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Application of artificial intelligence to search ground-state geometry of clusters
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We introduce a global optimization procedure, the neural-assisted genetic alg@i&@A). It combines

the power of an artificial neural netwofANN) with the versatility of the genetic algorithm. This method is
suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a
reasonable amount of data is available, the ANN can “understand” the problem and provide the genetic
algorithm with a selected population of elements that will speed up the search for the optimum solution. We
tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with
information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict
the configurational space for larger silicon clusters. Fgg &nd Sjy, we noticed that the NAGA is at least

three times faster than the “pure” genetic algorithm. As the size of the cluster increases, it is expected that the
gain in terms of time will increase as well.

DOI: 10.1103/PhysRevA.66.023203 PACS nuntber36.40—c, 31.15.Ct, 02.60.Pn, 31.15.Pf

[. INTRODUCTION based on Al methods, replace human experience in this field?
We believe that our results indicate that the answer is yes.
Many areas of science are suitable for the application of The search for the ground-state configuration of a collec-
artificial intelligence (Al) methods. Al emulates human tion of atoms belongs to a class named NP-hdri-13
thought and reasoning. A good problem for Al is one whichoptimization problems. This means that the computer time
is so complex that it cannot be solved using conventionahecessary to find the exact solution will increase exponen-
algorithms. Problems that conventional computational methtially with cluster size. Methods engineered to solve this type
ods fail to solve fall into two categories: they may be com-of problem require some kind of initial candidate solution,
putationally intractable or conceptually obscure. The ObSCUTE_e_, a starting point. From this initial guess the optimizer
problems are those that are poorly understood and, so fagenerates other candidate solutions until some objective cri-
neither conventional nor Al methods have had much of anerion js satisfied. The choice of the starting point is of para-
impact on them. On the o_ther hand, computationally intraCy,gunt importance to the success of the optimizafib4]. If
table problems are quite different. These are exactly the ones;, inconvenient starting point is used the algorithm may take
that Al ”?‘?thOdS th_rlve on. . . a lot of time to find the global minimum or, even worse, may
of ’g;?nrg':?i;ge?(')?ﬁ(l)leo);aonl]glz;iége gg(;v}’rtgtg]ntchee ?#é?ge; %?t stugk in a local minimum..Thelrefqre, an efficient method
: ' obtaining these starting points is highly desirable. Usually

more than 4« 10° distinct isomers of GHg,. It is clearly . . . , .
. : the expertise of the investigator may help to find convenient
intractable to calculate every single molecular geometry to

find the geometry of the ground state. To solve this kind Ofstarthg points. In this paper, e are going to show that a
problem the investigator uses shortcuts, hunches, and ruIé%Chn'que .based on Athe grtmual neural netyvobkcap be
of thumb. Experience gives some guidance about how tyiseful to yield an optimization procedufgenetic algorithm
solve a particular problem. It is this kind of specialized With good starting points. | S
knowledge that makes an expert so valuable. This is exactly All total-energy calculations presented in this article were
the approach that has been used in the search for the grourigrformed in the framework of the tight-bindit@B) model
state geometry of atomic clusters. described in Ref[15]. Consequently, our calculations are
Structural characterization of silicon clusters is currentlylimited by the accuracy of the TB method. Recently, Li and
one of the most active frontiers in physics and chemistryCao [10], using full-potential linear-muffin-tin-orbital mo-
[1,2]. Theoretical predictions for Si(n>7) are contradic- lecular dynamics, found a candidate for the ground-state ge-
tory [2—9] which makes the problem even more interestingometry of Sj, that differs from the TB prediction by less
to investigate. A recent and comprehensive study of thehan 0.05 eV per atom. Nevertheless, the approach that we
stable structures for gjclusters can be found in R€f10]. are introducing could, equally well, be combined with any
Specifically, Kaxiras and Jacks¢B,6] limited their search other, more powerful, total-energy method.
space by using the well-known terminations of silicon sur- The sequence of this paper is arranged as follows. The
faces to guide them through the maze of candidates for theext section briefly introduces artificial neural networks; Sec.
ground-state geometry of 3i Grossman and Mitaf7,8] Il deals with the mapping problem, i.e., it shows how a
developed their own heuristics. They chose to describe silimolecular geometry can be cast into a form that can be fed to
con clusters (§i n<40) as a stack of triangular layers of an artificial neural networkANN); Sec. IV shows the actual
atoms. The most important issue discussed in this article mafNN architectures used in this article. Sections V and VI
be put in a rather provocative way: Can an automatic systenpresent our results and conclusions, respectively.
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FIG. 1. A simpl tificial tation. ) . .
G simple artificial neuron representation fer functions characterize the architecture of the ANN.

Il. ARTIFICIAL NEURAL NETWORKS

. . L . I1l. THE MAPPING PROBLEM
A crucial feature of the behavior of the brain is that it

need not to be taught how to learn. This is a characteristic It must be possible to cast the solutions to a problem in a
that one hopes to include in any Al method. In particular,form that an ANN can manipulate. To achieve a formulation
artificial neural networks are computer programs based on that could be used in the framework of ANN'’s, we have
simplified model of the brain. They do not attempt to copydescribed the geometry of a cluster as a stack of planar col-
the fine detail of how the brain works, but try to reproduce itslections of atoms.
logical operation using a collection of neuronlike entities to  The geometry of an atomic cluster is usually expressed in
perform processing. terms of Cartesian coordinates or internal coordinétés
Any ANN starts from a position of ignorance, so a train- tances, bond angles, and dihedral angleésnfortunately,
ing period is required before it can tackle real problemsthese sets of variables are not suitable to train an ANN effi-
During training, the ANN is presented with examples of ciently. Thus, it is necessary to map the coordinates that de-
what it may learn to interpret; these examples constitute théne the geometry of any cluster into a set of inputs appro-
training set. The training set is divided into two parts: thepriate to ANN computation.
training stimuli, i.e., a collection of inputs to the ANN, and  Here, we have used the same kind of approach that has
the associated training target, which is the desired olthat been used for many years to describe crystals and polytypes,
right answey for each stimulus. i.e., we have described the spatial geometry of each cluster
Some of the strong points of ANN'’s are as follow§.  as a stack of planar arrangements of atoms. We have chosen,
Neural networks are fault tolerant, i.e., it is able to cope witharbitrarily, the set of planar elements presented in Fig. 3. In
“fuzzy data” without modification. (i) Once trained, an other words, this is a basis set and any “cluster” is a particu-
ANN can deal with previously unseen datéi.) ANN’s have lar composition of these elements.

the capability for parallel operation built ifiv) ANN'’s op- Next, we must generate the training set, a convenient
erate by discovering new relationships among their inputombination of stimuli and targets. This means that the ANN
data. is presented with a set of clustéstimuli), described accord-

ANN’s excel in applications thai) present incomplete or ing to our basis set, whose total energy per attenge} is
unreliable data(ii) have numerous training examples avail- known. Here, we have used the results of total-energy opti-
able,(iii ) have unknown rules that lead from a given input tomization of small silicon clusters (Sin<9) previously cal-

a particular output, an@dv) in which the explanation of how culated. We have used 110 different cluster descriptions to-
any decision is reached is not required.

Figure 1 shows a fundamental representation of an artifi-
cial neuron. It shows various inputg to it, each of which is M .-
multiplied by a connection weight representedvigy. These ) )

products are summed and fed to a transfer function that gen-

erates a resultoutpu). A typical neural network is obtained
by grouping these neurons into layers. The connections be-
tween these layers, the summation and transfer functions,

comprise a functioning ANN. Most applications require
ANN'’s that contain three types of layers: input, hidden, and

output (see Fig. 2 The input layer receives data from an
input file. The output layer sends information to the re-
searcher and, between these layers, there can be many hidden

layers. In most ANN'’s each neuron in a hidden layer receives ) 1) (12)

signals from all neurons in a layer above it. After a neuron

performs its task it passes its output to all neurons in the FIG. 3. Basis set of planar structures. These elements may be
layer below it. Such ANN's are called feedforward neuralstacked to generate any cluster.
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Total <1,9,1> <232> known as overfitting. Once the training procedure is com-
‘ pleted, the weights are found and the net is ready to make

predictions. A totally new cluster geometry may be presented

‘%. ./’.; to the ANN and it will be classified as either a good or bad

candidate solution. Since we have trained the ANN’s with

. information related to clusters with nine or fewer Si atoms,

the ANN’s are in a position to make predictions for larger

<3,23> <1,8,1> <45> clusters (Sj, n>9). As we will discuss in the next section,
we have applied this method to;$and Sj,.

V. APPLICATION TO SILICON CLUSTERS

As we previously stated, any global optimization requires
some kind of starting poinfor pointg to initiate its search
procedure. The genetic algorithi@A) [17—-20 is an attempt
to solve global optimization problems using simplified mod-
els of natural evolution. An initial population of candidate
gether with their calculated energy per atom. It is worthspjutions must be introduced to the GA. Next, the fitness of
mentioning that the training set must have a mixture of gootach element of the population is calculated. Fitness deter-
and bad geometries, i.e., |0ca|, global, and other Structur%ines the probab|||ty of the e|ement producing Oﬁspring_
whose energy per atom makes them very unlikely to occurrhys, less fit elements have a low probability of producing
Figure 4 shows an example of a few clusters, their descripchildren while the opposite occurs with the fittest elements.
tion in terms of our basis set, and their calculated energy pepccasionally, a mutation takes place, i.e., a random modifi-
atom. cation of one element may occur. After a number of genera-

We have already stated that ANN's perform their bestions it is expected that the population will evolve to produce
when trained with numerous sample cases. However, Wge desired optimum solution.
have Only a limited amount of data to feed the ANN. Thus, Deaven and H@21,22] introduced an efficient way to use
one should not expect that the ANN, trained with a smallthe GA to search for the ground-state geometry of clusters.
amount of information, would correctly predict the total en- gome of us[23] have already made use of the GA with
ergy of a polyatomic system. Nevertheless, the ANN does @onsiderable success. Thus, it was quite reasonable to couple
fine job in selecting a convenient starting point for an opti-gyur ANN’s with the GA.
mization procedure. Our procedure to search for the ground-state geometry of
Si,, consists of the following step§,) Selectn, the size of the
cluster.(ii) Generate all possible structuregeometries ac-
cording to our stacking approactiii) Present each cluster

We used a standard feedforward ANN consisting of angeometry to the ANN. It will classify the geometry as a
input layer, one intermediate layer of neurons, and an outpytossible candidate or it will eliminate the geomettix)
layer. The input layer has 11 neurons and the input data is th@enerate Cartesiafor interna) coordinates for the candi-
sequence of elements of the basis set necessary to descriti@es.(v) Randomly selecN, candidate solutions to act as
the clusters geometry. Three ANN'$1-p-2, with p equal to  the initial population.(vi) Use the other candidate solutions
3 or 6 or 9 were tested; they differ only by the number of as mutations according to some prescribed riyg) Run a
neurons,p, in the hidden layer. Two output neurons were GA for a number of generations. We have named our proce-
used for each ANN. They mainly separate the clusters intalure the neural-assisted genetic algorittdAGA).
two classes: reasonable candidates for solutions and elimi- To test the NAGA’ efficiency we have compared it to the
nated ones. “pure” GA. Initially, we performed the search for §j.

The weights that connect neurons from different layersThere are several thousand different stacking sequences of
are determined during the training procedure. Here, we useithe elements of our basis set that generate a possible geom-
110 different geometries of silicon clusters (Sin<9) etry for Sip. From all possibilities, each ANN selects about
whose descriptions in terms of our basis set and their respe600 as possible candidates. A numidg=10 of them be-
tive energy per atom were previously calculated. Clustereome the initial population of the GA; the rest are saved to
whose TB binding energy is larger than 3.0 eV per atom arde used as mutations. We have tested three different archi-
classified as candidate solutions whereas those with lowedectures: ANN3, ANN6, and ANN%the numbers 3, 6, and 9
values of binding energy are supposed to be eliminated. Eaatorrespond to the number of neurons in the hidden Jayee
ANN was trained by a standard backpropagatidt6]  will only show results from ANN6 because results for the
method. other two ANN’s are very similar.

The training procedure can be performed very quickly Figure 5 shows the evolution of the opposite of the bind-
because the ANN's are only supposed to select potentialling energy per atom for § according to the number of
good candidates. Anyway, too much training may deterioratgenerations. As we have stated before some operators in the
the net’s capability to make reasonable predictions, a featur8 A make use of random numbers. Thus, in order to make

FIG. 4. Sample structures for Si

IV. ANN ARCHITECTURE AND TRAINING PROCEDURE
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FIG. 7. Structures for &j.

FIG. 5. Evolution of opposite of the binding energy per atom of from the data extracted from small silicon clusters how a

Sij as a function of the number of generations. larger cluster with a binding energy per atom sufficiently
high is formed. In some sense, one may say that the ANN

our results more reliable, each line corresponds to the avennderstands the energetics of the clusters. Basically, this is
age of ten different calculations. The best result obtained byhe same procedure an investigator follows, prior to using
the NAGA is also presented. It is clear that there is a signifiknowledge to restrict the search space.
cant improvement in search speed. The fact that the initial Slow convergence becomes an issue after a few hundred
energy for the NAGA is much smaller than the correspond-generations. This is a usual feature of the GA and it is a
ing initial energy for the pure GA is already an indication of consequence of poor genetic variety. Such lack of diversity is
the success of the ANN's. Another good sign is the fact that crucial issue that deteriorates the performance of the GA.
it takes only 300 generations for the NAGA result to reachHartke[11] has shown how to deal with this feature.
the —3.0 eV level while a pure GA needs 4000 generations The geometry of the clusters obtained by the NAGA after
to get to the same level. only 1000 generations is very similar to the ground-state

Next, we made another test. We restricted the populatiogeometry. After 3000 generations the “pure” GA remains
to those elements simultaneously selected by all three ANN’sinable to reach candidates whose binding energy per atom is
(selected NAGA and we compared them to those that wereclose to the 3.0 eV level.
rejected by them. The evolution of the opposite of the bind- Next, we have used the same ANN'’s to restrict the search
ing energy per atom is shown in Fig. 6. We have noticed thaspace in the case of Qi This is a very unfavorable condi-
a GA run that employed only rejected elemefitsjected tion, because only information related tg, $n<?9) is in-
NAGA) is even slower than “pure” GA. This proves the cluded in the ANN’s data basis. Clearly, inclusion of more
ability of the ANN to identify good candidates. It has learnedinformation from Sj (10<n=<19) would make the NAGA's

performance much better.

0 500 1000 1500 2000 2500 3000 Figure 7 shows the “best” clusters obtained by the
L L A “pure” GA and NAGA after ten runs of 100 and 40 genera-
20 20 tions, respectively. After 100 generations, the pure GA was
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not able to produce a stable cluster. On the other hand, the
NAGA produced a structure that already presents most fea-
tures that the ground-state geometry 0f,3% expected to
have. It resembles structures proposed by Li and[@8pas

the most stable geometries for,&i

VI. CONCLUSIONS

We have introduced a global optimization procedure, the
neural-assisted genetic algorithm. It combines an artificial
neural network with the genetic algorithm. This procedure is
suitable for solving optimization problems that need some
kind of heuristics to limit the search space. If a reasonable
amount of data is available, the ANN can “understand” the

FIG. 6. Comparison of the evolution of opposite of the binding Problem and it can provide the genetic algorithm with a se-

energy per atom for “pure” GAdashed ling rejected NAGA(dot-
ted ling), and selected NAGAsolid line), as function of the number

of generations.

lected population of elements that will speed up the search
for the optimum solution.
We have tested the method to search for the ground-state
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geometry of silicon clusters. This choice is relevant becaussolve problems that are not suitable to conventional compu-
the theoretical determination of these geometries remains aational methods. We believe that it is fair to say that Al
open issue and because it is an NP-hard optimization prolmethods may eventually replace human experience in cases
lem. We trained the ANN with information of geometry and such as NP-hard optimization problems.
energetics of small silicon clusters €9). Next, the ANN
learned how to restrict the configurational space for larger
silicon clusters. In the case of,;giand Sj,, we noticed that
the NAGA is at least three times faster than the “pure” ge-
netic algorithm. As the size of the cluster increases it is ex- This work is partially supported by CNR¢onselho Na-
pected that the gain in terms of time will increase as well. cional de Desenvolvimento Ciefito e Tecnolgico) and
This work reinforces other evidend@4] that artificial ~Fapesp(Funda@o de Amparo aPesquisa do Estado deda
intelligence algorithms may become an important tool toPaulg.
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