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Scattering of magnetized electrons by ions

Christian Toepffef
Laboratoire de Physique des Gaz et des Plasmas, UnivePsitis—Sud, F 91405 Orsay Cedex, France
(Received 19 September 2001; revised manuscript received 13 March 2002; published 26 August 2002

Binary collisions between ions and electrons in an external magnetic field are treated in second-order
perturbation theory, starting from the unperturbed helical motion of the electrons. For the transfer of relative
velocity in a collision, three kinematical regimes are identified, depending on the relative size of the cyclotron
radius, the pitch of the helices, and the distance of the closest approach. The magnetic field suppresses the
velocity transfer in the transverse direction, but it enhances the longitudinal velocity transfer, provided that the
ion velocity itself has a transverse component. In order to relate the velocity transfer to the energy loss of the
ions, particular attention must be paid to the nonconservation of the center-of-mass motion in a magnetic field.
Hard collisions are accounted for by regularizing the energy transfer at small distances. For ions interacting
with monochromatic beams closed expressions for the energy loss can be derived, which are averaged with
respect to the velocity distribution of the electrons. The magnetic field reduces the energy loss for ion motion
parallel to the magnetic field while it enhances the energy loss for transverse ion motion.

DOI: 10.1103/PhysRevA.66.022714 PACS nuntber03.65.Nk, 34.50.Bw, 52.20.Hv, 52.40.Mj

I. INTRODUCTION second-order momentum transfer enters linearly. Moreover,
the friction force on the ion has been written in analogy to
In the presence of an external magnetic fiBlthe prob-  electrostatics as a gradient of a pseudopotential in velocity
lem of two charged particles cannot be solved in a closedpace. This requires that the spatial integration with respect
form as the relative motion and the motion of the center ofio the impact parameters be performed after averaging with
mass are coupled to each other. Therefore no theory existgspect to the velocity distribution of the electrons. At low
for a solution of this problem that is uniformly valid for any relative velocities this is doubtful. In the present paper we
strength of the magnetic field and the Coulomb force bework out the binary collision model up ©(Z?) and regu-
tween the particles. Numerical calculations have been pelarize the spatial integration in a manner that leads to the
formed for binary collisions between magnetized electrongxact result for Rutherford scattering and keeps the resulting
[1,2] and for collisions between magnetized electrons andnodified Coulomb logarithm within the velocity integral.
ions [3—5]. As an ion is much heavier than an electron, its  In applications of the binary collision model to plasma
uniform motion is only weakly perturbed by collisions with physics, e.g., the stopping of ions by electrons, the polariza-
the electrons and the magnetic field. There exists a conserveign is only accounted for by shielding the Coulomb interac-
energyK involving the energy of relative motion and a mag- tion at large distances. In a complementary picture one cal-
netic term. In this paper we treat the Coulomb interactionculates the energy loss of the ion through its interaction with
with the ion as a perturbation to the helical motion of thethe polarization cloud it has created in its wake. This dielec-
magnetized electrons. This has been done previously up t@ic theory of collective excitations requires a cutoff at small
first order in the ion charg& [6], it is shown here that a distances, where hard collisions cannot be treated any more
second-order treatment is both necessary and sufficient fon linear response. In the absence of a magnetic field both
the conservation of the generalized enekgyThree regimes approaches give the same results, if physically reasonable
are identified, depending on the relative size of the parameutoffs are used in the Coulomb logarithfigs10].
etersR (the cyclotron radius r (the distance of the closest However, the presence of a magnetic field introduces
approach, and & (the pitch of the helix complications, in that case the dielectric theory of the energy
In earlier kinetic approachefs7—11] only two regimes loss has, to our best knowledge, not yet been worked out
have been distinguished: Fast collisionsifg< R, where the  completely. This is desirable, as the effects of collective ex-
Coulomb interaction is dominant and adiabatic collisions forcitations interfere strongly with the influence of the magnetic
ro>R, where the magnetic field is important, as the electrorfield for low ion velocitiesy;. Already the underlying expres-
performs many gyrations during the collision with the ion. sion for the dielectric functiors is quite involved, see, for
The change\E; of the energy of the ion has been related toexample, Ref[12], and for the friction force one has to
the square of the momentum transfep, which has been integrate Im¢ 1) with respect to the wave numbers. These
calculated up td(Z). This is somewhat unsatisfactory, as integrations are facilitated, if one assumes a velocity distri-
the first-order treatment violates energy conservation andution of the electrons which is completely flat in the direc-
there is anothe©(Z?) contribution toAE;, in which the tion of the magnetic fieldi.e., the temperature parallel to the
magnetic field is zemo Then Img 1) can be approximated
by a sum oféfunctions at the plasma frequency and the
*Permanent address: Institutrfliheoretische Physik Il, Univer- cyclotron frequency. This facilitates not only the integra-
sitat Erlangen, StaudtstraRe. 7, D-91058 Erlangen, Germany. Emaiions, but also allows a separation into contributions from the
address: toepffer@theorie2.physik.uni-erlangen.de plasma mode and from binary collisiof&10]. However, in
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the electron cooling of ion beams the velocity distribution ofthe magnetic field, while the enhancement becomes domi-
the electrons has a small, but finite temperature parallel toant with a transverse motion of the ions. The results of the
the beam. The cooling is most effective for ions with a ve-binary collision model are compared with simulations, in
locity that corresponds to that temperature, and results fowhich ensembles of magnetized electrons are scattered from
the completely flattened distribution cannot be readily apions|classical trajectory Monte Carl@€TMC)], and with the
plied in this situation. In fact, it has been argued earlier thatielectric theory both in linear response and by a numerical
plasma-wave excitations are suppressed, if the cyclotron fresolution[particle in cell(PIC)] of the Vlasov-Poisson equa-
guency is larger than the plasma frequeht$,14]. tion. In Sec. V the results are summed up; some formulas and
In the present paper we attempt to optimize the binarytechniques for the second-order treatment are presented in
collision model. Keeping the role of collective excitations in the Appendix.
mind, we also compare our results with previous numerical
solutions of the Vlasov-Poisson equation, in which the elec- Il. PERTURBATIVE APPROACH TO RUTHERFORD
trons are represented by test partidleS]. Such a treatment SCATTERING
accounts for the nonlinear response of the electrons to the
perturbing ion. The numerical simulations show statistical
fluctuations, which tend to obscure the asymptotic behavior For pedagogical reasons we consider first the scattering of
at small ion velocities. A linear-response treatment of thelnmagnetized electrons by a fixed point chargee.g., an
energy loss of ions in a magnetized plasma with a finitdOn, which rests at the origin. The electrons move and in the
temperature anisotropy remains, therefore, highly desirableelectric field due to the ion
The paper is organized as follows: For pedagogical pur- N
' ) ) . Ze Tf(t)
poses we treat in Sec. Il the trivial case where the distance of E(f(t)= —— —5—
the closest approadh, is smaller than the cyclotron radius Ameg r (1)’
R, so that the magnetic field can be neglected. It is shown
that the velocity transfer must be calculated to second ordey
0O(Z?) in order to fulfill energy conservation on this level. In
Sec. Il we consider the scattering of magnetized particles i

A. First-order velocity transfer

(2.1

hereso is the permittivity of the vacuum. In view of the
Sater inclusion of the magnetic field we do not integrate the
I$quat|ons of motion

the framework of the Lagrangian formalism. As the ion mass dr

M is much larger than the electron massthere exists a ik (2.2
conserved generalized enerdfy which is the sum of the

energy of relative motion and a magnetic term. The equa- di e .

tions of motion are solved in an iterative manner up to HZ_EE(F(U) (2.3

0O(Z?) starting from the unperturbed helical motion of the
electrons in the magnetic field. For strong magnetic fieldsxactly, but seek an approximate solution, in which the Cou-
R<r, two subregimes can be identified. For stretched helijomp field (2.1) is treated in a perturbative manner. The first-
ces with a pitch>r, the guiding center approximation ap- order velocity transfer is obtained by integrating F8.3)

plies. For tight helices witlh<r, there is a velocity transfer ysing the unperturbed electron trajectory for rectilinear mo-
parallel to the magnetic field; in fact, this contribution is tion along thez axis,

dominant for small relative velocities. The second-order

treatment fulfills the generalized conservation law for rosing
Hard collisions are taken into account by regularizing the r(ty=| —rocosé |. (2.9
integrals leading to Coulomb logarithms at the lower bound- vt

ary in a manner that leads to the exact result for Rutherford
scattering. In Sec. IV the theory is applied to the energy los$lere
of ions in a magnetized electron plasma. This is a theme of

large current interest in connection with the electron cooling N _sma
of heavy-ion beams in storage rings as well as the cooling of Fo=ro| —COSO (2.9
(anti-)particles in traps. The influence of the magnetic field 0

on the energy loss is ambiguous: Wit increasing magneuFS the vector of the closest approach, which takes plade at
field one expects a longitudinal motion of the electrons along_0 Insertion of Eqs(2.4 and (2.5 into the equation of

the field lines like beads on a wire, with no energy loss at a”mouon (2.3 yields the first-order velocity transfer
for v|||B in the limit B—oo, except for possible collective '

effects. On the other hand, as the magnetic field quenches the rosinéd
transversal motion of the electrons, the inverse square law Sic(t)=— _f m rocosé | (2.6)
for the dependence of the energy loss on the ion velocity (rotovt's) ot

persists down to the longitudinal thermal velocity of the elec-

trons. As this is small in the electron coolers of storage rings 2Z€ T,

the energy loss should be enhanced. We show that, as far as T o r—g t—+oo, 2.7

binary collisions are involved, the first effe@teduction of
the energy lossis dominant when the ion moves parallel to whereé?=e?/4me,.
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At this stage it should be noted that the first-order treat- - e (= R
ment is not yet physically meaningful. 85 c=— = Jl dt 5E(t)
(i) The energy 0
Z£%\22 sgrv)
o (22
E=smp“— T (28) m vl 1
, . : Z£\?% 2
is not conserved, as the velocity transf2r7) is parallel to - _(_) 2 (2.14
the distance of the closest approdagh Thus m/ virg
AE=m(5-80c+3(80c)?)=3m(80¢)%2#0. (2.9  We note that the sum
(ii) In many applications one has to deal with beams of AG=60c+ 8Pi¢ (2.15

electrons, which can be considered as homogeneous on the

scale set byry. Then the first-order velocity transfer van- guarantees energy conservation upD{z?),
ishes due to symmetry reasons when integrating with respect

to Ip. Indeed, the transport phenomena, etc., are of order m_ L (2 L
O(Z?) in the ion charge. AE=[20-dvc+ 20 - 8'P5 o+ (80 c)?]
It is therefore necessary to calculate the velocity transfer to m Z7E2\2 1 7E2\2 1
second order. =—|0-4l—| 4 | —>|=0.
2 m /] vry m/ verg
B. Second-order velocity transfer for Rutherford scattering (2.19

With the dimensionless time variable In fact, we could have proceeded backwards from here. By

r=|o|t/r,, (2.10  noting dicLu the second-order contributioft?)ic/[v could
have been calculated uniquely by enforcing energy conser-
one obtains after another time integration the first-order corvation.
rection to the trajectory,

lIl. SCATTERING OF MAGNETIZED ELECTRONS

. 7 sin 99 BY IONS MOVING TRANSVERSELY
or(t)y=——— d +1]|| —cos
O=="7 2 f_w T\ arom S TO THE MAGNETIC FIELD
A. Relative motion and conservation law
sgnv) 0 We assume now slow ions with malgls>m, which move
EEELEL : (210 uniformly with a velocity
1
.. .. Uiyl
This is a small correction if g= 0], 3.1)
72 Ui
I mini= <rp. 21
min WZ 0 ( 2)

Because of Galilei invariance, the results obtained previously

Here and in the following we will not worry about apparent in Sec. Il for the cas&=0 remain valid, if the velocities,
divergences as it will turn out that these cancel exactly whenlistances, etc., are interpreted as relative quantities, e.g.,
physically observable quantities such as the velocity transfer

are calculated. F()=Fe(t) —Fi()=Fe(t) —uit,
The correction to the electric field is calculated with the R R ) (3.2
help of the expansion v(t)=ve(t)—v;.
SE=E(T+ 67 —E(1) However, if a magnetic fiel=V XA is present the La-

Ze J . grangian of the electron-ion system is

= —5r —
4meq  'or; (11> m, M, - Z
e (5 , I’iﬁl’i) o1 L S Vet 50 eA(le) -vet+ZeAr;) v, ;
= ap| orx—or , . 3.3
47T80(rjrj)32 k k i ( )

where the summation convention has been used. The secorfdor @ homogeneous fiell the vector potential may be cho-
order correction to the velocity is then sen asA(X)=3BXxX, this yields
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This Lagrangian cannot, in general, be separated into parts
describing the relative motion and the motion of the center of
mass: With 7 ,=(mf+M)/(M+m), 0U.n=(mo,
+Mz;)/(m+M) and the reduced mags t=m 1+M?!

the Lagrangian is

S

m+M _ w_, Z& (Z-le . :
= 2 vg.m.+§U2+T+ 2 (erc.m)'vc.m. '.‘

2

pue(Ze e\ .  _ ulZe e
+—=|———=|(BXF)-0—=|—+—

2(M2 m2| B0 0= Sty
X[(éxrc.m)'ﬁ'l'(éxF)'Jc.m]- (35)

FIG. 1. Relation between the parametbrsk p, 6, and ¢ de-
Here, under the assumptions mentioned above, a heavy, uricribing the trajectories according to E@.10 in the transverse
formly moving ion can be considered as a time-dependerffiane at=0.

perturbation on the electron motion. Usipg—m and drop-

ping unimportant constants the Lagrangian for the relative bsinf+Rsin(Qt+¢)—v;, t
motion is f(t)y=| —bcosd—RcodQt+¢) |, (3.10
Ve~ Uit
E_m+2+z‘§2 e e (Ve = i)
=gut g (BXNu— 3 see Fig. 1, and
X[(BXdit) o+ (BXT)-3], (3.6 Ve COJOt+ @) —viy,
5(t)= in(Qt+
with the equations of motion o(t) Ver SO+ @) (3.19
Vel ™ Uiy
. dr .
U= Gt with the cyclotron frequency
md_l?_md_lje 0= F (312)
dt  dt

.28 R R and the cyclotron radius
=V——e(vXB)—e(v;XB)
r
Vel  Mug

R=0 ~"eB

_z# 3.13
=— VT— e(JeX B).

with v, =0. We will need the time, and the distance vec-
As L depends on the time explicitly it is not the enefigpf  tor 'y of the closest approach between the electron and the

relative motion which is conserved, but rather the quantity ion. For that purpose we expand 3(t), which will be
needed in the electric field, with respectRp

- m
= . Fr— — _)2— —_— . . r .
K=E+e(vixB) - r=50"~ =~ +ewxB)-T, r3(t) = {b%+ R+ (vg —vey) 22+ 2 12— 20;, btsing

3.8 .

3.8 +2R[b cog Qt+ ¢— ) —v;, tsin(Qt+ )]} 32
which can be easily proved with the help of the equations of
motion (3.7). According to the ansat3.1) the ion moves in
the x-z plane, for an evaluation of the last term kit one 3R[bcog Qt+¢—60)—v;, tsinQt+¢)]
needs, therefore, thecomponent of the trajectory of relative R (0a— 0120+ Uizﬂz— 20,,btsing |-

motion
(3.19

The new denominator describes the relative motion exclud-
As before, we aim at an iterative solution of E¢3.7) start-  ing the transverse motion of the electrons, which is quenched
ing from the zero-order helical motion by the magnetic field

~[b2+ (ve—vi))2t2+v;, t2—2v;, btsing] 37

e(;xB)-F=—ev;, Br,. (3.9
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T2(1)=b?+[(vg—vi)?+v? Jt?—2v;, btsing x v
=02(t—tg)2+r2, (3.15 _ /
t,v
where
0 “UiL —UiL A ?(t=0)
;:Jn'i'l;J_Z 0 + O = 0 e ra
Ve~ Vi 0 Ve~ Vi
(3.16 - z

is the relative velocity vector between the guiding center and FIG. 2. Illlustration of the relatiori3.27) between the vector of

the ion and its components in an obvious notation. Its Magrelative motioriy and the orthogonal vector of closest approégh
nitudev is related to the pitch of the helices

v n=a (3.24
5= a (3.17 =3 .
The distancé (o) =F, and timet, of the closest approach and
between the guiding center and the ion are .
vy
v, bsing Y= (3.29
=== — (3.18
and as components of a reduced relative velocity as well as
. v, sing)\|? _b
T2(t0)=r(2)=b2[1—< — ) =b?—(vto)?, B=1, (329
(3.19 _ _ .
for the trajectory. Furthermore, polar coordinates as shown in
so that Fig. 2 will be useful,
R bsiné+uv, to vy - COSe COSY
Tt = —bﬁosb’ + 2 (t—tg)=Fo+ov(t—tp). Fo=To siny , (3.27
tojto Ul —sine cosy

(3.20

Here we continue to use the notatidp for the distance wheree is the angle between the direction of fluxand the
vector andt, for the time of the closest approach, althoughdirection of the magnetic field, i.e.,

the relation between these quantities and the parameters de-

scribing the trajectories is different from that in the preced- Ve~ Vi

ing section. This is done becauggis the independent vari- CoSe=—"—=—"=V- (3.28
able with respect to which integrations must be performed

when the interaction of ions with an electron beam is CO”'Comparing the perpendicular components of E§<20 and

sidered. , , _ _ (3.27 one obtains
It is useful to introduce dimensionless variables such as

o1 . Y.
T:‘r’_t (3.21) To=—Bv, Sin Bz—ﬁcosw (3.29
0
and and
v(t—t =—gj
o7 r— ( : 0) (322 B cosf=—siny. (3.30
0
) Thus B, 75, and @ can be expressed hy and the reduced
for the time, velocities
ro roQ .
0= EO: ‘;T (3.23 Bsinf+y, o=y, COSY, (3.3D
for the pitch, BZ=1+75. (3.32
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B. First-order velocity transfer, trajectory correction, The first-order velocity transfer is obtained by integrating
and K conservation this equation. For strong magnetic fields<rq, the leading

The equations of motior3.7) are solved iteratively by €M is
treating the Coulomb field as a perturbation. The magnetic

o . : ; . Z& (v dt’ R
field is taken into account by transforming to a rotating sys- SVg(t)=— _f =T 1Qt")r(t")
tem m J_.r3(t")
R N Z62 1 (o do’
Ge(t)=T(QU)V(1) (3.33 :___f
: ; m oto ) (1t 0D
with
coswt  sSinwt 0
cosQt —sinQt 0 . , ,
_ x| —sinw7r coswr’" 0
T(Qt)=| sinQt cosQt 0|, (3.39 0 0 1
0 0 1 )
Bsind+y, 7'
which yields X —pBcoso |, (3.36
dVe_ ® I YanEdt 3.3 v
dt  m (QOEF(L). (3.39 The asymptotic velocity transfer is

20K (w)(yy cosy coswTytsing sinwry) —2wKe(w)y, Sinwg
NVg(t—w)=— = —2wK(w)(y cosysinwTy—sinyg coswry) — 2wKg(w)y, COSwTy |, (3.37)
Ulg 2
YiTo

where K, and K; are the modified Bessel functiofi46].  The parallel component is not affected by the rotatidns
This generalizes the result of Rg6] to ions that have a

transverse component of motion with respect to the magnetic 5 ,
field. It will turn out to be useful to distinguish two subcases sr,(1) Z€ f” ,( 700 —1 "
. i . ) r =T ==Y O\ 77 212" 70 -
of strong magnetic fields: Stretched helideases), where ” 0?7 (L+o')H2 770
the pitchéis larger than the distance of the closest approach (3.41
ro and tight helicegcaset) in the opposite case, see Fig. 3.
In the limit o<1 of stretched helices one obtains For the perpendicular components one performs a partial in-
782 2 tegration in the outerd’) integral, see the Appendix. This
5\75—> 5\73= - W v__rg FO, (338) ylelds
. : . r sinwrt coSwT|
which should be compared with E@Q.7). In the opposite >y 0
- i : : o (t)== . 6Vg (1)
limit w— o, the first-order velocity transfer is parallel to the Vw\ —COSwT SiNwT ’
magnetic field, .
Z& (¢ do ( B cosé )
) 0 molw J _(1+0'?)%2\ Bsing+y 7'
(SVB—> 5Vt= - mﬁo 2')/” To 2 . (339 (342
The first-order trajectory correction is It is now easy to show( conservation up to first order. From
Egs. (3.8 and (3.9 we have to show
Z8 (o

> - _ ’ ’
or(t) e ﬂcda' T(w7") m o mo B
6K=§(20'5175—6vu85ry)=E(ZV-&VB+evLBﬁry)

) . Bsino+y, 7'
7 “Yw)| —pBcosh =
X jﬁmm?-r ((1)7'/) 6”7-” . 0. (343
(3.40 Now
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26 (= do’

_ !
vr U %(1+—01273777H7'-

(3.49

As the perpendicular components cancel, there remains

28 (= do’ _ ) )
5K=—U——rof_wm/§[h(ﬂsmﬁ+ v (0" + 7))

+vyy(o’'+19)]

Z& _ .
= KZ)/L,B sing(y?+y?—1)=0, (3.46)

where Eq.(3.18 has been used to relatg to sin 6.

C. Electric-field correction, second-order velocity correction,
and K conservation

The electric-field correction in the guiding center approxi-
mation is

e T;Or;
5EK—W(5YK 3rkm ), (347)

with the guiding center trajectory3.20 and the second-
order velocity correction

- e [t _ -
<2JVB(t)=—a£ dt’ T-1(Qt")SE(t"). (3.48

We first calculate the scalar produgisr; with the help of
Egs.(3.20, (3.41), and(3.42:

Zé’z ro dO',
(rior) (=== f_wm—(rrr)m

FIG. 3. Trajectories of ions and electrons in a magnetic field. In

X {B?(sinwTCoSwT’ —COSwTSINWT')

the upper part the magnetic field is strong in the sense that the
cyclotron radius is small and the helix is tight compared to the
distance of closest approadR<r, and 6<rg. In the central part

the magnetic field is still strong with respect to the transverse mo-
tion, but weak with respect to the longitudinal motion, the helix is
stretchedR<ry and 6>r. The corresponding expressions for the
velocity transfers are similar to the case of a weak magnetic field,
R>rq, which is shown in the lower part of the figure.

ev, Bory=mu, (— 6Vg xCoswT+ 6V SinwT)

7€ do’
— f (l+—m(,83|n6+3@7)

org "
(3.44)

+ By, [sinw7r(sinf(7+ 7" )cosw 7’
—cosé(7—7")sinwt’ )]+ coswr —sinb(r
+7")sinw7 —cosf(7—7")coswT’)]

+ 7& 77’ (SiNwTCOSw T’ —COSwTSINWT')

+ By, cosO(t—7") + yﬁ(o--l— 7o)

1
x f do’ (%,7—#70) (3.49

Here and in the following the integrals can not more be
evaluated in a closed form for arbitragy. In the limit of
and tight and stretched helices, there remains

ml); 5l;B:mT/_ 6\73
T-10)-6Vg

=mo, (Vg xCOSwT— 6V (SiNwT)
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and 0 0
Z8\22y%y
NI 5(2) _[4E Y
Zéz ro a 7'00',_1 <5 Vt>_<5{ Vt’”> 0 - (mro> FS 0
(riorp)(t)»——= J do'| ——==zm+ 7o 1 1
m v?| ) _. (1+0'%) (3.57
22 2 o, o
X[1=vyimo— Y1700~ ¥|To0 +yio0'] from Eq. (4.46) and
o 00 —1 257
yll( O) — o (1+0’2)12+To ] <5(2)VS>:_<W Uq (35&
0

w—0, (3.5) , ) .
With y, #0 there is a second-order velocity transfer parallel

respectively. For the parallel component of the second-ordeio the magnetic field even for tight helices wigh— o°.
velocity transfer in the limitw—«, Egs.(3.20, (3.42 and There remains to test the conservatiorkofEg. (3.8), up
(3.50 must be inserted into th&=3 component of Eq. to second order. In Eq3.46 we have shown that the first-
(3.47. As mentioned above we are interested in the interacerder corrections t& cancel, there remains

tion of ions with beams of magnetized electrons, which re-
quires, among other things, an integration with respect to the

m_
_ M= 525 2 214 o RS2y —
angley defined in Eq(4.23. Averaging with respect t¢ all AK=3l2v 6%0g+(805)°1+ev, BSWr,=0.

terms odd inrg vanish while (3.59
n 1 yf For that purpose the second-order trajectory correoiia)my
(1= 2 y_ﬁ must be calculated. This is thecomponent of
4 (3.52 t )
<T4>:§7_j. 82, ()= fﬁwdt'ﬂm')a@)vB,L(t')
v 8 Y

= 5@ p@ 1) 4 s pb)
The multiple integrations are done with the help of the tech- ANURORC )

niques in the Appendix: The result for the averaged parallel 1/ sinQt cosOt -
second-order velocity transfer is = E( — cosOt sith) 8 )VB,L
Zé2 2 2,}/2 Y
2 _ LY e 0 1) rt R
(& )Vt,>__<m_ro> R (3.53 +m(_1 0) f_ dt’ 5E, (t'),
In the opposite limitw— 0 the scalar produdB.51) con- (3.60
tains additional terms. Performing thleaverage$3.52) and
carrying out the integrations results in where a partial integration has been performed, see the Ap-
pendix. The first, integrated term gives
SV =— ﬁ Zﬂ (3.54)
I imrg) 03 : ev, B&?r P (t)=muv, [~ 8PV (1) cosOt

again this corresponds to the Coulomb reg2Il5) if v v. +8 Ve y(1)sint] (3.6

The transversal components of the second-order velocit

¥nd this cancels for any value 6f with the transversal part
transfer are

of the second-order kinetic energy correction

coswTSinwt’ - o - -
) + mu, 8?0, (t)=mV, 8?Vg |

) e (=
0N, (t—e0)=— m fwdT,( _sinwr coswr | °F

(359 =M(T" %), 6PVg,
The lengthy calculations yield a plausible result: For tight =ma(5(2)\73 Xcosﬂt—5<2)\73 ,SinQt).
helices the transversal velocity trans®f)V, , vanishes be- ' ' 36
cause of the transformation to the rotating system. For (3.62

stretched helices one obtains the Coulomb expre<&idrh
with 5—v also for 82V , . Thus

(62N, @ eﬂB$2>r§b)(t)=—eift dt’' SE,(t'), (3.63
(3.56 o

The second term in Eq3.60) gives

SV g(t— o0 .
N P
which involves the scalar produ¢3.49. In the limit o—0

with (stretched helicgsone obtains immediately from E(B.43

022714-8



SCATTERING OF MAGNETIZED ELECTRONS BY IONS PHYSICAL REVIEW &6, 022714 (2002

m ~ _ 3w A VB AR
ezBé*2>r§b>(t)=—eﬁ(—Ea“)vs,x), (3.64 MA(AG e m)/dt+(Z—1)e(BX AT, ,) =eBXAG.

4.3
and afterys averaging from Eq(3.58), We have calculated v (t) in the preceding section. The in-
tegration of this c.m. equation could be done in a coordinate
) 262\ 2 202 system that rotates with the cyclotron frequencZ (
(ev,B&Pry >:_<T) ot (369  —1)eB/M, which is much smaller than the cyclotron fre-

quency of the electron. So this rotation can be neglected.

Collecting terms from Eq€3.39, (3.58, and(3.65 one has Integration of the remaining equation relates the change
then for they-averagedk correction Av . m to the magnetic term occurring in the conserved quan-

tity K of Eq. (3.8),

m . _
<AK)=<mv_5<2>vs,|+ 5<5vs>2+evisé<2>f§b)>

e .
AJC_m;M(BXAF). (4.9
ZE\21 [ 2v2 2 2v?
= K ml\~ U?‘FU——Q_ oF =0, (3.66 Substitution into Eq(4.2) shows that the change in the ion

velocity
which provesk conservation for stretched helices—0. In
the opposite limitw— o, the integral in Eq(3.63 is a spe- A ._€ By AF)— EA - 4
cial case of Eq.(3.59, in which SE, is evaluated forw “i M( ) MY “.9
—oo and the final rotation is dropped. This vyields, after
averaging, yields
AE{=—m;-AC +ev;- (BXAF)

(ev, B&@riPy=—ev, ~dt(SEA(L))

_(Z_éz)z_{ﬁ”_'z 0 (3.6)
ro mo U:”Z ' ’

m -
=—mi-Ad— 5 (57257, (4.6

whereK conservation has been used in the last step.
In the caseC of a weak magnetic field,,<R, the energy

The ~averagedAK correction is ; S . .
of relative motion is conserved. Inserting the first- and

m second-velocity transfers from Eq.7) and(2.14), respec-
(AK)= < mu,8%u+ E(ﬁvt)er eﬁBé(z)r§b)> tively,
0202 Ve Vvl 2827y (Z2€4\%20
_(2¢)°L __2"5”5 ﬁ ”i”f_v_j -0 Aje= 86t 6Pic=— — —5— _) . @
o) m 0 o7 70 0 ) mv rg mrg/ v

(3.68  Asdiscussed in Sec. INE; will be averaged with respect to

, i i the azimuthal angley of iy, see Eq(3.27). The O(Z) term
which establishe& conservation up to second order also for S0 gives then no contribution due to symmetry, and the

tight helices. averaged energy change is
IV. APPLICATION TO THE ENERGY LOSS OF IONS 72\ 2 lei U
IN COLLISIONS WITH MAGNETIZED ELECTRONS <AEi>C: W mo? (4.8

A. From velocity transfer to energy loss
For the cases of stretched helicesR<r, and 6>r, the

The energy change of the ion in leading order is relative velocityv must be replaced by the relative velocity

M v (3.16) of the guiding center,
AEizg(Ji’z—Jf)z—MJi-Aﬁi (4.
ZE2\226,-0
connected to the velocity transfer (AE))s= w> mo?® (4.9

More interesting is the cadeof tight helices,R<rq and
<rg, Where onlyK, but notE, is conserved and the magnetic
term in Eq.(4.6) is essential.

in a collision. The change in the center-of-mass velocity is Inserting the first- and second-order velocity transfer
obtained from the Lagrangiai3.5), AG= 60,+ 65, into Eq. (4.6) one obtains

Alji:lji, _Ji:Aﬁc.m._ Al}) (42)
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m . I
(AEp)=—mu;- ((801) +(8'%5y)) - > (2v-(dvy) — A(MIN(8,F ma)]+ U_;) [A(MIN( 8,1 may)
+20- (825 )+(652)). (4.10
—AMIn(R,r ma) 1 (- (4.15
As 6u, is linear in 7y, see Eq.(3.39, the y~average( 6uvy)
vanishes, while Eq(3.52 yields In electron cooling of ion beams, the velocity distribution of
- the electrons is not isotropic. It is usually modeled by an
(552)= Z&\2 207 (4.11 anisotropic Maxwellian
U mr) oF ' 5 )
f _ m ( m )1/2 1 ;{ mvel mveH
Inserting(5®)5,) from Eq.(3.57) the energy change is (o) = kgT, \ 27kgT, 27 R T 2kaT, 2kgT, )’
(4.1
(AE}))= (Zéz) vl 02 —v?). (4.12  Wherekg is the Boltzmann constant. For the upper cutoffs in
my® Vel the Coulomb logarithms of E¢4.15), which account for the

shielding of the electron-ion interaction, we assume dynamic
This result has already been given in Eﬁﬁ) of Ref. [9] for Screening1 see, for examp|e, Rd:f];&]_q:
the special caseeH:O. In the general case this term leads to

an energy gain for?<v?,. The energy loss of the ion in a M max=Ap(1+vilvg) Y2 (4.17)
homogeneous monochromatlc electron beam is obtained by

integrating over an area elemeddyr ,dr, parallel to the Whereho is the Debye length,

relative current density.v, . ( 8ok3j) 1/2:< KsT )1/2 w1
dE, 1dE 2n nee Amneg®)
dS l)I dt Uj

~ r
nea.ﬁf droro(AE), (413 _ - .
Fmin with T=3T,+2T, and vy=(kgT/m)¥2 The velocity-
averaged energy loss is then calculated in cylindrical coordi-
wherer . IS an upper cutoff that accounts for shielding, nates
while r i, is the cutoff(2.12), below which the perturbative
treatment of the Coulomb interaction fails. It is well known, [dE;\ 4wZ%"n, m m \Y*1 ren
however, that for Rutherford scattering, hard collisions are \ ds/ m keT, | 27kgT, Zfo ¢
taken into account by regularizing thg integral according

to f q f q mos Mo
Veler | QUel®B = 51 37 2k,T,
Mmaxdr r
=f % =" A(F ) 1
Tmin 10 I min —;A(mln (R, ma)+ O(R=6) = >
Mmax Fodr 1 r2
If - :—In(1+ r;ax), (4.14 vi (v5—v)
o T +rm|n 2 I min XT[A( max) A(mm(R rmax))]
a procedure that yields the exact redul]. As the hard 102 (v4-0vd)
collisions are dominated by the Coulomb interaction we +O(5—R)| 5 e—”[A(rmax)
adopt this regularization also for the magnetic cases. In these
integrals, with respect to,, the appropriate expressions for ;7 o
(AE;) must be inserted, i.e., E¢4.8) for ro<R, Eq. (4.9 — A(min( 3, fmax))]+ [A(MIN(S,T )
forro>R, 6>rq, and Eq.(4.12 for ro>R, 6<rq. Adding
these contributions yields
—A(MIN(R,r mad)] ] (4.19
dE;  4m(Z&)%n,

ds m [vla A(MIN(R,r 120)+ O (R—0)

1vf (vg—vd)

Here(---) indicates the average with respect to the distribu-
tion (4.6). We note that the two magnetic terms do not in-

X —S—[A(rmax) A(MIN(R,T a)] volve the anglep at all, so this integral is trivial for these
2 VU terms. Moreover, the magnetic terms involve only the rela-
(v 2) tive velocity v, in whichv,, is quenched. In previous kine-
+O(5- R){ wm( ) matical approaches average Coulomb logarithmsiave
v° been taken out of the velocity integral, which could then be
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TABLE |. Parameters of ion and electron cooling beams in the  0.25

Heidelberg test sto_ragg ring TSRO] for the calculations leading to o = 0° Iin.zrﬁngrrése?
the results shown in Figs. 4-11. o2l M\ B =0.005T

lon ce*

B (T) 0.005-0.05 g 0157

QY 0.88x 10°-0.88x 10'° 5

(keT, /m)Y2 5.1x10 °-5.1x10® I o1tk

o ™

-3

ne (cm ) 8x10° 0.05 |{ \

kgT, (meV) 115

kBT” (me\/) Ol S,

Ap (M) 0.73x10°* 0 : ' : ;

0 2 4 6 8 10
(]

. . . . H H 2 2
done in analogy to electrostatics by calculating a quasipoten- FIG. 4. Energy loss in units of #(Z¢?) ne/(mugy) as a func-
tial due to an anisotropic Gaussian charge distribution. Fofion of the ion velocityv; in units of the longitudinal thermal ve-
the contributions where the transverse motion of the elec2Cily v for B=5mT and «=0°. Other parameters are from

trons is quenched by the magnetic field, this would Corre_Table I. Solid curve: present second-order treatment; dashed curve:

spond to the calculation of the potential of a wire carrying allnear-response theoip2].
Gaussian distribution. However, the resulting divergent be

: . SN -~ ~obtained in the framework of a linear-response treatment. As
havior of the energy loss at low ion velocities is artificial.

0[mentioned in the Introduction this requires the calculation of
. : o he imaginar rt of the inverse of th namical dielectri
priate Coulomb logarithmd (4.14) under the velocity inte- e imaginary part of the inverse of the dynamical dielectric

grals in Eq.(4.19. Because of Eq2.12 this guarantees an function In{l/s(lz,w)]. The very intricglte linear-response
analytical behavior of the energy lossuat>0. However, the —expression for the dielectric function(k,w) [12,21 with

velocity integrals cannot be evaluated in a closed form anythe anisotropic distributiort4.16 with T;#0 has recently
more. been evaluated numerically. The corresponding energy loss

has been calculated assuming

B. Results 1 —Im s(lz,w)
_ Im——— , (4.20
Actual calculations of the energy loss have been per- e(k,w) l&(K,0)|2

formed under conditions prevailing at the test storage ring

TSR in Heidelberd20]; the parameters are given in Table I. gnq introducing a cutofO(r;2) in the integration with re-

As mentioned in the Introduction, a comparison of our ré-gnect 4 wave numbers. The agreement between this simpli-
sults with other treatments should address the following iSzioq version of the dielectric linear-response treatnjed

sues. and the binary collision model breaks down if the ion veloc-

(i) The role of the cutoffr, (2.12) below which the .~ aonroaches the longitudinal thermal velocityy,
perturbation treatment fails. We have accounted for hard col-_ (kg T, /m)Y2 from above. The disagreement is larger for an

lisions by modifying the Coulomb logarithm according to ion motion along the magnetic fielde=0°. Figs. 4 and
Eqg. (4.14. In a complementary manner the dielectric Iinear—I I 9 gnetic fielg » F1gS. b

response treatment fails for wave numbers larger Mﬂq}m 0.5 S . - .

[4.9,10,19. . . . 045§} o =0° e erciy
(it) The binary collision model presumes a single-particle B = 0.02T

excitation spectrum of the target electrons, their polarization 04 [ /1 }

is only accounted for by dynamic screening according to Eq. 0.35 |

(4.17). If exactly worked out the dielectric theory includes " ||

collectivity in the linear response of the electrons. This raises<. i

the question, how far does this redistribution of strength in& 928 | |

the excitation spectrum of the electrons affect the energy loss! 0.2 ||

and its dependence on the magnetic field. 0.15 |
(iii) However, for technical reasons, the complete dielec- i

tric linear-response theory has only been worked out for a 0.1 ‘ \

flattered velocity distribution of the electron$;&0) [9,10. 0.05 .

But the energy loss at small ion velocities depends also very 0 e : -

sensitively on the details of the velocity distribution. 0 2 4 " 6 8 10
In Figs. 4—7 results from the present second-order treat-

ment of binary collisions are compared with the energy loss FIG. 5. Same as Fig. 4 f@=20 mT.
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0.1 : . : 0.25 : - .
. lin. response - ~ . lin. responge -
~ a=190 2nd order I\ a=190 2nd order
0.08 [/ \ B = 0.005T ] 02t \ B =002T
H kS H 3
i \\ ’ “‘\
0.06 H§ N . 0.15 § \
9 { \ 9 \‘\
= 4 = 0.1
% 0.0 % .
0.02 0.05
0 0
-0.02 - - - ' -0.05 - - - :
0 2 4 6 8 10 2 4 6 8 10
Vg Vg
FIG. 6. Same as Fig. 4 faxr=90°. FIG. 7. Same as Fig. 5 far=90°.
than transversallya=90°, Figs. 6 and ) In the latter case In order to check the validity of treating hard collisions

the present second-order treatment yields an energy gain faccording to the replaceme.14 we compare our binary
very low ion velocities, which is due to the contribution collision model with classical trajectory Monte Carlo
(4.12 from tight helices forw;<v, . As there is no collec- (CTMC) calculations, in which, for fixed triples of the pa-
tivity except screening in either the binary collision model orrametersv;, , ve, and ¢ —v;), an ensemble of (1-4)
this version of dielectric linear response, their different be-x 10° magnetized electrons are scattered in the field of the
havior at low ion velocities is due to the different treatmentmoving ion [3-5. The electron-ion interaction has a
of hard collisions: In the present binary collision model the Yukawa-type shielding with a range,,=1.03\p. The
modified Coulomb logarithm (4.14) is employed under the CTMC results are shown on the right panels of Figs. 8—11,
integral with respect to the velocity distribution of the elec- the agreement with the second-order treatnilefit panels is
trons. This approach is self-cutting 4s—0 for small rela-  very satisfactory for all angles between the velocity of the
tive velocitiesv (or v). In the dielectric model an average ion and the magnetic field, the energy gains for small ion
Coulomb logarithmlL, evaluated with the thermal velocities velocities should be noted. For a purely longitudinal motion
of the electrons, is taken out of the velocity integral. This(Fig. 8 the magnetic field hinders the loss of energy, in fact,
leads to a very large energy loss at low ion velocities, whichfor B— = one expects that the electrons move like beads on
behaves in a nonanalytical manngE; /dsoc(uii/vi)ln viL a wire with no energy transfer at all. This changes consider-

for low ion velocities[21,22. ably if the ion has a transversal velocity component. Then
0.025 0.025 . . .
a=0° B=0ml ——
B=2.5mT -
B=10mMT  wwommmmensn

0.02 0.02

= 0.015 = 0.015
S )
= =
S S
-] 3
I 0.01 I 0.01

0.005 0.005

o |; L L L o : L L L
0 5 10 15 20 0 5 10 15 20
Vg Vg

FIG. 8. Energy loss in units of#(Zéz)Zne/(mvth) as a function of the ion velocity; in units of the longitudinal thermal velocity

for «a=0° and various magnetic-field strengths. Other parameters from Table |. Left panel: present second-order theory; right panel:
CTMC results[3-5].
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0-1 T T T 0-1 T T T
a = 30° B=0mT —— a = 30° B=0mT ——
B=2.5mT - B=2.5mT -
L B=10mT e | I B=10mT = |
0.08 B=40mT ------ 0.08 B=40mT ===
0.06 . 0.06 .
< <
N 0.04 1 R 004§ i3 1
> LR IR\
0.02 1 0.02
0 0
-0.02 . L . -0.02 l
0 5 10 15 20
vy

FIG. 9. Same as Fig. 8 fax=30°.

the tight helix contribution4.12) yields a contribution to the example we show in Fig. 12, at fixéd, , how the energy
energy loss, which increases both withand B in the peak loss of protons in the present model increases T 0.
region of a few longitudinal thermal velocities. Thus the This should be compared to the energy loss in the dielectric
magnetic field does enhance the energy loss for transverselinear-response theory including collective excitations of
moving ions, but not as much as in the linear-response treaélectrons with a flat velocity distributiocurve from Fig. 8
ment[22], as discussed above. We mention that this enhancef Ref. [9]). The effects resulting from the collectivity and
ment is also overestimated in a kinetic model, where thehe finite anisotropy of the velocity distribution obviously
transverse motion of the magnetized electrons is completelshask each other. The linear response with the more realistic
guenched and the asymptot;iﬁ2 behavior of the energy loss distribution (4.16 is not known in the closed form, but the
prevails down taw;— vy [11]. response of magnetized electrons due to the ion has been
Of course, the results shown in Figs. 3—7 leave the role o€alculated by solving the Vlasov-Poisson equation numeri-
the collectivity of the dielectric response open. In this con-cally with a particle-in-cell(PIC) code by representing the
nection the region of low ion velocities is of interest, but electrons by test particld45]. This involves neither a lin-
there the energy loss depends also very sensitively on thearization nor a cutoff at small distandes large wave num-
details of the velocity distribution of the electrons. As anber9. As shown in Fig. 13 the PIC results, which include

0-12 T T T 0.12 T T T
. a = 60° B=O0mT —— o = 60° B=OmT ——
A B=2.5mT
0.1+ H 1 01T B=10mT =
0.08  ir - 0.08 - /™ ]
» 0.06 . - w 0.08 [N % -
3 O Y 3 if Y
< FY = I Y
K 0.04 LY - K 0.04 i S i
i~ ‘\ \“‘ = § ., ."‘
[ R I §ooe e e
0.02 e 0.02 -{ R e i
H
R: i
-0.02 ¥ . -0.02 § i
-0.04 : ' . -0.04 - L .
0 5 10 15 20 0 5 10 15 20
V; U

FIG. 10. Same as Fig. 8 far=60°.
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0.14

0.14

‘a=90° B=0mT —— ‘a=90° B=0mT ——
012 }F =~ B=2.5mT -w-emee . 0.12 B=2.5mT - ]

A B=10mT = [T e T —
01+ i % B=40mT ------ ] 01 | SR, oy p— |
0.08 F I\ % : 0.08 | :

R ."-‘ -"\ [7) _,-"*.‘.
T 006 Fi Y\ % 1 T o008r: ™ .
T 004 | X\x " 10 00417 N, ]
0.02 .. 0.02 |, .
0 0

0.02 [ ] -0.02 ]
-0.04 , . . . -0.04 £ . . . ]
0 5 10 15 20 0 5 10 15 20

FIG. 11. Same as Fig. 8 far=90°.

collectivity (pointg, compare better with the present binary netic field the cyclotron radiurR is larger than the distance of
collision model(solid curve than with the linear-response the closest approaaty and the unperturbed motion is recti-
result in the approximatiofd.20 (dashed curve This indi-  linear. For a strong magnetic fieR<r,, the unperturbed
cates that, at least, in the cases considered here the propeotion of the electron is helical. The guiding center approxi-
treatment of hard collisions, e.g., by Eg.14), seems to be mation applies if the pitchd of the helix is larger tham,
more important than to account for the collectivity in the (stretched helicgswhile tight helices withd<r, become
response of the electrons. important if the ion velocity has a component transverse to
the magnetic field.

In the general two-body problem in a magnetic field only
the total energy is conserved, but not the energies of the

We consider collisions between heavy charged particleselative and c.m. motions separately. The uniform motion of
(ions) and light charged particleelectrons in a homoge- the ion is only weakly perturbed by the collision with an
neous external magnetic field. As this problem is not inte-€lectron, and there exists a conserved quarifityhat in-
grable, we seek an approximate solution in which the ionvolves the energy of relative motion and a magnetic term
electron interaction is treated as a perturbation. Three

V. SUMMARY AND CONCLUSIONS

kinematical regimes have been identified: For a weak mag- 0.05 : in. response —
/ o= 60° 2nd order
0.04  / B=0.04T PIC - 1
8| i
- 0.03 [
— K| i
§er > 002 f
S5 % i
<
e 0.01
— 4
(2}
2 3t 0
LL
gel
T2
-0.01 I I I I . L N
1 0 1 2 3 4 5 6 7 8
vy

FIG. 13. Energy loss in units of#(Z£%)?n,/(mv3,) as a func-
tion of the longitudinal thermal velocityy, for Z=10, T,=10K,

FIG. 12. Energy loss of protons in the present binary collisionT, =1000 K, n,=1.55x10'** m~3, «=60° andB=0.04 T. Solid
model for increasing asymmetily, /T, of the velocity distribution  curve: present second-order treatment; dashed curve: linear-
and in the dielectric theory with a flat velocity distributiof,=0 response theonf22]. Points: PIC simulation of the nonlinear
[9]. Standard parameters of ReR]: n,=3x10"m 3, kgT, Vlasov-Poisson equation with error bars indicating the size of the
=1eV,B=0.07T. statistical fluctuation$15].

v, (10% mss)
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associated with the influence of ti&ex B drift on the c.m.  many fruitful discussions and G. Maynard for insisting on

motion. It turns out that the second-order treatment of thédhe second-order treatment. The rolekotonservation was

Coulomb interaction is both necessary for a velocity transfepointed out by G. Zwicknagel; he and M. Walter also pro-

that does not vanish due to symmetry and sufficient to fulfillvided me with some of their results prior to publication.

this conservation law. Hard collisions are taken into account

by regularizing the integrand Ieading to the COUlomb |Oga' APPENDIX: SOME TECHNIQUES FOR TREATING

rithm at the lower boundary, a procedure that is exact for MULTIPLE INTEGRALS

Rutherford scattering. For the interaction of an ion with a

homogeneous electron beam the first-order terms vanish due In the calculation of the trajectory correction and the

to symmetry, but there remain the leadi®fZ?) contribu-  second-order velocity transfer there occur, frequently, mul-

tions. tiple integrals that can be done by partial integration accord-
As an application, the energy loss of ions in a magnetizedng to

electron plasma was considered. The influence of the mag-

netic field is ambiguous. The magnetic field reduces the loss T dg (+

of energy if the ion moves along the field lines, but it en- f_wdT,dT f_wdf'f(f')

hances the energy loss for a transverse motion of the ion.

This enhancement in the present binary collision model

agrees quite well with CTMC results for binary collisions, =9(T)f

which do not involve any cutoff procedures for hard colli-

sions as well with results from PIC simulations, which in-

clude the collective response of the electrons. Nevertheless P&

more analytical theory of the energy loss of ions in a mag-

netized electron plasma, accounting for hard collisions, col-

lective response, and a nonflattened electron-velocity distri-

bution is highly desirable. For that purpose it has been

proposed to correct the binary collision model by the differ-

ence between the dynamic and the static linear response, €.

the error made in the replacemd#nt20 [3,4,19. Such cal-

culations are in progress.

’ dH’f(H’)—jT dr'g(+)f(r),

ovided that
g(T)fT d7'f(7")—0, 71—,

Double integrals, where both integrands are either even or
8dd, can be converted into products of simple integrals by
symmetrization,

© T 1 © ©
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