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Relativistic energy loss in a dispersive medium
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The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking
advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz
factor obtained by replacing the vacuum veloditypy the characteristic phase velocityn, wheren is the
complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in
detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical
approximation.
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. INTRODUCTION Sec. Il by the replacement—c,=c/n, wherec is the
vacuum velocity of light and the complex index of refraction
The study of charged particles passing through matter hag defined amn?=eu, wheree is the effective permittivity
a long history[1,2] and remains of current interest in modern and x is the permeability. Since energy losses are smpall,
electron energy-loss spectroscofp$,4]. Energy 10ss is can be assumed constant and advantage can be made of a
caused by close-range collisions or many-body excitations iframe of reference where the source distribution is at rest.
the medium due to polarization and magnetizat[&i6].  The static potentials, given in Sec. Ill, differ from the clas-
Slow electrons incident on a metal foil at a velocity much gjq4] approximation by a dispersive Lorentz factgr. The
smaller than the Fermi velocity will be screened on a |e”9”‘energy loss of a point charge is obtained in Sec. IV and the
scale comparable to atomic distances, while screening is ®%ngle-resolved spectrum of a Drude conductor is discussed
pected to be less effective for relativistic electrons. The Lorj, Sec. V. It is shown that Ohmic losses at low energies are

entz factor of the source electrons, enhanced by frequency-dependent length contraction.
— _p2\—12
y=(1=57"" @ Il. MAXWELL EQUATIONS
where B=uvg/c is proportional to the total energyy The electric field and the magnetic induction
=Eyin/mc+1, wheremc®=511 keV is the electron rest
energy. A transmission electron microscdp&M) operated E=—-V¢—0JAlgct, B=VXA 3

at the energ¥,;,~ 100 keV, therefore has the typical value,

y~1.2, corresponding tg3~0.5. Relativistic effects can are defined in terms of the potentialg,@) that form a

therefore be expected in the energy-loss specfrix®]. four-vector[17,18. The total four-currentdp,j) acting as a
Semiclassically, an excited mode corresponds to the ersource term in the Maxwell equations

ergy lossftiw<E;, and momentum transfeik<ymug, .
where the deflection angle V-E=4mp, cVXB=JE/dt+4m] 4

a=hk, /ymug 2) includes the exte_rnallsourcep(s,js) as well as the induced
four-current €p,.j,+im) representing the effects of polar-

is the ratio of the electron de Broglie wavelength to theization and magnetization. In the Minkowski formulation,

length scale\ | =2#/k, , measuring the size of excitations
perpendicular to the electron path. Since the Compton wave-
length has the value/mc=0.024 A, the macroscopic exci-
tations will in general have small scattering angles.

The detailed geometry of the sample introduces furthe
structure in the loss spectrum. Usually, simple boundaries D=€E, B=puH, (6)
have been assumed such as semi-infinite media or cylinders
[10-12, while spherical geometry is of particular interest for gllowing the four-current to be written as
electron energy loss in nanopartic(€13]. In this study, all
effects due to surface excitations and transition radiation (cp,j)=(cpsl e, ujs+ oE). (7)
[14-14 are neglected assuming an infinite medium.

Starting from the covariant four-potentiel7,18 in Fou-  The total conductivityo = —iw(ew—1)/47 is the sum of a
rier space a dispersive, nonlocal wave equation is obtained ierm o= —iwy,, due to polarization, and a magnetic con-

tribution o,= —iweu x, producing the current

V.-D=4mps, cVXH=dD/dt+4mj, 5

the inductions are related to the fields by Fourier transformed
F’:md dispersivg¢19] constitutive relations

*Electronic address: jmh@aue.auc.dk im=(u—1)js+onE, (8
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wherey.= (e—1)/47 andx,= (1— 1/u) /44 are the electric  trostatic approximationy,=1, the axial length scales are

and magnetic susceptibility, respectively. Lorentz contracted by the factor, and propagating waves
The Fourier transform of Eq4) can be written as are possible, if
(K= w?Ic?)(¢,A)=4m(p,j/c) +(wlc,k) (k-A=wglc), ki +kZ/v5=0. (16)
C) To obtain the potentials in the source rest frame, one ob-

) serves that Eq(9) is covariant. Using the Lorentz transfor-
where (w/c,k) is the four-wave vector and the scalar four- mation the Poisson equation

product @/c,k)-(¢,A) appearing in the last term is arbi-
trary according to the gauge transformation k'2(¢'" ,AY)=4m(p',jl/c) a7

(p,A)—(d,A)+i(wlc,k)D, (10)  is obtained, wherg,=j;=0, and the steady magnetization

currentj/, is responsible for a transverse vector potential
where® is an arbitrary function. When the four-curre(® Ar=A—A_, while the longitudinal par, =k(k-A)/k? is
is inserted in Eq(9), it can be seen that this term vanishes inarbitrary as can be seen from the gauge transformation

the Lorentz gauge, The constitutive relations, defined in the medium rest frame,
are not covariant, however, and the inverse Lorentz transfor-
(wlcy,K) - (¢,AlN)=0, (1) mation must be used to transform Ed) to the primed sys-

) o ) tem. The Poisson equatigh7) becomes anisotrop[@2] and
wherec,=c/n is the phase velocity in the medium and the the potentials are not simplified by working in the source rest
vector potential is modified according to the fact thaind  frame. Similar considerations apply to the electromagnetic
A have the same dimension in Gaussian units. The Fourieke|ds. The electric fieldE= —i(k, +k,/y2) ¢ and the azi-

transformeq potentials are therefore given by the nonlocal, ihal magnetic inductioB= eu BX E transform as
wave equation
2_ 2.2 . E/ =y(E.+BXB,), E;=E,, (18
(k*=wcy)(p,Aln)=4m(ps,js/Cn)l €, (12
. . . BL=Y(BL_E><EL)! BézBZI (19)
where the factor ¥ accounts for polarization. The modified
dispersion relationw=c.k imply that wave vectors are with similar relations forD and H. Applying the inverse
scaled by the complex numbarwhile the frequency is un- Lorentz transformation, the Minkowski relatiofs?7] follow
changed compared to a plane wave propagating in vacuunfrom Eq. (6), where the radial components can be written as
’ 2 __ ’ 2 _ ’
Ill. SOURCE REST FRAME Difva=eBi/y = (ep=1)BXHL, (20)
The source, composed of a single charge or a bh B} /vi=uH|/¥*+(en—1)BXE], (21)
of electrons, is assumed at rest in a frame of reference mov- , , o S _
ing at constant velocitys relative to the laboratorgaxis. In ~ While D, =¢E, andB, = wH, . Since the medium is moving
the rest frame, denoted by primes, four-vectors are given b§it velocity —vs, the constitutive relations become bianiso-

the Lorentz transformatioft.7] tropic [23]. From Ampere’s lawk’ X H'=0, the magnetic
field can be written as the gradient of a scalar function and
o' =y(p—BA), A=A, A,=y(A,—B9¢), the relation[24],
(13
(k! + vk} v)-H' =0, (22)
where the subscript. denotes radial components. Since, . ] o ) )
' =0, the Doppler relation imply H' = 0. While the magnetic field vanishes in the source
rest frame, the electric displacemedt = e(y2E| /% E.)
w=vK,, (14) gives rise to both a longitudinal electric field and an azi-

muthal magnetic induction.

corresponding to the Galilean variable=z—uvt follows
from the Lorentz transformation of frequency while length IV. ENERGY LOSS

contraction can be written as=2'/y, ork,= yk; . Since the The source-charge distribution is assumed sharply fo-
source current is axigls=psvs, the vector potential can be cused along the trajectory

written asA= eu B¢, where the electric potential
ps=QpsA2)o(r )27, (23

where the axial profileg, reduces to & function for a point
is determined by an anisotropic Poisson equation and thsource resulting in the Fourier componept=Q/(2)3.
dispersive Lorentz factoy, is obtained by substitutingg,, = The work done against the induced fields can be obtained in
=ng in the vacuum expressiofl). Compared to the elec- either of the frames considered in Sec. Ill. The static force

b="4mpl (K2 +K2/y2) (15)
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density isp.E’(r'), whereE| = yE, /2. Inserting Fourier ~The total charge density induced by a point charge is
components the integral over the charge distribution can b@!ven as

written as

Q 1 o
2 pP= Rej _JO(rLkL)eI ZZkJ_ dkl dkz, (28)
5 _Am|pg©le (2m)? €
F=(27T) j —Ikﬁdk, (24)
YnKL T k; where J, is the zero-order Bessel function of the first kind

) . _ _ [21]. If the refractive index depends only on frequency, the
using ps(—k;) =ps (k;). The axial component is the energy corresponding potential can be written as
loss per unit path length or stopping power. In cylinder co-

ordinates 1 3
¢:(Q/W)Ref_KO(rLkz/7n)el Z#dk;, (29
e(ky)
whereK, is the zero-order modified Bessel function of the
second kind21,28. The potential is an asymmetric function
where a relativistic-loss probabilifi2] has been defined as of z in order for energy loss to take place and relativistic
corrections to the energy spectrum are ultimately related to

_FZIJ P(k, ,k,)k, k,dk, dk,, (25)
0

—1/e the shape of Eq29) determined by the Lorentz factor, .
P=(2/m)Q*Im| —5——|, (26)
Yok Tk V. DRUDE CONDUCTOR
using e(—k,) = €* (k,) with similar relations foru and y, . A number of simple metals can be described by the Drude
The classical probability permittivity [29]
Po=(2/m)Q? Im{— 1/e}/K? 27 €(w)=1- w)l(w*+ivw), (30

is obtained in the limit of small source velocitg2<1, cor-  Where the plasma frequency is given as

responding toy,=1. Relativistic corrections caused by a > 2

Lorentz factorvy, different from unity affect the loss prob- wp=4mNnoe’/m (31)

ability in proportion to the radial wave vector that in turn is

proportional to the deflection angle given by H@). De-

tailed information can therefore be obtained from the angle

resolved energy-loss spectrum recorded as a functidn of

Electrons passing through the sample with no deflection, Amoy=wil(v—iw), (32

k, =0, produces a purely classical spectrum and the zero- PP

loss peakk,— 0, diverges as will be discussed in Sec. V B. where the damping rate is assumed small compared to the
The loss function Irfi—1/e} is a positive quantity imply- plasma frequency. The Fermi velocity of electrons is of the

ing that the imaginary part of the permittivity must be posi- order of the Bohr velocityg=e?/#, wherevg/c~1/137

tive while the real part is constrained by the Kramers-Kronigand the response of the medium can therefore be treated

relations[5,6]. In the static limitw— 0 the loss function has classically.

to vanish. In a conductor, the real part of the conductivity The damped plasma resonance gives rise to a peak in the

approaches a finite value argtherefore diverges whilg; loss function Inj— 1/e} slightly below the plasma frequency

vanishes in a dielectric insulator. At high frequencies, theand sincee(w,)~iv/w,, to first order, the peak is propor-

material response approaches that of vacuem/l andy,  tional to w,/v. At low frequenciesw?<v?, the imaginary

—7. part of the permittivitye~ wf,(— 1+iv/w)/v? becomes large
Assuming a plane wave propagating along zfexis with  and the response is dominated by Ohmic dissipation. The

real k, and radial wave vectok, =ik,/y,, the constraint |oss function decreases linearly with frequencyy +ni/e}

Re[1/y,;>0 must be imposed if Coulomb-likeelliptic)  ~yw/w?2, at a rate proportional to the static resistivity.
modes are to be radially evanescent, whilg1fy,}<0 is

required for Cherenkovhyperbolig modes to radiate away
from the source trajectoiyl4]. The Lorentz factory, is thus
constrained to the first quadrant. Although the permittivity(30) depends only on frequency

In a transparent medium the refractive index is nearlyspatial dispersion is implied because of the Doppler relation
real. Energy loss due to Cherenkov radiati@f—27 is pos-  (14). A polarization wakg27,30,3], static in the source rest
sible if nis Sufﬁcienﬂy |arge SO that/n becomes imaginary_ frame, is formed behind the source. The induced Charge is
The loss probability(26) then has a maximum on the cone, confined to the negative axis as follows from Eq(28)
|'vnlk, =k,, where the direction of the wave vector is given using the integral fIkJo(k)dk=qJ;(q) and the limit
by Re[,}cosé~1. In general, the diagonal Re>}=1 in  qJ;(qr)— &(r) for g— oo [28] corresponding to a vanishing
the complexy,, plane marks the border for Cherenkov losses.microscopic cutoff. The detailed charge profile is determined

andng is the density of conduction electrons with effective
massm. Magnetic effects are neglecteg € 1) and the con-
ductivity is given as

A. Induced charge
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FIG. 1. Angle-resolved energy-loss spectrum of a Drude con-
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FIG. 2. Contour plot of loss probability26) as a function of

ductor as a function of reduced frequency at the fixed radial moreduced frequency and reduced wave vektotk, proportional to

mentum transferk, /k,=0.3, and damping ratey/w,=0.3. The
relativistic spectrum aB=0.5 (solid line) is compared to the clas-
sical approximatior{dashed ling

by the zeros ot which are in the lower frequency half plane
at w=—iv/2*w,, wherew’=w’—v?/4. The integral over
axial wave vectors gives the profile

pA2)=(wilvsw,)exp(z/N,)sin2mzIN), (39
whereA=2mvs/w, is the wavelength of oscillations in the
medium rest frame whilad ,=2v¢/v is the damping length.
At small damping rateu2<wf,, the axial wavelength ia
~N\p= 271'/kp , wherekpz wp/vs.

B. Energy-loss spectrum

The relativistic-loss probabilityf26) is compared to the
classical approximatiof27) in Fig. 1. The energy-loss spec-
trum in units of 1V<f) is shown as a function of reduced fre-
quency,w/w,=k,/K,, at a fixed angle of deflection given
by the reduced wave vectdr /k,=0.3.

the angle of deflection. The parameters afe,=0.3 andB=0.5.

finite scattering angle%, >0, the linear decrease of the loss
function eventually takes over at low frequencies. Given a
Lorentz factor that behaves ag~\ivw/Bw,, the spec-
trum decreases as

P~(w/v)(,8kp/kL)4 (39

in the limit «— 0. Compared to the classical expressin
~(vw/w§)(kp/ki)2, the slope of the relativistic curve is
larger by the ratio

PIPy=(wy/v)2B*ky/k,)?, (35)

as indicated in Fig. 1. While the classical loss vanishes pro-
portional to the resistivity the relativistic expressigd4)
shows that the low-energy spectrum decreases proportional
to the conductivity. Relativistic corrections, caused by the
vector potential, are thus a direct consequence of the current

Near resonance the classical loss probability behaves injaduced at low frequencies.

way similar to the loss function, since the denomin&ois

If the angle of deflection is sufficiently small, the classical

approximately constant. This regime is also electrostatic ithrobability (27) has a local maximum well below the Drude

nature since the Lorentz factor given ﬂ%v 1+ 6(w_p)32 is
close to unity while the refractive index~ v/ w €' ™ has
modulus less than 1. Thgeal phase velocity is larger than

damping rate at the frequenay~vgk, corresponding to
axial length scales much larger than the damping length.
While this condition is not fulfilled in Fig. 1, an additional

c and relativistic corrections to the energy-loss spectrum argeak is nevertheless present in the relativistic spectrum due

therefore small.

the presence of the factar, in the denominator of the loss

As the frequency is lowered larger axial length scales arg@robability (26). As shown in Fig. 2 such a peak occurs at

probed[32-34. At the Drude damping rates~ v corre-

low frequencies provided the radial wave vector is smaller

sponding to axial distances on the order of the dampinghankL~o_45<p_

length, the real part ok is large and negative while the

Since plasma frequencies are typically in the ultraviolet,

imaginary part is large and positive. The Lorentz factor isfiw,~15 eV, the characteristic lengtk, is about 400 A

proportional tov/w, and theyﬁkf term in the denominator

for 100-keV electrons correspondingkg~0.015 A™*. The

of Eq. (26) leads to an increase of the relativistic energy lossdamping length may be an order of magnitude larger. Present

over its classical counterpart as shown in Fig. 1.
Electrons that experience no deflectidn,=0, will pro-
duce a zero-loss pedl82—34 that diverges proportional to

electron-energy-loss spectroscopy instruments have an en-
ergy resolution around 0.1 eV while the wave-vector resolu-
tion is of the order of 0.05 Al. The angular resolution re-

vl v due to the long-range nature of the Coulomb potential agjuired to discriminate the low-frequency structure apparent

can be seen from either of the expressi@® and(27). At

in Fig. 2 may therefore be beyond present capabilities.
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VI. CONCLUSION effectively increases the radial length scale over which the

The enerav loss of a pointlike charge distribution movin medium is excited thereby enhancing the relativistic spec-
gy P 9 Ytrum over its classical counterpart. The linear variation ob-

with constant velocity in a dispersive medium has been ob- d . Il belobw d Ohmic dissinati
tained using macroscopic electrodynamics. The Fourierz® V< at energies well be ue to Ohmic dissipation

. . o becomes more steep and a possible second maximum occur-
transformed potentials are obtained by substituting the char=

teristi h locitve. —c/n in_th di ring for small scattering angles becomes more pronounced
xcirl'fnlcexp r::ioxg Sv?tlhw;o_ufc,ggman d('a /Corrrzgfjﬁ?er:j ng when relativistic effects are taken into account.

P o € Is!€ ! While the resolution needed to observe the macroscopic
account for polarization. In the source rest frame the field ehavior described above cannot be obtained in a TEM ex-
are static but the constitutive relations are more complicate%erimem using a thin metal film, the composite metallic
(bianisotropig compared to the me<_j|um rest frame. In eltherS ructures recently fabricatel@®s| rr’1ay provide a possible
case, thg potgntlals can 'be obtained from a nonlopal aNBiternative. On a macroscopic length scale the effective di-
anisotropic P0|ss_on equation where the degree of aniSOORYa ctric function is of the forng30) with plasma frequency in
is given by the dispersive Lorentz factgp. the microwave regiofi36,37], and since the structure can be

DrAdS a:: fxlarr]npli, thne e?erlg);-lgss pr?bﬁbt'i“tz o]f radsi"rfr:emade of thin wires in vacuum small momentum excitations
ude metal nas been caicuiated as a function of radia Or'nay be probed using ballistic electrons. A further interesting
mentum transfer. Although the single-pole permittivi80)

: . ; aspect is that metallic structures of this type can be designed
includes only temporal dispersion the angle-resolved SPeGith exotic magnetic propertidss]
trum does show relativistic corrections. While energy loss '

near the plasma resonance is essentially a classical process

since the phase veloqlty is large and the Lorentz factor is ACKNOWLEDGMENTS
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