24! we find the value of the integral in Eq.~22! for
p!1,

2
l

2paE0

2p xa cos2cdc

A«21~xa cosc!2

'2
2l

pa F12
p2

4 S 2 ln
4

p
21D G .

~25!

Substituting Eq.~25! into Eq. ~22!, we obtain

da

dt
52

a

2Q
2

1

Q~21r!
sinq, ~26!

dq

dt
52

1

8Q2 2r2
2l

pa F12
p2

4 S 2 ln
4

p
21D G

2
1

aQ~21r!
cosq.
02340
,

We now calculate the position of the maximum of th
amplitude,a(r), in the stationary regime of driven oscilla
tions using Eq.~26!, and compare it with the results obtaine
in Sec. IV. In the regime of driven oscillationsa5const,q
5const, and we must solve the system of two equations~26!,
whereda/dt50 anddq/dt50. Canceling the phase,q, we
have

1

a2~21r!2 5
1

4
1Q2S 1

8Q2 1r1
2l

paD 2

, ~27!

where we neglected the term proportional top2!1. The am-
plitude,a, can be written asa511b, whereb!1, so that

1

a~21r!
5

1

~11b!~21r!
'

1

2 S 12b2
r

2D . ~28!

Taking the square root from both sides of Eq.~27! and using
Eq. ~28!, we obtain

2b2
r

2
'2Q2S 1

8Q2 1r1
2l

p D 2

, ~29!

where we puta'1 in the denominator of the term propo
tional to l ~i.e., we neglected the term of the order ofbl).
The maximum of the function,b5b(r), can be found from
the conditiondb(r1)/dr50, which yields

r152
1

4Q2 2
2l

p
. ~30!

This is approximately the same value as that given by
~18!, obtained from the qualitative considerations. The s
ond term in Eq.~30! describes the influence of the parama
netic moment reversals on the resonance frequency of
cantilever.

To verify our analytical results, we solved numerically th
exact equations of motion~11!. Figure 2~solid line! demon-
strates the dependence of the stationary amplitude of the
tilever vibrations,a, on the frequency detuning,r. ~The sta-
tionary amplitude is achieved att@Q.! The initial
conditions are taken in the form

Z~0!521, Ż~0!50, Mx~0!5
«

A«21x2
,

M y~0!50, Mz~0!5
x

A«21x2
. ~31!

For these initial conditions att50, the paramagnetic mo
ment, MW , points in the direction of the effective magnet
field, while the cantilever is displaced in the2z direction
(q053p/2) from its equilibrium position.

Figure 3 demonstrates the motion of the paramagn
moment,MW (t). One can see the close correspondence
tween the analytical and numerical solutions. Note that
frequency shift caused by the adiabatic reversals change
sign if the paramagnetic moment points initially in the dire
tion opposite to the effective magnetic field@while Z(0)
5-4
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FIG. 2. The dependence of the amplitude of the driven osc
tions of the cantilever on the frequency detuning,r, obtained using
numerical solution of exact equations of motion~11!. The solid line
corresponds to the initial conditions~31! and the values of the pa
rametersl58.531025, x52500, «5280, a50.05, Q5100, and
d50. The dotted line corresponds to the same values of the pa
eters but for ‘‘inverted’’ initial conditions @in Eq. ~31!, Mx

→2Mx , Mz→2Mz#. The dashed line represents the depende
a(r) with no paramagnetic moment (l50).

FIG. 3. The dynamics of the projections of the paramagn
moment,MW (t), of the sample with the initial conditions~31!. The
gray line is obtained as a result of the numerical integration of
~11!, and the black line indicates the quasistatic solution~13!. For
Mz(t), both curves almost coincide. The parameters are the sam
those for the solid line in Fig. 2.
02340
521#. The dotted line in Fig. 2 depicts this case. We sho
also note that decreasing the parameter« ~the x component
of the effective magnetic field! leads to the violation of the
CAI conditions. Figure 4 demonstrates this situation for«
528.

VI. DAMPED OSCILLATIONS OF THE CANTILEVER

The influence of the sample on the cantilever can be m
sured if one turns off the external force acting on the ca
lever, and measures the frequency of small damped osc
tions of the cantilever. In the absence of the paramagn
momentMW , the frequency of the oscillations is independe
of time and equalsA121/(4Q2).

We look for the solution of the cantilever vibrations in th
form Z5a(t)cos@t1q(t)#. Then the dynamical equation
for the slow varying amplitude,a(t), and phase,q(t), in the
presence of the sample and in the absence of the exte
force take the form

da

dt
52

a

2Q
, ~32!

dq

dt
52

1

8Q2 2
l

2paE0

2p xa cos2cdc

A«21~xa cosc!2
. ~33!

For p!1, Eq. ~33! can be written as

dq

dt
52

1

8Q2 2
2l

pa F12
p2

4 S 2 ln
4

p
21D G . ~34!

The last term on the right-hand side of Eq.~34! describes a
change of the frequency of small oscillations of the cant

-

m-

e

c

.

as

FIG. 4. The same as in Fig. 3 but for«528.
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ver caused by the adiabatic reversals ofMW . From Eq.~32! we
havea(t)5a(0)exp@2t/(2Q)#. One can see from Eq.~34!
that for the initial conditions~31! the influence ofMW results
in a decrease of the frequency of small oscillations of
cantilever in comparison with the casel50. For smallp @the
value of p5«/(ax);exp(t/2Q) increases with time#, the
frequency of oscillations decreases when time increases
shown in Fig. 5, while in the absence of the sample t
frequency remains independent of time. We should note
in the studied approximation the sample does not influe
the amplitude of the cantilever oscillations.

VII. SUMMARY

We have studied theoretically and numerically the stati
ary cantilever vibrations in the novel OSCAR MRFM tec
nique. Our results are based on the application of the cla
cal theory for the motion of the cantilever and th
paramagnetic moment of a cluster on the surface of
sample. We have estimated the resonant frequency shif
the cantilever vibrations. For the reasonable values of par
eters, our estimate is about 6 Hz per Bohr magneton.
sign of the shift depends on the initial direction of the pa

FIG. 5. The frequency of small damped oscillations of the c
tilever for the initial conditions~33! as a function of time,t, for
three values of the quality factor,Q. The solid lines are obtained
using Eqs.~34! and~36!. The results of exact numerical solution a
plotted by the filled circles,l58.531025, x52500, «5280, d
50, anda50.05.
nd

. B

.
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magnetic moment relative to the initial position of the can
lever. We supported our estimation by the analytical analy
based on the perturbation theory and by the numerical s
tion of the equations of motion. Our perturbative approach
based on the fact that the influence of the paramagnetic
ment on the sample is weak (l!1). We considered also th
regime of small oscillations of the paramagnetic mom
near the transversal plane~linear OSCAR regime!. Finally,
we analyzed the damped oscillations of the cantilever~with-
out the external force!. We have shown that the frequency
the damped oscillations becomes time-dependent due to
adiabatic reversals of the paramagnetic moment.
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APPENDIX

Here we express the integral in Eq.~22! in terms of com-
plete elliptic integrals,

E
0

p/2 xa cos2cdc

A«21~xa cosc!2

5E
0

p/2 cos2cdc

Ap21cos2c

5E
0

p/2 ~12sin2c!dc

Ap2112sin2c

5E
0

p/2
~p211!S 12

1

p211
sin2c D 2p2

Ap211A12
1

p211
sin2c

dc,

where we introduced the notationp5«/(ax). Splitting this
integral in two parts, we obtain the right-hand side of E
~23!.
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