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Density-matrix functional theory
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An auxiliary system is defined by adiabatic connection. In the ground state the diagonal of the spin-
independent second-order density matrixn can be determined by solving a single auxiliary equation of a
two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a
two-particle problem. The effective potential of the two-particle equation contains a term of completely kinetic
origin.
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I. INTRODUCTION

Recently there has been growing interest in the theory
density matrices. The theory goes back to the pioner
works of Husimi @1# and Löwdin @2#. The problem ofN
representability@3# turned out to be a serious difficulty tha
hindered the theory from becoming a powerful tool for tre
ing many-electron systems. A breakthrough has come w
the recent research of Nakatsuji and Yasuda@4#, Valdemoro
and co-workers@5#, and Mazziotti@6# ~NVM !. The NVM
theory presents an alternative to traditional many-body qu
tum calculations through solving the contracted Schro¨dinger
equation.

In this paper another approach is presented. In the n
section recent results of Goniset al. @7# are reviewed and
generalized. They extended the Hohenberg-Kohn theor
@9# showing that the total energy is a functional of the ‘‘h
perspace density’’ that is the diagonal of the sp
independent reduced second-order density matrix. Ano
approach based on the pair density, i.e., a pair density fu
tional theory, was proposed by Ziesche@8#.

The main results of this paper are presented in Sec.
Auxiliary equations are derived through adiabatic conn
tion. It is shown that in the ground state the diagonal of
spin-independent second-order density matrixn can be deter-
mined by solving a single auxiliary equation of a tw
particle problem. Thus the problem of an arbitrary syst
with even electrons can be reduced to a two-particle pr
lem.

II. DENSITY MATRIX FUNCTIONAL THEORY

Consider the Hamiltonian of interest

Ĥ5T̂1V̂ee1(
i 51

N

v~r i !, ~1!

where T̂ is the kinetic energy operator,V̂ee is the electron-
electron repulsion energy operator, andv(r ) is a local exter-
nal potential. The kinetic energy and the electron-elect
energy operators have the form

T̂5(
i 51

N S 2
1

2
¹ i

2D ~2!
1050-2947/2002/66~2!/022505~5!/$20.00 66 0225
f
g

-
th

n-

xt

s

-
er
c-

I.
-
e

-

n

and

V̂ee5(
i , j

N
1

ur i2r j u
. ~3!

The ground-state energy is given by the variational princi

E5min
C

^CuĤuC&. ~4!

The constraint search principle@10# yields

E5min
%

min
C→%

^CuĤuC&. ~5!

With the universal functionalF,

F@%#5 min
C→%

^CuT̂1V̂eeuC&, ~6!

the ground-state energy takes the form

E5min
%

H E v~r !%~r !dr1F@%#J . ~7!

The second-order reduced density matrix is defined a

n2~x1 ,x2 ;x18 ,x28!5
N~N21!

2 E C~x1 ,x2 ,x3 , . . . ,xN!

3C* ~x18 ,x28 ,x3 , . . . ,xN!dx3•••dxN ,

~8!

wherexi stands for the spatial and the spin coordinatesr i and
s i . In the following the diagonal of the spin-independe
second-order density matrix

n~r1 ,r2!5E n2~x1 ,x2 ;x1 ,x2!ds1ds2 ~9!

will play the fundamental role.
Now the constrained search method is applied again w

the density matrixn:

E5min
n

min
C→n

^CuĤuC&. ~10!

We can define the universal functionalQ as
©2002 The American Physical Society05-1
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Q@n#5 min
C→n

^CuK̂1ŴuC&. ~11!

Q@n# searches all antisymmetric wave functionsC which
yield the givenn. Consequently, the ground-state energy c
also be written as

E5min
n

H 1

N21E u~r1 ,r2!n~r1 ,r2!dr1dr21Q@n#J .

~12!

The factor 1/(N21) comes from the normalization ofn. In
Eqs.~11! and ~12! the total Hamiltonian is partitioned as

Ĥ5K̂1Ŵ1Û. ~13!

Following Goniset al. @7# we consider the Hamiltonian~1!
but as a sum of distinct, nonoverlapping pairs of particles.~A
particle belongs to only one pair.! As Goniset al. proposed,
it is convenient to introduce six-dimensional coordina
forms combining the two particles as a single one:

q5~r i ,r j !5~xi ,yi ,zi ,xj ,yj ,zj !5~q1 ,q2 ,q3 ,q4 ,q5 ,q6!.
~14!

Then the ‘‘internal’’ potential for the particles in a pairJ
5 j j 8 is given by

ṽ~r j ,r j 8!5
1

ur j2r j 8u
. ~15!

The interaction potential between the pairs has the form

WIJ5W~qI ,qJ!5W~r i ,r i 8 ;r j ,r j 8!

5
1

ur i2r j u
1

1

ur i2r j 8u
1

1

ur i 82r j u
1

1

ur i 82r j 8u
. ~16!

The ‘‘external’’ potential for the pair of particles is

Û5(
I

uI5(
iÞ j

N

u~r i ,r j !5v~r i !1v~r j !. ~17!

The operatorsK̂ andŴ in the Hamiltonian~13! are defined
as

K̂5(
I 51

S 2
1

2
¹ I

21 ṽ~q! D , ~18!

Ŵ5
1

2 (
IÞI

WIJ . ~19!

Although this HamiltonianH is the same as before, it is no
expressed in terms of pairs of particles. The Laplacian in
kinetic energy operator can also be written as

¹ I
25¹q

25¹ i
21¹ i 8

2
5 (

a51

6
]2

]qia
2

. ~20!
02250
n

e

M5N/2, that is, the number of particles is supposed to
even. The density in the six-dimensional hyperspace is
fined as

n~q!5
1

2
N~N21!

3E uC~r ,s,r 8,s8,r3 ,s3 , . . . ,rN ,sN!u2

3dsds8dr3 ,ds3 , . . . ,drN ,dsN . ~21!

We note that the density in the six-dimensional hyperspac
the same as the diagonal form of the spin-independ
second-order reduced density matrix in the original spac

The following two theorems can be proved.
Theorem 1.

1

N21E n~q!u~q!1Q@n#>E0 . ~22!

Theorem 2.

1

N21E n0~q!u~q!1Q@n0#5E0 . ~23!

whereE0 andn0 are the ground-state energy and the diag
nal of the spin-independent second-order density matrix,
spectively.

Proof of Theorem 1. From the definition ofQ(n) @Eq.
~11!# we obtain

1

N21E n~q!u~q!1Q@n#

5 min
C→n

^CuK̂1ŴuC&1
1

N21E n~q!u~q!

5 min
C→n

^CuK̂1Ŵ1ÛuC&. ~24!

From the variational principle

^Cmin
n uT̂1Ŵ1ÛuCmin

n &>E0 . ~25!

Equations~24! and ~25! give Eq.~22!, which completes the
proof of Theorem 1.

Proof of Theorem 2. The ground-state energy can be giv
by the variational principle

E5min
C

^CuH̃uC&. ~26!

The constraint search principle@10# leads to the expression

E5min
n

min
C→n

^CuH̃uC&. ~27!

We can define the universal functionalQ as

Q@n#5 min
C→n

^CuH̃uC&. ~28!
5-2
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Q@n# searches all antisymmetric wave functionsC that yield
the hyperspace densityn. Then the ground-state energy h
the form

E5min
n

H 1

N21E V~q!n~q!dq1Q@n#J . ~29!

Theorems 1 and 2 can be considered the general
Hohenberg-Kohn theorems@9#. In Sec. III the ‘‘generalized
Kohn-Sham equations’’ will be obtained. The derivation a
the results are different from those of Goniset al. Here the
spirit of the adiabatic connection derivation of the Koh
Sham equations is utilized.

III. AUXILIARY EQUATIONS THROUGH ADIABATIC
CONNECTION

In the density functional theory we construct the Ham
tonian

Ĥv
a5T̂1aV̂ee1(

i 51

N

va~r i !, ~30!

whereva(r ) is defined such that the density%(r ) remains
independent ofa. This adiabatic connection leads to the no
interacting system, for whicha50,

Ĥv
a505T̂1(

i 51

N

va50~r i !. ~31!

It is well known that for a nondegenerate ground state
noninteracting wave function is a Slater determinant c
structed from one-particle functionsf i satisfying the Kohn-
Sham equations@11#

F2
1

2
¹21v0~%;r !Gf i~r !5e if i~r !. ~32!

The one-particle electron density is given by

%~r !5(
i 51

N

(
s

uf i~x!u2. ~33!

The Kohn-Sham equations can be derived by the minim
tion principle for the noninteracting kinetic energy

Ts5 min
F→%

^FuT̂uF&. ~34!

Adiabatic connection can also be performed in the hyp
space. Define the Hamiltonian

Ĥa5K̂1aŴ1Ûa, ~35!

whereÛa5( IuI
a(q) is defined such that the hyperspace de

sity n(q) remains independent ofa. For a50 the noninter-
acting Hamiltonian
02250
ed

-

e
-

-

r-

-

Ĥa505K̂1Ûa505(
I 51

hI
a50 ~36!

is obtained, where

hI
a5052

1

2
¹ I

21 ṽ~qI !1ua50. ~37!

The hyperspace ‘‘Kohn-Sham like equation’’ has the fo

Ĥ0C05E0C0, ~38!

where

C0~x1 , . . . ,xN!5Ŝ„x1~x1 ,x2!•••xM~xN21 ,xN!….
~39!

Ŝ is the symmetrizer operator and the antisymmetric fu
tions x I satisfy the equations

h0~q!x I~x1 ,x2!5F2
1

2
¹q

21 ṽ~q!1u0~q!Gx I~x1 ,x2!

5« Ix I~x1 ,x2!. ~40!

One can easily see from the definition of the HamiltonianĤ0

that Ĥ0 is invariant with respect to the exchange of the c
ordinates of electrons within one pair but it is not invariant
the coordinates of electrons in different pairs are exchang
Consider for example the simplest nontrivial case, that is,
case of four electrons. Then the ‘‘noninteracting’’ Ham
tonian has the form

Ĥ05(
I 51

2 F2
1

2
¹qI

2 1 ṽ~qI !1u0~qI !G
5(

i 51

4 F2
1

2
¹ i

2G1u0~r1,r2!1u0~r3,r4!1
1

r 12
1

1

r 34
.

~41!

Ĥ0 is invariant with respect to the exchange of the coor
nates of electrons 1 and 2 or 3 and 4 but it is not invarian
the coordinates of electrons 1 and 3 or 2 and 4 are
changed. The ‘‘noninteracting’’ wave function takes the for

C0~x1 , . . . ,x4!5221/2@x1~x1 ,x2!x2~x3 ,x4!

1x2~x1 ,x2!x1~x3 ,x4!#. ~42!

The ‘‘hyperspace Kohn-Sham equations’’ can be deriv
by constrained search. In the derivation of the original Koh
Sham equations of the density functional theory the kine
energy is minimized with the constraint that the electron d
sity is fixed,

Ts5 min
F→%

^FuT̂uF&5^F@%#uT̂uF@%#&. ~43!

To obtain the ‘‘hyperspace Kohn-Sham equations’’ o
just has to writeK̂ instead ofT̂. Then we have to minimize
the expectation value
5-3
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^C0uK̂uC0& ~44!

with the constraint thatn is fixed. Substituting the ‘‘nonin-
teracting’’ wave function~39! into the diagonal form of the
spin-independent second-order reduced density matrix@Eq.
~21!# we are led to

n~q!5~N21!(
I 51

M

(
s

ux I~x1 ,x2!u2. ~45!

Then the minimization of

^C0uK̂uC0&1(
I
E ux I u2u~q!2(

I ,J
«̃ I ,JE x I* xJ ~46!

with respect to the antisymmetric functionsx I leads to the
Kohn-Sham like equations~40! after a unitary transforma
tion.

The minimum energy is obtained if all two-particle fun
tions x I are the same:x I5x0. Then

n~q!5
N~N21!

2 (
s

ux0~x1 ,x2!u25
N~N21!

2
ux̃0~q!u2.

~47!

It means that the calculation ofn is reduced to the solution o
a two-particle equation

h0~q!x̃0~q!5F2
1

2
¹q

21ve f f~q!G x̃0~q!5«0x̃0~q!,

~48!

where

ve f f~q!5 ṽ~q!1u0~q!, ~49!

that is, theN-body problem can be reduced to a two-bo
problem.
02250
Theorem 3. The auxiliary potentialve f f is uniquely deter-
mined by the diagonal form of the spin-independent seco
order density matrix.

Proof of Theorem 3. The auxiliary potentialve f f can eas-
ily be constructed. From Eq.~47! the two-particle function
x̃0 is given by

x̃0~q!5S 2

N~N21!
n~q! D 1/2

~50!

up to a phase factor. Then from Eq.~48! we arrive at the
expression

ve f f~q!5«01
1

2x̃0~q!
¹q

2x̃0~q!. ~51!

So the auxiliary potentialve f f is obtained up to an additive
constant.

Although the potentialve f f can be exactly determined ifn
is known, it does not mean thatve f f is known as a functiona
of n. (ve f f can only be obtained as a function ofq. One
should find an approximation forve f f in order to perform
calculations.!

Theorem 4. The auxiliary potential has the formve f f
5v(r1)1v(r2)1(N21)/r 121vk(q) where vk(q) is of
completely kinetic origin.

Proof of Theorem 4. Ea can be written as

Ea5^CauĤauCa&

5K̂a1a^CauŴuCa&1
1

N21E n~q!ua~q!. ~52!

Writing

ua~q!5ua51~q!1ũa~q!5v~r1!1v~r2!1ũa ~53!

and using Eqs.~18! and ~19! we obtain
Ea5Ta1
1

N21E Fv~r1!1v~r2!1
1

r 12
Gn~q!dq1

1

N21E ũa~q!n~q!dq1a
N22

N21E n~q!

r 12
dq

5Ta1
1

N21E @v~r1!1v~r2!#n~q!dq1
1

N21E ũa~q!n~q!dq1
1

N21
@11a~N22!#E n~q!

r 12
dq. ~54!
tic
For the auxiliary system witha50, Eq. ~54! leads to

E05T01
1

N21E @v~r1!1v~r2!#n~q!dq

1
1

N21E ũ0~q!n~q!dq1
1

N21E n~q!

r 12
dq. ~55!

The total energy of the real system@Eq. ~54!# has the form
E5T1
1

N21E @v~r1!1v~r2!#n~q!dq1E n~q!

r 12
dq.

~56!

E can also be written in a form that contains the kine
energy of the auxiliary system:

E5T01Tc1
1

N21E @v~r1!1v~r2!#n~q!dq1E n~q!

r 12
dq,

~57!
5-4
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where

Tc5T2T0 ~58!

is the difference between the kinetic energies of the real
the auxiliary systems. Using Eq.~39! we arrive at

T05(
I 51

M E x I* ~x1 ,x2!F2
1

2
¹q

2Gx I~x1 ,x2!. ~59!

Variation ofE @Eq. ~57!# with respect to thex I ’s leads to the
set of auxiliary equations

F2
1

2
¹q

21ve f f~q!Gx I~x1 ,x2!5« I
0x I~x1 ,x2!, ~60!

where the effective potential has the form

ve f f~q!5v~r1!1v~r2!1
1

r 12
1

N22

r 12
1 ~N21!

dTc

dn

5v~r1!1v~r2!1
N21

r 12
1vk , ~61!

where

vk5~N21!
dTc

dn
. ~62!

So the termvk in the effective potential is of completel
kinetic origin.

IV. DISCUSSION

In this paper an auxiliary system is defined. The diago
of the spin-independent second-order reduced density m
n is the same in both the real and the auxiliary systems
the ground staten can be determined by solving a sing
um

02250
d

l
rix
In

auxiliary equation of a two-particle problem. The fact th
the problem of an arbitrary system with even electrons
be reduced to a two-particle problem means enormous s
plification. A very important property of the effective poten
tial has been explored. It contains a term of completely
netic origin. An adequate enough approximation of this te
would lead to a very simple treatment of an electron syste
To study the further properties of this term and to find
approximation to it should be the subject of further resear
While in the original density functional theoryTc is a rather
small quantity, hereTc is expected to be much larger, in
creasing roughly linearly with the number of electrons.

It is important to emphasize that this auxiliary system
just an imagined system. The particles in it are neither
mions nor bosons. The wave function is neither antisymm
ric nor symmetric. It is just a symmetrized expression
antisymmetric two-particle functions. There is some simil
ity in spirit to the antisymmetrized geminal wave functio
advocated by Coleman@3#. Of course, the latter is related t
the real system, while the former corresponds to the auxili
system. It should also be noted that the idea of construc
wave functions as products of geminals is well establish
@12#.

One of the fundamental problems in density-matrix theo
is theN-representability problem. In the present theory, th
exists a wave function for any value of the coupling const
a. If we have the exactn, then it follows from Theorem 3
that the noninteractingN representability is also valid. We
can see from Eq.~50! that the noninteractingN representabil-
ity is also valid for an approximaten. However, an approxi-
maten does not generally satisfyN representability@13#. So
the form of the approximate functional will be crucial from
the point of view ofN representability.
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