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Relativistic energy loss in a dispersive medium
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The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking
advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz
factor obtained by replacing the vacuum velocityc by the characteristic phase velocityc/n, wheren is the
complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in
detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical
approximation.
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I. INTRODUCTION

The study of charged particles passing through matter
a long history@1,2# and remains of current interest in mode
electron energy-loss spectroscopy@3,4#. Energy loss is
caused by close-range collisions or many-body excitation
the medium due to polarization and magnetization@5,6#.
Slow electrons incident on a metal foil at a velocity mu
smaller than the Fermi velocity will be screened on a len
scale comparable to atomic distances, while screening is
pected to be less effective for relativistic electrons. The L
entz factor of the source electrons,

g5~12b2!21/2, ~1!

where b5vs /c is proportional to the total energy,g
5Ekin /mc211, wheremc25511 keV is the electron res
energy. A transmission electron microscope~TEM! operated
at the energyEkin;100 keV, therefore has the typical valu
g;1.2, corresponding tob;0.5. Relativistic effects can
therefore be expected in the energy-loss spectrum@7–9#.

Semiclassically, an excited mode corresponds to the
ergy loss \v!Ekin and momentum transfer\k!gmvs ,
where the deflection angle

a5\k' /gmvs ~2!

is the ratio of the electron de Broglie wavelength to t
length scale,l'52p/k' , measuring the size of excitation
perpendicular to the electron path. Since the Compton wa
length has the valueh/mc50.024 Å, the macroscopic exc
tations will in general have small scattering angles.

The detailed geometry of the sample introduces furt
structure in the loss spectrum. Usually, simple bounda
have been assumed such as semi-infinite media or cylin
@10–12#, while spherical geometry is of particular interest f
electron energy loss in nanoparticles@9,13#. In this study, all
effects due to surface excitations and transition radia
@14–16# are neglected assuming an infinite medium.

Starting from the covariant four-potential@17,18# in Fou-
rier space a dispersive, nonlocal wave equation is obtaine
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Sec. II by the replacementc→cn5c/n, where c is the
vacuum velocity of light and the complex index of refractio
is defined asn25em, wheree is the effective permittivity
andm is the permeability. Since energy losses are small,vs
can be assumed constant and advantage can be made
frame of reference where the source distribution is at r
The static potentials, given in Sec. III, differ from the cla
sical approximation by a dispersive Lorentz factorgn . The
energy loss of a point charge is obtained in Sec. IV and
angle-resolved spectrum of a Drude conductor is discus
in Sec. V. It is shown that Ohmic losses at low energies
enhanced by frequency-dependent length contraction.

II. MAXWELL EQUATIONS

The electric field and the magnetic induction

E52“f2]A/]ct, B5“3A ~3!

are defined in terms of the potentials (f,A) that form a
four-vector@17,18#. The total four-current (cr,j ) acting as a
source term in the Maxwell equations

“•E54pr, c“3B5]E/]t14p j ~4!

includes the external source (crs ,j s) as well as the induced
four-current (crp ,j p1 jm) representing the effects of pola
ization and magnetization. In the Minkowski formulation,

“•D54prs , c“3H5]D/]t14p j s , ~5!

the inductions are related to the fields by Fourier transform
and dispersive@19# constitutive relations

D5eE, B5mH, ~6!

allowing the four-current to be written as

~cr,j !5~crs /e,m j s1sE!. ~7!

The total conductivitys52 iv(em21)/4p is the sum of a
term sp52 ivxe , due to polarization, and a magnetic co
tribution sm52 ivemxm producing the current

jm5~m21!j s1smE, ~8!
©2002 The American Physical Society01-1
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wherexe5(e21)/4p andxm5(121/m)/4p are the electric
and magnetic susceptibility, respectively.

The Fourier transform of Eq.~4! can be written as

~k22v2/c2!~f,A!54p~r,j /c!1~v/c,k!~k•A2vf/c!,

~9!

where (v/c,k) is the four-wave vector and the scalar fou
product (v/c,k)•(f,A) appearing in the last term is arb
trary according to the gauge transformation

~f,A!→~f,A!1 i ~v/c,k!F, ~10!

whereF is an arbitrary function. When the four-current~7!
is inserted in Eq.~9!, it can be seen that this term vanishes
the Lorentz gauge,

~v/cn ,k!•~f,A/n!50, ~11!

wherecn5c/n is the phase velocity in the medium and t
vector potential is modified according to the fact thatf and
A have the same dimension in Gaussian units. The Fou
transformed potentials are therefore given by the nonlo
wave equation

~k22v2/cn
2!~f,A/n!54p~rs ,j s /cn!/e, ~12!

where the factor 1/e accounts for polarization. The modifie
dispersion relationv5cnk imply that wave vectors are
scaled by the complex numbern while the frequency is un-
changed compared to a plane wave propagating in vacu

III. SOURCE REST FRAME

The source, composed of a single charge or a beam@20#
of electrons, is assumed at rest in a frame of reference m
ing at constant velocityvs relative to the laboratoryz axis. In
the rest frame, denoted by primes, four-vectors are given
the Lorentz transformation@17#

f85g~f2bAz!, A'8 5A' , Az85g~Az2bf!,
~13!

where the subscript' denotes radial components. Sinc
v850, the Doppler relation

v5vskz , ~14!

corresponding to the Galilean variablez̃5z2vst follows
from the Lorentz transformation of frequency while leng
contraction can be written asz̃5z8/g, or kz5gkz8 . Since the
source current is axialj s5rsvs , the vector potential can b
written asA5embf, where the electric potential

f54pr/~k'
2 1kz

2/gn
2! ~15!

is determined by an anisotropic Poisson equation and
dispersive Lorentz factorgn is obtained by substitutingbn
5nb in the vacuum expression~1!. Compared to the elec
02290
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trostatic approximationgn51, the axial length scales ar
Lorentz contracted by the factorgn and propagating wave
are possible, if

k'
2 1kz

2/gn
250. ~16!

To obtain the potentials in the source rest frame, one
serves that Eq.~9! is covariant. Using the Lorentz transfo
mation the Poisson equation

k82~f8,AT8 !54p~r8,jm8 /c! ~17!

is obtained, wherej p85 j s850, and the steady magnetizatio
current jm8 is responsible for a transverse vector poten
AT5A2AL , while the longitudinal partAL5k(k•A)/k2 is
arbitrary as can be seen from the gauge transformation~10!.
The constitutive relations, defined in the medium rest fram
are not covariant, however, and the inverse Lorentz trans
mation must be used to transform Eq.~7! to the primed sys-
tem. The Poisson equation~17! becomes anisotropic@22# and
the potentials are not simplified by working in the source r
frame. Similar considerations apply to the electromagne
fields. The electric fieldE52 i (k'1kz /gn

2)f and the azi-
muthal magnetic inductionB5emb3E transform as

E'8 5g~E'1b3B'!, Ez85Ez , ~18!

B'8 5g~B'2b3E'!, Bz85Bz, ~19!

with similar relations forD and H. Applying the inverse
Lorentz transformation, the Minkowski relations@17# follow
from Eq. ~6!, where the radial components can be written

D'8 /gn
25eE'8 /g22~em21!b3H'8 , ~20!

B'8 /gn
25mH'8 /g21~em21!b3E'8 , ~21!

while Dz85eEz8 andBz85mHz8 . Since the medium is moving
at velocity 2vs , the constitutive relations become bianis
tropic @23#. From Ampere’s law,k83H850, the magnetic
field can be written as the gradient of a scalar function a
the relation@24#,

~k'8 1g2kz8/gn
2!•H850, ~22!

imply H850. While the magnetic field vanishes in the sour
rest frame, the electric displacementD85e(gn

2E'8 /g2,Ez8)
gives rise to both a longitudinal electric field and an a
muthal magnetic induction.

IV. ENERGY LOSS

The source-charge distribution is assumed sharply
cused along the trajectory

rs5Qrsz~ z̃!d~r'!/2pr' , ~23!

where the axial profilersz reduces to ad function for a point
source resulting in the Fourier component,rs5Q/(2p)3.
The work done against the induced fields can be obtaine
either of the frames considered in Sec. III. The static fo
1-2
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density isrs8E8(r 8), whereE'8 5gE' /gn
2 . Inserting Fourier

components the integral over the charge distribution can
written as

F5~2p!3E 2 ik
4pursu2/e

gn
2k'

2 1kz
2

dk, ~24!

usingrs(2kz)5rs* (kz). The axial component is the energ
loss per unit path length or stopping power. In cylinder c
ordinates

2Fz5E
0

`

P~k' ,kz!k'kz dk' dkz , ~25!

where a relativistic-loss probability@2# has been defined as

P5~2/p!Q2 ImF 21/e

gn
2k'

2 1kz
2G , ~26!

usinge(2kz)5e* (kz) with similar relations form andgn .
The classical probability

P05~2/p!Q2 Im$21/e%/k2 ~27!

is obtained in the limit of small source velocity,b2!1, cor-
responding togn51. Relativistic corrections caused by
Lorentz factorgn different from unity affect the loss prob
ability in proportion to the radial wave vector that in turn
proportional to the deflection angle given by Eq.~2!. De-
tailed information can therefore be obtained from the ang
resolved energy-loss spectrum recorded as a function ofk' .
Electrons passing through the sample with no deflect
k'50, produces a purely classical spectrum and the z
loss peak,kz→0, diverges as will be discussed in Sec. V

The loss function Im$21/e% is a positive quantity imply-
ing that the imaginary part of the permittivity must be po
tive while the real part is constrained by the Kramers-Kro
relations@5,6#. In the static limitv→0 the loss function has
to vanish. In a conductor, the real part of the conductivitysp
approaches a finite value ande i therefore diverges whilee i
vanishes in a dielectric insulator. At high frequencies,
material response approaches that of vacuum,e→1 andgn
→g.

Assuming a plane wave propagating along thez axis with
real kz and radial wave vectork'5 ikz /gn , the constraint
Re$1/gn%.0 must be imposed if Coulomb-like~elliptic!
modes are to be radially evanescent, while Im$1/gn%,0 is
required for Cherenkov~hyperbolic! modes to radiate awa
from the source trajectory@14#. The Lorentz factorgn is thus
constrained to the first quadrant.

In a transparent medium the refractive index is nea
real. Energy loss due to Cherenkov radiation@25–27# is pos-
sible if n is sufficiently large so thatgn becomes imaginary
The loss probability~26! then has a maximum on the con
ugnuk'5kz , where the direction of the wave vector is give
by Re$bn%cosu;1. In general, the diagonal Re$bn

2%51 in
the complexgn plane marks the border for Cherenkov loss
02290
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The total charge density induced by a point charge
given as

r5
Q

~2p!2
ReE 1

e
J0~r'k'!eikzz̃k' dk' dkz , ~28!

whereJ0 is the zero-order Bessel function of the first kin
@21#. If the refractive index depends only on frequency, t
corresponding potential can be written as

f5~Q/p!ReE 1

e~kz!
K0~r'kz /gn!eikzz̃ dkz , ~29!

whereK0 is the zero-order modified Bessel function of th
second kind@21,28#. The potential is an asymmetric functio
of z̃ in order for energy loss to take place and relativis
corrections to the energy spectrum are ultimately related
the shape of Eq.~29! determined by the Lorentz factorgn .

V. DRUDE CONDUCTOR

A number of simple metals can be described by the Dru
permittivity @29#

e~v!512vp
2/~v21 inv!, ~30!

where the plasma frequency is given as

vp
254pn0e2/m ~31!

andn0 is the density of conduction electrons with effectiv
massm. Magnetic effects are neglected (m51) and the con-
ductivity is given as

4psp5vp
2/~n2 iv!, ~32!

where the damping raten is assumed small compared to th
plasma frequency. The Fermi velocity of electrons is of t
order of the Bohr velocityvB5e2/\, where vB /c;1/137
and the response of the medium can therefore be tre
classically.

The damped plasma resonance gives rise to a peak in
loss function Im$21/e% slightly below the plasma frequenc
and sincee(vp); in/vp , to first order, the peak is propor
tional to vp /n. At low frequenciesv2!n2, the imaginary
part of the permittivitye;vp

2(211 in/v)/n2 becomes large
and the response is dominated by Ohmic dissipation.
loss function decreases linearly with frequency, Im$21/e%
;nv/vp

2 , at a rate proportional to the static resistivity.

A. Induced charge

Although the permittivity~30! depends only on frequenc
spatial dispersion is implied because of the Doppler relat
~14!. A polarization wake@27,30,31#, static in the source res
frame, is formed behind the source. The induced charg
confined to the negativez̃ axis as follows from Eq.~28!
using the integral *0

qkJ0(k)dk5qJ1(q) and the limit
qJ1(qr)→d(r ) for q→` @28# corresponding to a vanishin
microscopic cutoff. The detailed charge profile is determin
1-3
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by the zeros ofe which are in the lower frequency half plan
at v52 in/26vn , wherevn

25vp
22n2/4. The integral over

axial wave vectors gives the profile

rz~ z̃!5~vp
2/vsvn!exp~ z̃/ln!sin~2p z̃/l!, ~33!

wherel52pvs /vn is the wavelength of oscillations in th
medium rest frame whileln52vs /n is the damping length
At small damping raten2!vp

2 , the axial wavelength isl
;lp52p/kp , wherekp5vp /vs .

B. Energy-loss spectrum

The relativistic-loss probability~26! is compared to the
classical approximation~27! in Fig. 1. The energy-loss spec
trum in units of 1/kp

2 is shown as a function of reduced fre
quency,v/vp5kz /kp , at a fixed angle of deflection give
by the reduced wave vectork' /kp50.3.

Near resonance the classical loss probability behaves
way similar to the loss function, since the denominatork2 is
approximately constant. This regime is also electrostatic
nature since the Lorentz factor given asgn

2;11e(vp)b2 is
close to unity while the refractive indexn;An/vpeip/4 has
modulus less than 1. The~real! phase velocity is larger tha
c and relativistic corrections to the energy-loss spectrum
therefore small.

As the frequency is lowered larger axial length scales
probed @32–34#. At the Drude damping ratev;n corre-
sponding to axial distances on the order of the damp
length, the real part ofe is large and negative while th
imaginary part is large and positive. The Lorentz factor
proportional ton/vp and thegn

2k'
2 term in the denominato

of Eq. ~26! leads to an increase of the relativistic energy lo
over its classical counterpart as shown in Fig. 1.

Electrons that experience no deflection,k'50, will pro-
duce a zero-loss peak@32–34# that diverges proportional to
n/v due to the long-range nature of the Coulomb potentia
can be seen from either of the expressions~26! and ~27!. At

FIG. 1. Angle-resolved energy-loss spectrum of a Drude c
ductor as a function of reduced frequency at the fixed radial m
mentum transfer,k' /kp50.3, and damping rate,n/vp50.3. The
relativistic spectrum atb50.5 ~solid line! is compared to the clas
sical approximation~dashed line!.
02290
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finite scattering angles,k'.0, the linear decrease of the los
function eventually takes over at low frequencies. Given
Lorentz factor that behaves asgn;Ainv/bvp , the spec-
trum decreases as

P;~v/n!~bkp /k'!4 ~34!

in the limit v→0. Compared to the classical expressionP0

;(nv/vp
2)(kp /k')2, the slope of the relativistic curve i

larger by the ratio

P/P05~vp /n!2b4~kp /k'!2, ~35!

as indicated in Fig. 1. While the classical loss vanishes p
portional to the resistivity the relativistic expression~34!
shows that the low-energy spectrum decreases proporti
to the conductivity. Relativistic corrections, caused by t
vector potential, are thus a direct consequence of the cur
induced at low frequencies.

If the angle of deflection is sufficiently small, the classic
probability ~27! has a local maximum well below the Drud
damping rate at the frequencyv;vsk' corresponding to
axial length scales much larger than the damping leng
While this condition is not fulfilled in Fig. 1, an additiona
peak is nevertheless present in the relativistic spectrum
the presence of the factorgn in the denominator of the los
probability ~26!. As shown in Fig. 2 such a peak occurs
low frequencies provided the radial wave vector is sma
thank';0.45kp .

Since plasma frequencies are typically in the ultraviol
\vp;15 eV, the characteristic lengthlp is about 400 Å
for 100-keV electrons corresponding tokp;0.015 Å21. The
damping length may be an order of magnitude larger. Pre
electron-energy-loss spectroscopy instruments have an
ergy resolution around 0.1 eV while the wave-vector reso
tion is of the order of 0.05 Å21. The angular resolution re
quired to discriminate the low-frequency structure appar
in Fig. 2 may therefore be beyond present capabilities.

-
-

FIG. 2. Contour plot of loss probability~26! as a function of
reduced frequency and reduced wave vectork' /kp proportional to
the angle of deflection. The parameters aren/vp50.3 andb50.5.
1-4
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VI. CONCLUSION

The energy loss of a pointlike charge distribution movi
with constant velocity in a dispersive medium has been
tained using macroscopic electrodynamics. The Four
transformed potentials are obtained by substituting the c
acteristic phase velocitycn5c/n in the corresponding
vacuum expressions with sourcesrs /e and j s /e modified to
account for polarization. In the source rest frame the fie
are static but the constitutive relations are more complica
~bianisotropic! compared to the medium rest frame. In eith
case, the potentials can be obtained from a nonlocal
anisotropic Poisson equation where the degree of anisot
is given by the dispersive Lorentz factorgn .

As an example, the energy-loss probability of a sim
Drude metal has been calculated as a function of radial
mentum transfer. Although the single-pole permittivity~30!
includes only temporal dispersion the angle-resolved sp
trum does show relativistic corrections. While energy lo
near the plasma resonance is essentially a classical pro
since the phase velocity is large and the Lorentz facto
close to unity, retardation effects are observed at lower e
gies where the phase velocity in the medium becomes s
compared toc. The small value of the Lorentz factorgn
s
8
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effectively increases the radial length scale over which
medium is excited thereby enhancing the relativistic sp
trum over its classical counterpart. The linear variation o
served at energies well below\n due to Ohmic dissipation
becomes more steep and a possible second maximum o
ring for small scattering angles becomes more pronoun
when relativistic effects are taken into account.

While the resolution needed to observe the macrosco
behavior described above cannot be obtained in a TEM
periment using a thin metal film, the composite metal
structures recently fabricated@35# may provide a possible
alternative. On a macroscopic length scale the effective
electric function is of the form~30! with plasma frequency in
the microwave region@36,37#, and since the structure can b
made of thin wires in vacuum small momentum excitatio
may be probed using ballistic electrons. A further interest
aspect is that metallic structures of this type can be desig
with exotic magnetic properties@38#.
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