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Stationary cantilever vibrations in oscillating-cantilever-driven adiabatic reversals:
Magnetic-resonance-force-microscopy technique
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We consider theoretically the novel technique in magnetic-resonance-force microscopy that is called
“oscillating-cantilever-driven adiabatic reversals.” We present an analytical and numerical analysis for the
stationary cantilever vibrations in this technique. For reasonable values of parameters, we estimate the resonant
frequency shift as 6 Hz per the Bohr magneton. We analyze also the regime of small oscillations of the
paramagnetic moment near the transversal plane and the frequency shift of the damped cantilever vibrations.
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[. INTRODUCTION the origin of our coordinate system at the equilibrium posi-
tion of the cantilever tip.
Magnetic-resonance-force microscofRFM) based on We consider the cantilever tip as an oscillator with the

a cyclic adiabatic inversioiCAl) is considered one of the effective massm*, and the effective spring constari;.
most promising roads to the ultimate goal of a single-spinThe classical Hamiltonian for the cantilever with the ferro-
detection in solidg¢see, for exampld1,2]). Typically, CAlis  magnetic particle and the paramagnetic cluster has the form
generated using the frequency modulation of the external
radio-frequency(rf) field. In this case, a paramagnetic mo-
ment of a sample follows the effective magnetic field in the H=
rotating system of coordinatéRSQ), and influences the can-
tilever vibrations.

Recently, a new technique called “oscillating-cantilever-
driven adiabatic reversal§OSCAR ) has been suggested and
implemented in3]. In this technique, the cantilever driven where p, and z are the momentum and coordinate of the
by an external force causes the CAI of the paramagneticantilever tip, andu, is the permeability of the free space.
moment of a sample. The backreaction of the paramagnetieutting F(t) =Fqcos@t+dy) and taking into consideration
moment causes the frequency shift of the cantilever vibrathe finite quality factor,Q, of the cantilever, we write the
tions, which is supposed to be detected. The main purpose efjuation of motion for the cantilever,
this paper is a theoretical analysis of the stationary vibrations
of the cantilever in the OSCAR technique. Our consideration
is based on the classical equations of motion for the spin- z+ w§z+
cantilever system.

The paper is organized as follows. In Sec. Il we introduce
the model. The linear OSCAR regime is considered in Secwhere w.=(ks/m*)¥2 is the unperturbed cantilever fre-
[ll, and the nonlinear regime is analyzed in Sec. IV. A per-quency,f,=Fy/m*, and
turbative approach and numerical results are presented in
Sec. V. In Sec. VI, we analyze the damped oscillations of the
cantilever in the absence of the external force. In Sec. VI, z
we give a brief summary of our results.
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Il. HAMILTONIAN AND EQUATIONS OF MOTION IF(t)
—
A schematic setup of the studied system is shown in Fig. B,(t) | x
1. A spherical ferromagnetic particle with magnetic moment, < -,
Mg, is attached to the cantilever tip. A small paramagnetic sample u

cluster with magnetic momerﬁ,,which must be detected, is FIG. 1. A schematic set  th tem under consideration

placed on the surface of a nonmagnetic sample beneath t% . -+ 7 sehemalic setup of Ine system under consideration.

. . . . . Bo+AB is the uniform permanent magnetic fiel}, is the rotating

tip of the cantilever. The whole system is placed into the high e . ) .
= =0 . . rf magnetic field,F(t) is an external force acting on the cantilever

permanent magnetic fiel&,+ AB, oriented in the positive -

) - . - . in thezdirection,mg is the magnetic moment of the ferromagnetic
dlreF:tIOI’]. The eXtema_l forces (1), drives the Ca}nt'lever V", particle, u is the magnetic moment of the paramagnetic cluster, and
brations along the axis. The transversal rotating magnetic 4 is the equilibrium distance between the center of the ferromag-

field, I§1(t), is applied to the paramagnetic cluster. We placenetic particle and the cluster.
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3uoMme 0 =+ Ao,
- 2am* (3)
I . Aw.=— —3'L:OmFM 5( AB+ —3M0n;':) ,
Next, we assume that the rf fiell, rotates in the X,y) m* w:B.d 8md
plane with the frequency
Aw,
wo=Y[Bo+By(0)]. (4) Q*=Q| 1+ e ) (10)

Here y is the gyromagnetic ratio of the paramagnetic cluster, Equation(9) describes the motion of the linear oscillator
Ba(2) is the dipole magnetic field produced by the ferromag-with the effective frequencyw? , and the effective quality
netic particle at the point of location of the paramagneticfactor,Q*. Due to the backreaction of the paramagnetic mo-

cluster, ment on the cantilever, the effective frequency and the qual-
ity factor of the cantilever depend on the permanent mag-
By(2)= MoMEe (5) netic field, AB (in our approximationAB<B,). If AB>
d 2m(d+2)%’ —3uome/(8wd3), then both the frequency and the quality

factor of the cantilever decrease. In the opposite case, they
andBy(0) is the value oB4(z) at the equilibrium position increase.
of the cantileverz=0. The equation of motion for the para-

magnetic momeng in the RSC has the form IV. NONLINEAR ADIABATIC REGIME: ADIABATIC

. REVERSALS OF
1= y[ X Beg]. 6 . e
1=yl Be] © To increase the backreaction pf it is important to pro-

5 s the effecti i< field in th it th vide large oscillationgadiabatic reversalsof the paramag-
HereBe is the effective magnetic field in the RSC with the aic moment. In this section, we consider stationary vibra-

X components, and thez componentAB+Bg(2), where  {ions of the cantilever in the nonlinear OSCAR regime. It is
By(2) is the oscillatory part of the dipole field produced by convenient to write the equations of motion in the dimen-

the ferromagnetic particle on the cluster, sionless form,

B4(2)=By(z) —By(0). (7 z 1 1

"t Z+ ——+ =2 = — +p)r+
2'+27 A+ az) QZ Qcoi(l p) 7+ 9],
Ill. THE LINEAR OSCAR REGIME: SMALL ,
OSCILLATIONS OF My'=(06—xZ)My, (13)
In this section we consider the linear OSCAR regime. M, =eM,—(8— xZ)M
. e - . y z X1

Suppose that initially an auxiliargt/2 pulse changes the di-
rection of the paramagnetic momeﬁt, from +z to +x of M, =—&eM,,

the RSC. We also assume that the oscillatory part of the
dipole field, Bj(z), is small compared to the rf field3,. ~ Where we introduced the dimensionless timew,t; a prime
Certainly we assume that the unperturbed cantilever fredenotes differentiation over, Z=z/A is the dimensionless
quencyw.<yB; to keep the conditions of CAl. In the qua- coordinate A=f,Q/ wijs the unperturbedn the absence of
sistatic approximation a paramagnetic r_nomqﬁ,t,follows the magnetic momeri¥l) amplitude of the stationary cqnti-
the effective fieldB,. Putting in Eq.(6) 2=0, we obtain |€Ver vibrations in the resonant regint@hen v=w), M
for |z]<d =ulp is the dimensionless magnetic moment, aad
=yAB/w.. The parameter=A/d is small,a~0.01. The

,u 3momez(t) dynamics is controlled by the following dimensionless pa-
x(O~p,  p()=0, u,(t)= B, AB- “ordt rameters:
8
® ~ 3poMep
. . . I > A= 27d*OF,’
These equations describe sniéitiean oscillations ofu near md"QF,
the x axis. Substituting the last expression in E8j.into Eq.
(2), we derive an approximate equation for the cantilever _ 3yromeQfo (12)
oscillations, 2mwid?
L, ©F. YB1
Z+wlz+ EZZfOCOivt-F Vo). (9) £="—, p=vliw.—1.
Cc
Here, Parameteih can be expressed in a simpler form,
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Fm Ax 1 1
N A (128 zr4 | 1 2 |Z+ =2Z'= —cog(1+p)r+ D).
s 2 Q Q
NS
where F,=3uomeu/27d* is the magnetic force between e 2
the ferromagnetic particle at equilibriunz€0) and the (16)

paramagnetic cluster.

Suppose that the paramagnetic mome¥it, points ini- | "€ POsition,p,, of the maximum of the amplitude,,ax, of
tially in the direction of the effective magnetic field,,,  he driven oscillationgthe frequency shiftis
and the cantilever points in the opposite directi@{0Q)

=—1. In this case the quasistatic motion Nif is given by o Ax o l
the expressions P1™Po= 2 2 (7
2 X 2
2\/&e"+—
2
&
Mu(7) = s, . . .
Vec+(6—x2) where po= —1/4Q* is the position of the maximum of the
amplitude in the absence of the paramagnetic sample, and we
M,=0, (13)  suppose thag>e¢. The frequency shift18) can be consid-

ered in connection with the change of the effective spring
constant,Aks, which can be expressed in a very simple
form,

Ake~2m* w A v=\2F , /A, (173
Substituting Eqs(13) into the first equation in Eq$11), we

obtain the nonlinear equation f@ whereAv=v—ac. _
For estimation of the value of the frequency shift, the

following parameters were used:=1.5x 10"’ m is the di-

AxZ 1 1 ) : .
Z2'+Z7— ————+ =Z7'= =cod (1+p) T+ I,], ameter of the ferromagnetic particle with the volurie
Je2+(x2)2 Q7 Q 0 =1.8x10°2 m?,  ueme/V=11 T, k., ~10"% N/m,

(149  wJ27~10 Hz, A~1 nm,d~100 nm, and3;~10 3 T.
For these values of parameters, we obtain
where we neglected the tereZ in the denominator in the

third term on the left-hand side and p8it=0. The third term e~280, x~2.5x10°
in Eq. (15 corresponds to the modification of the potential
energy of the cantilever, due to the interaction with the mag- A~8.5X10 °(u/ug), a=0.01, (18

netic momentM, by the value
where u/ g is the paramagnetic moment expressed in units
\ of the Bohr magneton. The corresponding frequency shift is
oU(2)=— ;\/sz-l-()(Z)z.

p1—po~—6X10">(ul ug). (19

Now, we present an approximate “semiquantitative” This gives the frequency shift 6 Hz per one Bohr magne-
analysis of the stationary oscillations described by @4). g,

The approximate solution for the stationary driven oscilla-
tions of the cantilever, described by EG4), can be written

in the form V. PERTURBATION APPROACH

The qualitative estimation presented above can be sup-
Z=a(p)sin(1+p) 7+ Ig]. (15 ported by application of the approach based on the perturba-
tion theory developed by Bogoliubov and Mitropolskii[i].
We define the frequency shift as the shift of the maximum We look for the solution of Eq(14) in the form
ama{p1), of the amplitudea=a(p), caused by the paramag-

netic cluster. In order to estimag,,,, we replace Z=a(7)cog ]+ Auy(a,y), (20)
Z2~sir?[ (14 p) 7+ 9] wherey=(1+ p) r+ J(7). The functionuy(a, ¢) is the sum
of the Fourier terms with the phase# 35, 74, ... . The

=3{1-cog2(1+p)r+29,]}—3 amplitudes of these terms decrease with increasing Fourier

number,n, as 1/(7+1)2. The first nonvanishing term is
in the denominator in the third term in E(L4), and neglect small and equalsi,(a,)~0.02 cos(®). This allows us to
the term coR2(1+p)7+239,] because it is nonresonant. Then neglect the contribution ai,(a, ) into the expression faZ
Eq. (14) takes the form in Eq. (20).
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We now calculate the position of the maximum of the

in the first order of the perturbation theory satisfy the twoamplitude,a(p), in the stationary regime of driven oscilla-

coupled differential equations,

d_a__L 27 ya cosy sinydy
dr 27mJo &2+ (yacosy)?
2Q Q2+p
do 1 A (om xacogydy
dr  8Q% P 2mal, Ve?+ (yacosy)?
- ! 0} 22
aQ(z+p) " (22

Note that the integral on the right-hand side of E2{l) is

equal to zero. The integral on the right-hand side of 28)

can be expressed through the elliptic integrals(see the
Appendix

w2 yacoSydy

4 =
0 \/82+(Xa cos;//)i

4

1
B0~ psz(k)} , (23

tions using Eq(26), and compare it with the results obtained
in Sec. IV. In the regime of driven oscillatiorzs= const, 9
=const, and we must solve the system of two equati@f
whereda/d7=0 anddd/d7=0. Canceling the phas#, we
have

2

: (27)

1 1 5 1 2\
22?4 ezt Pt ma

where we neglected the term proportionapte<1. The am-
plitude, a, can be written aga=1+ 83, where<1, so that

1 1 ~1( p)
a(2+p) (1+pB)(2+p) 2 B3] (@9

Taking the square root from both sides of E2j7) and using
Eq. (28), we obtain

2
: (29)

p~221++)\
[3§~pr7

where we puta~1 in the denominator of the term propor-
tional to\ (i.e., we neglected the term of the ordergxX).
The maximum of the function3= B(p), can be found from

wherek=1/\1+p?, andK(k) and E(k) are the complete the conditiond3(p;)/dp=0, which yields

elliptic integrals, respectively, of the first and second kind,

p=el(ay). When p?<1, one can decomposk(k) and
E(k) as

12
K(K)=~C+(C—1) 5+,

k/2

1
E(k)~1+ C_E)TJ’_, (24)

where k'2=1—k?~p, C=In(4k’)~In(4/p). From Egs.
(23) and(24) we find the value of the integral in E¢R2) for
p<l,

R IZW xacosydy
2malo e+ (yacosy)?

2\ p2( 4 ”
~——[1-—|2In=—1
Ta 4 p
(25)
Substituting Eq(25) into Eqg. (22), we obtain
da_ a 1 S o6
dr 20 Q2+p MY (26)
dy 1 2\ p? " 4 L
dr 802 P malm 4\°p”
! 0}
— —————C0s9.
aQ(2+p)

B 1 2\ 30
TS (30)

This is approximately the same value as that given by Eq.
(18), obtained from the qualitative considerations. The sec-
ond term in Eq(30) describes the influence of the paramag-
netic moment reversals on the resonance frequency of the
cantilever.

To verify our analytical results, we solved numerically the
exact equations of motiofi1). Figure 2(solid line) demon-
strates the dependence of the stationary amplitude of the can-
tilever vibrations,a, on the frequency detuning, (The sta-

tionary amplitude is achieved at>Q.) The initial
conditions are taken in the form
2(0)=—1, 2(0)=0, M,(0)= ——
S AT RO
M,(0)=0, M,0)= X 31
y(0)=0, My )—\/SZ—TXZ- (31

For these initial conditions at=0, the paramagnetic mo-
ment, M, points in the direction of the effective magnetic
field, while the cantilever is displaced in thez direction
(99=3m/2) from its equilibrium position.

Figure 3 demonstrates the motion of the paramagnetic
moment,l\7|(7-). One can see the close correspondence be-
tween the analytical and numerical solutions. Note that the
frequency shift caused by the adiabatic reversals changes its
sign if the paramagnetic moment points initially in the direc-
tion opposite to the effective magnetic field/hile Z(0)
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FIG. 2. The dependence of the amplitude of the driven oscilla-

tions of the cantilever on the frequency detunipgpbtained using J
numerical solution of exact equations of motidrl). The solid line _1 adiobe TR st L Jo
corresponds to the initial conditiorf81) and the values of the pa- 0 2 4 6 2 4 6 2 4 6
rameters\ =8.5x 107°, y=2500, ¢ =280, a=0.05, Q= 100, and time
6=0. The dotted line corresponds to the same values of the param- o
eters but for “inverted” initial conditions[in Eq. (31), M, FIG. 4. The same as in Fig. 3 but fer=28.
——My, M,——M,]. The dashed line represents the dependence o ) )
a(p) with no paramagnetic momenk €0). =—1]. The dotted line in Fig. 2 depicts this case. We should

also note that decreasing the parametéthe x component
of the effective magnetic fieJdeads to the violation of the
CAI conditions. Figure 4 demonstrates this situation gor
=28.

IR
My My M, VI. DAMPED OSCILLATIONS OF THE CANTILEVER
The influence of the sample on the cantilever can be mea-
sured if one turns off the external force acting on the canti-
lever, and measures the frequency of small damped oscilla-
tions of the cantilever. In the absence of the paramagnetic
momentM, the frequency of the oscillations is independent

of time and equals/1— 1/(4Q?).

N

=

Es‘ . 1 We look for the solution of the cantilever vibrations in the
X

=

form Z=a(r)cogr+3I(7)]. Then the dynamical equations
for the slow varying amplitudeg(7), and phasey(7), in the
presence of the sample and in the absence of the external
force take the form

-0.5¢ T T ’ da R 37
dr  2Q’ (32
. J do 1 N (27 yacoSydy 33
_9 Lottt . dr 8Q% 2malo %+ (yacos))?
1607274 2 i s s 4 s T Q" 2malo e+ (xacosy)
time For p<1, Eq.(33) can be written as
FIG. 3; The dynamics of the projections of the paramagnetic )

moment,M (), of the sample with the initial condition@1). The ag 1 2n) . p° o —1 (34)

gray line is obtained as a result of the numerical integration of Eq. dr 8Qz ra 4 p ’

(11), and the black line indicates the quasistatic solutib®. For
M,(7), both curves almost coincide. The parameters are the same e last term on the right-hand side of Eg4) describes a
those for the solid line in Fig. 2. change of the frequency of small oscillations of the cantile-

023405-5



G. P. BERMAN, D. I. KAMENEYV, AND V. I. TSIFRINOVICH PHYSICAL REVIEW A66, 023405 (2002

1 ‘ ‘ ‘ magnetic moment relative to the initial position of the canti-
lever. We supported our estimation by the analytical analysis
based on the perturbation theory and by the numerical solu-
0.99995; Q=1000 | tion of the equations of motion. Our perturbative approach is
based on the fact that the influence of the paramagnetic mo-
ment on the sample is weak £1). We considered also the
regime of small oscillations of the paramagnetic moment
near the transversal plarfinear OSCAR regime Finally,

we analyzed the damped oscillations of the cantildwgth-

out the external forge We have shown that the frequency of
the damped oscillations becomes time-dependent due to the
adiabatic reversals of the paramagnetic moment.

0.9999¢

guency

0.99985

fre

0.9998¢
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FIG. 5. The frequency of small damped oscillations of the can
tilever for the initial conditions(33) as a function of timeg, for
three values of the quality facto®. The solid lines are obtained
using Eqs(34) and(36). The results of exact numerical solution are

plotted by the filled circles\=8.5x10"5, y=2500, ¢=280, §
=0, anda=0.05. APPENDIX

Here we express the integral in E§2) in terms of com-

ver caused by the adiabatic reversal/bfFrom Eq.(32) we plete elliptic integrals,

havea(r)=a(0)exd —7/(2Q)]. One can see from Edq34)
that for the initial conditiong31) the influence oM results

in a decrease of the frequency of small oscillations of the w2 yacosydy

cantilever in comparison with the case=0. For smallp [the 0 g2+ (yacosy)?
value of p=s/(ay)~expt/2Q) increases with timg the

frequency of oscillations decreases when time increases, as w2 coSydi
shown in Fig. 5, while in the absence of the sample this = —
frequency remains independent of time. We should note that 0 Vp*+cosy

in the studied approximation the sample does not influence
the amplitude of the cantilever oscillations.

w12 (1—sirfy)dy
o Jprri-siy

VIl. SUMMARY
1
We have studied theoretically and numerically the station- (P*+1)| 1- = sinzzﬁ) —p?
ary cantilever vibrations in the novel OSCAR MRFM tech- _[? pr+1 q
nigue. Our results are based on the application of the classi- ~Jo 1 ¥,
cal theory for the motion of the cantilever and the /IOzJr 1\/1- sirty
; V 2
paramagnetic moment of a cluster on the surface of the pc+1

sample. We have estimated the resonant frequency shift for

the cantilever vibrations. For the reasonable values of paranwhere we introduced the notatigree/(ay). Splitting this
eters, our estimate is about 6 Hz per Bohr magneton. Thintegral in two parts, we obtain the right-hand side of Eg.
sign of the shift depends on the initial direction of the para-(23).
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