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Scattering of magnetized electrons by ions
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Binary collisions between ions and electrons in an external magnetic field are treated in second-order
perturbation theory, starting from the unperturbed helical motion of the electrons. For the transfer of relative
velocity in a collision, three kinematical regimes are identified, depending on the relative size of the cyclotron
radius, the pitch of the helices, and the distance of the closest approach. The magnetic field suppresses the
velocity transfer in the transverse direction, but it enhances the longitudinal velocity transfer, provided that the
ion velocity itself has a transverse component. In order to relate the velocity transfer to the energy loss of the
ions, particular attention must be paid to the nonconservation of the center-of-mass motion in a magnetic field.
Hard collisions are accounted for by regularizing the energy transfer at small distances. For ions interacting
with monochromatic beams closed expressions for the energy loss can be derived, which are averaged with
respect to the velocity distribution of the electrons. The magnetic field reduces the energy loss for ion motion
parallel to the magnetic field while it enhances the energy loss for transverse ion motion.
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I. INTRODUCTION

In the presence of an external magnetic fieldB the prob-
lem of two charged particles cannot be solved in a clo
form as the relative motion and the motion of the center
mass are coupled to each other. Therefore no theory e
for a solution of this problem that is uniformly valid for an
strength of the magnetic field and the Coulomb force
tween the particles. Numerical calculations have been
formed for binary collisions between magnetized electro
@1,2# and for collisions between magnetized electrons a
ions @3–5#. As an ion is much heavier than an electron,
uniform motion is only weakly perturbed by collisions wit
the electrons and the magnetic field. There exists a conse
energyK involving the energy of relative motion and a ma
netic term. In this paper we treat the Coulomb interact
with the ion as a perturbation to the helical motion of t
magnetized electrons. This has been done previously u
first order in the ion chargeZ @6#, it is shown here that a
second-order treatment is both necessary and sufficien
the conservation of the generalized energyK. Three regimes
are identified, depending on the relative size of the para
etersR ~the cyclotron radius!, r 0 ~the distance of the closes
approach!, andd ~the pitch of the helix!.

In earlier kinetic approaches@7–11# only two regimes
have been distinguished: Fast collisions forr 0,R, where the
Coulomb interaction is dominant and adiabatic collisions
r 0.R, where the magnetic field is important, as the elect
performs many gyrations during the collision with the io
The changeDEi of the energy of the ion has been related
the square of the momentum transferDp, which has been
calculated up toO(Z). This is somewhat unsatisfactory, a
the first-order treatment violates energy conservation
there is anotherO(Z2) contribution toDEi , in which the
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second-order momentum transfer enters linearly. Moreo
the friction force on the ion has been written in analogy
electrostatics as a gradient of a pseudopotential in velo
space. This requires that the spatial integration with resp
to the impact parameters be performed after averaging w
respect to the velocity distribution of the electrons. At lo
relative velocities this is doubtful. In the present paper
work out the binary collision model up toO(Z2) and regu-
larize the spatial integration in a manner that leads to
exact result for Rutherford scattering and keeps the resul
modified Coulomb logarithm within the velocity integral.

In applications of the binary collision model to plasm
physics, e.g., the stopping of ions by electrons, the polar
tion is only accounted for by shielding the Coulomb intera
tion at large distances. In a complementary picture one
culates the energy loss of the ion through its interaction w
the polarization cloud it has created in its wake. This diel
tric theory of collective excitations requires a cutoff at sm
distances, where hard collisions cannot be treated any m
in linear response. In the absence of a magnetic field b
approaches give the same results, if physically reason
cutoffs are used in the Coulomb logarithms@9,10#.

However, the presence of a magnetic field introduc
complications, in that case the dielectric theory of the ene
loss has, to our best knowledge, not yet been worked
completely. This is desirable, as the effects of collective
citations interfere strongly with the influence of the magne
field for low ion velocitiesv i . Already the underlying expres
sion for the dielectric function« is quite involved, see, for
example, Ref.@12#, and for the friction force one has t
integrate Im(«21) with respect to the wave numbers. The
integrations are facilitated, if one assumes a velocity dis
bution of the electrons which is completely flat in the dire
tion of the magnetic field~i.e., the temperature parallel to th
magnetic field is zero!. Then Im(«21) can be approximated
by a sum ofd-functions at the plasma frequency and t
cyclotron frequency. This facilitates not only the integr
tions, but also allows a separation into contributions from
plasma mode and from binary collisions@9,10#. However, in

ail
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CHRISTIAN TOEPFFER PHYSICAL REVIEW A66, 022714 ~2002!
the electron cooling of ion beams the velocity distribution
the electrons has a small, but finite temperature paralle
the beam. The cooling is most effective for ions with a v
locity that corresponds to that temperature, and results
the completely flattened distribution cannot be readily
plied in this situation. In fact, it has been argued earlier t
plasma-wave excitations are suppressed, if the cyclotron
quency is larger than the plasma frequency@13,14#.

In the present paper we attempt to optimize the bin
collision model. Keeping the role of collective excitations
mind, we also compare our results with previous numer
solutions of the Vlasov-Poisson equation, in which the el
trons are represented by test particles@15#. Such a treatmen
accounts for the nonlinear response of the electrons to
perturbing ion. The numerical simulations show statisti
fluctuations, which tend to obscure the asymptotic beha
at small ion velocities. A linear-response treatment of
energy loss of ions in a magnetized plasma with a fin
temperature anisotropy remains, therefore, highly desira

The paper is organized as follows: For pedagogical p
poses we treat in Sec. II the trivial case where the distanc
the closest approachr 0 is smaller than the cyclotron radiu
R, so that the magnetic field can be neglected. It is sho
that the velocity transfer must be calculated to second o
O(Z2) in order to fulfill energy conservation on this level. I
Sec. III we consider the scattering of magnetized particle
the framework of the Lagrangian formalism. As the ion ma
M is much larger than the electron massm there exists a
conserved generalized energyK, which is the sum of the
energy of relative motion and a magnetic term. The eq
tions of motion are solved in an iterative manner up
O(Z2) starting from the unperturbed helical motion of th
electrons in the magnetic field. For strong magnetic fie
R,r 0 two subregimes can be identified. For stretched h
ces with a pitchd.r 0 the guiding center approximation ap
plies. For tight helices withd,r 0 there is a velocity transfe
parallel to the magnetic field; in fact, this contribution
dominant for small relative velocities. The second-ord
treatment fulfills the generalized conservation law forK.
Hard collisions are taken into account by regularizing
integrals leading to Coulomb logarithms at the lower bou
ary in a manner that leads to the exact result for Rutherf
scattering. In Sec. IV the theory is applied to the energy l
of ions in a magnetized electron plasma. This is a theme
large current interest in connection with the electron cool
of heavy-ion beams in storage rings as well as the coolin
~anti-!particles in traps. The influence of the magnetic fie
on the energy loss is ambiguous: With increasing magn
field one expects a longitudinal motion of the electrons alo
the field lines like beads on a wire, with no energy loss at
for vW i iBW in the limit B→`, except for possible collective
effects. On the other hand, as the magnetic field quenche
transversal motion of the electrons, the inverse square
for the dependence of the energy loss on the ion velo
persists down to the longitudinal thermal velocity of the ele
trons. As this is small in the electron coolers of storage rin
the energy loss should be enhanced. We show that, as f
binary collisions are involved, the first effect~reduction of
the energy loss! is dominant when the ion moves parallel
02271
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the magnetic field, while the enhancement becomes do
nant with a transverse motion of the ions. The results of
binary collision model are compared with simulations,
which ensembles of magnetized electrons are scattered
ions@classical trajectory Monte Carlo~CTMC!#, and with the
dielectric theory both in linear response and by a numer
solution @particle in cell~PIC!# of the Vlasov-Poisson equa
tion. In Sec. V the results are summed up; some formulas
techniques for the second-order treatment are presente
the Appendix.

II. PERTURBATIVE APPROACH TO RUTHERFORD
SCATTERING

A. First-order velocity transfer

For pedagogical reasons we consider first the scatterin
unmagnetized electrons by a fixed point chargeZe, e.g., an
ion, which rests at the origin. The electrons move and in
electric field due to the ion

EW „rW~ t !…5
Ze

4p«0

rW~ t !

r 3~ t !
, ~2.1!

where«0 is the permittivity of the vacuum. In view of the
later inclusion of the magnetic field we do not integrate t
equations of motion

drW

dt
5vW , ~2.2!

dvW
dt

52
e

m
EW „rW~ t !… ~2.3!

exactly, but seek an approximate solution, in which the C
lomb field ~2.1! is treated in a perturbative manner. The firs
order velocity transfer is obtained by integrating Eq.~2.3!
using the unperturbed electron trajectory for rectilinear m
tion along thez axis,

rW~ t !5S r 0 sinu
2r 0 cosu

vt
D . ~2.4!

Here

rW05r 0S sinu
2cosu

0
D ~2.5!

is the vector of the closest approach, which takes placet
50. Insertion of Eqs.~2.4! and ~2.5! into the equation of
motion ~2.3! yields the first-order velocity transfer

dvW C~ t !52
Ze” 2

m E
2`

t dt8

~r 0
21v2t82!3/2S r 0 sinu

r 0 cosu
v it8

D ~2.6!

52
2Ze” 2

mv
rW0

r 0
2 , t→1`, ~2.7!

wheree” 25e2/4p«0 .
4-2
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SCATTERING OF MAGNETIZED ELECTRONS BY IONS PHYSICAL REVIEW A66, 022714 ~2002!
At this stage it should be noted that the first-order tre
ment is not yet physically meaningful.

~i! The energy

E5 1
2 mvW 22

Ze” 2

r
~2.8!

is not conserved, as the velocity transfer~2.7! is parallel to
the distance of the closest approachrW0 . Thus

DE5m„vW •dvW C1 1
2 ~dvW C!2

…5 1
2 m~dvW C!2Þ0. ~2.9!

~ii ! In many applications one has to deal with beams
electrons, which can be considered as homogeneous o
scale set byr 0 . Then the first-order velocity transfer van
ishes due to symmetry reasons when integrating with res
to rW0 . Indeed, the transport phenomena, etc., are of o
O(Z2) in the ion charge.

It is therefore necessary to calculate the velocity transfe
second order.

B. Second-order velocity transfer for Rutherford scattering

With the dimensionless time variable

t5uvut/r 0 , ~2.10!

one obtains after another time integration the first-order c
rection to the trajectory,

drW~ t !52
Ze” 2

m

1

v2 E
2`

t

dt8F S t8

~11t82!1/211D S sinu
2cosu

0
D

2
sgn~v !

~11t82!1/2S 0
0
1
D G . ~2.11!

This is a small correction if

r minª
Ze” 2

mv2,r 0 . ~2.12!

Here and in the following we will not worry about appare
divergences as it will turn out that these cancel exactly w
physically observable quantities such as the velocity tran
are calculated.

The correction to the electric field is calculated with t
help of the expansion

dEk5Ek~rW1drW !2Ek~rW !

5
Ze

4p«0
dr i

]

]r i

r k

~r j r j !
3/2

5
Ze

4p«0~r j r j !
3/2 S dr k23r k

r idr i

r j r j
D , ~2.13!

where the summation convention has been used. The sec
order correction to the velocity is then
02271
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d~2!vW C52
e

m E
2`

`

dt dEW ~ t !

52S Ze” 2

m D 2 2 sgn~v !

v3r 0
2 S 0

0
1
D

52S Ze” 2

m D 2 2

v4r 0
2 vW . ~2.14!

We note that the sum

DvW 5dvW C1d~2!vW C ~2.15!

guarantees energy conservation up toO(Z2),

DE5
m

2
@2vW •dvW C12vW •d~2!vW C1~dvW C!2#

5
m

2 F024S Ze” 2

m D 2 1

v2r 0
2 14S Ze” 2

m D 2 1

v2r 0
2G50.

~2.16!

In fact, we could have proceeded backwards from here.
notingdvW C'vW the second-order contributiond (2)vW CivW could
have been calculated uniquely by enforcing energy con
vation.

III. SCATTERING OF MAGNETIZED ELECTRONS
BY IONS MOVING TRANSVERSELY

TO THE MAGNETIC FIELD

A. Relative motion and conservation law

We assume now slow ions with massM@m, which move
uniformly with a velocity

vW i5S v i'

0
v i i

D . ~3.1!

Because of Galilei invariance, the results obtained previou
in Sec. II for the caseBW 50W remain valid, if the velocities,
distances, etc., are interpreted as relative quantities, e.g

rW~ t !5rWe~ t !2rW i~ t !5rWe~ t !2vW i t,
~3.2!

vW ~ t !5vW e~ t !2vW i .

However, if a magnetic fieldBW 5¹W 3AW is present the La-
grangian of the electron-ion system is

L5
m

2
vW e

21
M

2
vW i

22eAW ~rWe!•vW e1ZeAW ~rW i !•vW i1
Ze” 2

r
.

~3.3!

For a homogeneous fieldBW the vector potential may be cho
sen asAW (xW )5 1

2 BW 3xW , this yields
4-3
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L5
m

2
vW e

21
M

2
vW i

22
e

2
~BW 3rWe!•vW e1

Ze

2
~BW 3rW i !•vW i1

Ze” 2

r
.

~3.4!

This Lagrangian cannot, in general, be separated into p
describing the relative motion and the motion of the cente
mass: With rWc.m.5(mrWe1MrW i)/(M1m), vW c.m.5(mvW e
1MvW i)/(m1M ) and the reduced massm215m211M 21

the Lagrangian is

L5
m1M

2
vW c.m.

2 1
m

2
vW 21

Ze” 2

r
1

~Z21!e

2
~BW 3rWc.m.!•vW c.m.

1
m2

2 S Ze

M22
e

m2D ~BW 3rW !•vW 2
m

2 S Ze

M
1

e

mD
3@~BW 3rWc.m.!•vW 1~BW 3rW !•vW c.m.#. ~3.5!

Here, under the assumptions mentioned above, a heavy,
formly moving ion can be considered as a time-depend
perturbation on the electron motion. Usingm→m and drop-
ping unimportant constants the Lagrangian for the rela
motion is

L5
m

2
vW 21

Ze” 2

r
2

e

2
~BW 3rW !•vW 2

e

2

3@~BW 3vW i t !•vW 1~BW 3rW !•vW i #, ~3.6!

with the equations of motion

vW 5
drW

dt
,

~3.7!

m
dvW
dt

5m
dvW e

dt

5¹W
Ze” 2

r
2e~vW 3BW !2e~vW i3BW !

52¹W
Ze” 2

r
2e~vWe3BW !.

As L depends on the time explicitly it is not the energyE of
relative motion which is conserved, but rather the quanti

K5E1e~vW i3BW !•rW5
m

2
vW 22

Ze” 2

r
1e~vW i3BW !•rW,

~3.8!

which can be easily proved with the help of the equations
motion ~3.7!. According to the ansatz~3.1! the ion moves in
the x-z plane, for an evaluation of the last term inK one
needs, therefore, they component of the trajectory of relativ
motion

e~vW i3BW !•rW52ev i'Bry. ~3.9!

As before, we aim at an iterative solution of Eqs.~3.7! start-
ing from the zero-order helical motion
02271
rts
f
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rW~ t !5S b sinu1R sin~Vt1w!2v i't
2b cosu2R cos~Vt1w!

~vei2v i i!t
D , ~3.10!

see Fig. 1, and

vW ~ t !5S ve' cos~Vt1w!2v i'

ve' sin~Vt1w!

vei2v i i

D ~3.11!

with the cyclotron frequency

V5
eB

m
~3.12!

and the cyclotron radius

R5
ve'

V
5

mve'

eB
~3.13!

with ve'>0. We will need the timet0 and the distance vec
tor rW0 of the closest approach between the electron and
ion. For that purpose we expandr 23(t), which will be
needed in the electric field, with respect toR,

r 23~ t !5$b21R21~vei2vei!
2t21v i'

2 t222v i'bt sinu

12R@b cos~Vt1w2u!2v i't sin~Vt1w!#%23/2

'@b21~vei2v i i!
2t21v i't222v i'bt sinu#23/2

3S 12
3R@bcos~Vt1w2u!2v i't sin~Vt1w!#

b21~vei2v i i!
2t21v i'

2 t222v i'btsinu D .

~3.14!

The new denominator describes the relative motion excl
ing the transverse motion of the electrons, which is quenc
by the magnetic field

FIG. 1. Relation between the parametersb, R, r, u, andw de-
scribing the trajectories according to Eq.~3.10! in the transverse
plane att50.
4-4
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r̄ 2~ t !5b21@~vei2v i i!
21v i'

2 #t222v i'bt sinu

5 v̄2~ t2t0!21r 0
2, ~3.15!

where

v̄W 5vW i1vW'5S 0
0

vei2v i i

D 1S 2v i'

0
0

D 5S 2v i'

0
vei2v i i

D
~3.16!

is the relative velocity vector between the guiding center a
the ion and its components in an obvious notation. Its m
nitude v̄ is related to the pitch of the helices

d5
v̄
V

. ~3.17!

The distancer̄W(t0)5rW0 and timet0 of the closest approac
between the guiding center and the ion are

t052
v̄'b sinu

v̄2 ~3.18!

and

r̄W2~ t0!5r 0
25b2F12S v̄' sinu

v̄ D G2

5b22~ v̄t0!2,

~3.19!

so that

r̄W~ t !5S b sinu1 v̄'t0

2b cosu
1 v̄ it0

D 1S v̄'

0
v̄ i

D ~ t2t0!5rW01 v̄W ~ t2t0!.

~3.20!

Here we continue to use the notationrW0 for the distance
vector andt0 for the time of the closest approach, althou
the relation between these quantities and the parameter
scribing the trajectories is different from that in the prece
ing section. This is done becauserW0 is the independent vari
able with respect to which integrations must be perform
when the interaction of ions with an electron beam is c
sidered.

It is useful to introduce dimensionless variables such

t5
v̄t

r 0
~3.21!

and

s5t2t05
v̄~ t2t0!

r 0
~3.22!

for the time,

v5
r 0

d
5

r 0V

v̄
~3.23!

for the pitch,
02271
d
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g i5
v̄ i

v̄
~3.24!

and

g'5
v̄'

v̄
~3.25!

as components of a reduced relative velocity as well as

b5
b

r 0
~3.26!

for the trajectory. Furthermore, polar coordinates as show
Fig. 2 will be useful,

rW05r 0S cos« cosc
sinc

2sin« cosc
D , ~3.27!

where« is the angle between the direction of fluxv̄W and the
direction of the magnetic field, i.e.,

cos«5
vei2v i i

v̄
5g i . ~3.28!

Comparing the perpendicular components of Eqs.~3.20! and
~3.27! one obtains

t052bg' sinu52
g'

g i
cosc ~3.29!

and

b cosu52sinc. ~3.30!

Thus b, t0 , and u can be expressed byc and the reduced
velocities

b sinu1g't05g i cosc, ~3.31!

b2511t0
2. ~3.32!

FIG. 2. Illustration of the relation~3.27! between the vector of

relative motionv̄W and the orthogonal vector of closest approachrW0 .
4-5
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B. First-order velocity transfer, trajectory correction,
and K conservation

The equations of motion~3.7! are solved iteratively by
treating the Coulomb field as a perturbation. The magn
field is taken into account by transforming to a rotating s
tem

vW e~ t !5T~Vt !VW e~ t ! ~3.33!

with

T~Vt !5S cosVt 2sinVt 0

sinVt cosVt 0

0 0 1
D , ~3.34!

which yields

dVW e

dt
52

e

m
T21~Vt !EW „rW~ t !…. ~3.35!
e
es

ac
3.

e

02271
ic
-

The first-order velocity transfer is obtained by integrati
this equation. For strong magnetic fields,R,r 0 , the leading
term is

dVW B~ t !52
Ze” 2

m E
2`

t dt8

r̄ 3~ t8!
T21~Vt8! r̄W~ t8!

52
Ze” 2

m

1

v̄r 0
E

2`

s ds8

~11s82!3/2

3S cosvt8 sinvt8 0

2sinvt8 cosvt8 0

0 0 1
D

3S b sinu1g't8
2b cosu

g it8
D . ~3.36!

The asymptotic velocity transfer is
dVW B~ t→`!52
Ze” 2

m

1

v̄r 0
S 2vK1~v!~g i cosc cosvt01sinc sinvt0!22vK0~v!g' sinvt0

22vK1~v!~g i cosc sinvt02sinc cosvt0!22vK0~v!g' cosvt0

2g it0

D , ~3.37!
l in-
s

where K0 and K1 are the modified Bessel functions@16#.
This generalizes the result of Ref.@6# to ions that have a
transverse component of motion with respect to the magn
field. It will turn out to be useful to distinguish two subcas
of strong magnetic fields: Stretched helices~cases!, where
the pitchd is larger than the distance of the closest appro
r 0 and tight helices~caset! in the opposite case, see Fig.
In the limit v!1 of stretched helices one obtains

dVW B→dVW s52
Ze” 2

m

2

v̄r 0
2 rW 0 , ~3.38!

which should be compared with Eq.~2.7!. In the opposite
limit v→`, the first-order velocity transfer is parallel to th
magnetic field,

dVW B→dVW t52
Ze” 2

mv̄r 0
2g it0S 0

0
1
D . ~3.39!

The first-order trajectory correction is

drW~ t !52
Ze” 2

mv̄2 E
2`

s

ds8T~vt8!

3E
2`

s8 ds9

~11s92!3/2T21~vt9!S b sinu1g't9
2b cosu

g it9
D .

~3.40!
tic

h

The parallel component is not affected by the rotationsT,

dr i~ t !52
Ze” 2

mv̄2 g i E
2`

s

ds8S t0s821

~11s82!1/21t0D .

~3.41!

For the perpendicular components one performs a partia
tegration in the outer (s8) integral, see the Appendix. Thi
yields

drW'~ t !5
r 0

v̄v S sinvt cosvt

2cosvt sinvt D dVW B,'~ t !

2
Ze” 2

mv̄2v E
2`

s ds8

~11s82!3/2 S b cosu
b sinu1g't8 D .

~3.42!

It is now easy to showK conservation up to first order. From
Eqs.~3.8! and ~3.9! we have to show

dK5
m

2
~2v̄W •dvW B2ev i'Bdr y!5

m

2
~2V̄W •dVW B1ev̄'Bdr y!

50. ~3.43!

Now
4-6
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ev̄'Bdr y5mv̄'~2dVB,xcosvt1dVB,ysinvt!

2
Ze” 2

v̄r 0
v̄'E

2`

` ds8

~11s82!3/2~b sinu1g't8!

~3.44!

and

mv̄W •dvW B5mV̄W •dVW B

5m~T21v̄W !•dVW B

5mv̄'~dVB,xcosvt2dVB,ysinvt!

FIG. 3. Trajectories of ions and electrons in a magnetic field
the upper part the magnetic field is strong in the sense that
cyclotron radius is small and the helix is tight compared to
distance of closest approach,R,r 0 andd,r 0 . In the central part
the magnetic field is still strong with respect to the transverse
tion, but weak with respect to the longitudinal motion, the helix
stretched,R,r 0 andd.r 0 . The corresponding expressions for th
velocity transfers are similar to the case of a weak magnetic fi
R.r 0 , which is shown in the lower part of the figure.
02271
2
Ze” 2

v̄r 0
v̄ i E

2`

` ds8

~11s82!3/2g it8. ~3.45!

As the perpendicular components cancel, there remains

dK52
Ze” 2

v̄r 0
E

2`

` ds8

~11s82!3/2@ v̄'„b sinu1g'~s81t0!…

1 v̄ ig i~s81t0!#

5
Ze” 2

r 0
2g'b sinu~g'

2 1g i
221!50, ~3.46!

where Eq.~3.18! has been used to relatet0 to sin u.

C. Electric-field correction, second-order velocity correction,
and K conservation

The electric-field correction in the guiding center appro
mation is

dEk5
Ze

4p«0~rW j r̄ j !
3/2 S dr k23r k

r̄ idr i

r̄ j r̄ j
D , ~3.47!

with the guiding center trajectory~3.20! and the second-
order velocity correction

d~2!VW B~ t !52
e

m E
2`

t

dt8T21~Vt8!dEW ~ t8!. ~3.48!

We first calculate the scalar productr̄ idr i with the help of
Eqs.~3.20!, ~3.41!, and~3.42!:

~ r̄ idr i !~ t !52
Ze” 2

m

r 0

v̄2 H 1

v E
2`

s ds8

~11s82!3/2

3$b2~sinvt cosvt82cosvt sinvt8!

1bg'@sinvt~sinu~t1t8!cosvt8

2cosu~t2t8!sinvt8!#1cosvt@2sinu~t

1t8!sinvt82cosu~t2t8!cosvt8!#

1g'
2 tt8~sinvt cosvt82cosvt sinvt8!

1bg' cosu~t2t8!J 1g i
2~s1t0!

3E
2`

s

ds8S t0s821

~11s82!1/21t0D . ~3.49!

Here and in the following the integrals can not more
evaluated in a closed form for arbitraryv. In the limit of
tight and stretched helices, there remains

~ r̄ idr i !~ t !→2
Ze” 2

m

r 0

v̄2 g i
2~s1t0!

3E
2`

s

ds8S t0s821

~11s82!1/21t0D , v→` ~3.50!

n
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e

-
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and

~ r̄ idr i !~ t !→2
Ze” 2

m

r 0

v̄2 H E
2`

s

ds8S t0s821

~11s82!1/21t0D
3@12g i

2t0
22g i

2t0s2g i
2t0s81g'

2 ss8#

1g i
2~s1t0!E

2`

s

ds8S t0s821

~11s82!1/21t0
D J ,

v→0, ~3.51!

respectively. For the parallel component of the second-o
velocity transfer in the limitv→`, Eqs.~3.20!, ~3.42! and
~3.50! must be inserted into thek53 component of Eq.
~3.47!. As mentioned above we are interested in the inter
tion of ions with beams of magnetized electrons, which
quires, among other things, an integration with respect to
anglec defined in Eq.~4.23!. Averaging with respect toc all
terms odd int0 vanish while

^t0
2&5

1

2

g'
2

g i
2 ,

~3.52!

^t0
4&5

3

8

g'
4

g i
4 .

The multiple integrations are done with the help of the te
niques in the Appendix: The result for the averaged para
second-order velocity transfer is

^d~2!Vt,i&52S Ze” 2

mr0
D 2 2g'

2 g i

v̄3 . ~3.53!

In the opposite limitv→0 the scalar product~3.51! con-
tains additional terms. Performing thec averages~3.52! and
carrying out the integrations results in

d~2!Vs,i52S Ze” 2

mr0
D 2 2g i

v̄3 , ~3.54!

again this corresponds to the Coulomb result~2.15! if v̄W↔vW .
The transversal components of the second-order velo

transfer are

d~2!VW B,'~ t→`!52
e

m E
2`

`

dt8S cosvt sinvt8
2sinvt8 cosvt8 D dEW' .

~3.55!

The lengthy calculations yield a plausible result: For tig
helices the transversal velocity transferd (2)VW t,' vanishes be-
cause of the transformation to the rotating system.
stretched helices one obtains the Coulomb expression~2.15!
with vW→ v̄W also ford (2)VW s,' . Thus

^d~2!VW B~ t→`!&→H ^d~2!VW t&, v→`

^d~2!VW s&, v→0,
~3.56!

with
02271
er

c-
-
e

-
l

ty

t

r

^d~2!VW t&5^d~2!Vt,i&S 0
0
1
D 52S Ze” 2

mr0
D 2 2g'

2 g i

v̄3 S 0
0
1
D
~3.57!

from Eq. ~4.46! and

^d~2!VW s&52S Ze” 2

mr0
D 2 2v̄W

v̄4 . ~3.58!

With g'Þ0 there is a second-order velocity transfer para
to the magnetic field even for tight helices withv→`.

There remains to test the conservation ofK, Eq. ~3.8!, up
to second order. In Eq.~3.46! we have shown that the first
order corrections toK cancel, there remains

DK5
m

2
@2v̄W •d~2!vW B1~dvW B!2#1ev̄'Bd~2!r y50.

~3.59!

For that purpose the second-order trajectory correctiond (2)r y
must be calculated. This is they component of

d~2!rW'~ t !5E
2`

t

dt8T~Vt8!d~2!VW B,'~ t8!

5d~2!rW'
~a!~ t !1d~2!rW'

~b!~ t !

5
1

2 S sinVt cosVt
2cosVt sinVt D d~2!VW B,'

1
e

mV S 0 1

21 0D E2`

t

dt8dEW'~ t8!,

~3.60!

where a partial integration has been performed, see the
pendix. The first, integrated term gives

ev̄'Bd~2!r y
~a!~ t !5mv̄'@2d~2!VB,x~ t !cosVt

1d~2!VB,y~ t !sinVt# ~3.61!

and this cancels for any value ofV with the transversal par
of the second-order kinetic energy correction

mv̄W'd~2!vW B,'~ t !5mVW'd~2!VW B,'

5M ~T21v̄ !'d~2!VW B,'

5mv̄'~d~2!VW B,xcosVt2d~2!VW B,ysinVt !.

~3.62!

The second term in Eq.~3.60! gives

ev̄'Bd~2!r y
~b!~ t !52ev̄'E

2`

t

dt8dEx~ t8!, ~3.63!

which involves the scalar product~3.49!. In the limit v→0
~stretched helices!, one obtains immediately from Eq.~3.43!
4-8
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SCATTERING OF MAGNETIZED ELECTRONS BY IONS PHYSICAL REVIEW A66, 022714 ~2002!
ev̄'Bd~2!r y
~b!~ t !52ev̄'S 2

m

e
d~2!Vs,xD , ~3.64!

and afterc averaging from Eq.~3.58!,

^ev̄'Bd~2!r y
~b!&52S Ze” 2

r 0
D 2 2v̄'

2

mv̄4 . ~3.65!

Collecting terms from Eqs.~3.38!, ~3.58!, and~3.65! one has
then for thec-averagedK correction,

~DK !5 K mv̄ id~2!vs,i1
m

2
~dVW s!

21ev̄'Bd~2!ty
~b!L

5S Ze” 2

r 0
D 2 1

m S 2
2v̄ i

2

v̄4 1
2

v̄22
2v̄'

2

v̄4 D 50, ~3.66!

which provesK conservation for stretched helicesv→0. In
the opposite limitv→`, the integral in Eq.~3.63! is a spe-
cial case of Eq.~3.55!, in which dEx is evaluated forv
→` and the final rotation is dropped. This yields, afterc
averaging,

^ev̄'Bd~2!r y
~b!&52ev̄'E

2`

`

dt8^dEx~ t8!&

5S Ze” 2

r 0
D 2 v̄'

2 v̄ i
2

mv̄6 S 12
v̄'

2

v̄ i
2 D . ~3.67!

The c-averagedDK correction is

^DK&5 K mv̄ id~2!v t,i1
m

2
~dVW t!

21ev̄'Bd~2!r y
~b!L

5S Ze” 2

r 0
D 2 1

m S 2
2v̄'

2 v̄ i
2

v̄6 1
v̄'

2

v̄4 1
v̄'

2 v̄ i
2

v̄6 2
v̄'

4

v̄6 D 50,

~3.68!

which establishesK conservation up to second order also f
tight helices.

IV. APPLICATION TO THE ENERGY LOSS OF IONS
IN COLLISIONS WITH MAGNETIZED ELECTRONS

A. From velocity transfer to energy loss

The energy change of the ion in leading order is

DEi5
M

2
~vW i8

22vW i
2!52MvW i•DvW i ~4.1!

connected to the velocity transfer

DvW i5vW i82vW i5DvW c.m.2
m

M
DvW ~4.2!

in a collision. The change in the center-of-mass velocity
obtained from the Lagrangian~3.5!,
02271
s

Md~DvW c.m.!/dt1~Z21!e~BW 3DvW c.m.!5eBW 3DvW .
~4.3!

We have calculatedDvW (t) in the preceding section. The in
tegration of this c.m. equation could be done in a coordin
system that rotates with the cyclotron frequencyZ
21)eB/M , which is much smaller than the cyclotron fre
quency of the electron. So this rotation can be neglec
Integration of the remaining equation relates the cha
DvW c.m. to the magnetic term occurring in the conserved qu
tity K of Eq. ~3.8!,

DvW c.m.5
e

M
~BW 3DrW !. ~4.4!

Substitution into Eq.~4.2! shows that the change in the io
velocity

DvW i5
e

M
~BW 3DrW !2

m

M
DvW ~4.5!

yields

DEi52mvW i•DvW 1evW i•~BW 3DrW !

52mvW i•DvW 2
m

2
~vW 822vW 2!, ~4.6!

whereK conservation has been used in the last step.
In the caseC of a weak magnetic field,r 0,R, the energy

of relative motion is conserved. Inserting the first- a
second-velocity transfers from Eqs.~2.7! and~2.14!, respec-
tively,

DvW C5dvW C1d~2!vW C52
Ze” 2

mv
2rW0

r 0
2 2S Ze” 2

mr0
D 2 2vW

v4 . ~4.7!

As discussed in Sec. III,DEi will be averaged with respect to
the azimuthal anglec of rW0 , see Eq.~3.27!. TheO(Z) term
dvW C gives then no contribution due to symmetry, and t
averaged energy change is

^DEi&C5S Ze” 2

r 0
D 2 2vW i•vW

mv4 . ~4.8!

For the cases of stretched helices,R,r 0 and d.r 0 , the
relative velocityvW must be replaced by the relative veloci

v̄W ~3.16! of the guiding center,

^DEi&s5S Ze” 2

r 0
D 2 2vW i• v̄W

mv̄4 . ~4.9!

More interesting is the caset of tight helices,R,r 0 and d
,r 0 , where onlyK, but notE, is conserved and the magnet
term in Eq.~4.6! is essential.

Inserting the first- and second-order velocity trans
DvW t5dvW t1d (2)vW t into Eq. ~4.6! one obtains
4-9
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CHRISTIAN TOEPFFER PHYSICAL REVIEW A66, 022714 ~2002!
^DEi& t52mvW i•~^dvW t&1^d~2!vW t&!2
m

2
~2v̄W •^dvW t&

12v̄W •^d~2!vW t&1^dvW t
2&!. ~4.10!

As dvW t is linear in t0 , see Eq.~3.39!, the c-averagê dvW t&
vanishes, while Eq.~3.52! yields

^dvW t
2&5S Ze” 2

mr0
D 2 2v̄'

2

v̄4 . ~4.11!

Inserting^d (2)vW t& from Eq. ~3.57! the energy change is

^DEi& t5S Ze” 2

r 0
D 2 v i'

2

mv̄6 ~vei
2 2v i

2!. ~4.12!

This result has already been given in Eq.~53! of Ref. @9# for
the special casevei50. In the general case this term leads
an energy gain forv i

2,vei
2 . The energy loss of the ion in

homogeneous monochromatic electron beam is obtaine

integrating over an area elementvŴ dcr 0dr0 parallel to the
relative current densitynevW ,

dEi

ds
5

1

v i

dEi

dt
5

2p

v i
nevW •vŴ E

r min

r max
dr0r 0^DEi&, ~4.13!

where r max is an upper cutoff that accounts for shieldin
while r min is the cutoff~2.12!, below which the perturbative
treatment of the Coulomb interaction fails. It is well know
however, that for Rutherford scattering, hard collisions
taken into account by regularizing ther 0 integral according
to

L5E
r min

r maxdr0

r 0
5 ln

r max

r min
→L~r max!

5E
0

r max r 0dr0

r 0
21r min

2 5
1

2
lnS 11

r max
2

r min
2 D , ~4.14!

a procedure that yields the exact result@17#. As the hard
collisions are dominated by the Coulomb interaction
adopt this regularization also for the magnetic cases. In th
integrals, with respect tor 0 , the appropriate expressions fo
^DEi& must be inserted, i.e., Eq.~4.8! for r 0,R, Eq. ~4.9!
for r 0.R, d.r 0 , and Eq.~4.12! for r 0.R, d,r 0 . Adding
these contributions yields

dEi

ds
5

4p~Ze” 2!2ne

m
H vŴ i•vW

v3 L„min~R,r max!…1U~R2d!

3
1

2

v i'
2 ~vei

2 2v i
2!

v̄5v i
@L~r max!2L„min~R,r max!…#

1U~d2R!F1

2

v i'
2 ~vei

2 2v i
2!

v̄5v i
@L~r max!
02271
by

e

se

2L„min~d,r max!…#1
vŴ i v̄W

v̄3 @L„min~d,r max!…

2L„min~R,r max!…#G J . ~4.15!

In electron cooling of ion beams, the velocity distribution
the electrons is not isotropic. It is usually modeled by
anisotropic Maxwellian

f ~vW e!5
m

kBT'
S m

2pkBTi
D 1/2 1

2p
expS 2

mve'
2

2kBT'

2
mvei

2

2kBTi
D ,

~4.16!

wherekB is the Boltzmann constant. For the upper cutoffs
the Coulomb logarithms of Eq.~4.15!, which account for the
shielding of the electron-ion interaction, we assume dyna
screening, see, for example, Refs.@18,19#:

r max5lD~11v i
2/ v̄ th

2 !1/2, ~4.17!

wherelD is the Debye length,

lD5S «0kBT̄

nee
2 D 1/2

5S kBT̄

4pnee”
2D 1/2

, ~4.18!

with T̄5 1
3 Ti1

2
3 T' and v̄ th5(kBT̄/m)1/2. The velocity-

averaged energy loss is then calculated in cylindrical coo
nates

K dEi

ds L 5
4pZ2e” 4ne

m

m

kBT'
S m

2pkBTi
D 1/2 1

2p E
0

2p

dw

3E
0

`

dve've'E
2`

`

dvei expS 2
mve'

2

2kBT'

2
mvei

2

2kBTi
D

3H vŴ •vW
v3 L„min~R,r max!…1U~R2d!

1

2

3
v i'

2 ~vei
2 2v i

2!

v̄5v i
@L~r max!2L„min~R,r max!…#

1U~d2R!F1

2

v i'
2 ~vei

2 2v i
2!

v̄5v i
@L~r max!

2L„min~d,r max!…#1
vŴ i• v̄W

v̄3 @L„min~d,r max!…

2L„min~R,r max!…#G J . ~4.19!

Here ^¯& indicates the average with respect to the distrib
tion ~4.6!. We note that the two magnetic terms do not i
volve the anglew at all, so this integral is trivial for these
terms. Moreover, the magnetic terms involve only the re
tive velocity v̄W , in which ve' is quenched. In previous kine
matical approaches average Coulomb logarithmsL have
been taken out of the velocity integral, which could then
4-10
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SCATTERING OF MAGNETIZED ELECTRONS BY IONS PHYSICAL REVIEW A66, 022714 ~2002!
done in analogy to electrostatics by calculating a quasipo
tial due to an anisotropic Gaussian charge distribution.
the contributions where the transverse motion of the e
trons is quenched by the magnetic field, this would cor
spond to the calculation of the potential of a wire carrying
Gaussian distribution. However, the resulting divergent
havior of the energy loss at low ion velocities is artificia
Then hard collisions dominate, we therefore keep the ap
priate Coulomb logarithmsL ~4.14! under the velocity inte-
grals in Eq.~4.19!. Because of Eq.~2.12! this guarantees an
analytical behavior of the energy loss atv i→0. However, the
velocity integrals cannot be evaluated in a closed form a
more.

B. Results

Actual calculations of the energy loss have been p
formed under conditions prevailing at the test storage r
TSR in Heidelberg@20#; the parameters are given in Table
As mentioned in the Introduction, a comparison of our
sults with other treatments should address the following
sues.

~i! The role of the cutoffr min ~2.12! below which the
perturbation treatment fails. We have accounted for hard
lisions by modifying the Coulomb logarithm according
Eq. ~4.14!. In a complementary manner the dielectric line
response treatment fails for wave numbers larger thanr min

21

@4,9,10,19#.
~ii ! The binary collision model presumes a single-parti

excitation spectrum of the target electrons, their polarizat
is only accounted for by dynamic screening according to
~4.17!. If exactly worked out the dielectric theory include
collectivity in the linear response of the electrons. This rai
the question, how far does this redistribution of strength
the excitation spectrum of the electrons affect the energy
and its dependence on the magnetic field.

~iii ! However, for technical reasons, the complete diel
tric linear-response theory has only been worked out fo
flattered velocity distribution of the electrons (Ti50) @9,10#.
But the energy loss at small ion velocities depends also v
sensitively on the details of the velocity distribution.

In Figs. 4–7 results from the present second-order tr
ment of binary collisions are compared with the energy l

TABLE I. Parameters of ion and electron cooling beams in
Heidelberg test storage ring TSR@20# for the calculations leading to
the results shown in Figs. 4–11.

Ion C61

B ~T! 0.005–0.05
V ~s21! 0.883109– 0.8831010

~kBT' /m!1/2

V
~m!

5.131026– 5.131025

ne (cm23) 83106

kBT' ~meV! 11.5
kBTi ~meV! 0.1
lD ~m! 0.7331024
02271
n-
r

c-
-

-

o-

-

r-
g

-
-

l-

-

n
.

s
n
ss

-
a

ry

t-
s

obtained in the framework of a linear-response treatment
mentioned in the Introduction this requires the calculation
the imaginary part of the inverse of the dynamical dielect
function Im@1/«(kW ,v)#. The very intricate linear-respons
expression for the dielectric function«(kW ,v) @12,21# with
the anisotropic distribution~4.16! with TiÞ0 has recently
been evaluated numerically. The corresponding energy
has been calculated assuming

Im
1

«~kW ,v!
→ 2Im «~kW ,v!

u«~kW ,0!u2
, ~4.20!

and introducing a cutoffO(r min
21 ) in the integration with re-

spect to wave numbers. The agreement between this sim
fied version of the dielectric linear-response treatment@22#
and the binary collision model breaks down if the ion velo
ity approaches the longitudinal thermal velocityv thi

5(kBTi /m)1/2 from above. The disagreement is larger for
ion motion along the magnetic field~a50°, Figs. 4 and 5!

e

FIG. 4. Energy loss in units of 4p(Ze” 2)2ne /(mv thi
2 ) as a func-

tion of the ion velocityv i in units of the longitudinal thermal ve
locity v thi for B55 mT and a50°. Other parameters are from
Table I. Solid curve: present second-order treatment; dashed cu
linear-response theory@22#.

FIG. 5. Same as Fig. 4 forB520 mT.
4-11
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CHRISTIAN TOEPFFER PHYSICAL REVIEW A66, 022714 ~2002!
than transversally~a590°, Figs. 6 and 7!. In the latter case
the present second-order treatment yields an energy gai
very low ion velocities, which is due to the contributio
~4.12! from tight helices forv i,v thi . As there is no collec-
tivity except screening in either the binary collision model
this version of dielectric linear response, their different b
havior at low ion velocities is due to the different treatme
of hard collisions: In the present binary collision model t
modified Coulomb logarithmL ~4.14! is employed under the
integral with respect to the velocity distribution of the ele
trons. This approach is self-cutting asL→0 for small rela-
tive velocitiesv ~or v̄!. In the dielectric model an averag
Coulomb logarithmL, evaluated with the thermal velocitie
of the electrons, is taken out of the velocity integral. Th
leads to a very large energy loss at low ion velocities, wh
behaves in a nonanalytical mannerdEi /ds}(v i'

2 /v i)ln vi'

for low ion velocities@21,22#.

FIG. 6. Same as Fig. 4 fora590°.
02271
for

r
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t

h

In order to check the validity of treating hard collision
according to the replacement~4.14! we compare our binary
collision model with classical trajectory Monte Car
~CTMC! calculations, in which, for fixed triples of the pa
rametersv i' , ve' and (vei2v i i), an ensemble of (1 – 4)
3105 magnetized electrons are scattered in the field of
moving ion @3–5#. The electron-ion interaction has
Yukawa-type shielding with a ranger max51.03lD . The
CTMC results are shown on the right panels of Figs. 8–
the agreement with the second-order treatment~left panels! is
very satisfactory for all angles between the velocity of t
ion and the magnetic field, the energy gains for small
velocities should be noted. For a purely longitudinal moti
~Fig. 8! the magnetic field hinders the loss of energy, in fa
for B→` one expects that the electrons move like beads
a wire with no energy transfer at all. This changes consid
ably if the ion has a transversal velocity component. Th

FIG. 7. Same as Fig. 5 fora590°.
ht panel:

FIG. 8. Energy loss in units of 4p(Ze” 2)2ne /(mv thi

2 ) as a function of the ion velocityv i in units of the longitudinal thermal velocityv thi

for a50° and various magnetic-field strengths. Other parameters from Table I. Left panel: present second-order theory; rig
CTMC results@3–5#.
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FIG. 9. Same as Fig. 8 fora530°.
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the tight helix contribution~4.12! yields a contribution to the
energy loss, which increases both witha andB in the peak
region of a few longitudinal thermal velocities. Thus th
magnetic field does enhance the energy loss for transve
moving ions, but not as much as in the linear-response tr
ment@22#, as discussed above. We mention that this enha
ment is also overestimated in a kinetic model, where
transverse motion of the magnetized electrons is comple
quenched and the asymptoticv i

22 behavior of the energy los
prevails down tov i→v thi @11#.

Of course, the results shown in Figs. 3–7 leave the role
the collectivity of the dielectric response open. In this co
nection the region of low ion velocities is of interest, b
there the energy loss depends also very sensitively on
details of the velocity distribution of the electrons. As
02271
ely
t-
e-
e
ly

f
-

he

example we show in Fig. 12, at fixedT' , how the energy
loss of protons in the present model increases forTi→0.
This should be compared to the energy loss in the dielec
linear-response theory including collective excitations
electrons with a flat velocity distribution~curve from Fig. 8
of Ref. @9#!. The effects resulting from the collectivity an
the finite anisotropy of the velocity distribution obvious
mask each other. The linear response with the more real
distribution ~4.16! is not known in the closed form, but th
response of magnetized electrons due to the ion has b
calculated by solving the Vlasov-Poisson equation num
cally with a particle-in-cell~PIC! code by representing th
electrons by test particles@15#. This involves neither a lin-
earization nor a cutoff at small distances~or large wave num-
bers!. As shown in Fig. 13 the PIC results, which includ
FIG. 10. Same as Fig. 8 fora560°.
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FIG. 11. Same as Fig. 8 fora590°.
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collectivity ~points!, compare better with the present bina
collision model~solid curve! than with the linear-respons
result in the approximation~4.20! ~dashed curve!. This indi-
cates that, at least, in the cases considered here the p
treatment of hard collisions, e.g., by Eq.~4.14!, seems to be
more important than to account for the collectivity in th
response of the electrons.

V. SUMMARY AND CONCLUSIONS

We consider collisions between heavy charged partic
~ions! and light charged particles~electrons! in a homoge-
neous external magnetic field. As this problem is not in
grable, we seek an approximate solution in which the i
electron interaction is treated as a perturbation. Th
kinematical regimes have been identified: For a weak m

FIG. 12. Energy loss of protons in the present binary collis
model for increasing asymmetryT' /Ti of the velocity distribution
and in the dielectric theory with a flat velocity distribution,Ti50
@9#. Standard parameters of Ref.@9#: ne5331014 m23, kBT'

51 eV, B50.07 T.
02271
per

s

-
-
e

g-

netic field the cyclotron radiusR is larger than the distance o
the closest approachr 0 and the unperturbed motion is rect
linear. For a strong magnetic fieldR,r 0 , the unperturbed
motion of the electron is helical. The guiding center appro
mation applies if the pitchd of the helix is larger thanr 0
~stretched helices! while tight helices withd,r 0 become
important if the ion velocity has a component transverse
the magnetic field.

In the general two-body problem in a magnetic field on
the total energy is conserved, but not the energies of
relative and c.m. motions separately. The uniform motion
the ion is only weakly perturbed by the collision with a
electron, and there exists a conserved quantityK that in-
volves the energy of relative motion and a magnetic te

FIG. 13. Energy loss in units of 4p(Ze” 2)2ne /(mv thi
2 ) as a func-

tion of the longitudinal thermal velocityv thi for Z510, Ti510 K,
T'51000 K, ne51.5531016 m23, a560° andB50.04 T. Solid
curve: present second-order treatment; dashed curve: lin
response theory@22#. Points: PIC simulation of the nonlinea
Vlasov-Poisson equation with error bars indicating the size of
statistical fluctuations@15#.
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associated with the influence of theEW 3BW drift on the c.m.
motion. It turns out that the second-order treatment of
Coulomb interaction is both necessary for a velocity trans
that does not vanish due to symmetry and sufficient to fu
this conservation law. Hard collisions are taken into acco
by regularizing the integrand leading to the Coulomb log
rithm at the lower boundary, a procedure that is exact
Rutherford scattering. For the interaction of an ion with
homogeneous electron beam the first-order terms vanish
to symmetry, but there remain the leadingO(Z2) contribu-
tions.

As an application, the energy loss of ions in a magneti
electron plasma was considered. The influence of the m
netic field is ambiguous. The magnetic field reduces the
of energy if the ion moves along the field lines, but it e
hances the energy loss for a transverse motion of the
This enhancement in the present binary collision mo
agrees quite well with CTMC results for binary collision
which do not involve any cutoff procedures for hard col
sions as well with results from PIC simulations, which i
clude the collective response of the electrons. Neverthele
more analytical theory of the energy loss of ions in a m
netized electron plasma, accounting for hard collisions, c
lective response, and a nonflattened electron-velocity di
bution is highly desirable. For that purpose it has be
proposed to correct the binary collision model by the diff
ence between the dynamic and the static linear response,
the error made in the replacement~4.20! @3,4,19#. Such cal-
culations are in progress.
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APPENDIX: SOME TECHNIQUES FOR TREATING
MULTIPLE INTEGRALS

In the calculation of the trajectory correction and t
second-order velocity transfer there occur, frequently, m
tiple integrals that can be done by partial integration acco
ing to

E
2`

t

dt8
dg

dt8
E

2`

t8
dt9 f ~t9!

5g~t!E
2`

t

dt9 f ~t9!2E
2`

t

dt8g~t8! f ~t8!,

provided that

g~t!E
2`

t

dt9 f ~t9!→0, t→`.

Double integrals, where both integrands are either even
odd, can be converted into products of simple integrals
symmetrization,

E
2`

`

dt f ~t!E
2`

t

dt8g~t8!→ 1

2 E2`

`

dt f ~t!E
2`

`

dt8g~t8!,

t→2t, t8→2t8.
.
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