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Semiclassical approach for calculating Regge-pole trajectories for singular potentials
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A simple semiclassical approach, based on the investigation of the anti-Stokes line topology is presented for
calculating Regge-poles trajectories for singular potentials, viz. potentials more singular thainthe origin.
It uses the explicit solution of the Bohr-Sommerfeld quantization condition witlptbeisothat the positions
of two turning points of the effective potential responsible for the Regge poles be relatively close together. We
also demonstrate that due to this closeness the Regge trajectories asymptotically approach parallel equidistant
straight lines with a slope of caf{m), m being the power and) the argument of the coefficient of the
potential. lllustrative results are presented for the polarization and Lennard-Jones potentials.
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I. INTRODUCTION sion problem, where the regular potential methdb]
proved to be inadequate.
The complex angular-momentum representafibh in- Different methods have been developed for calculating

volving Regge-pole calculations, for scattering of heavy parRegge poles. Some of these are as follows: generating con-
ticles such as atoms and molecules has achieved great sierging bounds{17], the semiclassical method48], the
cess over the ordinary partial-wave expansion utilizing onlyphase integral metho@il9], the phase amplitude method
non-negative integer values of the angular momentum. Act20], the continued fraction methd@1], analytical methods
curate methods for calculating Regge-pole trajectories fofor singular potential$22], the complex harmonic oscillator
potentials more singular than 2 at the origin are needed for method [23], the complex eigenvalues methd@4], the
collisions involving heavy particles. However, the main dif- €quivalent dimensional perturbation meth¢2sj, the direct
ficulty in calculating the Regge-pole trajectories for singularnumerical integration of the Schiimger equatior{26,27,
potentials in the complex angular-momentum plane, for reapnd the complex energy methods using the Jost function
positive values of the energy, stems from the fact that oné16,28. Many of these methods have been criticized recently
deals with a singular eigenvalue problem for a non-[25]. The largest drawback of the semiclassiGMKB) ap-
Hermitian Schfdinger operator with Currenﬂy no genera| proximation is the dlfflCU'ty of understanding the behavior of
simple working method. the complex turning points with the attendant anti-Stokes
The study of molecular reactive collisions, both experi-line topology; furthermore, it is cumbersome in application
mental and theoretical, is one of the most active areas df29]. Hence, the present development.
research in chemical physics. Understanding the role that
dynamical scattering resonances play in chemical reactions Il. THEORY
[2], a key to the laser control of reactions and bond selective
chemistry, is crucial to gaining insights into all chemical re-
activity. Recent advances in both theory and experiment have In this paper we present a semiclassical approach for cal-
brought inelastic, particularly reactive atom-diatom colli- culating Regge-pole trajectories for singular potentials. It is
sions to the leading edge of atomic and molecular physicbased on two basic assumptioris) The existence of two
[3-9]. The full understanding of atom-diatom systems, pro-turning points of the effective potential responsible for the
vided by the analysis that identifies complex angular-Regge poles, which are relatively close to each other(and
momentum resonance&egge polesof the S matrix for  the connection of these turning points by anti-Stokes lines
various collision processd$,9—-14, requires insights into [30,31]. We also demonstrate that at high energy the Regge-
the physics of collisions. pole trajectories asymptotically approach equidistant parallel
Recent Pad®egge pole analysis of chemical reactionsstraight lines whose slope is related to the parameters of the
[15] reconstructs theéS matrix in the complex plane of the relevant singular potential.
total angular momentum. The generated computer code From the semiclassical consideration the equidistant par-
could be applied to a wide class of reactive or nonreactivallel straight-line behavior should be the consequence of the
atom-diatom collision systems, including the Nhla reac- crucial simplification of the Bohr-Sommerfeld condition,
tion which has a rich structurg8]. Therefore, accurate, which gives the quantization of the trajectories. The correct
simple, and efficient methods to calculate Regge-pole trajecsimplification of the condition results from the assumption of
tories are needed. Interestingly, the singular potential methothe relative closeness of the relevant semiclassical turning
has also been applied successfully in the investigation of thpoints in the complex plane of the variableThis hypothesis
possibility of forming dimer resonances in the He-He colli- seems to be a natural instrument for the investigation of the
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Regge trajectories for large values of the energy. It enablewhere we have used the standard replacenh@nrt1) by

us to replace the very complicated nonlinear Bohr-(l+1/2)?.

Sommerfeld equation by much simpler equations corre- To obtain the next term in the approximationlgtk) we

Sponding to the decompOSition into series of the action inteassume that the positions of the turning po|nI§ do not

gral near the turning points. According to the semiclassicatgincide but are close together so that '

approach, relative closeness implies that the distance be-

tween the pair of turning points generating the Regge poles ri=ro(1+1A), |Al<1l for k—c, 3

is much less than their distance from the origidote that at ’

high energy turning poin_ts _usually are close to the orjgin. wherer , , are solutions of the equation
The second hypothesis in our approach, namely, the con- '

nection of the pair of turning points which are close to each

other by an anti-Stokes ling0,3]] is a necessary condition

for solving the Bohr-Sommerfeld quantization condition in

— 2
the high-energy asymptotic behavior of Regge-pole trajecto- S(rln k) =k"=V(ry 9= i, =0 )
ries. We also need a more detailed analysis of the anti-Stokes '
line topology for the calculation of higher-order terms of the yith
asymptotic behavior. The structure of the anti-Stokes line is
rather complicated, even for the case of simple potentials. 1\2 1)2
We will restrict ourselves here to the first two terms. A more [+ 5] = Iﬂ+ > (1+6), ©6xA2 (5)

general detailed presentation, which includes higher-order

terms than the second is forthcomifgg)]. ) )
It should be mentioned that the idea of the localization of/N€ correctionsA and & are obtained from the Bohr-

the particle at the bottom of the effective potential, for theSommerfeld condition

calculation of the leading term of the asymptotic behavior of 1

the poles has been utiliz¢@5] within the framework of the "2 _

dimensional scaling approach. In that approach the leading W(n+ E) N J;l S(rln.k) dr, n=012.... (6

term of the 1k expansion k? is the scaled energyof the

Regge pole was found by minimizing the effective potential,, Eg. (5) we integrate along the anti-Stokes line:

while the higher-order terms were evaluated by a perturba- -1, a7 34+ : : :
tion approach. In this paper we present a semiclassici[nffl S(r.In,k)dt=0, connecting the tuming points,

method to obtain the higher-order correction in thk éx- ~ andr,, i.e., the connection by the anti-Stokes line is the
pansion. We also give the semiclassical verification for thenecessary condition to obtain the Regge-pole trajectories.
approach of the papdi25], based on the topology of the From Egs.(1) and assuming that other solutions of Eg)
anti-Stokes lines. are different fromr,, we obtain
Here we consider the Schiimger equation as an eigen-
value problem for the complex angular momentum
=1,(k) with the given positive energk*>0. The solution 7
of this equation, with the regular boundary condition for the
wave functionW¥ (I,(k),r) [33] at the origin and the condi- /2( Prms(r 12 k)
:rfm e

1
I"H'E

tion that at infinity w(l,(k),r) is an outgoing plane wave

1/2
) fz\/(r—rl)(r—rz) dr.
r

leads, in general, to the complex values kik) (n 29r?

=0,1,2...). Our method is applied to potential¥(r) @
=C(r)/r™(m>2) near the origin withC(r) being a finite

smooth function of. We assume tha¥(r)—0 for r—oo. The integral can be easily calculated

The semiclassical condition can be satisfied if we consider
the semiclassical turning points , in the effective potential ;
Veii=—V(r)—1(1+1)/r? to be close to each other in the f ? (r—ry)(r—ry) dr:iiz(rz_rl)z_ (8)
complexr plane. The leading terrf of the Regge pole of ry 8
[,(k) can be obtained immediately from the system of equa-
tions (the turning points ; , are assumed to coincide with the From Egs.(2) and(6) we obtain

valuer)
1 2
|°+—) m

In Secs. Il and Il we derive analytical expressions for

1
I"H'E

0

- Zr(4—m)/2A2
8 29r?

2rms(r 19 k)| 2
(r,1 >) o
r=r

S(ro,19,k)=k2=V(rq)—

o 1)? Regge-pole trajectories for the(r)=C/r™, (m>2) poten-

(QS(rng k) dV(r) In+ 2 tial [particularly the polarization potenti®(r)=C/r4], and
(T) =\ ~ar + 3 =0, for the Lennard-Jones potential. We show that in both cases
r r=rg the trajectories approach parallel equidistant straight lines in

(2)  the high-energy limit.
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B. Regge-pole trajectories for theV(r)=C/r™ potential

Here we consider the singular potentiglr)=C/r™, (m
>2). For such a potential the system of equations, Ebs.
is satisfied for

"= Tm (10)

and the zero-order Regge pole is
I0=—3+[—-C(m—2)/2]"™Jm/(m—2) k2™ (11)

Note thatr, is small for largek. The next-order term is
obtained from the Bohr-Sommerfeld condition, E§). A
straightforward calculation of the derivative in E§) yields

12

w

1 T
Tl=+ij— 2/
n+2 _|8kr0A m.

Substituting either of ; , from Eq. (2) and (,+ 1/2)? from
Eq. (4) with ry and 2 given by Egs.(9) and (10), respec-
tively, into the first of Eqs(1) we find the relationship be-
tween the correctiond andé (to an accuracy oA?) given
by

(13
Choosing the(+) sign for A%, we obtain from Eqgs(9) and
(11)

L
"3

A%=8i (14

m—2

0
In+§

Combining Egs.(4), (10), (12), and (13) we obtain the
Regge-pole positions

lnt3=[—C(m—2)/2]""m/(m—2) k2™
+i(n+3)ym-2.

This formula coincides with that of Conndr] for the

(15
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From Eq.(14) the asymptotic equidistant linear behavior
of the Regge trajectories at high energy can be easily ex-
plained. Introducing the appropriate notations, we have for
Eq. (14)

|n+%Zkliz,m(_c)l/mam"'i(n_"%),Bma (16)
where ay,=[(m—2)/2]¥™ and B,=m—2 (for proper
positive valuesx,,, and B,,,, depending only omm). Define
arg(—C)= ¢, then

Re(l) =k ?Mapy(|C)) Mo ¢/m)—3,  (17)
Im(1 ) =k #Ma(|C|)Y™sin( ¢/ m) + (n+3) Bry.

(18)

Equations(16) and (17) reduce to

Re(l,) = cot( ¢p/m)Im(l,,) — 3 — cot{ /M) Brn(N+3).
(19

For the specific case of the polarization potential, we have
from Eq. (18

Re(l,)=cot ¢/H[Im(l,)—(n+3)+2]- 3.

Equation(18) is the linear equation for the Regge trajecto-
ries. It is clear from Eq(18) that all Regge trajectories have
the same slopeé/m and the distance between the lines cor-
responding ton=0,1,2 ... is equal to cot¢/m)B,, and is
again the same for all Regge trajectories. We note that Eq.
(18) for the case of the polarization potential, viz. Ef9)

was obtained previously1,29] by different methods. The
equidistant linear behavior of the asymptotics of the Regge
trajectories was noted and presented in R2%]. However,

to the best of our knowledge the explanation of the behavior
is given for the first time here.

(20

C. The Lennard-Jones potential

The same method can be applied to the calculation of the
Regge-pole trajectories for the Lennard-Jones potential
o 12 o 6
V(r)=46 ?) —<?)

. 0>0, (21)

power-like potentials. It gives another confirmation of thewhere the parameter>0 is the well's depth. The exact turn-

validity of Connor’s formula over that of Tiktopould84].
For the polarization potenti@V(r)=C/r*], Eq. (14) corre-
sponds to that of Vrinceanet al. [29].

Generally speaking, Eq10) or Eq.(14) givesm different

ing points equation is

10 4¢

K

r

(oa

=0

o

2

r\2 a
) - (22

=

(o

series of Regge trajectories corresponding to the choice of

the appropriate root of the first of Eq¢l). The proper

branch should be chosen on the basis of the anti-Stokes line
topology analysis. Note that in order to apply the semiclas-
sical method, the close turning points are to be connected by

anti-Stokes line$30,31] for the valued,, from Eq.(14). Our

with a= (1 +1/2)?/k?. From the system of Eqél) we obtain

o\®_4e [[4€\? 20e
)k Vi

(23

calculations for the polarization potential show that the right

choice corresponds to the minimum value pfC(m
—2)/2)4m.

The expression under the square-root sign can be denoted by
[29]
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1.0

5k k+/5i 4e
D=/4— —== 5 \/1-—. (24)
€ € 5k2
Equation(22) then reduces to T
r\® 4e 1+D -
o T\ z) @5 2wl

The appropriate branch is chosen such ati+/(5/€)k as
k—oco. This choice immediately dictates the selection of the
(=) sign in Eqg.(24). However, the choice of the correct
branch between the two can be checked numerically througt
the investigation of the anti-Stokes lines connection of the

05 F

corresponding turning poin{82].
From the expression fdd we have

5k?
D?=4— —, (26)
€
so that
de 20 )
K2 (2-D)(2+D) @7
and, hence
r 6_ 10 -
o] 2+D (28)

Equation(27) gives the approximate value of both turning
points (r; andr,) under our hypothesis of their relative

closeness. This leads to the expression for the leading term
of the Regge-pole trajectories, which is obtained by using

Eqg. (27) in Eq. (20,

2 2

2+D

3-D

ﬁ) . (29

1 1/3
(Iﬂ+§ (

For the next correction we use the modified E).in the
form

=6k20'2(

r 12 0 1/2
2| _
+1 T ) a(0> S(r,l7,k)
| n > —_|§0' (or9) o2
o
2
r, rq
;—;) , (30
wherer, , are defined by
a)°_ 10 1+2a 31
o) 2+D|772 3

[compare with Eq(2)].
Performing the differentiation of the functi(ﬂr,lﬂ,k),
given by the first of Egs(1), with the Lennard-Jones poten-

tial V(r) from Eq.(20), we have with accurac®(1/k>*?

-1.0
-1.0

0:0 015
Re(l)
FIG. 1. Anti-Stokes line topology for the polarization potential
V(r)=2/r* for k=20 andn=7. The four turning points generating
the Regge polé;=4.818 296-i5.288 306 are given in Table 1.

|y~ — &+ (—20€) Y1&S0\8 5+ TO(N+ 1),

This expression agrees with the first two terms of 9) in
paper29]. Note, that the same result can be obtained for the
potentialV(r)=4e(o/r)*? (see Sec.)| This is not surprising
since at high energy the largest contribution comes from the
internal part of the potential well, and the influence of the
second term of the Lennard-Jones potential @§) is of a
smaller orderfour estimation[32] shows that the order is
O(1kY9)].

(32

IIl. RESULTS

Figure 1 shows the anti-Stokes line topology for the po-
larization potentialV/(r)=2/r* for k=20 andn=7. The four
turning points generating the Regge pdlg=4.818296
+15.288 306 are given in Table I. The upper turning points
are very close to each other and are almost connected by an
anti-Stokes line. This approximate, rather than complete,
connection is due to a small error in the true Regge-pole
calculations by the Newton method we used. The diagram is
obviously symmetric with respect to the origin. Other anti-
Stokes lines, except those connecting the two pairs of turning
points, are either tending to infinity or approaching the ori-
gin. The close pair of turning points generating the Regge
pole is clearly manifest in Fig. 1.

Figure 2 shows the linear behavior of the Regge trajecto-

TABLE |I. Turning points generating the Regge pole
=4.818295895i5.288 305825 for the polarization potential
V(r)=2/r* with k=20 andn=7.

Real part Imaginary part
rq —0.1767215688 —0.1966888754
ro 0.1767215688 +0.1966888754
rs —0.1989215566 —0.1787275944
Iy 0.1989215566 +0.1787275944
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FIG. 2. Linear behavior of the Regge trajectories in the complex ro
angular-momentum plane for the polarization potentiéd) = 1/r* .
_ . XXXXXXX X5 3¢ X XXX XXX X
for n=4 andk varying from 0.05 through 200. xx><xxXXXXXXXXxx”’&XXxxxxxXXXx><><x><
051 % x
ries in the complex angular-momentum plane, féfr) xxxxxx,‘xxxx’s’% i F oo
=1/r* with n=4 andk varying from 0.05 through 200. The % 3
straight line is according to the asymptotic formula, Edp), : ol xxx,g?‘ X"&xxxxxx
while the dotted curve is the numerical solution of the Bohr- & ™ T o
Sommerfeld equation, Eq5). It was used in Newton's
method[35] for solving the Bohr-Sommerfeld equation flor xxxxxxx’,‘(x & % x}xxxxxx
. . . X
Clearly, for high energy the asymptotically linear character _s| Xxf g( X
of the Regge trajectory is evident and is consistent with our X""*XX*XX"xxxxX;xxxx TXXXXXHXXX
. . . XX
Eq. (15). For this case the slope of the line is ca¥). There XXX XXX XXXKX
are many more lines corresponding to different valuen. of
Figure 3 shows the anti-Stokes lines topology for the (b)'“o-l.s 10 205 00 05 10 15

Lennard-Jones potentidl(r)=r~?—r~6 for k=10.0 and Re(r)

n=2, whenl| is a Regge pole given by,=—-6.534711

+11.870983. The 12 turning points generatingare given FIG. 3. (a) Anti-Stokes line topology for the Lennard-Jones po-
in Table 1. Again the figure is symmetric with respect to the tential V(r)=r~*?—r~° for k=10.0 andn=2, whenl is a Regge
origin. Among the 12 turning points displayed, only the two Pole given byl,=—6.534 711+i1.870 983. The 12 turning points
upper ones are connected by an anti-Stokes line. Thegsneratind, are given in Table Il(p) Anti-Stokes line topology for
points are relatively close to each other. All the remainingth® same Lennard-Jones potential aganfor k=10.0 andn=2,
pairs of turning points, except the two symmetric ones, ar@Ut Whenl is not a Regge pole and given By=—2.708857
not connected by anti-Stokes lines since the anti-Stokes lineg'0-337 874 The corresponding turning points are given in

originating at these turning points are either going to infinity able ll.

or to the origin. Figure @) depicts the anti-Stokes line to- cal methods, many of which have been criticized recently
pology for the same Lennard-Jones potential as in H@, 3 [25]. It is based on two self-consistent hypothegésrela-

for k=10.0 anch=2, but wherl, is not a Regge pole and is tive closeness of the two turning points generating the Regge
given by |=-2.70885710.337874. The corresponding trajectories(this hypothesis is compatible with the dimen-
turning points are given in Table Ill. Here no two turning sjonal scaling approadt25]) and(2) connection or approxi-
points are connected by an anti-Stokes line, consistent withate connection of these two turning points by an anti-

our second hypothesis. Stokes line. When applied to the standard polarization and
Lennard-Jones potentials, our expressions yield results that
IV. CONCLUSION AND DISCUSSION are in excellent agreement with those of other analytical and

numerical calculations of Regge-pole trajectories.

The need for more powerful, simple, and efficient meth- By examining the anti-Stokes line topology of turning
ods for calculating Regge-pole trajectories for singular popoints in the complex plane, even for complicated poten-
tentials, particularly for application to collision problems in tials such as the Lennard-Jones potential, connected turning
the Bose-Einstein condensation and resonance scattering, hasints can be readily identifiggee Figs. @) and 3b)] and
inspired this paper. Here we have developed a simple apthe integration path in the complexplane can be defined.
proach for the calculation of Regge trajectories for singularThis problem of determining which turning points are con-
potentials to augment the few existing analytical and numerinected by anti-Stokes lines had plagued the semiclassical
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TABLE 1. Turning points generating the Regge pole
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TABLE Ill. Turning points generating the non-Regge pole

=—6.534710753i1.870 983 399 for the Lennard-Jones potential = —5.510 696 693-12.894 997 458 1 for the Lennard-Jones poten-

V(r)=r"—r~® with k=10 andn=2.

tial used in Fig. 8) with k=8 andn=2.

Real part Imaginary part Real part Imaginary part
ry —0.7158204177 +0.04685172418 rq —0.6811080930 —0.001884306551
ry —0.6649891582 +0.3358233039 ry —0.6010191104 —0.3420704396
rs —0.6016085508 —0.2973002704 rs —0.5988337916 +0.3387919023
ra —0.3703911337 +0.5543339621 ra —0.3418052508 —0.5812956748
rs —0.3313257974 —0.5495790559 rs —0.3387881141 +0.5797935133
e —0.01792718343 +0.6515177685 le —0.001770041012 —0.6814218018
r; 0.01792718343 —0.6515177685 rs 0.001770041012 +0.6814218018
rg 0.3313257974 +0.5495790559 rs 0.3387881141 —0.5797935133
g 0.3703911337 —0.5543339621 g 0.3418052508 +0.5812956748
I 0.6016085508 +0.2973002704 ro 0.5988337916 —0.3387919023
ri 0.6649891582 —0.3358233039 r 0.6010191104 +0.3420704396
rio 0.7158204177 —0.04685172418 ris 0.6811080930 +0.001884306551

methods, thereby limiting their deserved utility. In the for the recently developed PadRegge pole analysis5] of
present development we are able to identify even “falsechemical reactions in which tifématrix is analytically con-
Regge poles,” i.e., poles that satisfy the Bohr-Sommerfeldinued to the complex angular-momentum plane to identify
quantization condition but do not satisfy the Salinger  resonances and for the generalized Lassettre expaf6dn
equation. for the calculation of small-angle electron-scattering differ-
We have demonstrated the validity of our hypotheses byntial cross sectior{87], only accurate Regge-pole positions
the numerical calculation of the anti-Stokes line topology forare required. These, together with the difficulty of under-
the polarization and the Lennard-Jones potentials. The wavgtanding the behavior of complex turning points and the ac-
functionW (1,,(k),r) when analytically continued to the com- companying anti-Stokes line topology, inherent in the semi-
plexr plane, is concentrated along the anti-Stokes line wherglassical description of scattering processes, have motivated
it has an oscillatory character. It exponentially decreasethe present development. The expressions for the residues
along the anti-Stokes line, which connects one of the turningvill be ready for presentation with the general formulas.
points with the origin. Thus, the asymptotic straight-line be-
havior of the Regge trajectories can be explained in terms of
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