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Analytical local electron-electron interaction model potentials for atoms
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Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the
computational effort in electronic structure calculations. The development of such potentials has a long history,
but some promising ideas have not yet been taken into account for further improvements. We determine a local
electron-electron interaction potential akin to those suggested by @tedriPhys. Rev184, 1(1969], which
are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calcu-
lations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent
local potentials, because the origin behavior of such potentials is different for different shells as has been
explicated analyticallyJ. Neugebauer, M. Reiher, and J. Hinze, Phys. Re85,/032518(2002]. It is found
that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for
different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding
localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number
of fit parameters. It turns out that the shell-dependent form of Green’s potential, which we also derive, yields
results of comparable accuracy using only one shell-dependent parameter.
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[. INTRODUCTION Poisson’s equation was used in their approach to gain ana-
lytical expressions for the electron density. It was found that
The search for local model potentials has a long historyat least the & shell requires a separate treatmg28,24.
(cf. [1-3] for reviews since they simplify electronic struc- Later, Green made the proposition to adjust different poten-
ture and scattering calculations significantly. With these potials for differentl quantum numberg2], but this has never
tentials, Hartree-Fock-like equations for the determination obeen carried out.
orbitals are easily solvable. Analytical local potentials, which An extensive parametrization for nonrelativistic atomic
depend only on one electronic coordinate, lead to homogestructure calculations has been given by Green and co-
neous equations that are by construction not of the selfworkers[5,25|, while the corresponding relativistic param-
consistent-field type and, thus, need not be evaluated iter@&ters are only available for a small number of neutral atoms
tively. The time-consuming evaluation of two-electron [4]. Parameters for light negative ions were derived in 1980
integrals is also avoided. [26]. Fits to Thomas-Fermi or Hartree-Fock-Slater screening
These model potentials, in particular those proposed byunctions, Hartree-Fock-Slater or HF energy eigenvalues and
Greenet al.[1,4,5 which will be described below, have been electron spectroscopy for chemical andalysis datd], as
used for the calculation of electron-atom and atom-ion scatwell as to numerical potential26], which were obtained by
tering [6—8], electron impact excitation and ionization using the optimized effective-potential method by Talman
[9-11], antiproton-atomic collisiongl2], oscillator strengths and ShadwicK27], have been performed. Moreover, varia-
[9] and electron-capture processds3,14. Further model tional minimization of total energy expectation values, which
potentials that were applied in recent scattering studieteads to a variational procedure with respect to the param-
[15,16], have also been presented?—19. In addition, these eters of the model potential, has been ugg@5,28,29.
potentials provide an efficient way to obtaining the starting Suggestions for a refinement of the Green’s potential for
functions for computationally more demanding calculationselectron-atom scattering processes can be found in Refs.
of the Hartree-FockHF) or post-Hartree-Fock typ0-22. [30,31]. A Yukawa-type potential was used for similar pur-
Analytical independent particle model potentials can also b@oses[32]. In a related study, an energy-dependent model
used in phenomenological studies for the qualitative underpotential for scattering calculations was obtaifad].
standing of atomic properti¢g,3]. The development of such In this work, we explore those features of local model
accurate analytical model potentials is, thus, highly desirpotentials, which have not yet been studied by Grekal.,
able. namely, shell-dependent analytical potential functions that
In 1969 Greeret al.[1] presented a very successful shell- allow a systematic improvement of the potential ansatz.
independent model potential of simple analytical form. ByFrom a detailed analysis in Rd84] it appears obvious that
using a Thomas-Fermi-Dirac energy functional, Greeal.  shell-dependeranalytical independent particle model poten-
obtained a semiempirical formula for atomic total energiestials could yield improved orbitals and energy expectation
values. Moreover, the large number of fit parameters in
Green'’s potential should be greatly reduced—if possible—
*Email address: markus.reiher@chemie.uni-erlangen.de through the particular analytical form of the potential and an
"Email address: j.hinze@uni-bielefeld.de extensive use of analytically known constraints.
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The paper is organized as follows. In Sec. Il the homoge- s N—1
neous HF and DFQDirac-Fock-Coulomp equations are lim V="er) = o (7)
presented to demonstrate where exactly the local model po- r—e

tential enters. Section Il deals with the proposition of a gen-
eralized model potential and introduces constraints for th
model potential parameters. An analysis of the parametrize
model potentials is carried out in Sec. IV. In addition, the
accurate, shell-independent Green potential is given in it
shell-dependent form in Sec. IV D.

hich resembles the Coulomb interaction of an electron with
e remaining cation at large distancgsovided that the
electron-nucleus potential is addd@7,35. The series ex-
Qansion of the potential at the origin yields

1 1
l+§(—277+§)r+€(6772—677§

limVvereetry=(N-1) 7y

1. HOMOGENEOUS SCF EQUATIONS r—0
The HF equations for atoms can be written in homoge- oo 1 3 2 2 .33
neous form HENT— 54 (2457 = 3677+ 1Ang"— €)1
1d> 1(l,+1) 4
(—zﬁ—i-#—kvnuc(r)—i-wis(r)—ei Pi(r)=0, +O(r ) . (8)
@

The value of this potential at the origiv®®10)=(N

whereW?(r) represents the quasilocal HF electron-electron—1)» may be chosen such thatreproduces the origin be-
interaction potentialEEIP) (compare Ref[34] for detaily, ~ havior of the HF- and DFC-EEIPs, though this option has

which shall be replaced by a model potential. never been used due to the lack of analytical expressions for
In DFC theory we have analogously HF- and DFC-EEIPs at the origin. With the analysis given in
Ref. [34] this can be overcome. In addition, a shell-
(Vnuc(r)JrWiP(r)—ei AiT(r) ) dependent model can be introduced, as demanded by the
_ Qp\_on2_ . analysis of the origin behavior of the HF-EEIR!]. There-
Air) Viud 1)+ WR(r) — 267~ & fore, we determine shell-dependent valuesypsuch that
[ainllo :
>< = 1
Qi(n/ o =g W0, C)
ith
W to obtain
Ai(r)=c i+ﬁ and A'=—¢ d_= (3) VEreen 0) =W>3(0 (10)
! dr r i dr r /)’ i )=Wi(0).

Here,WiP(r) andWiQ(r) are the contributions resulting from The indexi denotes the shell dependence of this potential (

the electron-electron interaction. The situation here is mor& at C(t)rr]n[t)oESIt((egl)ndeg for tht{:?‘ it Sit of ?cu_a(rj]tum ndumt)?:s
difficult than in the nonrelativistic case, since two compo- ote that =q.5) reduces the number of independent Tt pa-

nents of the total EEIP have to be considered, which need néfmeters in Eq(4) by_ a_factor of 1/2. We derived a shell-
be equal for a given sheflB4]. ependent set of optimized parametérdor the Green po-

tential, which are the only freely adjustable parameters
remaining. We refer to Sec. IV D for details on this param-

lll. ANALYTICAL INDEPENDENT PARTICLE MODEL etrization since we would like to proceed in order to discuss

POTENTIALS the implications of shell dependence and fixed origin behav-
A. The Green potential ior for systematically improvable analytical model potentials.
The analytical local model potential presented by Green _ )
et al.in 1969 has the form B. A generalized model potential
Since the analytical form of the Green potential does not
vereeny) = (N—-1) 1— § (4) allow us to systematically improve on it, we step back to a
r nlexp(ér)—1]+&) Yukawa-type potentiacf. Ref.[28] for similar potentialy,
whereN is the number of electrons,is the radial variable, — 1 Kmax
and ¢ and 5 are adjustable parameters, which show a near- VERMP(r) = - > ay expl—adir), (11)
linear dependence on the nuclear chatder a givenN [5], k=0
E(N,Z)=&(N) + £(N)[Z—-N], (5 asa generalized analytical model poten{i@AMP). The
summation can be systematically extended to higher terms.
7(N,Z)= 1o(N) + 5(N)[Z—N]. (6) In general, we takey,=k. Because of zero or slightly nega-
tive slopes of the HF-EEIPs, Gauss-type functions,
The asymptotic behavior of the potential is exp(—B.&r?), may be added, but tests have not shown any
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significant improvement. Since a shell-dependent potential isvhich fixes the second expansion parametgr. Since we
considered, all parameters depend on the quantum numbenrgnt the model potential to behave exactly like the HF-EEIP
and, additionally, on the nuclear chargend the number of at the origin, we introduce the parametgr,

electronsN,
gizg(ZiN!ni 1|i)1
agi=ax(Z,N,n; 1;).

12
(13

Note that the parameterd in the above formula are not

LWS(())

(21)

in analogy to the parametey in V"®(r). Then, we con-
struct a third constraint

identical to Green’st. The shell dependence increases the Kmax

number of parameters largely. Therefore, it is mandatory to )
find efficient interpolation formulas to reduce the number of fi

parameters to the largest extent. We come back to this aspect

in Sec. IV B.
The long-range behavior of the GAMP is given by

lim VEAMP(r) =

r—oo

,Aoj- (14

Since the correct asymptotic form of

Z kay,= (22)
to ensure thav>*MP(0)=W>(0). This is fulfilled if
kmax
8=~ ¢ T kE (k—=1)ay;. (23)
I

After this analysis of the analytical short- and long-range

the EEIPs, behavior we are able to fix the first three expansion param-

Iim _LW(r)=(N—1)/r must be reproduced, we obtain eters in the GAMP in Eq(11).

ag;= 1 as a first constraint on the GAMP parameters. In the

short-range limit, a Taylor series expansion of Ed) yields

N— Kmax 262
VIR === 2 ayi| 1-kér+ —r2 o) |.

2
(15

The last constraint can readily be extended to the relativ-
Istic DFC case. The only difference is that the two model
potentials,V" ¢*MP(r) and VR **MP(r), should be applied,
since W' (r) and W2(r) are in general not identic4i34].
Therefore, two sets of parameters are used, and especially
two constantsniP and niQ are necessary to fix the origin
behavior of both components separately,

Since a singularity at the origin must not occur according to

the results for the origin behavior for the HF-EEIPs in Ref.

[34]1
W(0)=(1/R)—{pj; /')
HF
5 JIJES D; Alj(l —1. )<P|J Ir'i=h +1> a,g,:.
(16)

where we used the definition of the expectation value

<1/R>=Z Di(piIr),  pu=Pi(r)-Pi(r), (1D

and all other coefficients as defined in Rgf4]. We force

max

2 akl_o

(18
to annihilate the 1/ prefactor in Eq.(15). This becomes
z a'kl 1

(19

if we explicitly useaq;=1 (see above Equation(19) can be
fulfilled by setting

__1 2 A, »

(20

P_ _ P
i —77P(N,Z,n|,|,)—N 1W| (0)1 (24)

——W2(0). (25

1
77iQ: nQ(N!Z!nivll) N—1
Of course, ify ~ 52 and also&] ~ &2 anday,~ag; within
the precision of the GAMP ansatz, we may use a single po-
tential function forvy*MP(r) and v ®AMP(r). This should
be the case for light atoms with<50. The analytical ex-
pressions for the origin values of the DFC-EEIPs are similar
to those in Eq(16) and were also derived in Rgf34].

IV. PARAMETRIZATION OF SHELL-DEPENDENT
POTENTIALS

A. Fit expression

To analyze the GAMP ansatz, we determined the param-
eters of the potential by requiring that the GAMP shall fulfill
the HF (DFC) equations. The choice for the fit procedure
requires the time-consuming solution of the HF equations.
However, this is necessary only for the neutral atoms and
some ions. The benefit of the GAMP will be for ions that are
not considered in the fit as well as for more sophisticated
calculations such as scattering calculations. The homoge-
neous HF equation§l) discretized on an equidistant grid
should be fulfilled at every grid point, provided the exact
HF-EEIPWS(r) is used. A model potential can be optimized,
such that
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' ' Kmax=3. The shell-independent potenti™®(r) is also
120 \\ e i displayed. It is evident tha¥®™®{r) can only reproduce a
N — VO (18) [k, =2] mean value of the shell-dependent potentials at the origin.
100 FR\\ - ﬁ:“s) Pna=31 ] Furthermore, at larger distances, the differences between the
N\ - (3d) [kyae=2] . h . L
O — = VME4) [K=3] potentials for the different shells vanish, which is the reason
T 80| for the good performance of a shell-independent potential.
5 But particularly for the % orbital, deviations between
£ ol VEAMP(r) and Ve™®(r) become large.
2 To obtain a shell-dependent potentigf*P(r) with an-
4 satz Eq.(11), we first determined the values , which fix
40 - the origin value of the model potentials. These values were
calculated according to E¢R1), using the analytical expres-
20 + . sions forW>(0) given in Ref.[34]. In doing so, we recog-
nized a systematic dependencergfon the number of elec-
0 . ‘ . trons N for neutral atoms. The differences between

0 0.2 04 0.6 0.8 1 parameters for two particular shells are almost independent
r [units of a;] of N. All values are displayed in Fig. 2. Additionally, the
FIG. 1. NonrelativisticV®*?(r) for 1s and & shells of Zn parameterg; for neutral atoms are shown in this figure.

(Z=N=30) and Green’s model potentdF"®*r) for comparison Since it is possible to interpolate the GAMP parameters,
" only very few coefficients for the interpolation polynomials

are needed for the complete determination of the GAMP for

D 1 d? li(li+1) any system. The following formula can be used to determine
=1l 24r2 or2 FVioudp) parametersy;(N) for all neutral atomsZ=N):
r=ry P .
2 7(N)=bp+byVN. 27)

+v9Whm—ﬂ)H“m =min, (26

The coefficients in this equation are given in Table I. Only
one shell-dependent coefficient is introduced per parameter,
because the curves in Fig. 2 are almost parallel for all shells
whereby the radial functions and orbital energies must bgng, thus, differ only by a constant. Hence, only a very small
given as reference data obtained from numerical HF calculanymber of coefficients remain for the whole periodic table of
tions. The summation is over all grid points. For this fit, the gjements.
Levenberg-Marquardt optimization algoritHi86] was used, We also observe that the parametérshow a trend very
which is a fast method requiring the first derivatives of thegjmilar to that ofy; (cf. Fig. 2. Therefore, Fig. 2 also plots
function to be minimized with respect to the optimization ¢ (N) as a function of the values of;(N) for some shells
parametergsee the Appendix for details on the computa-of neytral atoms. All curves are perfect straight ligeith an
tional methodology. This approach can readily be extended gyception at small electron numbgrilence, the parameters
to the relativistic case. &(N) for neutral atoms are redundant and can be determined
via a relationship of the form
B. Parameters inGAMP

As the optimum fit for the potential required many test &i(N)=ko; Tky7i(N),
calculations, we should briefly discuss results from these cal-

culations since they provide a detailed insight into the sig—If the valuesz;(Z=N) are known. The redundancy 6{(N)

nificance of different terms in the expression of the potential.a;]S expressed_ Irll E@s) h?sﬁgg remz:\jrkable (;oEsegg\?\zlge that
Furthermore, the final parametrization can only be underin€ €xponential terms of thedependence of the are

stood in the light of these results completely determined by the origin behavior of the EEIP.
Exploratory studies showed tHat the GAMP in Ed) Since the slopes of the curves are almost the same for all
should be used with at leak, .= 3, i.e., two freely adjust- shells, only the axis intercept is regarded as shell dependent.
able parameterst; and ag, rear;ain' if Emly one adjustable These coefficients are also given in Table I. This relationship
parameter Kmalez) is uséléd, the a{ccuracy of orbital ener- Provides further means to reduce the number of empirical
gies, total energies, and radial functions obtained with thé’aI_IL_'ﬁS for trllte GQIM.P' d with th del potential i
model potential is not sufficient. Additionally, K,,5,>3 is /ne results obtained wi € model potential parametri-
chosen, potentials and wave functions are not significantl ation so far'need to be improved particularly for the valence
improved when compared tk,,.,=3, which is, of course, hells by using an extended GAMP ansatz,
due to the fact that exponential functions are introduced N_1[ 3
which decrease much faster than the first three tdrms GAMP, .\ _ _ —KEP) +br2 _ e
=k in Eq. (11)]. Figure 1 depicts the model potentials (r) r g‘o Aci EXF k&) +hriexp =& .
VEAMP(r) for the 1s and & orbitals of Zn forky,,=2 and (29)

(28)
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FIG. 2. GAMP parameterg;(Z,N) and &(Z=N) for shells Is to 3d of neutral atoms with 2Z=<91, and parameter§(Z=N) for
shells Is, 2p, and 3 as functions ofy;(Z=N).

The additional term introduced in the potential vanishes ation of the accuracy of wave functions and total energies.
the origin and at long distances, such that neither the shoitherefore, a list of all parameters RORTRAN code is depos-
nor the asymptotic behavior of the potential are modifiedited as supplementary matefiar can be obtained from one
However, it leads to greater flexibility and better accuracy ofof the authordM.R.) to provide all parameters in an easily
the potential. accessible manner.
For the parameters; and & we use the interpolation
formulas, Egs(27) and (28), as obtained above. The addi-
tional parameterag; andb are fitted to minimize the differ- C. GAMP parameters for ionic systems
ences between the numerical KIFFC) radial functions and
those obtained with the corresponding extended GAMP In Egs.(5) and(6) it was supposed that the parameters for
potentials: These parameters may also be interpolated fofsreen’s original shell-independent potential show to a good
many atoms, but this interpolation usually leads to a reducapproximation a linear dependence [ai+N]. We find that
the GAMP parameters may also be obtained as linear func-
tions of[Z— N] as is demonstrated for Zn-like ions in Fig. 3.
1This approach was also tested for the adjustment of the paranf?€Vviations from linearity occur only for the parametéxs
eters¢; , but the parameters obtained with this method cannot easily
be interpolated, such that we would not be able to derive a compact
potential. 2See Ref[40].

022717-5



JOHANNES NEUGEBAUER, MARKUS REIHER, AND JUERGEN HINZE PHYSICAL REVIEW 86, 022717 (2002

TABLE . Coefficientsh}, for approximate values of;(N) ac- The shell-dependent Green potential is significantly im-
cording to Eq.(27); the shell-independent coefficient i, proved when compared to Green’s original dimeparticular
=0.5930. Coefficient&,,; for approximate values of;(N) accord-  for large N). It is in many cases as good as the extended

ing to Eq.(28); the shell-independent parameteikis=0.7360. GAMP ansatz. However, neither the parameg‘emr 7, can
: : easily be interpolated without great loss of accurayRr-
N l; bo ni.li by TRAN data files are deposited as supplementary matesial
1s 0.5201 & 0.9361 can be obtained _from one of the auth@k4.R.) also_for the
25 0.7504 oy 0.8634 parameters of this shell-dependent Green potential ansatz.
2p 0.7607 & 0.8600
3s 0.8255 4 0.9823 V. VALIDATION OF THE SHELL-DEPENDENT MODEL
3p 0.8330 5 0.9245 POTENTIALS
4s 0.8569 ) 0.8473 In order to demonstrate the accuracy of the wave func-
3d 0.9167 [ 0.8330 tions obtained with the shell-dependent GAMP and shell-
4p 0.8674 g 0.9538 dependent Green’s model potential, we discuss orbital ener-
5s 0.8704 &l 0.8976 gies and total electronic energies using the exact HF

electron-electron interaction expression but the wave func-

nl ka N ks tions calculated with the model potentials. The results for the
1s 0.0287 4 —0.0978 Zn atom are shown in Table II. It is obvious that optimum
2s —0.0309 ) —0.0989 results are obtained with our extended GAMP ansatz. The
2p ~0.0211 & —0.1019 energies calculated with the shell-dependent Green potential
3s —0.0884 4 ~0.1948 are also improved compared to the shell-independent poten-
3p ~0.0838 & —0.0906 tial although the differences are only small in this case.

4s —0.0994 ® —0.1011 In order to investigate the accuracy of the radial wave
3d —0.0931 2 01057 functions obtained with the extended GAMP ansatz in com-
4p —0.1005 6l . 0.0908 parison to those obtained Wlth_ the original Green potential,
55 0.0996 the absolute values of the differences between the exact

Hartree-Fock radial function®"(r) and the radial func-
tions obtained with the model potentialr), are shown

. , in Fig. 4 for a core shell (§) and a valence shell & of the

and only for highly charged |ons[Z—N]>_10). In _these Zn atom. In both cases, the maximum deviation for Green’s
casesb; may be represented by a quadratic function8f  ginal ansatz is more than three times larger than the maxi-

B N]'_ . o _ mum deviation for the extended GAMP ansatz.
This systematic behavior is a general feature for all ions. g rthermore, Table IlI listér <) and(R) expectation val-
It is thus possible to calculate the parameters for any ion, if,gg k=—2,...+2) for the Zln atom,

the parameters for the corresponding neutral atom and the

slopes of these linear functions are known. %
<rik>=f drP;(r)r*Py(r), (30)
D. Shell-dependent parametrization of Green’s potential ¢
The results obtained with the extended GAMP ansatz are oce
in many casesin particular for heavy atoms with large num- (RY=2 (rby, (39
I

bers of electronssignificantly more accurate than the results

obtained with the original Green potential. Howevaxo . . : .
shell-dependent parameters remain in the potential whicil order to de_monstrate that_also atomic properties, which are
cannot be easily interpolated and must be given explicitl forcalculated with wave functions from the extended GAMP

y P 9 plcitly .potential, are sufficiently well reproduced and improve on

i;?go?é?]?a:f the accuracy shall be better than Green’s ON9esults obtained with Green’s original potential. There exist

e _ only three exceptions, namelif ;2), (rsq), and(r3,), for
Within our approacas presented in Sec. liaonly one which the original Green potential yields slightly better re-

freely adjustable parameter per shell remains for the shelly s *However, since all other expectation values of these

dependent Green potential, singecan be fixed in the same 5 shells are better reproduced with radial functions from

manner as it is fo/*""(r). However, it turns out that using the extended GAMP potential, it does not appear to be

interpolated parameterg instead of the exact ones seriously worthwhile to improve on these three cases as the accuracy

affects the accuracy of wave functions and total electroniof all other expectation values would be decreased.

energies obtained with this model potential. The advantages of the shell-dependent model potentials
The parameterg; were obtained using the fit procedures are more impressive for neutral atoms with many electrons.

described in Sec. IV B for the determination of the param-

etersag; andb;. In contrast to our GAMP, interpolation is

not readily possible for these parameters. 3See Ref[40].
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FIG. 3. Values of the GAMP parameterg(Z,N), &(Z,N), a3;(Z,N), andb;(Z,N) for shells Is to 3d of Zn-like ions (N=30).

Table IV gives the total electronic energies for atoms withVI. RELATIVISTIC EFFECTS ON GAMP PARAMETERS
80=<N=90. While the accuracy of the total energies is com-

parable for both shell-dependent model potentials, the differ- A relativistic test parametrization has been performed
ences between the shell-independent Green potential and thdth our GAMP ansatz using a pointlike nucleus Toy,{r).
exact Hartree-Fock energies are larger. Since in this casa/v"(0) andW?(0) in Eq.(2) are only well

TABLE II. Orbital energiese; and total electronic energig€) of Zn (Z=N=30), obtained using
different model potentials. HF: exact Hartree-Fock energies; Green: Green’s model potential with the origi-
nal, shell-independent parametrization; Gresah, Green’s model potential with the shell-dependent param-
etrization derived in this work; ext. GAMP: extended GAMP ansatz in(E§). Numbers in square brackets
denote powers of 10.

n,l EHF EGreen EGreensd et GAMP

1s —3.5330454+ 2] —3.5299658+ 2] —3.532953p+ 2] —3.5338200+ 2]
2s —4.4361720+1] —4.425365p+1] —4.430130p+1] —4.4416499+1]
3s —5.6378156+0] —5.5340377+0] —5.531129p+0] —5.667078p+ 0]
4s —2.9250714—1] —2.4885151—1] —2.8052838—1] —3.0098448—1]
2p —3.892483p+1] —3.8807749+1] —3.887522p+1] —3.8983615+1]
3p —3.839373p+0] —3.7372392+0] —3.7405494+ 0] —3.869263p+ 0]
3d —7.825367p—1] —6.8206128— 1] ~6.9169695— 1] —8.1124037—1]
(E) —1.7778481+ 3] —1.7777338+ 3] —1.7777625+ 3] —1.7778260+ 3]
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0.005 . . - - - - interaction model potentials in greater detail extended further
studies within the four-component framework are needed as
the parameterag; andb; need to be determined accurately

0.004 — 1sGreen 1 for relativistically modified parametersg; . However, since a

—-- 1sext GAMP large contribution to the relativistic energy lowering is due to
~ 0.003 il kinematic effects rather than due to relativistic effects on the
33 electron-electron interaction, the shell-dependent parametri-
5 zation of the nonrelativistic ansatz may be used as a good
a® 0.002 . first approximation: As can be seen from Fig. 5, the relativ-
%' istic effect on#; is only about 5% foiZ=60.

0.001 )

VIl. CONCLUSION
0, 53 02 03 o7 o5 o8 o7 To summarize we note that an improvement of analytical
¢ [units of a) local model potenuals can be ach!eved by a shell-dependent
parametrization. The reason for this can be traced back to the

0.12 shell dependence of the origin behavior of the HF- and DF-

) oo EEIPs as shown in Ref34]. In particular, the calculation of
a 1s orbital by a shell-independent potential would cause

0.1} — 4sGreen 1 difficulties.

— -~ 4sext. GAMP The disadvantage of a large number of freely adjustable

0.08 | parameters, which result from the shell-dependence, can be

. overcome in parts by the particular ansatz that we chose for

23 the GAMP. The analytical expressions from the origin be-

55 0.06 havior of the HF-EEIPs, which fix the parameters cannot

’n_s readily be calculated for all atoms as they are of great com-

2 004 | plexity. However, they can easily be interpolated throughout

@ the whole periodic table, which holds also for the parameter
¢; of the GAMP.

0.02 In addition, we presented a shell-dependent parametriza-
tion for the original model potential ansatz by Green. In case

00\7 of this ansatz, neither; nor & can be interpolated if an

accuracy in wave functions and total electronic energies
comparable to the extended GAMP potential shall be ob-

FIG. 4. Absolute values of the differences of Hartree-Fock ra—ta'ned' This implies for both potentials, GAMP .and Green,
dial functions @) and radial functions obtained using Green's that two shell-dependent parameters remain which cannot be
model potential ansatz with the original, shell-independent param@iven in terms of interpolation formulas but have to be speci-
etrization and using our extended GAMP ansatz, resp., for the zed explicitly. Itis not possible to obtain results of sufficient
atom. Top: core shell€, bottom: valence shellst Note the differ- ~ accuracy with less than two shell-dependent parameters, in-
ent scales. dependent of the ansatz chosen for the potential.

We refrain from derivingl-dependent parametrization of
defined for|«;|=1, it is necessary to obtain approximate the model potentials because the accuracy per shell can only
nonsingular values of these potentials at the origin in order the maintained if the parameters are taken as they are. More-
use Egs(24) and(25), since such DFC-EEIPs occur which over, it is only the parameters forsishells which deviate
behave liker? with —1< <0 and are, thus, singul@84].  largely from the rest.

Usually,|8|<1 in these cases, such that the singularities are Particularly, forN= 50, we recommend to use our shell-
limited to very small values of. We approximately se8  dependent model potentials rather than a shell-independent
:=0, which yields a regular behavior of the DFC-EEIPs atone as these yield a higher accuracy for wave functions and
the origin. thus also for the prediction of atomic properties. Further-
Since we do not aim at an extension of our GAMP pa-more, the parameters for ions can easily be obtained from the
rameter set, we investigate the change of the nonrelativistiparameters of the corresponding neutral atoms for our ex-
GAMP parameters, if Dirac one-electron operators are useténded GAMP potential.
instead of Schidinger-type operators. As an example, the  Within this work it was possible to clarify those aspects of
relative deviations between nonrelativistic and relativisic local electron-electron interaction model potentials of simple
parameters, i.e., the relative relativistic effects on the nonrelanalytical form which have not yet been covered in the ex-
ativistic GAMP parameters, are shown for the large compotensive studies by Green and co-workers. Future work may
nent of thes shellsPP(r) in Fig. 5. now focus on a detailed investigation of relativistic effects in
To elucidate the relativistic effect on the electron-electronthe potential parameters for heavy and superheavy atoms, for

r funits of a,]
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TABLE . (rf) and (R¥) expectation valuesk=—2,...,+2) of Zn (Z=N=30) obtained using

different model potentials. HF: exact HF values; Green: Green’s model potential with the original, shell-

independent parametrization; ext. GAMP: extended GAMP ansatz. Numbers in square brackets denote pow-

ers of 10.
n,l ) HF Green ext. GAMP
1s (1r?) 1.7510718p+ 3] 175369+ 3] 1.75135+3]
(L) 2.9512053+1] 2.95410+1] 2.95137+1]
(r 5.10849147— 2] 5.10033 - 2] 5.10843 2]
(r?) 3.4971205p— 3] 3.48288 3] 3.49665 3]
2s (1h?) 1.7081676[+2] 1.70147+2] 1.70658+2]
(1fr) 6.4670809[+ 0] 6.45320+0] 6.46550+ 0]
(ry 2.2877289B8—1] 2.29308—1] 2.28583—1]
(r?y 6.16716287— 2] 6.20145— 2] 6.14810— 2]
3s (1Ir?) 2.5329380p+ 1] 253063+ 1] 256461+ 1]
(LIr) 2.0401008B+ 0] 2.03133+0] 2.04190+0]
(r 6.9058651[— 1] 6.94073—1] 6.92826—1]
(r?) 5.5022436p— 1] 5.55248— 1] 5.54680 1]
4s (12 1.1554103+0] 1.93508+0] 1.21107+0]
(L) 4.4187724D—1] 5.23093— 1] 4.34997—1]
(ry 2.89773848+ 0] 252365+ 0] 3.00253+0]
(rdy 9.8694095B+ 0] 7.48766+0] 10.7243+0]
2p (1r?) 5.5965438B+ 1] 5.70407 +1] 5.60212+1]
(LI 6.4017560[L+ 0] 6.45740+0] 6.40305+ 1]
(ry 1.9951373p—1] 1.98211—1] 1.99419—1]
(r?y 4.8728731B-2] 4.81849 2] 4.86090— 2]
3p (1ir?) 7.9148818]+ 0] 7.98385+0] 7.97394+0]
(1Ir) 1.9044229p+1] 1.90856+1] 1.90489+ 0]
(r) 7.1978723p— 1] 7.17307—1] 7.20189— 1]
(r?) 6.1117407p—1] 6.05118—1] 6.10922 1]
3d (1Ir?) 3.2025843p-+ 0] 3.14336+0] 3.19954+0]
(1Ir) 153053858+ 0] 1.51863+0] 1.52981+0]
(ry 8.74871617—1] 8.74919—1] 8.81027—1]
(r?) 1.0050084p+0] 0.99588+0] 1.03807+0]
Total (1IR?) 4.3120545B+ 3] 4.32373+3] 4.31369+3]
(1R) 1.4206468F+ 2] 1.42479+2] 1.42058+2]
(R) 2.2000887F+ 1] 2.12384+1] 2.22780+1]
(R?) 3.4979106f+ 1] 3.00954+1] 3.70258+1]

TABLE IV. Total electronic energie$E) for neutral atoms with 88Z=<90, obtained using different
model potentials. HF: exact HF energies; Green: Green’s model potential with the original, shell-independent
parametrization; Greestt Green’s model potential with the shell-dependent parametrization derived in this

work; ext. GAMP: extended GAMP ansatz in EQ9).

N=Z <E>HF <E>Green <E>Greensd <E>e><t. GAMP
80 —18408.9915 —18395.8598 —18406.8045 —18407.2005
81 —18961.8248 —18949.5815 —18959.6704 —18960.0383
82 —19524.0080 —19512.6066 —19521.8774 —19522.1890
83 —20095.5864 —20085.0237 —20093.4821 —20093.6909
84 —20676.5009 —20666.6235 —20674.4245 —20674.5229
85 —21266.8817 —21257.6845 —21264.8319 —21264.7945
86 —21866.7722 —21858.2225 —21864.7465 —21864.5561
87 —22475.8587 —22468.6019 —22473.8804 —22473.4620
88 —23094.3037 —23088.2216 —23092.3661 —23091.7326
89 —23722.1921 —23716.7724 —23720.2883 —23719.1821
90 —24359.6224 —24354.8138 —24357.7474 —24356.0491
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APPENDIX: NUMERICAL METHODS

0.04 - iy All radial functions, energy eigenvalues and other refer-
ence data were obtained with the fully numerical MCSCF
atomic structure programgom [21] for HF calculations and
ADRIEN [22] for DFC calculations. The implemented numeri-

i cal discretization schemes and solution methods are de-
scribed elsewher¢21,22,37,38 Hartree atomic units are
used throughout this article, i.e., the numerical values of the
elementary charge, ey, #, and the mass of an electron are
chosen to be equal to one. Accordingly, energies are mea-
sured in units oE=e?/(4mepay), i.€., in hartree and dis-
tances in units oBy=4meyh/(Mm.e?), i.e., in bohr. For the

' ' ' ' 50 eo  relativistic calculations, the value for the speed of light,

Z=N =137.035989 5, was taken from RER9]. All results were
obtained with 2000 inner grid points.

FIG. 5. Relative deviations of the relativistic and nonrelativistic For f|tt|ng the parameterS, we used standard Optimization
GAMP parameters 4{"°"C— 7['")/ 5"°F¢ for s shells of neutral  routines for Levenberg-Marquardt and Simplex minimization
atoms. [36]. All further calculations necessary for the optimization

were done utilizing the same numerical techniques as in the
which the benefit of the use of a model potential is largeunderlying atomic structure packagésee references given
because of the increasing number of electrons. abovs.

Because of particular features of the configuration-state-
function handling in our atomic structure programs we did
not perform calculations for atoms with <67 and 73
We are grateful to Professor B. A. Hess and Dr. D. Andrae<Z<77. However, this does not affect our results since the

for stimulating discussions on the subject. J.N. gratefully acparameters can be interpolated quite well.

P,DFC HF, P.DFC
-n )/ m,
©
(=2
N
T

n,
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