Relativistic corrections to the Zeeman effect of lithium and lithiumlike ions in the $2^{2}P_{I}$ and $3^{2}P_{I}$ states

Zong-Chao Yan

Department of Physics, University of New Brunswick, P. O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3 (Received 12 April 2002; published 6 August 2002)

The Zeeman g_J factors are calculated for the $2^2 P_J$ and $3^2 P_J$ states of lithium and lithiumlike ions, including relativistic corrections of order α^2 , using variational wave functions in Hylleraas coordinates. Comparison with other calculations is made.

DOI: 10.1103/PhysRevA.66.022502

PACS number(s): 31.30.Jv, 32.60.+i

 $H_{\text{Zeeman}} = \sum_{i=0}^{6} H_i,$

I. INTRODUCTION

Recently we have performed several calculations [1-3] of the Zeeman g_I factors for lithium and its low-Z ions in S states. The formalism is based on the extended Breit equation of Hegstrom [4] which includes relativistic corrections of order α^2 a.u. (atomic units are used throughout), relativistic recoil corrections of order $\alpha^2 m/M$, and radiative corrections of order α^3 . Although this theory was proven rigorously to be accurate up to α^3 for a neutral atomic system in an S state, it is expected that the extended Breit equation also describes the Zeeman effect accurately to order α^3 for an S-state low-Z ion. For non-S states, however, the theory is correct only to the order of α^2 , although computationally it is much more demanding than the S-state case due to nonvanishing angular terms. So far, most of the calculations have concentrated on S states, except the work of Guan and Wang [5], who were the first to evaluate the relativistic corrections to the Zeeman g_J factors of lithium in the $n^2 P_J$ states with n up to 5, using the method of full core plus correlation. Nevertheless, it is difficult to assess the reliability of their calculations (see the discussion in Sec. III). Since the values of g_I factors are important in high-precision measurements [6-9], it is desirable to calculate the g_I factors definitively using high-quality wave functions. For two-electron atomic systems, such work has been carried out by several authors, including Lewis and Hughes [10], Anthony and Sebastian [11], and Yan and Drake [12], who used the calculated g_J factors to reanalyze the level-crossing experimental values of the fine-structure splittings for the $3^{3}P_{J}$ states of helium measured by Yang et al. [6,7]. The main purpose of this paper is to present high-precision calculations of the g_J factors for lithium and lithiumlike ions in the $2^{2}P_{I}$ and $3^{2}P_{I}$ states, with Z up to 12, including relativistic corrections of order α^2 . The second purpose is to establish a benchmark for other atomic structure calculations involving three electrons. It should be pointed out that, as the nuclear charge Z increases, the electron-nuclear interaction will eventually dominate electron-electron correlations, and thus higher-order relativistic and QED effects become important. At present, the theory of higher-order effects, however, is available only for one-electron hydrogenic systems [13].

II. FORMULATION

The starting point is the magnetic-field-dependent part of the Hamiltonian [4]

where

$$H_0 = \mu_B \mathbf{H} \cdot (g_L \mathbf{L} + g_S \mathbf{S}), \qquad (2)$$

(1)

$$H_{1} = -\frac{1}{2} \alpha^{2} \mu_{B} \mathbf{H} \cdot \sum_{j} \nabla_{j}^{2} (i \mathbf{r}_{j} \times \nabla_{j})$$
$$+ \alpha^{2} \mu_{B} \mathbf{H} \cdot \sum_{j} \mathbf{s}_{j} \nabla_{j}^{2}, \qquad (3)$$

$$H_2 = \frac{Z}{2} \alpha^2 \mu_B \mathbf{H} \cdot \sum_j \left[\frac{2\mathbf{s}_j}{3r_j} + \frac{1}{3r_j} \left(\mathbf{s}_j - \frac{3\mathbf{r}_j(\mathbf{r}_j \cdot \mathbf{s}_j)}{r_j^2} \right) \right], \quad (4)$$

$$H_{3} = \frac{1}{2} \alpha^{2} \mu_{B} \mathbf{H} \cdot \sum_{j \neq k} \frac{1}{r_{jk}^{3}} [(\mathbf{s}_{j} + 2\mathbf{s}_{k}) \times \mathbf{r}_{jk}] \times \mathbf{r}_{j}, \qquad (5)$$

$$H_{4} = \frac{1}{2} \alpha^{2} \mu_{B} \mathbf{H} \cdot \sum_{k>j} \left[i \frac{1}{r_{jk}} (\mathbf{r}_{j} \times \boldsymbol{\nabla}_{k} + \mathbf{r}_{k} \times \boldsymbol{\nabla}_{j}) - \frac{i}{r_{jk}^{3}} (\mathbf{r}_{j} \times \mathbf{r}_{k}) \mathbf{r}_{jk} \cdot (\boldsymbol{\nabla}_{j} + \boldsymbol{\nabla}_{k}) \right],$$
(6)

$$H_5 = \frac{m}{M} \mu_B \mathbf{H} \cdot \sum_{j \neq k} (i \mathbf{r}_j \times \boldsymbol{\nabla}_k), \tag{7}$$

$$H_6 = \frac{1}{3} (\mu_B H_Z)^2 \sum_j r_j^2 [1 - C_2^0(\mathbf{r}_j)].$$
(8)

In the above, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, m/M is the electron to nuclear mass ratio, Z is the nuclear charge, H is the external magnetic field with its Z component being H_Z , μ_B is the Bohr magneton, $C_k^q = \sqrt{4\pi/(2k+1)} Y_k^q(\mathbf{r})$, **L** is the total orbital angular momentum operator, $\mathbf{S} = \sum_i \mathbf{s}_i$ is the total spin angular momentum operator, and g_L and g_S [14] are

$$g_L = 1 - m/M, \tag{9}$$

$$g_{S} = 2[1 + \alpha/2\pi - 0.328\,478\,965(\alpha/\pi)^{2} + 1.181\,241\,456(\alpha/\pi)^{3} + \cdots].$$
(10)

	F	F	F	F	F	E
11	<i>r</i> ₁	I' 2	<i>I</i> 3	14	1' 5	I' 6
56	-0.196475	-0.0713144	-1.01827875	-0.02190726	-0.5799228	0.564 388 11
139	-0.203462	-0.0738071	-1.01904463	-0.021 849 39	-0.5805921	0.564 559 24
307	-0.204664	$-0.074\ 1102$	-1.01914549	-0.02184518	-0.5806623	0.564 593 34
623	-0.205097	$-0.074\ 1936$	-1.01915392	-0.02184578	-0.5806622	0.564 597 82
1175	-0.205364	-0.0742363	-1.01915640	-0.02184596	-0.5806996	0.564 604 51
1846	-0.205426	-0.0742452	-1.01915634	-0.02184614	-0.5806911	0.564 603 03
2882	-0.205489	-0.0742532	-1.01915609	-0.02184602	-0.5807003	0.564 604 67
3463	-0.205493	-0.0742537	- 1.019 156 18	-0.02184606	-0.5807004	0.564 604 70
∞	-0.205 493(4)	-0.0742537(5)	-1.019 156 18(9)	-0.021 846 06(4)	-0.5807004(1)	0.564 604 70(3)
Ν	F_7	F_8	F_9	F_{10}	F_{11}	
56	1.128 355 83	-0.364 2220	-0.528 5319	68.564 451	-41.972 447	
139	1.128 638 38	-0.3642944	-0.5287621	68.472 014	-41.913 877	
307	1.128 706 33	-0.3642945	-0.5288092	68.460 940	-41.906744	
623	1.128 714 73	-0.3642948	-0.5288197	68.459 350	-41.905730	
1175	1.128 718 46	-0.3642939	-0.5288251	68.459 016	-41.905510	
1846	1.128 717 27	-0.3642933	-0.5288265	68.458 935	-41.905457	
2882	1.128 718 06	-0.3642932	-0.5288267	68.458 922	-41.905448	
3463	1.128 718 09	-0.364 2931	-0.5288268	68.458 919	-41.905446	
∞	1.128 718 09(3)	-0.364 2931(1)	-0.528 8268(1)	68.458 919(3)	-41.905 446(2)	

TABLE I. Convergence of the reduced matrix elements F_i for the 2^2P state of lithium. N is the number of terms in the wave function. Units are atomic units.

TABLE II. Reduced matrix elements F_i for the 2^2P states of lithiumlike ions. Units are atomic units.

Term	Li	Be ⁺	B^{2+}	C ³⁺	N^{4+}
F_1	-0.205 493(4)	-0.52620(1)	-0.734673(3)	-0.869 7211(2)	-0.9626148(2)
F_2	-0.0742537(5)	-0.322 199(2)	-0.617 6277(8)	-0.9245113(2)	-1.234 8035(2)
F_3	-1.019 156 18(9)	-4.0957202(1)	-9.012 1014(2)	-15.696 8520(2)	-24.129 3635(2)
F_4	-0.021 846 06(4)	-0.0605960(2)	-0.1017831(2)	-0.1439617(3)	-0.1866840(3)
F_5	-0.5807004(1)	-2.34640(1)	-5.228485(5)	-9.194 131(4)	-14.231 577(3)
F_{6}	0.564 604 70(3)	1.127 791(1)	1.676 3909(6)	2.217 9593(3)	2.755 8525(2)
F_7	1.128 718 09(3)	2.229 965 4(5)	3.283 0886(3)	4.313 7863(1)	5.333 0681(1)
F_8	-0.364 2931(1)	-0.7337286(3)	-1.0898777(1)	-1.4385481(3)	-1.783 0648(2)
F_9	-0.5288268(1)	-0.994984270(5)	-1.433 3686(1)	-1.86082895(4)	-2.2830654(1)
F_{10}	68.458 919(3)	17.534 032 8(8)	8.072 59935(8)	4.672 72614(5)	3.057 306 69(2)
F_{11}	-41.905 446(2)	-10.362 610(1)	-4.660 5788(1)	-2.655 34424(6)	-1.717 895 16(4)
Term	O^{5+}	F^{6+}	Ne ⁷⁺	Na ⁸⁺	Mg^{9+}
$\frac{\text{Term}}{F_1}$	O^{5+} -1.029 9923(1)	F^{6+} - 1.080 951(2)	Ne ⁷⁺ -1.1207844(1)	Na ⁸⁺	Mg^{9+} -1.178 9552(4)
$\frac{\text{Term}}{F_1}$	O^{5+} - 1.029 9923(1) - 1.546 2220(1)	$F^{6+} - 1.080951(2) - 1.8580015(4)$	Ne ⁷⁺ -1.1207844(1) -2.1698596(2)	Na ⁸⁺ -1.1527495(4) -2.4816881(1)	Mg ⁹⁺ -1.178 9552(4) -2.793 4478(1)
$\frac{\text{Term}}{F_1}\\F_2\\F_3$	$\begin{array}{r} O^{5+} \\ \hline \\ -1.0299923(1) \\ -1.5462220(1) \\ -34.3019763(3) \end{array}$	F^{6+} -1.080 951(2) -1.858 0015(4) -46.211 26859(4)	Ne ⁷⁺ -1.1207844(1) -2.1698596(2) -59.8555010(2)	Na ⁸⁺ -1.152 7495(4) -2.481 6881(1) -75.233 7023(2)	Mg ⁹⁺ -1.178 9552(4) -2.793 4478(1) -92.345 2895(2)
$\frac{\text{Term}}{F_1}$ $\frac{F_2}{F_3}$ F_4	O^{5+} -1.029 9923(1) -1.546 2220(1) -34.301 9763(3) -0.229 7388(3)	F^{6+} - 1.080 951(2) - 1.858 0015(4) - 46.211 26859(4) - 0.273 0117(3)	Ne ⁷⁺ -1.1207844(1) -2.1698596(2) -59.8555010(2) -0.3164352(3)	Na^{8+} -1.152 7495(4) -2.481 6881(1) -75.233 7023(2) -0.359 9670(3)	Mg ⁹⁺ -1.178 9552(4) -2.793 4478(1) -92.345 2895(2) -0.403 5793(3)
$\frac{\text{Term}}{F_1}$ $\frac{F_2}{F_3}$ $\frac{F_4}{F_5}$	O^{5+} -1.029 9923(1) -1.546 2220(1) -34.301 9763(3) -0.229 7388(3) -20.335 859(4)	F^{6+} -1.080 951(2) -1.858 0015(4) -46.211 26859(4) -0.273 0117(3) -27.504558(8)	Ne ⁷⁺ -1.1207844(1) -2.1698596(2) -59.8555010(2) -0.3164352(3) -35.736365(5)	Na^{8+} -1.152 7495(4) -2.481 6881(1) -75.233 7023(2) -0.359 9670(3) -45.03051(1)	Mg ⁹⁺ -1.178 9552(4) -2.793 4478(1) -92.345 2895(2) -0.403 5793(3) -55.386 526(5)
$\frac{\text{Term}}{F_1}$ $\frac{F_2}{F_3}$ $\frac{F_4}{F_5}$ $\frac{F_6}{F_6}$	O^{5+} - 1.029 9923(1) - 1.546 2220(1) - 34.301 9763(3) - 0.229 7388(3) - 20.335 859(4) 3.291 6097(3)	F^{6+} -1.080 951(2) -1.858 0015(4) -46.211 26859(4) -0.273 0117(3) -27.504558(8) 3.826 0207(4)	Ne ⁷⁺ -1.1207844(1) -2.1698596(2) -59.8555010(2) -0.3164352(3) -35.736365(5) 4.359530(1)	Na^{8+} -1.152 7495(4) -2.481 6881(1) -75.233 7023(2) -0.359 9670(3) -45.03051(1) 4.892 4063(2)	Mg ⁹⁺ -1.178 9552(4) -2.793 4478(1) -92.345 2895(2) -0.403 5793(3) -55.386 526(5) 5.424 8213(1)
$\frac{\text{Term}}{F_1}$ $\frac{F_2}{F_3}$ $\frac{F_4}{F_5}$ $\frac{F_6}{F_7}$	O^{5+} -1.029 9923(1) -1.546 2220(1) -34.301 9763(3) -0.229 7388(3) -20.335 859(4) 3.291 6097(3) 6.345 85706(4)	F^{6+} -1.080 951(2) -1.858 0015(4) -46.211 26859(4) -0.273 0117(3) -27.504558(8) 3.826 0207(4) 7.354 6250(1)	Ne ⁷⁺ -1.1207844(1) -2.1698596(2) -59.8555010(2) -0.3164352(3) -35.736365(5) 4.359530(1) 8.360737013(3)	Na^{8+} -1.152 7495(4) -2.481 6881(1) -75.233 7023(2) -0.359 9670(3) -45.03051(1) 4.892 4063(2) 9.365 0058(1)	Mg ⁹⁺ -1.178 9552(4) -2.793 4478(1) -92.345 2895(2) -0.403 5793(3) -55.386 526(5) 5.424 8213(1) 10.367 9443(2)
$\frac{\text{Term}}{F_1}$ $\frac{F_2}{F_3}$ $\frac{F_4}{F_5}$ $\frac{F_6}{F_7}$ $\frac{F_8}{F_8}$	O^{5+} -1.029 9923(1) -1.546 2220(1) -34.301 9763(3) -0.229 7388(3) -20.335 859(4) 3.291 6097(3) 6.345 85706(4) -2.125 0906(3)	F^{6+} -1.080 951(2) -1.858 0015(4) -46.211 26859(4) -0.273 0117(3) -27.504558(8) 3.826 0207(4) 7.354 6250(1) -2.465 5165(3)	Ne ⁷⁺ - 1.120 7844(1) - 2.169 8596(2) - 59.855 5010(2) - 0.316 4352(3) - 35.736365(5) 4.359530(1) 8.360 737013(3) - 2.804 8572(3)	$\begin{array}{r} Na^{8+} \\ \hline \\ -1.152\ 7495(4) \\ -2.481\ 6881(1) \\ -75.233\ 7023(2) \\ -0.359\ 9670(3) \\ -45.03051(1) \\ 4.892\ 4063(2) \\ 9.365\ 0058(1) \\ -3.143\ 4293(3) \end{array}$	$Mg^{9+} \\ -1.1789552(4) \\ -2.7934478(1) \\ -92.3452895(2) \\ -0.4035793(3) \\ -55.386526(5) \\ 5.4248213(1) \\ 10.3679443(2) \\ -3.4814374(3) \\ \end{array}$
$\frac{\text{Term}}{F_1}$ $\frac{F_2}{F_3}$ $\frac{F_4}{F_5}$ $\frac{F_6}{F_7}$ $\frac{F_8}{F_9}$	O^{5+} -1.029 9923(1) -1.546 2220(1) -34.301 9763(3) -0.229 7388(3) -20.335 859(4) 3.291 6097(3) 6.345 85706(4) -2.125 0906(3) -2.702 4255(1)	F^{6+} - 1.080 951(2) - 1.858 0015(4) - 46.211 26859(4) - 0.273 0117(3) - 27.504558(8) 3.826 0207(4) 7.354 6250(1) - 2.465 5165(3) - 3.120 0390(1)	Ne ⁷⁺ -1.1207844(1) -2.1698596(2) -59.8555010(2) -0.3164352(3) -35.736365(5) 4.359530(1) 8.360737013(3) -2.8048572(3) -3.53651421(2)	$\begin{array}{r} Na^{8+} \\ \hline \\ -1.152\ 7495(4) \\ -2.481\ 6881(1) \\ -75.233\ 7023(2) \\ -0.359\ 9670(3) \\ -45.03051(1) \\ 4.892\ 4063(2) \\ 9.365\ 0058(1) \\ -3.143\ 4293(3) \\ -3.952\ 2069(1) \end{array}$	$Mg^{9+} \\ -1.178 9552(4) \\ -2.793 4478(1) \\ -92.345 2895(2) \\ -0.403 5793(3) \\ -55.386 526(5) \\ 5.424 8213(1) \\ 10.367 9443(2) \\ -3.481 4374(3) \\ -4.367 3390(2) \\ \end{array}$
${F_1}\\F_2\\F_3\\F_4\\F_5\\F_6\\F_7\\F_8\\F_9\\F_{10}$	O^{5+} -1.029 9923(1) -1.546 2220(1) -34.301 9763(3) -0.229 7388(3) -20.335 859(4) 3.291 6097(3) 6.345 85706(4) -2.125 0906(3) -2.702 4255(1) 2.159 926 20(1)	F^{6+} - 1.080 951(2) - 1.858 0015(4) - 46.211 26859(4) - 0.273 0117(3) - 27.504558(8) 3.826 0207(4) 7.354 6250(1) - 2.465 5165(3) - 3.120 0390(1) 1.608 67301(1)	Ne ⁷⁺ - 1.120 7844(1) - 2.169 8596(2) - 59.855 5010(2) - 0.316 4352(3) - 35.736365(5) 4.359530(1) 8.360 737013(3) - 2.804 8572(3) - 3.536 514 21(2) 1.245 31354(1)	$\begin{array}{r} Na^{8+} \\ \hline \\ -1.152\ 7495(4) \\ -2.481\ 6881(1) \\ -75.233\ 7023(2) \\ -0.359\ 9670(3) \\ -45.03051(1) \\ 4.892\ 4063(2) \\ 9.365\ 0058(1) \\ -3.143\ 4293(3) \\ -3.952\ 2069(1) \\ 0.992\ 94694(1) \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Term	Li	Be ⁺	B^{2+}	C ³⁺	N^{4+}
F_1	-0.060499(5)	-0.1387(2)	-0.1806(2)	-0.2042(1)	-0.218 98(8)
F_2	-0.024 145(4)	-0.093 18(3)	-0.167 65(3)	-0.241 26(3)	-0.313 68(3)
F_3	-0.4326520(3)	-1.7247491(1)	-3.8103377(2)	-6.67268567(2)	-10.307 6316(4)
F_4	-0.005 5274(2)	-0.015 5559(2)	-0.027 6038(6)	-0.040 8986(6)	-0.054948(1)
F_5	-0.251 558(1)	-1.01209(1)	-2.259 85(2)	-3.985 29(2)	-6.185 12(3)
F_{6}	0.246 4317(2)	0.491 653(1)	0.732 534(1)	0.971 426(2)	1.209 287(2)
F_7	0.492 5074(1)	0.974 7267(2)	1.443 4929(2)	1.906 624(1)	2.367 037(1)
F_8	-0.158100798(1)	-0.3166572(1)	-0.471 0692(4)	-0.623 4161(2)	-0.7746809(2)
F_9	-0.2402827(2)	-0.465 1756(5)	-0.682488(1)	-0.8965657(4)	-1.108 9898(4)
F_{10}	415.1954(3)	103.855 510(7)	46.719 393(6)	26.570 466(4)	17.155 89(1)
F_{11}	-261.2073(2)	-64.96285(1)	-29.10672(1)	-16.507 143(2)	-10.636277(1)
Term	O ⁵⁺	F^{6+}	Ne ⁷⁺	Na ⁸⁺	Mg^{9+}
$\overline{F_1}$	-0.228 88(6)	-0.235 90(4)	-0.241 12(4)	-0.245 13(4)	-0.24831(3)
F_2	-0.385 18(2)	-0.456 00(1)	-0.52634(2)	-0.59631(2)	-0.665 99(2)
F_3	-14.7137466(2)	-19.8904223(5)	-25.837 3607(4)	-32.5543995(3)	-40.0414436(5)
F_4	-0.0694768(6)	-0.084 3254(4)	-0.0993976(5)	-0.114 631 6(5)	-0.1299866(5)
F_5	-8.85800(3)	-12.003 28(4)	-15.6205(1)	-19.70975(5)	-24.27062(5)
F_{6}	1.446 545(2)	1.683 423(2)	1.920 044(2)	2.156 484(2)	2.392 791(3)
F_7	2.825 950(1)	3.283 9520(5)	3.741 360(1)	4.198 361(1)	4.655 0702(6)
F_8	-0.925 3190(5)	-1.075 5642(6)	-1.225 5471(6)	-1.375 346(1)	-1.525 012(1)
F_9	-1.3204568(7)	-1.531 319(1)	-1.741776(1)	-1.951 947(1)	-2.161 910(1)
F_{10}	11.997 620(1)	8.864 3485(1)	6.818 0269(1)	5.407 6478(2)	4.394 253 89(3)
F_{11}	-7.426 5859(2)	-5.4803161(1)	-4.211 0143(1)	-3.337 2017(2)	-2.709 963 01(5)

TABLE IV. Comparison of $\langle H_i \rangle$ for the $2^2 P_J$ and $3^2 P_J$ states of lithium, where $\langle H_i \rangle = \langle LSJJ | H_i | LSJJ \rangle$. The first entry is the present calculation and the second entry is the value of Guan and Wang [5]. Units are $10^{-6} \mu_B H(-J)$ a.u.

Term	$2 {}^{2}P_{1/2}$	$2^{2}P_{3/2}$	$3 {}^2P_{1/2}$	$3^{2}P_{3/2}$
$\langle H_1 \rangle$	5.585 450(1)	10.081 3666(9)	2.328 96(1)	4.321 90(1)
	5.5826	10.0800	2.3291	4.3206
$\langle H_2 \rangle$	14.363 903(3)	-5.6883598(3)	6.245 528(2)	-2.480400(2)
	14.363	-5.6800	6.2459	-2.4802
$\langle H_3 \rangle$	-8.860931(1)	3.719 5061(2)	-3.969 383(3)	1.633 2762(3)
	-8.8651	3.7195	-7.6890	2.0051
$\langle H_4 \rangle$	-0.537085(5)	-0.268 542(3)	-0.190 80(4)	-0.09540(2)
	0.099 81	0.049 90	0.120 60	0.060 30
$\langle H_5 \rangle$	-6.1858(1)	-3.09291(5)	-1.8211(1)	-0.91058(6)
	61.4888	30.7444	1.6195	0.8097

The application of angular momentum algebra yields the expression for the matrix element of the Zeeman Hamiltonian between J' and J:

$$\langle LSJ'M_{J}|H_{\text{Zeeman}}|LSJM_{J}\rangle = (\mu_{B}H)(-1)^{1-M_{J}}(J,J')^{1/2} \begin{pmatrix} J' & 1 & J \\ -M_{J} & 0 & M_{J} \end{pmatrix} \sqrt{6} \begin{bmatrix} \left\{ \begin{array}{cc} L & J' & S \\ J & L & 1 \end{array} \right\} (-1)^{J+J'+L+S}g'_{L} \\ + \left\{ \begin{array}{cc} J & J' & 1 \\ S & S & L \end{array} \right\} (-1)^{L+S}g'_{S} + (-1)^{J'} \begin{cases} L & L & 2 \\ S & S & 1 \\ J' & J & 1 \end{array} \right\} g_{X} \end{bmatrix} \\ + \frac{2}{3}(\mu_{B}H)^{2}(-1)^{J+J'-M_{J}}(J,J')^{1/2} \begin{bmatrix} \left(\begin{array}{cc} J' & 0 & J \\ -M_{J} & 0 & M_{J} \end{array} \right) \left\{ \begin{array}{cc} L & J' & S \\ J & L & 0 \end{array} \right\} (-1)^{L+S}g_{Q1} \\ - \left(\begin{array}{cc} J' & 2 & J \\ -M_{J} & 0 & M_{J} \end{array} \right) \left\{ \begin{array}{cc} L & J' & S \\ J & L & 2 \end{array} \right\} (-1)^{L+S}g_{Q2} \end{bmatrix},$$

$$(11)$$

Γ

where $(\alpha, \beta, ...) = (2\alpha + 1)(2\beta + 1) \dots$ The five *g* factors, which characterize the Zeeman effect to order α^2 , can be further expressed in terms of 11 reduced matrix elements according to

$$g'_{L} = \sqrt{\frac{(2L+1)L(L+1)}{6}} g_{L} - \frac{1}{\sqrt{6(2S+1)}} \frac{m}{M} F_{1} + \frac{\alpha^{2}}{2\sqrt{6(2S+1)}} (-F_{2} + F_{3} + F_{4}), \qquad (12)$$

$$g'_{S} = \sqrt{\frac{(2S+1)S(S+1)}{6}} g_{S}(-1)^{2J'} + \frac{\alpha^{2}}{\sqrt{6(2L+1)}} (-1)^{2J'} \left(F_{5} + \frac{Z}{3}F_{6} - \frac{1}{3}F_{7}\right), \quad (13)$$

$$g_X = \frac{\sqrt{5}}{6} \alpha^2 \left(-ZF_8 + \frac{\sqrt{6}}{2}F_9 \right),$$
 (14)

$$g_{Q1} = \frac{1}{2\sqrt{2S+1}}F_{10},$$
(15)

$$g_{Q2} = \frac{1}{2\sqrt{2S+1}}F_{11}.$$
 (16)

The reduced matrix elements F_i are defined by

$$F_{1} = \sum_{j \neq k} \langle \Psi || - i \mathbf{r}_{j} \times \nabla_{k} || \Psi \rangle \langle S || 1 || S \rangle, \qquad (17)$$

$$F_{2} = \sum_{k \geq j} \langle \Psi || - i \frac{1}{r_{jk}} (\mathbf{r}_{j} \times \nabla_{k} + \mathbf{r}_{k} \times \nabla_{j}) || \Psi \rangle \langle S || 1 || S \rangle,$$
(18)

$$F_{3} = \sum_{j} \langle \Psi || \nabla_{j}^{2} (-i\mathbf{r}_{j} \times \nabla_{j}) || \Psi \rangle \langle S || 1 || S \rangle, \quad (19)$$

$$F_{4} = \sum_{k>j} \langle \Psi || - i \frac{1}{r_{jk}^{3}} (\mathbf{r}_{j} \times \mathbf{r}_{k}) [\mathbf{r}_{jk} \cdot (\nabla_{j} + \nabla_{k})] || \Psi \rangle \langle S || 1 || S \rangle,$$
(20)

$$F_5 = \sum_j \langle \Psi || \nabla_j^2 || \Psi \rangle \langle S || \mathbf{s}_j || S \rangle, \qquad (21)$$

$$F_{6} = \sum_{j} \langle \Psi || \frac{1}{r_{j}} || \Psi \rangle \langle S || \mathbf{s}_{j} || S \rangle, \qquad (22)$$

$$F_{7} = \sum_{j \neq k} \langle \Psi || \frac{(\mathbf{r}_{j} \cdot \mathbf{r}_{jk})}{r_{jk}^{3}} || \Psi \rangle \langle S || (\mathbf{s}_{j} + 2\mathbf{s}_{k}) || S \rangle, \quad (23)$$

$$F_8 = \sum_j \langle \Psi || \frac{1}{r_j} C_2(\mathbf{r}_j) || \Psi \rangle \langle S || \mathbf{s}_j || S \rangle, \qquad (24)$$

$$F_{9} = \sum_{j \neq k} \langle \Psi || \frac{1}{r_{jk}^{3}} (\mathbf{r}_{j} \otimes \mathbf{r}_{jk})^{(2)} || \Psi \rangle \langle S || (\mathbf{s}_{j} + 2\mathbf{s}_{k}) || S \rangle,$$
(25)

$$F_{10} = \sum_{j} \langle \Psi || r_{j}^{2} || \Psi \rangle \langle S || 1 || S \rangle, \qquad (26)$$

$$F_{11} = \sum_{j} \langle \Psi || r_j^2 C_2(\mathbf{r}_j) || \Psi \rangle \langle S || 1 || S \rangle.$$
(27)

For the operator H_3 , a recoupling procedure was applied in order to separate the orbital and spin parts (see [15], p. 85). It is easy to show that the formulation for a two-electron system [12] is contained here as a special case.

III. CALCULATIONS AND RESULTS

We consider a lithiumlike ion for the case of infinite nuclear mass. The wave functions for lithiumlike ions were constructed variationally in multiple basis sets in Hylleraas coordinates containing terms of the form

$$r_{1}^{j_{1}}r_{2}^{j_{2}}r_{3}^{j_{3}}r_{12}^{j_{23}}r_{23}^{j_{31}}r_{31}^{j_{12}}e^{-\alpha r_{1}-\beta r_{2}-\gamma r_{3}}\mathcal{Y}_{(\ell_{1}\ell_{2})\ell_{12},\ell_{3}}^{LM}(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3})\chi_{1},$$
(28)

where $\mathcal{Y}^{LM}_{(\ell_1\ell_2)\ell_{12},\ell_3}$ is a vector-coupled product of spherical harmonics for the three electrons to form a state of total

angular momentum L, and χ_1 is a spin function with spin angular momentum 1/2. As described previously [16], all terms from Eq. (28) are nominally included such that

$$j_1 + j_2 + j_3 + j_{12} + j_{23} + j_{31} \le \Omega, \tag{29}$$

and the convergence of the eigenvalues is studied as Ω is progressively increased. The computational details of all necessary integrals, including singular integrals, can be found in [17]. Note that for S states the only nonzero terms are F_5 , F_6 , F_7 , and F_{10} due to the triangular rule of angular momen-

TABLE V. Contributions to the g_J factors for lithium and lithiumlike ions in the $2^2 P_J$ and $3^2 P_J$ states. α^0 indicates the terms involving g_L , g_S , and F_1 , and α^2 indicates the relativistic correction of order α^2 .

Term	$2^{2}P_{1/2}$	2 ² P _{3/2}	$3^{2}P_{1/2}$	$3^{2}P_{3/2}$
		⁷ Li		
$lpha^0$	-0.6657954734(1)	-1.33405738896(5)	-0.6657911088(1)	-1.334 055 206 63(6)
α^2	0.000 010 551 336(6)	0.000 007 843 970(3)	0.000 004 41430(4)	0.000 003 379 38(2)
g_J	-0.6657849221(1)	-1.334 049 544 99(5)	-0.665 786 6945(1)	-1.334 051 827 25(6)
0		⁹ Be ⁺		
α^0	-0.665 824 7157(3)	-1.3340720101(1)	-0.665815635(3)	-1.334 067 469(2)
α^2	0.000 041 160 15(6)	0.000 031 403 71(6)	0.000 017 3247(2)	0.000 013 527 6(1)
g_J	- 0.665 783 5556(3)	-1.3340406063(1) $^{11}B^{2+}$	-0.665798310(3)	-1.334 053 942(2)
$lpha^0$	-0.66584120417(5)	-1.33408025431(3)	-0.665830575(2)	-1.334074939(1)
α^2	0.000 090 124 30(4)	0.000 069 805 96(4)	0.000 038 2961(3)	0.000 030 1866(2)
g_J	-0.66575107987(7)	-1.33401044835(5) ${}^{12}C^{3+}$	-0.665792278(2)	-1.334 044 753(1)
$lpha^0$	-0.665847902699(4)	-1.334083603576(2)	-0.665836190(2)	-1.3340777474(9)
α^2	0.000 157 047 11(3)	0.000 122 677 07(3)	0.000 067 2284(3)	0.000 053 2426(2)
g_J	-0.665 690 855 58(3)	-1.33396092650(3) ${}^{14}N^{4+}$	-0.665768962(2)	-1.334 024 5048(9)
$lpha^0$	-0.665855835608(2)	-1.334087570030(1)	-0.665 844 619(1)	-1.334 081 9620(6)
α^2	0.000 241 815 45(3)	0.000 189 881 43(3)	0.000 104 0873(4)	0.000 082 6530(3)
g_J	-0.665 614 020 14(3)	-1.333 897 688 59(3) ¹⁶ O ⁵⁺	-0.665740532(1)	-1.333 999 3089(7)
$lpha^0$	-0.665 861 423 747(1)	-1.334 090 364 1001(5)	-0.6658508454(8)	-1.3340850749(4)
α^2	0.000 344 385 54(4)	0.000 271 360 77(4)	0.000 148 8575(3)	0.000 118 3993(3)
g_J	-0.665 517 038 20(4)	-1.33381900332(4)	- 0.665 701 9878(9)	- 1.333 966 6755(5)
$lpha^0$	-0.66586707194(1)	-1.334 093 188 198(7)	-0.665 857 6776(5)	-1.3340884910(2)
α^2	0.000 464 736 87(7)	0.000 367 086 33(6)	0.000 201 5312(4)	0.0001604723(4)
g_J	-0.665 402 335 07(7)	-1.33372610185(6) ²⁰ Ne ⁷⁺	-0.665 656 1464(6)	- 1.333 928 0187(4)
$lpha^0$	-0.665 868 809 6388(6)	-1.334 094 057 0457(3)	-0.6658595166(4)	-1.3340894105(2)
α^2	0.000 602 858 61(5)	0.000 477 042 39(4)	0.000 262 1037(4)	0.000 208 8666(4)
g_J	-0.665 265 951 02(5)	-1.33361701465(4) $^{23}\mathrm{Na^{8+}}$	-0.665 597 4129(6)	-1.333 880 5438(4)
$lpha^0$	-0.665 872 331 097(4)	-1.334 095 817 775(2)	-0.665 863 9929(3)	-1.334 091 6487(1)
α^2	0.000 758 744 46(6)	0.000 601 219 64(5)	0.000 330 5722(5)	0.000 263 5793(5)
g_J	-0.665 113 586 63(6)	-1.33349459813(5) $^{24}Mg^{9+}$	-0.665 533 4207(6)	- 1.333 828 0694(5)
$lpha^0$	-0.665873442737(4)	-1.334096373594(2)	-0.665 865 2477(3)	-1.3340922760(1)
α^2	0.000 932 390 52(5)	0.000 739 612 23(4)	0.000 406 9350(5)	0.000 324 6083(5)
g_J	-0.664 941 052 21(5)	-1.333 356 761 35(4)	-0.665 458 3126(6)	- 1.333 767 6677(5)

tum. Table I is the results of the convergence studies of the reduced matrix elements F_i for the 2^2P state of lithium, as the size of the basis set is enlarged up to 3463. The results corresponding to N=3463 are taken as the values of extrapolation to $N \rightarrow \infty$, with the differences of the last two calculations being the uncertainties. Tables II and III list the reduced matrix elements F_i for the 2^2P and 3^2P states of lithiumlike ions, respectively, with Z up to 12. The consistency of our values can be checked as follows. Since each F_i is a homogeneous function in **r** space, it can be expanded into a series in powers of Z^{-1} according to the method of large-Z expansion [16]. Consider F_4 for example. A fit to our numerical results in the range Z=3 to 11 for the state of 2^2P yields

$$F_4 = -0.044\,020(26)Z + 0.129\,472(81)$$

-0.0617(16)Z⁻¹ + 0.0609(37)Z⁻² - 0.147(26)Z⁻³. (30)

This equation predicts $F_4 = -0.40357(35)$ for the case of Z = 12, in comparison with the directly calculated result of -0.4035793(3). Table IV is the comparison of our matrix elements of H_i with the calculations of Guan and Wang [5] for the 2^2P_J and 3^2P_J states of lithium. Our results for H_1 and H_2 agree with but are much more accurate than the values of Guan and Wang. For H_3 , a similar agreement exists only for the $2^2P_{1/2}$ and $2^2P_{3/2}$ states; there are large discrepancies, however, for the $3^2P_{1/2}$ and $3^2P_{3/2}$ states. For H_4 and H_5 , their calculations completely disagree with ours. For the operator H_4 , their expression [Eq. (6) of [5]] seems to be in error [10]:

$$H_{4}^{(\text{GW})} = -\alpha^{2} \mu_{B} \mathbf{H} \cdot \sum_{i \neq j}^{3} [(\mathbf{r}_{i} \times \mathbf{p}_{i})/r_{ij} + (\mathbf{r}_{i} \times \mathbf{r}_{i})(\mathbf{r}_{ij} \cdot \mathbf{p}_{i})/r_{ij}^{3}].$$
(31)

First, an overall factor of 1/2 is missing from the above expression. Secondly, $\mathbf{r}_i \times \mathbf{p}_i$ should be replaced by $\mathbf{r}_i \times \mathbf{p}_j$. Thirdly, the definition of \mathbf{r}_{ij} is not given in their paper. If

their definition is the same as ours, $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, then the second term of their expression should have a sign change [18]. No obvious explanation can be found for the disagreement for H_5 . Table V summaries the contributions to the g_J factors for lithium and lithiumlike ions. The diagonal g_J factor can be defined by

$$g_J = -\lim_{H \to 0} \frac{\langle LSJJ | H_{\text{Zeeman}} | LSJJ \rangle}{\mu_B H J}.$$
 (32)

Thus the contribution from the quadratic term H_6 can be ignored. To the best of our knowledge, the only measurements for the $2^2P_{1/2}$ and $2^2P_{3/2}$ states of lithium are due to Ritter [19] using the optical-radio-frequency doubleresonance method. His results are -0.6668(20) and -1.335(10), respectively (see also the review article by Arimondo *et al.* [20]). Although our calculations agree with the measurements, the uncertainties in the experimental values are too large to provide a meaningful test for the relativistic effects of order α^2 . It should be mentioned here that all the uncertainties assigned in Table V are purely computational and have nothing to do with the uncalculated higher-order terms.

In summary, we have performed high-precision calculations of the Zeeman g_J factors for lithium and lithiumlike ions in the 2^2P_J and 3^2P_J states using variational wave functions in fully correlated Hylleraas coordinates, including the lowest-order relativistic corrections. The next higherorder effects not included in the present calculations are relativistic recoil corrections of order $\alpha^2 m/M$ and radiative corrections of order α^3 . No theoretical analysis has been carried out on these effects to our knowledge for a three-electron system in an external magnetic field. We hope that our work will stimulate further research activities in both theory and experiment.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

- [1] Z.-C. Yan, Phys. Rev. Lett. 86, 5683 (2001).
- [2] Z.-C. Yan, Eur. Phys. J. D 18, 15 (2002).
- [3] Z.-C. Yan, J. Phys. B 35, 1885 (2002).
- [4] R.A. Hegstrom, Phys. Rev. A 7, 451 (1973).
- [5] X.-X. Guan and Z.-W. Wang, Phys. Lett. A 244, 120 (1998).
- [6] D.-H. Yang and H. Metcalf, Phys. Rev. A 32, 2249 (1985).
- [7] D.-H. Yang, P. McNicholl, and H. Metcalf, Phys. Rev. A 33, 1725 (1986).
- [8] J. Castillega, D. Livingston, A. Sanders, and D. Shiner, Phys. Rev. Lett. 84, 4321 (2000).
- [9] M.C. George, L.D. Lombardi, and E.A. Hessels, Phys. Rev. Lett. 87, 173002 (2001).
- [10] M.L. Lewis and V.W. Hughes, Phys. Rev. A 8, 2845 (1973).
- [11] J.M. Anthony and K.J. Sebastian, Phys. Rev. A 48, 3792 (1993).

- [12] Z.-C. Yan and G.W.F. Drake, Phys. Rev. A 50, R1980 (1994).
- [13] T. Beier, Phys. Rep. 339, 79 (2000).
- [14] V.W. Hughes and T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999).
- [15] B.R. Judd, Operator Techniques in Atomic Spectroscopy (Princeton University Press, Princeton, NJ, 1998).
- [16] Z.-C. Yan, M. Tambasco, and G.W.F. Drake, Phys. Rev. A 57, 1652 (1998).
- [17] Z.-C. Yan and G.W.F. Drake, J. Phys. B 30, 4723 (1997).
- [18] S.A. Lewis, F.M.J. Pichanick, and V.W. Hughes, Phys. Rev. A 2, 86 (1970).
- [19] G.J. Ritter, Can. J. Phys. 43, 770 (1965).
- [20] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).