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Application of artificial intelligence to search ground-state geometry of clusters

Maurı́cio Ruv Lemes, L. R. Marim, and A. Dal Pino, Jr.
Department of Physics, Instituto Tecnolo´gico de Aerona´utica, Pca. Marechal Eduardo Gomes, 50 Sa˜o Josédos Campos,

Sao Paulo, Brazil 12228-900
~Received 26 December 2001; published 19 August 2002!

We introduce a global optimization procedure, the neural-assisted genetic algorithm~NAGA!. It combines
the power of an artificial neural network~ANN! with the versatility of the genetic algorithm. This method is
suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a
reasonable amount of data is available, the ANN can ‘‘understand’’ the problem and provide the genetic
algorithm with a selected population of elements that will speed up the search for the optimum solution. We
tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with
information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict
the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least
three times faster than the ‘‘pure’’ genetic algorithm. As the size of the cluster increases, it is expected that the
gain in terms of time will increase as well.

DOI: 10.1103/PhysRevA.66.023203 PACS number~s!: 36.40.2c, 31.15.Ct, 02.60.Pn, 31.15.Pf
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I. INTRODUCTION

Many areas of science are suitable for the application
artificial intelligence ~AI ! methods. AI emulates huma
thought and reasoning. A good problem for AI is one whi
is so complex that it cannot be solved using conventio
algorithms. Problems that conventional computational me
ods fail to solve fall into two categories: they may be co
putationally intractable or conceptually obscure. The obsc
problems are those that are poorly understood and, so
neither conventional nor AI methods have had much of
impact on them. On the other hand, computationally intr
table problems are quite different. These are exactly the o
that AI methods thrive on.

A familiar chemical example is the growth in the numb
of isomers in a homologous series. For instance, there
more than 43109 distinct isomers of C30H62. It is clearly
intractable to calculate every single molecular geometry
find the geometry of the ground state. To solve this kind
problem the investigator uses shortcuts, hunches, and
of thumb. Experience gives some guidance about how
solve a particular problem. It is this kind of specialize
knowledge that makes an expert so valuable. This is exa
the approach that has been used in the search for the gro
state geometry of atomic clusters.

Structural characterization of silicon clusters is curren
one of the most active frontiers in physics and chemis
@1,2#. Theoretical predictions for Sin (n.7) are contradic-
tory @2–9# which makes the problem even more interest
to investigate. A recent and comprehensive study of
stable structures for Si20 clusters can be found in Ref.@10#.
Specifically, Kaxiras and Jackson@5,6# limited their search
space by using the well-known terminations of silicon s
faces to guide them through the maze of candidates for
ground-state geometry of Si20. Grossman and Mitas@7,8#
developed their own heuristics. They chose to describe
con clusters (Sin, n,40) as a stack of triangular layers o
atoms. The most important issue discussed in this article
be put in a rather provocative way: Can an automatic syst
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based on AI methods, replace human experience in this fi
We believe that our results indicate that the answer is ye

The search for the ground-state configuration of a coll
tion of atoms belongs to a class named NP-hard@11–13#
optimization problems. This means that the computer ti
necessary to find the exact solution will increase expon
tially with cluster size. Methods engineered to solve this ty
of problem require some kind of initial candidate solutio
i.e., a starting point. From this initial guess the optimiz
generates other candidate solutions until some objective
terion is satisfied. The choice of the starting point is of pa
mount importance to the success of the optimization@14#. If
an inconvenient starting point is used the algorithm may t
a lot of time to find the global minimum or, even worse, m
get stuck in a local minimum. Therefore, an efficient meth
of obtaining these starting points is highly desirable. Usua
the expertise of the investigator may help to find conveni
starting points. In this paper, we are going to show tha
technique based on AI~the artificial neural network! can be
useful to yield an optimization procedure~genetic algorithm!
with good starting points.

All total-energy calculations presented in this article we
performed in the framework of the tight-binding~TB! model
described in Ref.@15#. Consequently, our calculations a
limited by the accuracy of the TB method. Recently, Li a
Cao @10#, using full-potential linear-muffin-tin-orbital mo-
lecular dynamics, found a candidate for the ground-state
ometry of Si20 that differs from the TB prediction by les
than 0.05 eV per atom. Nevertheless, the approach tha
are introducing could, equally well, be combined with a
other, more powerful, total-energy method.

The sequence of this paper is arranged as follows.
next section briefly introduces artificial neural networks; S
III deals with the mapping problem, i.e., it shows how
molecular geometry can be cast into a form that can be fe
an artificial neural network~ANN!; Sec. IV shows the actua
ANN architectures used in this article. Sections V and
present our results and conclusions, respectively.
©2002 The American Physical Society03-1
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II. ARTIFICIAL NEURAL NETWORKS

A crucial feature of the behavior of the brain is that
need not to be taught how to learn. This is a characteri
that one hopes to include in any AI method. In particul
artificial neural networks are computer programs based o
simplified model of the brain. They do not attempt to co
the fine detail of how the brain works, but try to reproduce
logical operation using a collection of neuronlike entities
perform processing.

Any ANN starts from a position of ignorance, so a trai
ing period is required before it can tackle real problem
During training, the ANN is presented with examples
what it may learn to interpret; these examples constitute
training set. The training set is divided into two parts: t
training stimuli, i.e., a collection of inputs to the ANN, an
the associated training target, which is the desired output~the
right answer! for each stimulus.

Some of the strong points of ANN’s are as follows.~i!
Neural networks are fault tolerant, i.e., it is able to cope w
‘‘fuzzy data’’ without modification. ~ii ! Once trained, an
ANN can deal with previously unseen data.~iii ! ANN’s have
the capability for parallel operation built in.~iv! ANN’s op-
erate by discovering new relationships among their in
data.

ANN’s excel in applications that~i! present incomplete o
unreliable data,~ii ! have numerous training examples ava
able,~iii ! have unknown rules that lead from a given input
a particular output, and~iv! in which the explanation of how
any decision is reached is not required.

Figure 1 shows a fundamental representation of an ar
cial neuron. It shows various inputsxn to it, each of which is
multiplied by a connection weight represented bywn . These
products are summed and fed to a transfer function that g
erates a result~output!. A typical neural network is obtained
by grouping these neurons into layers. The connections
tween these layers, the summation and transfer functi
comprise a functioning ANN. Most applications requi
ANN’s that contain three types of layers: input, hidden, a
output ~see Fig. 2!. The input layer receives data from a
input file. The output layer sends information to the r
searcher and, between these layers, there can be many h
layers. In most ANN’s each neuron in a hidden layer recei
signals from all neurons in a layer above it. After a neur
performs its task it passes its output to all neurons in
layer below it. Such ANN’s are called feedforward neu

FIG. 1. A simple artificial neuron representation.
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networks. The number of neurons in each layer and the tra
fer functions characterize the architecture of the ANN.

III. THE MAPPING PROBLEM

It must be possible to cast the solutions to a problem i
form that an ANN can manipulate. To achieve a formulati
that could be used in the framework of ANN’s, we ha
described the geometry of a cluster as a stack of planar
lections of atoms.

The geometry of an atomic cluster is usually expressed
terms of Cartesian coordinates or internal coordinates~dis-
tances, bond angles, and dihedral angles!. Unfortunately,
these sets of variables are not suitable to train an ANN e
ciently. Thus, it is necessary to map the coordinates that
fine the geometry of any cluster into a set of inputs app
priate to ANN computation.

Here, we have used the same kind of approach that
been used for many years to describe crystals and polyty
i.e., we have described the spatial geometry of each clu
as a stack of planar arrangements of atoms. We have cho
arbitrarily, the set of planar elements presented in Fig. 3
other words, this is a basis set and any ‘‘cluster’’ is a partic
lar composition of these elements.

Next, we must generate the training set, a conven
combination of stimuli and targets. This means that the AN
is presented with a set of clusters~stimuli!, described accord-
ing to our basis set, whose total energy per atom~target! is
known. Here, we have used the results of total-energy o
mization of small silicon clusters (Sin, n<9) previously cal-
culated. We have used 110 different cluster descriptions

FIG. 2. A simple neural network diagram.

FIG. 3. Basis set of planar structures. These elements ma
stacked to generate any cluster.
3-2
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gether with their calculated energy per atom. It is wo
mentioning that the training set must have a mixture of go
and bad geometries, i.e., local, global, and other struct
whose energy per atom makes them very unlikely to oc
Figure 4 shows an example of a few clusters, their desc
tion in terms of our basis set, and their calculated energy
atom.

We have already stated that ANN’s perform their b
when trained with numerous sample cases. However,
have only a limited amount of data to feed the ANN. Thu
one should not expect that the ANN, trained with a sm
amount of information, would correctly predict the total e
ergy of a polyatomic system. Nevertheless, the ANN doe
fine job in selecting a convenient starting point for an op
mization procedure.

IV. ANN ARCHITECTURE AND TRAINING PROCEDURE

We used a standard feedforward ANN consisting of
input layer, one intermediate layer of neurons, and an ou
layer. The input layer has 11 neurons and the input data is
sequence of elements of the basis set necessary to des
the clusters geometry. Three ANN’s~11-p-2, with p equal to
3 or 6 or 9! were tested; they differ only by the number
neurons,p, in the hidden layer. Two output neurons we
used for each ANN. They mainly separate the clusters
two classes: reasonable candidates for solutions and e
nated ones.

The weights that connect neurons from different lay
are determined during the training procedure. Here, we u
110 different geometries of silicon clusters (Sin, n,9)
whose descriptions in terms of our basis set and their res
tive energy per atom were previously calculated. Clust
whose TB binding energy is larger than 3.0 eV per atom
classified as candidate solutions whereas those with lo
values of binding energy are supposed to be eliminated. E
ANN was trained by a standard backpropagation@16#
method.

The training procedure can be performed very quic
because the ANN’s are only supposed to select potent
good candidates. Anyway, too much training may deterior
the net’s capability to make reasonable predictions, a fea

FIG. 4. Sample structures for Si6 .
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known as overfitting. Once the training procedure is co
pleted, the weights are found and the net is ready to m
predictions. A totally new cluster geometry may be presen
to the ANN and it will be classified as either a good or b
candidate solution. Since we have trained the ANN’s w
information related to clusters with nine or fewer Si atom
the ANN’s are in a position to make predictions for larg
clusters (Sin, n.9). As we will discuss in the next section
we have applied this method to Si10 and Si20.

V. APPLICATION TO SILICON CLUSTERS

As we previously stated, any global optimization requir
some kind of starting point~or points! to initiate its search
procedure. The genetic algorithm~GA! @17–20# is an attempt
to solve global optimization problems using simplified mo
els of natural evolution. An initial population of candida
solutions must be introduced to the GA. Next, the fitness
each element of the population is calculated. Fitness de
mines the probability of the element producing offsprin
Thus, less fit elements have a low probability of produci
children while the opposite occurs with the fittest elemen
Occasionally, a mutation takes place, i.e., a random mod
cation of one element may occur. After a number of gene
tions it is expected that the population will evolve to produ
the desired optimum solution.

Deaven and Ho@21,22# introduced an efficient way to us
the GA to search for the ground-state geometry of clust
Some of us@23# have already made use of the GA wi
considerable success. Thus, it was quite reasonable to co
our ANN’s with the GA.

Our procedure to search for the ground-state geometr
Sin consists of the following steps.~i! Selectn, the size of the
cluster.~ii ! Generate all possible structures~geometries! ac-
cording to our stacking approach.~iii ! Present each cluste
geometry to the ANN. It will classify the geometry as
possible candidate or it will eliminate the geometry.~iv!
Generate Cartesian~or internal! coordinates for the candi
dates.~v! Randomly selectNp candidate solutions to act a
the initial population.~vi! Use the other candidate solution
as mutations according to some prescribed rule.~vii ! Run a
GA for a number of generations. We have named our pro
dure the neural-assisted genetic algorithm~NAGA!.

To test the NAGA’s efficiency we have compared it to t
‘‘pure’’ GA. Initially, we performed the search for Si10.
There are several thousand different stacking sequence
the elements of our basis set that generate a possible g
etry for Si10. From all possibilities, each ANN selects abo
600 as possible candidates. A numberNp510 of them be-
come the initial population of the GA; the rest are saved
be used as mutations. We have tested three different a
tectures: ANN3, ANN6, and ANN9~the numbers 3, 6, and 9
correspond to the number of neurons in the hidden layer!. We
will only show results from ANN6 because results for th
other two ANN’s are very similar.

Figure 5 shows the evolution of the opposite of the bin
ing energy per atom for Si10 according to the number o
generations. As we have stated before some operators in
GA make use of random numbers. Thus, in order to m
3-3
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our results more reliable, each line corresponds to the a
age of ten different calculations. The best result obtained
the NAGA is also presented. It is clear that there is a sign
cant improvement in search speed. The fact that the in
energy for the NAGA is much smaller than the correspo
ing initial energy for the pure GA is already an indication
the success of the ANN’s. Another good sign is the fact t
it takes only 300 generations for the NAGA result to rea
the 23.0 eV level while a pure GA needs 4000 generatio
to get to the same level.

Next, we made another test. We restricted the popula
to those elements simultaneously selected by all three AN
~selected NAGA! and we compared them to those that we
rejected by them. The evolution of the opposite of the bin
ing energy per atom is shown in Fig. 6. We have noticed t
a GA run that employed only rejected elements~rejected
NAGA! is even slower than ‘‘pure’’ GA. This proves th
ability of the ANN to identify good candidates. It has learn

FIG. 5. Evolution of opposite of the binding energy per atom
Si10 as a function of the number of generations.

FIG. 6. Comparison of the evolution of opposite of the bindi
energy per atom for ‘‘pure’’ GA~dashed line!, rejected NAGA~dot-
ted line!, and selected NAGA~solid line!, as function of the numbe
of generations.
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from the data extracted from small silicon clusters how
larger cluster with a binding energy per atom sufficien
high is formed. In some sense, one may say that the A
understands the energetics of the clusters. Basically, th
the same procedure an investigator follows, prior to us
knowledge to restrict the search space.

Slow convergence becomes an issue after a few hun
generations. This is a usual feature of the GA and it is
consequence of poor genetic variety. Such lack of diversit
a crucial issue that deteriorates the performance of the
Hartke @11# has shown how to deal with this feature.

The geometry of the clusters obtained by the NAGA af
only 1000 generations is very similar to the ground-st
geometry. After 3000 generations the ‘‘pure’’ GA remain
unable to reach candidates whose binding energy per ato
close to the 3.0 eV level.

Next, we have used the same ANN’s to restrict the sea
space in the case of Si20. This is a very unfavorable condi
tion, because only information related to Sin (n<9) is in-
cluded in the ANN’s data basis. Clearly, inclusion of mo
information from Sin (10<n<19) would make the NAGA’s
performance much better.

Figure 7 shows the ‘‘best’’ clusters obtained by th
‘‘pure’’ GA and NAGA after ten runs of 100 and 40 gener
tions, respectively. After 100 generations, the pure GA w
not able to produce a stable cluster. On the other hand,
NAGA produced a structure that already presents most
tures that the ground-state geometry of Si20 is expected to
have. It resembles structures proposed by Li and Cao@10# as
the most stable geometries for Si20.

VI. CONCLUSIONS

We have introduced a global optimization procedure,
neural-assisted genetic algorithm. It combines an artific
neural network with the genetic algorithm. This procedure
suitable for solving optimization problems that need so
kind of heuristics to limit the search space. If a reasona
amount of data is available, the ANN can ‘‘understand’’ t
problem and it can provide the genetic algorithm with a
lected population of elements that will speed up the sea
for the optimum solution.

We have tested the method to search for the ground-s

f

FIG. 7. Structures for Si20.
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geometry of silicon clusters. This choice is relevant beca
the theoretical determination of these geometries remain
open issue and because it is an NP-hard optimization p
lem. We trained the ANN with information of geometry an
energetics of small silicon clusters (Si<9). Next, the ANN
learned how to restrict the configurational space for lar
silicon clusters. In the case of Si10 and Si20, we noticed that
the NAGA is at least three times faster than the ‘‘pure’’ g
netic algorithm. As the size of the cluster increases it is
pected that the gain in terms of time will increase as we

This work reinforces other evidence@24# that artificial
intelligence algorithms may become an important tool
J.

rs

e
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solve problems that are not suitable to conventional com
tational methods. We believe that it is fair to say that
methods may eventually replace human experience in c
such as NP-hard optimization problems.
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