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Semiclassical approach for calculating Regge-pole trajectories for singular potentials
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A simple semiclassical approach, based on the investigation of the anti-Stokes line topology is presented for
calculating Regge-poles trajectories for singular potentials, viz. potentials more singular thanr 22 at the origin.
It uses the explicit solution of the Bohr-Sommerfeld quantization condition with theprovisothat the positions
of two turning points of the effective potential responsible for the Regge poles be relatively close together. We
also demonstrate that due to this closeness the Regge trajectories asymptotically approach parallel equidistant
straight lines with a slope of cot(f/m), m being the power andf the argument of the coefficient of the
potential. Illustrative results are presented for the polarization and Lennard-Jones potentials.
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I. INTRODUCTION

The complex angular-momentum representation@1#, in-
volving Regge-pole calculations, for scattering of heavy p
ticles such as atoms and molecules has achieved great
cess over the ordinary partial-wave expansion utilizing o
non-negative integer values of the angular momentum.
curate methods for calculating Regge-pole trajectories
potentials more singular thanr 22 at the origin are needed fo
collisions involving heavy particles. However, the main d
ficulty in calculating the Regge-pole trajectories for singu
potentials in the complex angular-momentum plane, for r
positive values of the energy, stems from the fact that
deals with a singular eigenvalue problem for a no
Hermitian Schro¨dinger operator with currently no gener
simple working method.

The study of molecular reactive collisions, both expe
mental and theoretical, is one of the most active areas
research in chemical physics. Understanding the role
dynamical scattering resonances play in chemical react
@2#, a key to the laser control of reactions and bond selec
chemistry, is crucial to gaining insights into all chemical r
activity. Recent advances in both theory and experiment h
brought inelastic, particularly reactive atom-diatom co
sions to the leading edge of atomic and molecular phy
@3–9#. The full understanding of atom-diatom systems, p
vided by the analysis that identifies complex angul
momentum resonances~Regge poles! of the S matrix for
various collision processes@6,9–14#, requires insights into
the physics of collisions.

Recent Pade´-Regge pole analysis of chemical reactio
@15# reconstructs theS matrix in the complex plane of the
total angular momentum. The generated computer c
could be applied to a wide class of reactive or nonreac
atom-diatom collision systems, including the Na1-Na reac-
tion which has a rich structure@8#. Therefore, accurate
simple, and efficient methods to calculate Regge-pole tra
tories are needed. Interestingly, the singular potential met
has also been applied successfully in the investigation of
possibility of forming dimer resonances in the He-He co
1050-2947/2002/66~2!/022713~7!/$20.00 66 0227
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sion problem, where the regular potential method@16#
proved to be inadequate.

Different methods have been developed for calculat
Regge poles. Some of these are as follows: generating
verging bounds@17#, the semiclassical methods@18#, the
phase integral method@19#, the phase amplitude metho
@20#, the continued fraction method@21#, analytical methods
for singular potentials@22#, the complex harmonic oscillato
method @23#, the complex eigenvalues method@24#, the
equivalent dimensional perturbation methods@25#, the direct
numerical integration of the Schro¨dinger equation@26,27#,
and the complex energy methods using the Jost func
@16,28#. Many of these methods have been criticized recen
@25#. The largest drawback of the semiclassical~WKB! ap-
proximation is the difficulty of understanding the behavior
the complex turning points with the attendant anti-Stok
line topology; furthermore, it is cumbersome in applicati
@29#. Hence, the present development.

II. THEORY

A. General

In this paper we present a semiclassical approach for
culating Regge-pole trajectories for singular potentials. I
based on two basic assumptions:~1! The existence of two
turning points of the effective potential responsible for t
Regge poles, which are relatively close to each other and~2!
the connection of these turning points by anti-Stokes lin
@30,31#. We also demonstrate that at high energy the Reg
pole trajectories asymptotically approach equidistant para
straight lines whose slope is related to the parameters of
relevant singular potential.

From the semiclassical consideration the equidistant p
allel straight-line behavior should be the consequence of
crucial simplification of the Bohr-Sommerfeld condition
which gives the quantization of the trajectories. The corr
simplification of the condition results from the assumption
the relative closeness of the relevant semiclassical turn
points in the complex plane of the variabler. This hypothesis
seems to be a natural instrument for the investigation of
©2002 The American Physical Society13-1
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Regge trajectories for large values of the energy. It ena
us to replace the very complicated nonlinear Bo
Sommerfeld equation by much simpler equations co
sponding to the decomposition into series of the action in
gral near the turning points. According to the semiclass
approach, relative closeness implies that the distance
tween the pair of turning points generating the Regge po
is much less than their distance from the origin.~Note that at
high energy turning points usually are close to the origin!

The second hypothesis in our approach, namely, the c
nection of the pair of turning points which are close to ea
other by an anti-Stokes line@30,31# is a necessary conditio
for solving the Bohr-Sommerfeld quantization condition
the high-energy asymptotic behavior of Regge-pole traje
ries. We also need a more detailed analysis of the anti-Sto
line topology for the calculation of higher-order terms of t
asymptotic behavior. The structure of the anti-Stokes line
rather complicated, even for the case of simple potenti
We will restrict ourselves here to the first two terms. A mo
general detailed presentation, which includes higher-or
terms than the second is forthcoming@32#.

It should be mentioned that the idea of the localization
the particle at the bottom of the effective potential, for t
calculation of the leading term of the asymptotic behavior
the poles has been utilized@25# within the framework of the
dimensional scaling approach. In that approach the lead
term of the 1/k expansion (k2 is the scaled energy! of the
Regge pole was found by minimizing the effective potent
while the higher-order terms were evaluated by a pertur
tion approach. In this paper we present a semiclass
method to obtain the higher-order correction in the 1/k ex-
pansion. We also give the semiclassical verification for
approach of the paper@25#, based on the topology of th
anti-Stokes lines.

Here we consider the Schro¨dinger equation as an eigen
value problem for the complex angular momentuml
5 l n(k) with the given positive energyk2.0. The solution
of this equation, with the regular boundary condition for t
wave functionC„l n(k),r … @33# at the origin and the condi
tion that at infinity C„l n(k),r … is an outgoing plane wave
leads, in general, to the complex values ofl n(k) (n
50,1,2, . . . ). Our method is applied to potentialsV(r )
5C(r )/r m(m.2) near the origin withC(r ) being a finite
smooth function ofr. We assume thatV(r )→0 for r→`.

The semiclassical condition can be satisfied if we cons
the semiclassical turning pointsr 1,2 in the effective potential
Ve f f52V(r )2 l ( l 11)/r 2 to be close to each other in th
complexr plane. The leading terml n

0 of the Regge pole of
l n(k) can be obtained immediately from the system of eq
tions~the turning pointsr 1,2 are assumed to coincide with th
value r 0)

S~r 0 ,l n
0 ,k!5k22V~r 0!2F S l n

01
1

2D
r 0

G 2

50 ~1!

S ]S~r 0 ,l n
0 ,k!

]r D 5S 2
dV~r !

dr
12

S l n
01

1

2D 2

r 3
D

r 5r 0

50,

~2!
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where we have used the standard replacementl ( l 11) by
( l 11/2)2.

To obtain the next term in the approximation ofl n(k) we
assume that the positions of the turning pointsr 1,2 do not
coincide but are close together so that

r 1,25r 0~16 1
2 D!, uDu!1 for k→`, ~3!

wherer 1,2 are solutions of the equation

S~r ,l n ,k!5k22V~r 1,2!2F S l n1
1

2D
r 1,2

G 2

50 ~4!

with

S l n1
1

2D 2

5S l n
01

1

2D 2

~11d!, d}D2. ~5!

The correctionsD and d are obtained from the Bohr
Sommerfeld condition

pS n1
1

2D5E
r 1

r 2AS~r ,l n ,k! dr, n50,1,2, . . . . ~6!

In Eq. ~5! we integrate along the anti-Stokes lin
Im * r 1

r 2AS(r ,l n ,k)dt50, connecting the turning pointsr 1

and r 2, i.e., the connection by the anti-Stokes line is t
necessary condition to obtain the Regge-pole trajector
From Eqs.~1! and assuming that other solutions of Eq.~3!
are different fromr 0, we obtain

pS n1
1

2D
5r 0

2m/2S ]2r mS~r ,l n
0 ,k!

2]r 2 D 1/2E
r 1

r 2A~r 2r 1!~r 2r 2! dr.

~7!

The integral can be easily calculated

E
r 1

r 2A~r 2r 1!~r 2r 2! dr56 i
p

8
~r 22r 1!2. ~8!

From Eqs.~2! and ~6! we obtain

pS n1
1

2D56 i
p

8
r 0

(42m)/2D2S ]2r mS~r ,l n
0 ,k!

2]r 2 D
r 5r 0

1/2

. ~9!

In Secs. II and III we derive analytical expressions f
Regge-pole trajectories for theV(r )5C/r m, (m.2) poten-
tial @particularly the polarization potentialV(r )5C/r 4], and
for the Lennard-Jones potential. We show that in both ca
the trajectories approach parallel equidistant straight line
the high-energy limit.
3-2
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B. Regge-pole trajectories for theV„r …ÄCÕr m potential

Here we consider the singular potentialV(r )5C/r m, (m
.2). For such a potential the system of equations, Eqs.~1!,
is satisfied for

r 0
25

S l n
01

1

2D 2

k2

m22

m
~10!

and the zero-order Regge pole is

l n
052 1

2 1@2C~m22!/2#1/mAm/~m22! k122/m. ~11!

Note that r 0 is small for largek. The next-order term is
obtained from the Bohr-Sommerfeld condition, Eq.~8!. A
straightforward calculation of the derivative in Eq.~8! yields

pS n1
1

2D56 i
p

8
kr0D2Am. ~12!

Substituting either ofr 1,2 from Eq. ~2! and (l n11/2)2 from
Eq. ~4! with r 0 and l n

0 given by Eqs.~9! and ~10!, respec-
tively, into the first of Eqs.~1! we find the relationship be
tween the correctionsD andd ~to an accuracy ofD2) given
by

D25
4d

m22
. ~13!

Choosing the~1! sign for D2, we obtain from Eqs.~9! and
~11!

D258i
S n1

1

2D
S l n

01
1

2DAm22

. ~14!

Combining Eqs.~4!, ~10!, ~12!, and ~13! we obtain the
Regge-pole positions

l n1 1
2 >@2C~m22!/2#1/mAm/~m22! k122/m

1 i ~n1 1
2 !Am22. ~15!

This formula coincides with that of Connor@1# for the
power-like potentials. It gives another confirmation of t
validity of Connor’s formula over that of Tiktopoulos@34#.
For the polarization potential@V(r )5C/r 4#, Eq. ~14! corre-
sponds to that of Vrinceanuet al. @29#.

Generally speaking, Eq.~10! or Eq.~14! givesm different
series of Regge trajectories corresponding to the choic
the appropriate root of the first of Eqs.~1!. The proper
branch should be chosen on the basis of the anti-Stokes
topology analysis. Note that in order to apply the semicl
sical method, the close turning points are to be connecte
anti-Stokes lines@30,31# for the valuesl n from Eq.~14!. Our
calculations for the polarization potential show that the rig
choice corresponds to the minimum value of@2C(m
22)/2#1/m.
02271
of

ne
-

by

t

From Eq.~14! the asymptotic equidistant linear behavi
of the Regge trajectories at high energy can be easily
plained. Introducing the appropriate notations, we have
Eq. ~14!

l n1 1
2 5k122/m~2C!1/mam1 i ~n1 1

2 !bm , ~16!

where am5@(m22)/2#1/m and bm5Am22 ~for proper
positive valuesam and bm , depending only onm!. Define
arg(2C)5f, then

Re~ l n!5k122/mam~ uCu!1/mcos~f/m!2 1
2 , ~17!

Im~ l n!5k122/mam~ uCu!1/msin~f/m!1~n1 1
2 !bm .

~18!

Equations~16! and ~17! reduce to

Re~ l n!5cot~f/m!Im~ l n!2 1
2 2cot~f/m!bm~n1 1

2 !.
~19!

For the specific case of the polarization potential, we ha
from Eq. ~18!

Re~ l n!5cot~f/4!@ Im~ l n!2~n1 1
2 !A2#2 1

2 . ~20!

Equation~18! is the linear equation for the Regge traject
ries. It is clear from Eq.~18! that all Regge trajectories hav
the same slopef/m and the distance between the lines co
responding ton50,1,2, . . . is equal to cot(f/m)bm and is
again the same for all Regge trajectories. We note that
~18! for the case of the polarization potential, viz. Eq.~19!
was obtained previously@1,29# by different methods. The
equidistant linear behavior of the asymptotics of the Reg
trajectories was noted and presented in Ref.@29#. However,
to the best of our knowledge the explanation of the behav
is given for the first time here.

C. The Lennard-Jones potential

The same method can be applied to the calculation of
Regge-pole trajectories for the Lennard-Jones potential

V~r !54eF S s

r D 12

2S s

r D 6G , s.0, ~21!

where the parametere.0 is the well’s depth. The exact turn
ing points equation is

S r

s D 12

2
a

s2 S r

s D 10

2
4e

k2 F12S r

s D 6G50 ~22!

with a5( l 11/2)2/k2. From the system of Eqs.~1! we obtain

S s

r D 6

5
4e

k2
6AS 4e

k2 D 2

2
20e

k2
. ~23!

The expression under the square-root sign can be denote
@29#
3-3
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D5A42
5k2

e
56

kA5i

e
A12

4e

5k2
. ~24!

Equation~22! then reduces to

S r

s D 6

5
4e

k2 S 16
D

2 D . ~25!

The appropriate branch is chosen such thatD→ iA(5/e)k as
k→`. This choice immediately dictates the selection of t
(2) sign in Eq. ~24!. However, the choice of the correc
branch between the two can be checked numerically thro
the investigation of the anti-Stokes lines connection of
corresponding turning points@32#.

From the expression forD we have

D2542
5k2

e
, ~26!

so that

4e

k2
5

20

~22D !~21D !
~27!

and, hence

S r

s D 6

5
10

21D
. ~28!

Equation~27! gives the approximate value of both turnin
points (r 1 and r 2) under our hypothesis of their relativ
closeness. This leads to the expression for the leading
of the Regge-pole trajectories, which is obtained by us
Eq. ~27! in Eq. ~21!,

S l n
01

1

2D 2

56k2s2S 2

21D D 1/3S 32D

22D D . ~29!

For the next correction we use the modified Eq.~8! in the
form

pS n1
1

2D56 i
p

8
s2~sr 0!6S ]2S r

s D 12

S~r ,l n
0 ,k!

2]r 2
D

r 0

1/2

3S r 2

s
2

r 1

s D 2

, ~30!

wherer 1,2 are defined by

S r 1,2

s D 6

5
10

21D S 16
1

2
D D ~31!

@compare with Eq.~2!#.
Performing the differentiation of the functionS(r ,l n

0 ,k),
given by the first of Eqs.~1!, with the Lennard-Jones poten
tial V(r ) from Eq. ~20!, we have with accuracyO(1/k5/12)
02271
e

h
e

rm
g

l n'2 1
2 1~220e!1/12k5/6A 6

5 s1 iA10~n1 1
2 !. ~32!

This expression agrees with the first two terms of Eq.~23! in
paper@29#. Note, that the same result can be obtained for
potentialV(r )54e(s/r )12 ~see Sec. I!. This is not surprising
since at high energy the largest contribution comes from
internal part of the potential well, and the influence of t
second term of the Lennard-Jones potential Eq.~19! is of a
smaller order@our estimation@32# shows that the order is
O(1/k1/6)#.

III. RESULTS

Figure 1 shows the anti-Stokes line topology for the p
larization potentialV(r )52/r 4 for k520 andn57. The four
turning points generating the Regge polel 754.818 296
1 i5.288 306 are given in Table I. The upper turning poin
are very close to each other and are almost connected b
anti-Stokes line. This approximate, rather than comple
connection is due to a small error in the true Regge-p
calculations by the Newton method we used. The diagram
obviously symmetric with respect to the origin. Other an
Stokes lines, except those connecting the two pairs of turn
points, are either tending to infinity or approaching the o
gin. The close pair of turning points generating the Reg
pole is clearly manifest in Fig. 1.

Figure 2 shows the linear behavior of the Regge trajec

FIG. 1. Anti-Stokes line topology for the polarization potenti
V(r )52/r 4 for k520 andn57. The four turning points generatin
the Regge polel 754.818 2961 i5.288 306 are given in Table I.

TABLE I. Turning points generating the Regge polel 7

54.818 295 8951 i5.288 305 825 for the polarization potentia
V(r )52/r 4 with k520 andn57.

Real part Imaginary part

r 1 20.1767215688 20.1966888754
r 2 0.1767215688 10.1966888754
r 3 20.1989215566 20.1787275944
r 4 0.1989215566 10.1787275944
3-4
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ries in the complex angular-momentum plane, forV(r )
51/r 4 with n54 andk varying from 0.05 through 200. Th
straight line is according to the asymptotic formula, Eq.~15!,
while the dotted curve is the numerical solution of the Bo
Sommerfeld equation, Eq.~5!. It was used in Newton’s
method@35# for solving the Bohr-Sommerfeld equation forl.
Clearly, for high energy the asymptotically linear charac
of the Regge trajectory is evident and is consistent with
Eq. ~15!. For this case the slope of the line is cot(p/4). There
are many more lines corresponding to different values on.

Figure 3 shows the anti-Stokes lines topology for t
Lennard-Jones potentialV(r )5r 2122r 26 for k510.0 and
n52, when l is a Regge pole given byl 2526.534 711
1 i1.870 983. The 12 turning points generatingl 2 are given
in Table II. Again the figure is symmetric with respect to t
origin. Among the 12 turning points displayed, only the tw
upper ones are connected by an anti-Stokes line. Th
points are relatively close to each other. All the remain
pairs of turning points, except the two symmetric ones,
not connected by anti-Stokes lines since the anti-Stokes l
originating at these turning points are either going to infin
or to the origin. Figure 3~b! depicts the anti-Stokes line to
pology for the same Lennard-Jones potential as in Fig. 3~a!,
for k510.0 andn52, but whenl 2 is not a Regge pole and i
given by l 522.708 8572 i0.337 874. The correspondin
turning points are given in Table III. Here no two turnin
points are connected by an anti-Stokes line, consistent
our second hypothesis.

IV. CONCLUSION AND DISCUSSION

The need for more powerful, simple, and efficient me
ods for calculating Regge-pole trajectories for singular
tentials, particularly for application to collision problems
the Bose-Einstein condensation and resonance scattering
inspired this paper. Here we have developed a simple
proach for the calculation of Regge trajectories for singu
potentials to augment the few existing analytical and num

FIG. 2. Linear behavior of the Regge trajectories in the comp
angular-momentum plane for the polarization potentialV(r )51/r 4

for n54 andk varying from 0.05 through 200.
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cal methods, many of which have been criticized recen
@25#. It is based on two self-consistent hypotheses:~1! rela-
tive closeness of the two turning points generating the Re
trajectories~this hypothesis is compatible with the dime
sional scaling approach@25#! and~2! connection or approxi-
mate connection of these two turning points by an an
Stokes line. When applied to the standard polarization
Lennard-Jones potentials, our expressions yield results
are in excellent agreement with those of other analytical
numerical calculations of Regge-pole trajectories.

By examining the anti-Stokes line topology of turnin
points in the complexr plane, even for complicated poten
tials such as the Lennard-Jones potential, connected tur
points can be readily identified@see Figs. 3~a! and 3~b!# and
the integration path in the complexr plane can be defined
This problem of determining which turning points are co
nected by anti-Stokes lines had plagued the semiclass

x

FIG. 3. ~a! Anti-Stokes line topology for the Lennard-Jones p
tential V(r )5r 2122r 26 for k510.0 andn52, whenl is a Regge
pole given byl 2526.534 7111 i1.870 983. The 12 turning point
generatingl 2 are given in Table II.~b! Anti-Stokes line topology for
the same Lennard-Jones potential as in~a! for k510.0 andn52,
but when l 2 is not a Regge pole and given byl 2522.708 857
2 i0.337 874. The corresponding turning points are given
Table III.
3-5
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methods, thereby limiting their deserved utility. In th
present development we are able to identify even ‘‘fa
Regge poles,’’ i.e., poles that satisfy the Bohr-Sommerf
quantization condition but do not satisfy the Schro¨dinger
equation.

We have demonstrated the validity of our hypotheses
the numerical calculation of the anti-Stokes line topology
the polarization and the Lennard-Jones potentials. The w
functionC„l n(k),r … when analytically continued to the com
plex r plane, is concentrated along the anti-Stokes line wh
it has an oscillatory character. It exponentially decrea
along the anti-Stokes line, which connects one of the turn
points with the origin. Thus, the asymptotic straight-line b
havior of the Regge trajectories can be explained in term
the sharp localization of the wave function in a very sm
region of the complexr plane, which implies the closeness
the turning points generating the trajectory.

Generally, for the calculation of scattering differential a
integral cross sections for atoms, accurate Regge-pole p
tions and the corresponding residues are needed. How

TABLE II. Turning points generating the Regge polel 2

526.534 710 7531 i1.870 983 399 for the Lennard-Jones potent
V(r )5r 2122r 26 with k510 andn52.

Real part Imaginary part

r 1 20.7158204177 10.04685172418
r 2 20.6649891582 10.3358233039
r 3 20.6016085508 20.2973002704
r 4 20.3703911337 10.5543339621
r 5 20.3313257974 20.5495790559
r 6 20.01792718343 10.6515177685
r 7 0.01792718343 20.6515177685
r 8 0.3313257974 10.5495790559
r 9 0.3703911337 20.5543339621
r 10 0.6016085508 10.2973002704
r 11 0.6649891582 20.3358233039
r 12 0.7158204177 20.04685172418
.

tt
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for the recently developed Pade´-Regge pole analysis@15# of
chemical reactions in which theSmatrix is analytically con-
tinued to the complex angular-momentum plane to iden
resonances and for the generalized Lassettre expansion@36#
for the calculation of small-angle electron-scattering diffe
ential cross sections@37#, only accurate Regge-pole position
are required. These, together with the difficulty of und
standing the behavior of complex turning points and the
companying anti-Stokes line topology, inherent in the se
classical description of scattering processes, have motiv
the present development. The expressions for the resid
will be ready for presentation with the general formulas.
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l
TABLE III. Turning points generating the non-Regge polel 2

525.510 696 6931 i2.894 997 458 1 for the Lennard-Jones pote
tial used in Fig. 3~a! with k58 andn52.

Real part Imaginary part

r 1 20.6811080930 20.001884306551
r 2 20.6010191104 20.3420704396
r 3 20.5988337916 10.3387919023
r 4 20.3418052508 20.5812956748
r 5 20.3387881141 10.5797935133
r 6 20.001770041012 20.6814218018
r 7 0.001770041012 10.6814218018
r 8 0.3387881141 20.5797935133
r 9 0.3418052508 10.5812956748
r 10 0.5988337916 20.3387919023
r 11 0.6010191104 10.3420704396
r 12 0.6811080930 10.001884306551
m.

m.

em.
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