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Analytical local electron-electron interaction model potentials for atoms
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Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the
computational effort in electronic structure calculations. The development of such potentials has a long history,
but some promising ideas have not yet been taken into account for further improvements. We determine a local
electron-electron interaction potential akin to those suggested by Greenet al. @Phys. Rev.184, 1 ~1969!#, which
are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calcu-
lations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent
local potentials, because the origin behavior of such potentials is different for different shells as has been
explicated analytically@J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A65, 032518~2002!#. It is found
that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for
different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding
localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number
of fit parameters. It turns out that the shell-dependent form of Green’s potential, which we also derive, yields
results of comparable accuracy using only one shell-dependent parameter.

DOI: 10.1103/PhysRevA.66.022717 PACS number~s!: 34.20.2b, 31.25.2v
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I. INTRODUCTION

The search for local model potentials has a long hist
~cf. @1–3# for reviews! since they simplify electronic struc
ture and scattering calculations significantly. With these
tentials, Hartree-Fock-like equations for the determination
orbitals are easily solvable. Analytical local potentials, wh
depend only on one electronic coordinate, lead to homo
neous equations that are by construction not of the s
consistent-field type and, thus, need not be evaluated it
tively. The time-consuming evaluation of two-electro
integrals is also avoided.

These model potentials, in particular those proposed
Greenet al. @1,4,5# which will be described below, have bee
used for the calculation of electron-atom and atom-ion s
tering @6–8#, electron impact excitation and ionizatio
@9–11#, antiproton-atomic collisions@12#, oscillator strengths
@9# and electron-capture processes@13,14#. Further model
potentials that were applied in recent scattering stud
@15,16#, have also been presented@17–19#. In addition, these
potentials provide an efficient way to obtaining the start
functions for computationally more demanding calculatio
of the Hartree-Fock~HF! or post-Hartree-Fock type@20–22#.
Analytical independent particle model potentials can also
used in phenomenological studies for the qualitative und
standing of atomic properties@2,3#. The development of such
accurate analytical model potentials is, thus, highly de
able.

In 1969 Greenet al. @1# presented a very successful she
independent model potential of simple analytical form.
using a Thomas-Fermi-Dirac energy functional, Greenet al.
obtained a semiempirical formula for atomic total energi
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Poisson’s equation was used in their approach to gain a
lytical expressions for the electron density. It was found t
at least the 1s shell requires a separate treatment@23,24#.
Later, Green made the proposition to adjust different pot
tials for differentl quantum numbers@2#, but this has never
been carried out.

An extensive parametrization for nonrelativistic atom
structure calculations has been given by Green and
workers @5,25#, while the corresponding relativistic param
eters are only available for a small number of neutral ato
@4#. Parameters for light negative ions were derived in 19
@26#. Fits to Thomas-Fermi or Hartree-Fock-Slater screen
functions, Hartree-Fock-Slater or HF energy eigenvalues
electron spectroscopy for chemical andalysis data@1,4#, as
well as to numerical potentials@26#, which were obtained by
using the optimized effective-potential method by Talm
and Shadwick@27#, have been performed. Moreover, vari
tional minimization of total energy expectation values, whi
leads to a variational procedure with respect to the par
eters of the model potential, has been used@5,25,28,29#.

Suggestions for a refinement of the Green’s potential
electron-atom scattering processes can be found in R
@30,31#. A Yukawa-type potential was used for similar pu
poses@32#. In a related study, an energy-dependent mo
potential for scattering calculations was obtained@33#.

In this work, we explore those features of local mod
potentials, which have not yet been studied by Greenet al.,
namely, shell-dependent analytical potential functions t
allow a systematic improvement of the potential ansa
From a detailed analysis in Ref.@34# it appears obvious tha
shell-dependentanalytical independent particle model pote
tials could yield improved orbitals and energy expectat
values. Moreover, the large number of fit parameters
Green’s potential should be greatly reduced—if possible
through the particular analytical form of the potential and
extensive use of analytically known constraints.
©2002 The American Physical Society17-1
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The paper is organized as follows. In Sec. II the homo
neous HF and DFC~Dirac-Fock-Coulomb! equations are
presented to demonstrate where exactly the local model
tential enters. Section III deals with the proposition of a ge
eralized model potential and introduces constraints for
model potential parameters. An analysis of the parametr
model potentials is carried out in Sec. IV. In addition, t
accurate, shell-independent Green potential is given in
shell-dependent form in Sec. IV D.

II. HOMOGENEOUS SCF EQUATIONS

The HF equations for atoms can be written in homo
neous form

S 2
1

2

d2

dr2
1

l i~ l i11!

2r 2
1Vnuc~r !1Wi

S~r !2e i D Pi~r !50,

~1!

whereWi
S(r ) represents the quasilocal HF electron-elect

interaction potential~EEIP! ~compare Ref.@34# for details!,
which shall be replaced by a model potential.

In DFC theory we have analogously

S Vnuc~r !1Wi
P~r !2e i Ai

†~r !

Ai~r ! Vnuc~r !1Wi
Q~r !22c22e i

D
3S Pi~r !

Qi~r !
D 5S 0

0D , ~2!

with

Ai~r !5cS d

dr
1

k i

r D and Ai
†52cS d

dr
2

k i

r D . ~3!

Here,Wi
P(r ) andWi

Q(r ) are the contributions resulting from
the electron-electron interaction. The situation here is m
difficult than in the nonrelativistic case, since two comp
nents of the total EEIP have to be considered, which need
be equal for a given shell@34#.

III. ANALYTICAL INDEPENDENT PARTICLE MODEL
POTENTIALS

A. The Green potential

The analytical local model potential presented by Gre
et al. in 1969 has the form

VGreen~r !5
~N21!

r F12
j

h@exp~jr !21#1jG , ~4!

whereN is the number of electrons,r is the radial variable,
andj andh are adjustable parameters, which show a ne
linear dependence on the nuclear chargeZ for a givenN @5#,

j~N,Z!5j0~N!1j1~N!@Z2N#, ~5!

h~N,Z!5h0~N!1h1~N!@Z2N#. ~6!

The asymptotic behavior of the potential is
02271
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lim
r→`

VGreen~r !5
N21

r
, ~7!

which resembles the Coulomb interaction of an electron w
the remaining cation at large distances~provided that the
electron-nucleus potential is added! @27,35#. The series ex-
pansion of the potential at the origin yields

lim
r→0

VGreen~r !5~N21!hF11
1

2
~22h1j!r 1

1

6
~6h226hj

1j2!r 22
1

24
~24h3236h2j114hj22j3!r 3

1O~r 4!G . ~8!

The value of this potential at the originVGreen(0)5(N
21)h may be chosen such thath reproduces the origin be
havior of the HF- and DFC-EEIPs, though this option h
never been used due to the lack of analytical expressions
HF- and DFC-EEIPs at the origin. With the analysis given
Ref. @34# this can be overcome. In addition, a she
dependent model can be introduced, as demanded by
analysis of the origin behavior of the HF-EEIPs@34#. There-
fore, we determine shell-dependent values ofh i such that

h i5
1

N21
Wi

S~0!, ~9!

to obtain

Vi
Green~0!5Wi

S~0!. ~10!

The indexi denotes the shell dependence of this potentiai
is a composite index for the$ni ,l i% set of quantum numbers!.
Note that Eq.~9! reduces the number of independent fit p
rameters in Eq.~4! by a factor of 1/2. We derived a shel
dependent set of optimized parametersj i for the Green po-
tential, which are the only freely adjustable paramet
remaining. We refer to Sec. IV D for details on this para
etrization since we would like to proceed in order to discu
the implications of shell dependence and fixed origin beh
ior for systematically improvable analytical model potentia

B. A generalized model potential

Since the analytical form of the Green potential does
allow us to systematically improve on it, we step back to
Yukawa-type potential~cf. Ref. @28# for similar potentials!,

Vi
GAMP~r !5

N21

r (
k50

kmax

ak,i exp~2akj i r !, ~11!

as a generalized analytical model potential~GAMP!. The
summation can be systematically extended to higher ter
In general, we takeak5k. Because of zero or slightly nega
tive slopes of the HF-EEIPs, Gauss-type functio
exp(2bkjir

2), may be added, but tests have not shown a
7-2
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ANALYTICAL LOCAL ELECTRON-ELECTRON . . . PHYSICAL REVIEW A66, 022717 ~2002!
significant improvement. Since a shell-dependent potentia
considered, all parameters depend on the quantum num
and, additionally, on the nuclear chargeZ and the number of
electronsN,

j i5j~Z,N,ni ,l i !, ~12!

ak,i5ak~Z,N,ni ,l i !. ~13!

Note that the parametersj i in the above formula are no
identical to Green’sj. The shell dependence increases
number of parameters largely. Therefore, it is mandatory
find efficient interpolation formulas to reduce the number
parameters to the largest extent. We come back to this as
in Sec. IV B.

The long-range behavior of the GAMP is given by

lim
r→`

Vi
GAMP~r !5

N21

r
a0,i . ~14!

Since the correct asymptotic form of the EEIP
lim

r→`
W(r )5(N21)/r must be reproduced, we obta

a0,i51 as a first constraint on the GAMP parameters. In
short-range limit, a Taylor series expansion of Eq.~11! yields

Vi
GAMP~r !5

N21

r (
k50

kmax

ak,iF12kj i r 1
k2j i

2

2
r 21O~r 3!G .

~15!

Since a singularity at the origin must not occur according
the results for the origin behavior for the HF-EEIPs in R
@34#,

Wi
S~0!5^1/R&2^r i i /r &

2
1

2 (
j ,l j< l i

D jAi j ( l i2 l j )
HF ^r i j /r l i2 l j 11&

a0,j
HF

a0,i
HF

,

~16!

where we used the definition of the expectation value

^1/R&5(
i

Di^r i i /r &, r i i 5Pi~r !•Pi~r !, ~17!

and all other coefficients as defined in Ref.@34#. We force

(
k50

kmax

ak,i50, ~18!

to annihilate the 1/r prefactor in Eq.~15!. This becomes

(
k51

kmax

ak,i521, ~19!

if we explicitly usea0,i51 ~see above!. Equation~19! can be
fulfilled by setting

a1,i5212 (
k52

kmax

ak,i , ~20!
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which fixes the second expansion parameterak,i . Since we
want the model potential to behave exactly like the HF-EE
at the origin, we introduce the parameterh i ,

h i5h~N,Z,ni ,l i !5
1

N21
Wi

S~0!, ~21!

in analogy to the parameterh in VGreen(r ). Then, we con-
struct a third constraint

(
k51

kmax

kak,i52
h i

j i
, ~22!

to ensure thatVi
GAMP(0)5Wi

S(0). This is fulfilled if

a2,i52
h i

j i
112 (

k53

kmax

~k21!ak,i . ~23!

After this analysis of the analytical short- and long-ran
behavior we are able to fix the first three expansion para
eters in the GAMP in Eq.~11!.

The last constraint can readily be extended to the rela
istic DFC case. The only difference is that the two mod
potentials,Vi

P,GAMP(r ) and Vi
Q,GAMP(r ), should be applied,

since Wi
P(r ) and Wi

Q(r ) are in general not identical@34#.
Therefore, two sets of parameters are used, and espec
two constantsh i

P and h i
Q are necessary to fix the origi

behavior of both components separately,

h i
P5hP~N,Z,ni ,l i !5

1

N21
Wi

P~0!, ~24!

h i
Q5hQ~N,Z,ni ,l i !5

1

N21
Wi

Q~0!. ~25!

Of course, ifh i
P'h i

Q and alsoj i
P'j i

Q andak,i
P 'ak,i

Q within
the precision of the GAMP ansatz, we may use a single
tential function forVi

P,GAMP(r ) andVi
Q,GAMP(r ). This should

be the case for light atoms withZ<50. The analytical ex-
pressions for the origin values of the DFC-EEIPs are sim
to those in Eq.~16! and were also derived in Ref.@34#.

IV. PARAMETRIZATION OF SHELL-DEPENDENT
POTENTIALS

A. Fit expression

To analyze the GAMP ansatz, we determined the para
eters of the potential by requiring that the GAMP shall fulfi
the HF ~DFC! equations. The choice for the fit procedu
requires the time-consuming solution of the HF equatio
However, this is necessary only for the neutral atoms a
some ions. The benefit of the GAMP will be for ions that a
not considered in the fit as well as for more sophistica
calculations such as scattering calculations. The homo
neous HF equations~1! discretized on an equidistant gri
should be fulfilled at every grid point, provided the exa
HF-EEIPWi

S(r ) is used. A model potential can be optimize
such that
7-3



b
ul
he

he
n

ta
ed

s
ca
ig
ia
e

r-
th

nt

e

ls

gin.
the

on
tial.

ere
-

en
ent

e

rs,
ls
for
ine

ly
ter,

ells
all
of

s
ined

hat
e
IP.
r all
ent.
hip
ical

tri-
ce

JOHANNES NEUGEBAUER, MARKUS REIHER, AND JUERGEN HINZE PHYSICAL REVIEW A66, 022717 ~2002!
(
p F S 2

1

2

d2

dr2U
r 5r p

1
l i~ l i11!

2r p
2

1Vnuc~r p!

1Vi
GAMP~r p!2e i D Pi~r p!G 2

5min, ~26!

whereby the radial functions and orbital energies must
given as reference data obtained from numerical HF calc
tions. The summation is over all grid points. For this fit, t
Levenberg-Marquardt optimization algorithm@36# was used,
which is a fast method requiring the first derivatives of t
function to be minimized with respect to the optimizatio
parameters~see the Appendix for details on the compu
tional methodology!. This approach can readily be extend
to the relativistic case.

B. Parameters inGAMP

As the optimum fit for the potential required many te
calculations, we should briefly discuss results from these
culations since they provide a detailed insight into the s
nificance of different terms in the expression of the potent
Furthermore, the final parametrization can only be und
stood in the light of these results.

Exploratory studies showed that the GAMP in Eq.~11!
should be used with at leastkmax53, i.e., two freely adjust-
able parameters,j i and a3,i , remain. If only one adjustable
parameter (kmax52) is used, the accuracy of orbital ene
gies, total energies, and radial functions obtained with
model potential is not sufficient. Additionally, ifkmax.3 is
chosen, potentials and wave functions are not significa
improved when compared tokmax53, which is, of course,
due to the fact that exponential functions are introduc
which decrease much faster than the first three terms@ak
5k in Eq. ~11!#. Figure 1 depicts the model potentia
Vi

GAMP(r ) for the 1s and 3d orbitals of Zn forkmax52 and

FIG. 1. NonrelativisticVi
GAMP(r ) for 1s and 3d shells of Zn

(Z5N530) and Green’s model potentialVGreen(r ) for comparison.
02271
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kmax53. The shell-independent potentialVGreen(r ) is also
displayed. It is evident thatVGreen(r ) can only reproduce a
mean value of the shell-dependent potentials at the ori
Furthermore, at larger distances, the differences between
potentials for the different shells vanish, which is the reas
for the good performance of a shell-independent poten
But particularly for the 1s orbital, deviations between
V1s

GAMP(r ) andVGreen(r ) become large.
To obtain a shell-dependent potentialVi

GAMP(r ) with an-
satz Eq.~11!, we first determined the valuesh i , which fix
the origin value of the model potentials. These values w
calculated according to Eq.~21!, using the analytical expres
sions forWi

S(0) given in Ref.@34#. In doing so, we recog-
nized a systematic dependence ofh i on the number of elec-
trons N for neutral atoms. The differences betwe
parameters for two particular shells are almost independ
of N. All values are displayed in Fig. 2. Additionally, th
parametersj i for neutral atoms are shown in this figure.

Since it is possible to interpolate the GAMP paramete
only very few coefficients for the interpolation polynomia
are needed for the complete determination of the GAMP
any system. The following formula can be used to determ
parametersh i(N) for all neutral atoms (Z5N):

h i~N!5b0
i 1b1AN. ~27!

The coefficients in this equation are given in Table I. On
one shell-dependent coefficient is introduced per parame
because the curves in Fig. 2 are almost parallel for all sh
and, thus, differ only by a constant. Hence, only a very sm
number of coefficients remain for the whole periodic table
elements.

We also observe that the parametersj i show a trend very
similar to that ofh i ~cf. Fig. 2!. Therefore, Fig. 2 also plots
j i(N) as a function of the values ofh i(N) for some shellsi
of neutral atoms. All curves are perfect straight lines~with an
exception at small electron numbers!. Hence, the parameter
j i(N) for neutral atoms are redundant and can be determ
via a relationship of the form

j i~N!5k0,i1k1h i~N!, ~28!

if the valuesh i(Z5N) are known. The redundancy ofj i(N)
as expressed in Eq.~28! has the remarkable consequence t
the exponential terms of ther dependence of the GAMP ar
completely determined by the origin behavior of the EE
Since the slopes of the curves are almost the same fo
shells, only the axis intercept is regarded as shell depend
These coefficients are also given in Table I. This relations
provides further means to reduce the number of empir
values for the GAMP.

The results obtained with the model potential parame
zation so far need to be improved particularly for the valen
shells by using an extended GAMP ansatz,

Vi
GAMP~r !5

N21

r F (
k50

3

ak,i exp~2kj i r !1br2 exp~2j i r !G .

~29!
7-4
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FIG. 2. GAMP parametersh i(Z,N) and j i(Z5N) for shells 1s to 3d of neutral atoms with 2<Z<91, and parametersj i(Z5N) for
shells 1s, 2p, and 3d as functions ofh i(Z5N).
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The additional term introduced in the potential vanishes
the origin and at long distances, such that neither the s
nor the asymptotic behavior of the potential are modifi
However, it leads to greater flexibility and better accuracy
the potential.

For the parametersh i and j i we use the interpolation
formulas, Eqs.~27! and ~28!, as obtained above. The add
tional parametersa3,i andb are fitted to minimize the differ-
ences between the numerical HF~DFC! radial functions and
those obtained with the corresponding extended GA
potentials.1 These parameters may also be interpolated
many atoms, but this interpolation usually leads to a red

1This approach was also tested for the adjustment of the pa
etersj i , but the parameters obtained with this method cannot ea
be interpolated, such that we would not be able to derive a com
potential.
02271
t
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c-

tion of the accuracy of wave functions and total energi
Therefore, a list of all parameters inFORTRAN code is depos-
ited as supplementary material2 or can be obtained from on
of the authors~M.R.! to provide all parameters in an easi
accessible manner.

C. GAMP parameters for ionic systems

In Eqs.~5! and~6! it was supposed that the parameters
Green’s original shell-independent potential show to a go
approximation a linear dependence on@Z2N#. We find that
the GAMP parameters may also be obtained as linear fu
tions of@Z2N# as is demonstrated for Zn-like ions in Fig.
Deviations from linearity occur only for the parametersbim-

ly
ct

2See Ref.@40#.
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and only for highly charged ions (@Z2N#.10). In these
casesbi may be represented by a quadratic function of@Z
2N#.

This systematic behavior is a general feature for all io
It is thus possible to calculate the parameters for any ion
the parameters for the corresponding neutral atom and
slopes of these linear functions are known.

D. Shell-dependent parametrization of Green’s potential

The results obtained with the extended GAMP ansatz
in many cases~in particular for heavy atoms with large num
bers of electrons! significantly more accurate than the resu
obtained with the original Green potential. However,two
shell-dependent parameters remain in the potential wh
cannot be easily interpolated and must be given explicitly
every atom if the accuracy shall be better than Green’s or
nal potential.

Within our approach~as presented in Sec. III A!, only one
freely adjustable parameter per shell remains for the sh
dependent Green potential, sinceh i can be fixed in the sam
manner as it is forVi

GAMP(r ). However, it turns out that using
interpolated parametersh i instead of the exact ones serious
affects the accuracy of wave functions and total electro
energies obtained with this model potential.

The parametersj i were obtained using the fit procedur
described in Sec. IV B for the determination of the para
etersa3,i and bi . In contrast to our GAMP, interpolation i
not readily possible for these parameters.

TABLE I. Coefficientsb0
i for approximate values ofh i(N) ac-

cording to Eq. ~27!; the shell-independent coefficient isb1

50.5930. Coefficientsk0,i for approximate values ofj i(N) accord-
ing to Eq.~28!; the shell-independent parameter isk150.7360.

ni ,l i b0
i ni ,l i b0

i

1s 0.5201 4d 0.9361
2s 0.7504 5p 0.8634
2p 0.7607 6s 0.8600
3s 0.8255 4f 0.9823
3p 0.8330 5d 0.9245
4s 0.8569 6p 0.8473
3d 0.9167 7s 0.8330
4p 0.8674 5f 0.9538
5s 0.8704 6d 0.8976

ni ,l i k1 ni ,l i k1

1s 0.0287 4d 20.0978
2s 20.0309 5p 20.0989
2p 20.0211 6s 20.1019
3s 20.0884 4f 20.1948
3p 20.0838 5d 20.0906
4s 20.0994 6p 20.1011
3d 20.0931 7s 20.1057
4p 20.1005 6d 20.0908
5s 20.0996
02271
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The shell-dependent Green potential is significantly i
proved when compared to Green’s original one~in particular
for large N!. It is in many cases as good as the extend
GAMP ansatz. However, neither the parametersj i nor h i can
easily be interpolated without great loss of accuracy.FOR-

TRAN data files are deposited as supplementary material3 or
can be obtained from one of the authors~M.R.! also for the
parameters of this shell-dependent Green potential ansa

V. VALIDATION OF THE SHELL-DEPENDENT MODEL
POTENTIALS

In order to demonstrate the accuracy of the wave fu
tions obtained with the shell-dependent GAMP and sh
dependent Green’s model potential, we discuss orbital e
gies and total electronic energies using the exact
electron-electron interaction expression but the wave fu
tions calculated with the model potentials. The results for
Zn atom are shown in Table II. It is obvious that optimu
results are obtained with our extended GAMP ansatz. T
energies calculated with the shell-dependent Green pote
are also improved compared to the shell-independent po
tial although the differences are only small in this case.

In order to investigate the accuracy of the radial wa
functions obtained with the extended GAMP ansatz in co
parison to those obtained with the original Green potent
the absolute values of the differences between the e
Hartree-Fock radial functionsPi

HF(r ) and the radial func-
tions obtained with the model potentials,Pi

mod(r ), are shown
in Fig. 4 for a core shell (1s) and a valence shell (4s) of the
Zn atom. In both cases, the maximum deviation for Gree
original ansatz is more than three times larger than the m
mum deviation for the extended GAMP ansatz.

Furthermore, Table III listŝr i
k& and^Rk& expectation val-

ues (k522, . . . ,12) for the Zn atom,

^r i
k&5E

o

`

drPi~r !r kPi~r !, ~30!

^Rk&5(
i

occ

^r i
k&, ~31!

in order to demonstrate that also atomic properties, which
calculated with wave functions from the extended GAM
potential, are sufficiently well reproduced and improve
results obtained with Green’s original potential. There ex
only three exceptions, namely,^r 3s

22&, ^r 3d&, and ^r 3d
2 &, for

which the original Green potential yields slightly better r
sults. However, since all other expectation values of th
two shells are better reproduced with radial functions fro
the extended GAMP potential, it does not appear to
worthwhile to improve on these three cases as the accu
of all other expectation values would be decreased.

The advantages of the shell-dependent model poten
are more impressive for neutral atoms with many electro

3See Ref.@40#.
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FIG. 3. Values of the GAMP parametersh i(Z,N), j i(Z,N), a3,i(Z,N), andbi(Z,N) for shells 1s to 3d of Zn-like ions (N530).
ith
m
fe
d

ed
Table IV gives the total electronic energies for atoms w
80<N<90. While the accuracy of the total energies is co
parable for both shell-dependent model potentials, the dif
ences between the shell-independent Green potential an
exact Hartree-Fock energies are larger.
02271
-
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VI. RELATIVISTIC EFFECTS ON GAMP PARAMETERS

A relativistic test parametrization has been perform
with our GAMP ansatz using a pointlike nucleus forVnuc(r ).
Since in this case,Wi

P(0) andWi
Q(0) in Eq.~2! are only well
origi-
m-
s

TABLE II. Orbital energiese i and total electronic energieŝE& of Zn (Z5N530), obtained using
different model potentials. HF: exact Hartree-Fock energies; Green: Green’s model potential with the
nal, shell-independent parametrization; Green,sd: Green’s model potential with the shell-dependent para
etrization derived in this work; ext. GAMP: extended GAMP ansatz in Eq.~29!. Numbers in square bracket
denote powers of 10.

n,l eHF eGreen eGreen,sd eext. GAMP

1s 23.5330454@12# 23.5299653@12# 23.5329532@12# 23.5338200@12#

2s 24.4361720@11# 24.4253656@11# 24.4301302@11# 24.4416499@11#

3s 25.6378156@10# 25.5340377@10# 25.5311290@10# 25.6670789@10#

4s 22.9250714@21# 22.4885151@21# 22.8052838@21# 23.0098443@21#

2p 23.8924839@11# 23.8807749@11# 23.8875229@11# 23.8983615@11#

3p 23.8393732@10# 23.7372392@10# 23.7405494@10# 23.8692636@10#

3d 27.8253672@21# 26.8206128@21# 26.9169695@21# 28.1124037@21#

^E& 21.7778481@13# 21.7777338@13# 21.7777625@13# 21.7778260@13#
7-7
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defined for uk i u51, it is necessary to obtain approxima
nonsingular values of these potentials at the origin in orde
use Eqs.~24! and ~25!, since such DFC-EEIPs occur whic
behave liker b with 21,b,0 and are, thus, singular@34#.
Usually, ubu!1 in these cases, such that the singularities
limited to very small values ofr. We approximately setb
ª0, which yields a regular behavior of the DFC-EEIPs
the origin.

Since we do not aim at an extension of our GAMP p
rameter set, we investigate the change of the nonrelativ
GAMP parameters, if Dirac one-electron operators are u
instead of Schro¨dinger-type operators. As an example, t
relative deviations between nonrelativistic and relativistich i
parameters, i.e., the relative relativistic effects on the non
ativistic GAMP parameters, are shown for the large com
nent of thes shellsPns

DFC(r ) in Fig. 5.
To elucidate the relativistic effect on the electron-electr

FIG. 4. Absolute values of the differences of Hartree-Fock
dial functions (Pi

HF) and radial functions obtained using Green
model potential ansatz with the original, shell-independent par
etrization and using our extended GAMP ansatz, resp., for the
atom. Top: core shell 1s; bottom: valence shell 4s. Note the differ-
ent scales.
02271
to

re

t

-
tic
d

l-
-

n

interaction model potentials in greater detail extended furt
studies within the four-component framework are needed
the parametersa3,i andbi need to be determined accurate
for relativistically modified parametersh i . However, since a
large contribution to the relativistic energy lowering is due
kinematic effects rather than due to relativistic effects on
electron-electron interaction, the shell-dependent param
zation of the nonrelativistic ansatz may be used as a g
first approximation: As can be seen from Fig. 5, the relat
istic effect onh i is only about 5% forZ560.

VII. CONCLUSION

To summarize we note that an improvement of analyti
local model potentials can be achieved by a shell-depen
parametrization. The reason for this can be traced back to
shell dependence of the origin behavior of the HF- and D
EEIPs as shown in Ref.@34#. In particular, the calculation o
a 1s orbital by a shell-independent potential would cau
difficulties.

The disadvantage of a large number of freely adjusta
parameters, which result from the shell-dependence, ca
overcome in parts by the particular ansatz that we chose
the GAMP. The analytical expressions from the origin b
havior of the HF-EEIPs, which fix the parametersh i , cannot
readily be calculated for all atoms as they are of great co
plexity. However, they can easily be interpolated through
the whole periodic table, which holds also for the parame
j i of the GAMP.

In addition, we presented a shell-dependent parametr
tion for the original model potential ansatz by Green. In ca
of this ansatz, neitherh i nor j i can be interpolated if an
accuracy in wave functions and total electronic energ
comparable to the extended GAMP potential shall be
tained. This implies for both potentials, GAMP and Gree
that two shell-dependent parameters remain which canno
given in terms of interpolation formulas but have to be spe
fied explicitly. It is not possible to obtain results of sufficie
accuracy with less than two shell-dependent parameters
dependent of the ansatz chosen for the potential.

We refrain from derivingl-dependent parametrization o
the model potentials because the accuracy per shell can
be maintained if the parameters are taken as they are. M
over, it is only the parameters for 1s shells which deviate
largely from the rest.

Particularly, forN> 50, we recommend to use our she
dependent model potentials rather than a shell-indepen
one as these yield a higher accuracy for wave functions
thus also for the prediction of atomic properties. Furth
more, the parameters for ions can easily be obtained from
parameters of the corresponding neutral atoms for our
tended GAMP potential.

Within this work it was possible to clarify those aspects
local electron-electron interaction model potentials of sim
analytical form which have not yet been covered in the
tensive studies by Green and co-workers. Future work m
now focus on a detailed investigation of relativistic effects
the potential parameters for heavy and superheavy atoms

-

-
n
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TABLE III. ^r i
k& and ^Rk& expectation values (k522, . . . ,12) of Zn (Z5N530) obtained using

different model potentials. HF: exact HF values; Green: Green’s model potential with the original,
independent parametrization; ext. GAMP: extended GAMP ansatz. Numbers in square brackets deno
ers of 10.

n,l ^r i
k& HF Green ext. GAMP

1s ^1/r 2& 1.75107182@13# 1.75369@13# 1.75135@13#
^1/r & 2.95120538@11# 2.95410@11# 2.95137@11#
^r & 5.10849147@22# 5.10033@22# 5.10843@22#
^r 2& 3.49712056@23# 3.48288@23# 3.49665@23#

2s ^1/r 2& 1.70816767@12# 1.70147@12# 1.70658@12#
^1/r & 6.46708097@10# 6.45320@10# 6.46550@10#
^r & 2.28772893@21# 2.29308@21# 2.28583@21#
^r 2& 6.16716287@22# 6.20145@22# 6.14810@22#

3s ^1/r 2& 2.53293809@11# 2.53063@11# 2.56461@11#
^1/r & 2.04010083@10# 2.03133@10# 2.04190@10#
^r & 6.90586511@21# 6.94073@21# 6.92826@21#
^r 2& 5.50224362@21# 5.55248@21# 5.54680@21#

4s ^1/r 2& 1.15541037@10# 1.93508@10# 1.21107@10#
^1/r & 4.41877240@21# 5.23093@21# 4.34997@21#
^r & 2.89773844@10# 2.52365@10# 3.00253@10#
^r 2& 9.86940953@10# 7.48766@10# 10.7243@10#

2p ^1/r 2& 5.59654388@11# 5.70407@11# 5.60212@11#
^1/r & 6.40175601@10# 6.45740@10# 6.40305@11#
^r & 1.99513736@21# 1.98211@21# 1.99419@21#
^r 2& 4.87287313@22# 4.81849@22# 4.86090@22#

3p ^1/r 2& 7.91488187@10# 7.98385@10# 7.97394@10#
^1/r & 1.90442292@11# 1.90856@11# 1.90489@10#
^r & 7.19787236@21# 7.17307@21# 7.20189@21#
^r 2& 6.11174072@21# 6.05118@21# 6.10922@21#

3d ^1/r 2& 3.20258439@10# 3.14336@10# 3.19954@10#
^1/r & 1.53053853@10# 1.51863@10# 1.52981@10#
^r & 8.74871617@21# 8.74919@21# 8.81027@21#
^r 2& 1.00500842@10# 0.99588@10# 1.03807@10#

Total ^1/R2& 4.31205453@13# 4.32373@13# 4.31369@13#
^1/R& 1.42064685@12# 1.42479@12# 1.42058@12#
^R& 2.20008875@11# 2.12384@11# 2.22780@11#
^R2& 3.49791064@11# 3.00954@11# 3.70258@11#

TABLE IV. Total electronic energieŝE& for neutral atoms with 80<Z<90, obtained using differen
model potentials. HF: exact HF energies; Green: Green’s model potential with the original, shell-indep
parametrization; Green,sd: Green’s model potential with the shell-dependent parametrization derived in
work; ext. GAMP: extended GAMP ansatz in Eq.~29!.

N5Z ^E&HF ^E&Green ^E&Green,sd ^E&ext. GAMP

80 218408.9915 218395.8598 218406.8045 218407.2005
81 218961.8248 218949.5815 218959.6704 218960.0383
82 219524.0080 219512.6066 219521.8774 219522.1890
83 220095.5864 220085.0237 220093.4821 220093.6909
84 220676.5009 220666.6235 220674.4245 220674.5229
85 221266.8817 221257.6845 221264.8319 221264.7945
86 221866.7722 221858.2225 221864.7465 221864.5561
87 222475.8587 222468.6019 222473.8804 222473.4620
88 223094.3037 223088.2216 223092.3661 223091.7326
89 223722.1921 223716.7724 223720.2883 223719.1821
90 224359.6224 224354.8138 224357.7474 224356.0491
022717-9
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which the benefit of the use of a model potential is lar
because of the increasing number of electrons.
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APPENDIX: NUMERICAL METHODS

All radial functions, energy eigenvalues and other ref
ence data were obtained with the fully numerical MCSC
atomic structure programsATOM @21# for HF calculations and
ADRIEN @22# for DFC calculations. The implemented nume
cal discretization schemes and solution methods are
scribed elsewhere@21,22,37,38#. Hartree atomic units are
used throughout this article, i.e., the numerical values of
elementary charge, 4pe0 , \, and the mass of an electron a
chosen to be equal to one. Accordingly, energies are m
sured in units ofEH5e2/(4pe0a0), i.e., in hartree and dis
tances in units ofa054pe0\/(mee

2), i.e., in bohr. For the
relativistic calculations, the value for the speed of light,c
5137.035 989 5, was taken from Ref.@39#. All results were
obtained with 2000 inner grid points.

For fitting the parameters, we used standard optimiza
routines for Levenberg-Marquardt and Simplex minimizati
@36#. All further calculations necessary for the optimizatio
were done utilizing the same numerical techniques as in
underlying atomic structure packages~see references give
above!.

Because of particular features of the configuration-sta
function handling in our atomic structure programs we d
not perform calculations for atoms with 50<Z<67 and 73
<Z<77. However, this does not affect our results since
parameters can be interpolated quite well.
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@7# M. Kavčič, M. Budnar, A. Mühleisen, P. Pelicon, Zˇ . Šmit, M.
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