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Density-matrix functional theory
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An auxiliary system is defined by adiabatic connection. In the ground state the diagonal of the spin-
independent second-order density matnixcan be determined by solving a single auxiliary equation of a
two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a
two-particle problem. The effective potential of the two-particle equation contains a term of completely kinetic

origin.
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I. INTRODUCTION and
. . . N
Recently there has been growing interest in the theory of < _2 1 3
density matrices. The theory goes back to the pionering ee_i<j |ri_rj|' €

works of Husimi[1] and Lawdin [2]. The problem ofN
representabilityf 3] turned out to be a serious difficulty that The ground-state energy is given by the variational principle
hindered the theory from becoming a powerful tool for treat- N
ing many-electron systems. A breakthrough has come with E=min(V|H|¥). (4
the recent research of Nakatsuji and Yas{#la Valdemoro v
and co-workerd5], and Mazziotti[6] (NVM). The NVM T
theory presents an alternative to traditional many-body quan-
tum calculations through solving the contracted Sdhwger E=minmin(\lf||3||\lf>. (5)
equation. 0 Voo

In this paper another approach is presented. In the next
section recent results of Gonét al. [7] are reviewed and With the universal functiondf,
generalized. They extended the Hohenberg-Kohn theorems . ..
[9] showing that the total energy is a functional of the “hy- Flel=min(V|T+VedW¥), (6)
perspace density” that is the diagonal of the spin- v—e
independent reduced secqnd-ord_er Qensity matrix. A”Oth%e ground-state energy takes the form
approach based on the pair density, i.e., a pair density func-
tional theory, was proposed by Ziesdi&. ]

The main results of this paper are presented in Sec. Ill. E:m'”[ f v(r)g(r)dr+F[g]J. @)
Auxiliary equations are derived through adiabatic connec- e
tion. Itis shown that in the ground state the diagonal of the  The second-order reduced density matrix is defined as
spin-independent second-order density matroan be deter-
mined by solving a single auxiliary equation of a two- ., N(N-1)
particle problem. Thus the problem of an arbitrary system ”Z(lexzixl’xz):TI V(X1 X2, X5, -+ Xn)
with even electrons can be reduced to a two-particle prob-
lem. XW*(X1,X5,X3, - -« Xn)AX3- - - dXy,

®

. o _ wherex; stands for the spatial and the spin coordinatesd
Consider the Hamiltonian of interest oi. In the following the diagonal of the spin-independent
second-order density matrix

he constraint search princip]&0] yields

II. DENSITY MATRIX FUNCTIONAL THEORY

N
H::I—"_\A/ee_*'E: (ri), (1
i=1 v n(rl,rz):f Ny(Xq,X5;Xq,Xo)do1doy 9

whereT is the kinetic energy operatov,, is the electron-  will play the fundamental role.
electron repulsion energy operator, arn) is a local exter- Now the constrained search method is applied again with
nal potential. The kinetic energy and the electron-electronhe density matrix:
energy operators have the form R
E=minmin(¥|H|V). (10
) N 1 n ¥v—n
T=> ( —~ —V?) (2)
-\ 2

We can define the universal functior@las
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Q[Nn]= min(¥|K +W|¥).

V—n

(11)

Q[n] searches all antisymmetric wave functioWs which

yield the givenn. Consequently, the ground-state energy can

also be written as

1
E= mm[N 1f u(ry,ra)n(rq,ro)drydro+Q[n] .
(12

The factor 1/NN—1) comes from the normalization of In

Egs.(11) and(12) the total Hamiltonian is partitioned as
H=K+W+U. (13)

Following Goniset al. [7] we consider the Hamiltonia(i)

but as a sum of distinct, nonoverlapping pairs of partidlas.

particle belongs to only one paiAs Goniset al. proposed,

it is convenient to introduce six-dimensional coordinate

forms combining the two particles as a single one:

(ri.ry)=

ri.f

q= ( i7yiiziixjiyjvzj):(qlvq21q31q41q51q6)'
(14)

Then the “internal” potential for the particles in a pair
=]jj' is given by

o(r),rj)=—. (15)
Iri—rl
The interaction potential between the pairs has the form

Wiy =W(q;,dy)=W(r;,ri ;rj,r)

1 1 1 1
=+ + (16)
|ri I’]| |ri_rj’| |ri,—r]-| |ri1_r]'r|
The “external” potential for the pair of particles is
N
0=2 u=2> uri,r)=v(r)+o(r). (17

| i#]

The operatorK andW in the Hamiltonian(13) are defined
as

(18

k=2, ( V2+u(q))

2 W

I:#I

(19

Although this HamiltoniarH is the same as before, it is now

expressed in terms of pairs of particles. The Laplacian in the

kinetic energy operator can also be written as

6 2
J
=V2=V24+Vi=2 —

a=1 ¢

v? (20

Ia
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M=N/2, that is, the number of particles is supposed to be
even. The density in the six-dimensional hyperspace is de-
fined as

1
(@)= 5N(N-1)

Xf |\I’(I’,0',r’,o",r3,0'3, - ,rN,O'N)|2

Xd(Td(T,dr3,dO'3, ...,drN,dO'N. (21)

We note that the density in the six-dimensional hyperspace is

the same as the diagonal form of the spin-independent

second-order reduced density matrix in the original space.
The following two theorems can be proved.

Theorem 1
1
N=1 | N@u(@)+Qn]=E,. (22)
Theorem 2
N—1 | No(@u(aq)+Q[ng]=Eo. (23

whereE, andng are the ground-state energy and the diago-
nal of the spin-independent second-order density matrix, re-
spectively.

Proof of Theorem 1From the definition ofQ(n) [Eq.
(11)] we obtain

1
7| n@u(e+Qn]

= m|n<‘If|K+W|‘P>+

V—n

n(a)u(q)

= min(¥|K+W+ 0| ).

¥ —n

(24

From the variational principle

(Wil T+ WO W ) =E. (25
Equations(24) and (25) give Eq.(22), which completes the
proof of Theorem 1.

Proof of Theorem 2ZThe ground-state energy can be given
by the variational principle

E=min(V|H|P). (26)
v

The constraint search principJ&0] leads to the expression

E=minmin(¥|H|¥). (27)
n ¥—n
We can define the universal functior@las
Q[n]= min(¥|H|¥). (28)

¥—n
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Q[ n] searches all antisymmetric wave functiokighat yield

Na=0_j o [1e=0_ a=0
the hyperspace density Then the ground-state energy has H™0=K+U 0—21 hi (36)
the form
is obtained, where
] 1
E:mln[mf V(g)n(q)dg+Q[n];. (29) P Y
] 0= = SVE+T(a)+u . 37)

Theorems 1 and 2 can be considered the gen_eralized The hyperspace “Kohn-Sham like equation” has the form
Hohenberg-Kohn theorenj9]. In Sec. Il the “generalized

Kohn-Sham equations” will be obtained. The derivation and FOgp 0= EOyp0 (39)
the results are different from those of Goeisal. Here the
spirit of the adiabatic connection derivation of the Kohn-where
Sham equations is utilized. ~
WO(Xy, - Xn) = S(xa(X1, %) -+ - Xxm(Xn—1.Xn))-

I1l. AUXILIARY EQUATIONS THROUGH ADIABATIC (39

CONNECTION S is the symmetrizer operator and the antisymmetric func-

In the density functional theory we construct the Hamil-tions x, satisfy the equations
tonian 1
N ho(a) x1(Xq %) = _§V§+U(Q)+UO(Q) X1(X1,%2)

HI=T+aVeet 2, vo(r)), 30
’ “Vee Zlv () 30 =e1X1(X1,X2). (40)
wherev®(r) is defined such that the densig(r) remains One can easily see from the definition of the Hamiltorfitth
independent ofr. This adiabatic connection leads to the non-that H° is invariant with respect to the exchange of the co-

interacting system, for whickr=0, ordinates of electrons within one pair but it is not invariant if
the coordinates of electrons in different pairs are exchanged.

N . . N .
~am0 & w0 Consider for example the simplest nontrivial case, that is, the
H, :T+241 vE(r). 3D case of four electrons. Then the “noninteracting” Hamil-
tonian has the form
It is well known that for a nondegenerate ground state the 2 1
noninteracting wave function is a Slater determinant con- {o_ % [_Evé +;(Q|)+UO(Q|)}
structed from one-particle functiong satisfying the Kohn- =1
Sham equationgll] 4
12 0 0 1.1
1 =2,1 —EVi +U-(rq,ro)+u(rg,rg)+ r_12+ Gl.
—§V2+v°(e;r) &i(r)= € i(r). (32
(41)
The one-particle electron density is given by H, is invariant with respect to the exchange of the coordi-
N nates of electrons 1 and 2 or 3 and 4 but it is not invariant if
the coordinates of electrons 1 and 3 or 2 and 4 are ex-
— 2
9(”—21 ; 4100 (33 changed. The “noninteracting” wave function takes the form

0 DY,
The Kohn-Sham equations can be derived by the minimiza- PO, - xa) =27 X (%) Xa(Xa Xa)

tion principle for the noninteracting kinetic energy + x2(X1,%2) x1(X3,X4) ] (42)
T= min<cI>|?I<I>>- (34) The “hy_perspace Kohn-Sham_eqyations” can t_)e derived
oo by constrained search. In the derivation of the original Kohn-

Sham equations of the density functional theory the kinetic

Adiabatic connection can also be performed in the hyperenergy is minimized with the constraint that the electron den-
space. Define the Hamiltonian sity is fixed,

To= min(®|T|®)=(D[ ]| T|D[2]). (43)

HY=K+aW+U0¢, (39) bop

whereU*=3,uf(q) is defined such that the hyperspace den- To obtain the *hyperspace Kohn-Sham equations” one
sity n(q) remains independent @f. For =0 the noninter-  just has to writeK instead ofT. Then we have to minimize
acting Hamiltonian the expectation value
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(\If°|f<|\1f°> (44) .Theorem 3T_he auxiliary potentiabe.ff ?s uniquely deter-
mined by the diagonal form of the spin-independent second-
with the constraint than is fixed. Substituting the “nonin- order density matrix.
teracting” wave function(39) into the diagonal form of the Proof of Theorem 3The auxiliary potentiab¢¢; can eas-
spin-independent second-order reduced density mg@Eax  ily be constructed. From Ed47) the two-particle function
(21)] we are led to Yo is given by
M 5 2 1/2
n(@)=(N=1)2 > [xi(xs,%o)|? (45 XO<q>=(—_n<q)) (50
=1 N(N—-1)
Then the minimization of up to a phase factor. Then from E@8) we arrive at the
expression
(POIR[WO)+ > J DalPu(@ =2 &y | xtxs (46 1 ~
I ) Ueff(Q)—80+ = 4 )Vqu(Q)- (52)
Xold

with respect to the antisymmetric functions leads to the
Kohn-Sham like equation&t0) after a unitary transforma- So the auxiliary potentiad.¢; is obtained up to an additive

tion. constant.
The minimum energy is obtained if all two-particle func-  Although the potentiad.¢; can be exactly determinedrif
tions x, are the samey,= xo. Then is known, it does not mean that; is known as a functional
N(N 1) N(N=1) of n. (vess can only be obtained as a function qf One
n(q)= 2 | Xo(X1,%0)|2= 5 %o(@)]2. igl(z;lﬂldat{:)nnds),an approximation fare¢s in order to perform
(47) Theorem 4 The auxiliary potential has the formg¢

=v(ry))+ov(ry)+(N=21)/r,+v where v is of
It means that the calculation aofis reduced to the solution of congph)etely( kf%en(c or|g|)n 12 vi() @)

a two-particle equation Proof of Theorem 4E® can be written as

h°(a)Xo(a)= 2vq+veff<q>}}o<q>=80}o<q>, BE=(WoHw)
48 1
9 =Rt a(we v+ | ni@ut(a). (52
where
~ 0 Writing
ver(d) =v(q) +u"(q), (49 . B B
a = a= + a = + + (23 53
that is, theN-body problem can be reduced to a two-body uH@=u" @+ ut@=v(r) tolry) +u 63
problem. and using Eqgs(18) and(19) we obtain
«_a 1 1 q 1 T q N— n(q)
Er=Te+ =g | [v(r)Fo(ra)+ —In(@da+ g=7 | u(@n(@) q+aN 1
X 1 1 n(q)
=T +— [v(r)+o(r)In(@da+ G— (q)n(q)dq+ pl1Ta(N=2)] —dq (54)

For the auxiliary system witle=0, Eq.(54) leads to (q)
E=T+ —f [v(r1)+v(rz)]n(q)dq+f—dq

1 (56)
E0=TO+ mf [v(ry)+o(r)In(a)dg o . .
E can also be written in a form that contains the kinetic
1 ~0 1 n(q) energy of the auxiliary system:
tN=1 ) w@n@datg—7 | 7 _-da. (59
12 1 (q)
E=T0+T .+ mf [v(ry)+v(ry)In(g)dg+ d

The total energy of the real systdifaqg. (54)] has the form (57)
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where auxiliary equation of a two-particle problem. The fact that
o the problem of an arbitrary system with even electrons can
Te=T-T (58) e reduced to a two-particle problem means enormous sim-

is the difference between the kinetic energies of the real anﬁg'ﬁ;'sogé':nviyp:gggrtinégr:?;ﬁgyaﬂ;?ﬁ (e):fff gg:‘r\]ﬁeﬁgfsnk'i_
the auxiliary systems. Using E¢B9) we arrive at netic origin. An adequate enough approximation of this term
M
Tozgl f X7 (X1,%2)

would lead to a very simple treatment of an electron system.
Variation of E [Eq. (57)] with respect to thg,’s leads to the

— %Vé X1(X1,%2). (59 To study the further properties of this term and to find an
set of auxiliary equations

approximation to it should be the subject of further research.
While in the original density functional theoily, is a rather
small quantity, herel. is expected to be much larger, in-
creasing roughly linearly with the number of electrons.

It is important to emphasize that this auxiliary system is
xi(x1,%)=¢"x(x1, %),  (60) just an imagined system. The particles in it are neither fer-
mions nor bosons. The wave function is neither antisymmet-
ric nor symmetric. It is just a symmetrized expression of
antisymmetric two-particle functions. There is some similar-
N—2 8T, ity in spirit to the antisymmetrized geminal wave function
+ (N— 1)5 advocated by Colemd8]. Of course, the latter is related to

the real system, while the former corresponds to the auxiliary
N— system. It should also be noted that the idea of constructing
=v(ry)+o(ry)+ r_12+vk’ (61)  wave functions as products of geminals is well established
[12].
where One of the fundamental problems in density-matrix theory
is theN-representability problem. In the present theory, there
exists a wave function for any value of the coupling constant
a. If we have the exach, then it follows from Theorem 3
that the noninteracting\ representability is also valid. We
So the termyy in the effective potential is of completely can see from Eq50) that the noninteractiny representabil-
kinetic origin. ity is also valid for an approximate. However, an approxi-
maten does not generally satisfy representability 13]. So
IV. DISCUSSION the form of the approximate functional will be crucial from
he point of view ofN representability.

1.
~ 5 Vatver(a)

where the effective potential has the form

1
vetf(d)=v(ry) +v(ry)+—+
2 l2

5T,
vk:(N_l)E. (62)

In this paper an auxiliary system is defined. The diagona}
of the spin-independent second-order reduced density matrix
n is the same in both the real and the auxiliary systems. In
the ground staten can be determined by solving a single  OTKA Grant No. T 029469 is gratefully acknowledged.
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