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Consider a situation in which a quantum system is secretly prepared in a state chosen from the known set of
states. We present a principle that gives a definite distinction between the operations that preserve the states of
the system and those that disturb the states. The principle is derived by alternately applying a fundamental
property of classical signals and a fundamental property of quantum ones. The principle can be cast into a
simple form by using a decomposition of the relevant Hilbert space, which is uniquely determined by the set
of possible states. The decomposition implies the classification of the degrees of freedom of the system into
three parts depending on how they store the information on the initially chosen state: one storing it classically,
one storing it nonclassically, and the other one storing no information. Then the principle states that the
nonclassical part is inaccessible and the classical part is read-only if we are to preserve the state of the system.
From this principle, many types of no-cloning, no-broadcasting, and no-imprinting conditions can easily be
derived in general forms including mixed states. It also gives a unified view on how various schemes of
qguantum cryptography work. The principle helps one to derive optimum amount of res¢hitsegubits, and
ehity required in data compression or in quantum teleportation of mixed-state ensembles.
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[. INTRODUCTION the access to each part. We provide a proof that clarifies the
physical origin of the principle—it is obtained by simply
Quantum mechanics pose fundamental restrictions wheapplying two fundamental theorems alternately, which re-
one reads out information from a quantum system. The mostpectively, reflect the basic property of classical signals
basic rule is well known—if one reads out information from (Theorem } and that of quantum signa{§heorem 2. This
a quantum system in an unknown initial state, the quantunrinciple can be applied to various problems of cloning and
state of the system will chandéd]. Recent development of imprinting of quantum states, and reveals conditions for fea-
quantum information theory proposes various schemes ofibility of various tasks, such as no-imprinting condition of
handling information through quantum systems, and underlixed states. It also gives a good insight into the basic con-
standing of more detailed rules seems to become an impof€Pts of quantum cryptography, and helps us to solve prob-
tant issue. One particular direction of such investigation igéms related to quantum data compression and quantum tele-
the cases when the initial state is partially knof@a-5]. In ~ Portation. Note that our approach takes just the opposite
such situations, some operations can be done without intrdlirection to the one by Lindblaj@], where the latter answers
ducing any disturbance in the original quantum system. ondvhat are the states that are invariant under given operations.
of the fundamental questions here is the following: What This paper is organized as follows. In Sec. II, we formu-
kind of information can be extracted, and what cannot belate the problem considered in this paper. In Sec. Ill, we
without changing the state? This problem is important inderive two theorems that reflect the basic property of classi-
guantum cryptography, since the initial state is chosen by theal signals and that of quantum signals. The latter one sug-
sender among a few definite states. The problem is also dgests a structure of Hilbert space in which tensor products
rectly related to the physical feasibility of clonirimaking a and direct sums are involved, and we discuss notations to
copy of the original and imprinting(catching a trail without ~ treat such structures in Sec. IV. In Sec. V, we repeatedly use
affecting the original of partially known quantum states. So the two basic theorems and derive the main result, the prop-
far, the conditions for the initial states allowing such taskserty of the operations preserving a set of states. Section VI
were derived, such as broadcasting of mixed stptésnd discusses properties of the decomposition used in stating the
cloning of pure entangled statf5]. The proofs were based main theorem, such as its uniqueness and relation to the
on the complicated series of inequalities related to the fidelWell-known mathematical concepts. In Sec. VII, the main
ity, and it is not always easy to infer the conditions even fortheorem is resta.ted in a scenario of faithful transfer, _whi_ch
slightly different tasks. makes it convenient to apply the theorem to communication
In this paper, we present a principle that gives a definit?roblems. In Sec. VIlI, we give applications of the theorem
distinction between what one can do and what one cannot d® various problems of cloning, imprinting, quantum cryp-
without changing given states of a system. Given a set ofography, quantum data compression, and teleportation.
possible initial states, we propose a particular decomposition
[Eq. (86)] of the system, which classifies the degrees of free-
dom of the system into three parts, based on how they hold
the information on which one of the states is chosen as the The main problem considered in this paper is described as
initial state. The principle is then stated as the restriction tdollows. Consider a quantum systef) which is described

Il. FORMULATION OF THE PROBLEM

1050-2947/2002/6@)/02231817)/$20.00 66 022318-1 ©2002 The American Physical Society



MASATO KOASHI AND NOBUYUKI IMOTO

by a Hilbert spaceH, . Initially systemA is secretly pre-
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Lemma 1Let O be a Hermitian operator acting 6, and

pared in a state described by a normalized density operatéf be an unitary operator oh{®Hg (or an isometry from

ps, one in the known set of stat¢p,}s. 5. HereSis the set
of possible values of index For example, if the initial state
is chosen fromn states,S is assumed b¢1,2,...n}. S can

also be an infinite set. We assume thai}s. s is supported

He|u)e to H® Hg) satisfyingZ,(0)=0. Then,
[P,®1c,UJ(P,®3¢)=0, )

where P, is the projection onto the space spanned by the

by a subspace with a finite dimension. This assumption igigenvectors oD with positive eigenvalues.
more precisely stated as follows. Let us write the support of

ps @s suppps), and define

Ha= U supfips). oY)

seS

Then, the said assumption is that the dimensiorHgf is
finite.

Next, we prepare an ancill@n auxiliary systemE, de-
scribed by a Hilbert spacg, in a standard quantum state
Se=|u)g(ul, and apply a unitary operatiot) on Hj

® He . After this operation, the marginal density operator of

H, becomes

To(p) =TrelU(ps@Ze)UT]. )

What we seek is the requirement fdrto preserve the mar-
ginal density operator oA, namely, 7(ps) =ps for all s

This lemma implies that an operation preserving a Hermitian
operatorO does not transfer the eigenvectors®vith posi-
tive eigenvalues to the space for nonpositive eigenvalues. A

proof is given as follows. Let us defir1€+zl— P, . The
operatorO can be decomposed @=0, — O _ by a positive
definite operato©O,=P_ O and a positive semidefinite op-

eratorO_=—P_ 0. Since7,, is linear,
TP, Ty(0O) =T P Ty,(0,)]-Tr P, Ty(O_)]
=T 7y(0.)]- TP, 7y(0,)]

— TP, Ty(0)]. ®
From7,(0)=0, we have
TP, Ty(0)]=T P, O]=Tr{O.]. €)

On the other hand, sincg, is a trace-preserving map, we

€ S. Note that what we concern here is not the whole propy,5ye

erty of UiHA® He—Ho®He, but that of the isometry
given as its restrictionJ: Ha® |U)g— HAQ He . Let Uy, be
the set of all isometries fromt,®|u)g to HA® He. The
problem here is thus to identify the subset
Vse S

Unp={U eUa|Tu(ps)=ps, )

It is convenient to construct a density opergpqj from
{ps}sc s, satisfying the following conditions:

Tr(pan) =1, 4
Ty(pa)=par, U elyp, (5)

and
SUPH pan) = Ha - (6)

When a probability distributiop(s)(se S) over Ssatisfying
p(s)>0 for all se Sis assigned to the s¢ps}s.s, par CAN
be constructed as an averaged state, namely, by apgym
=35.5P(S)ps, Or by an integrap,,= [ds p(s)ps. Alterna-
tively, we can always pick upn(=dim H,) states
{p1,p2,....pn} from the sef{pg}s s such that supi_ ,p;)
=Hp,. Then, settingpy =31, p; /n satisfies Eqs(4)—(6).

Ill. BASIC PROPERTY OF CLASSICAL
AND QUANTUM SIGNALS

A. Useful lemmas

In this section, we introduce two lemmas that will be

frequently used in this paper.

T 7,(0,)]=TrO.]. (10)
Combining Egs(8)—(10), we obtain
TP, 7,(0,)]+ TP, 7,(0_)]=0. (11)

Since 7|, is a complete positive map, [Iﬁ+TU(O+)]>O
and TfP,7,(0_)]=0. This means that both terms in the
left-hand side(lhs) of Eq. (11) are non-negative, and we

obtain TfP,7,(0,)]=0. This relation is also written as
T{QQ'=0 with Q= (P, ®1£)U(yO, ®3¢). This means
Q=0, or equivalently,
(P.®1p)U(P,®3p)=0. (12

SubstitutingP , =1— P, completes the proof of Lemma 1.

Lemma 2Let p be a positive semidefinite operator acting
on H. Suppose that its support sippis written as a direct
sum of two subspaces as supp€ H,® H,, and letP; be
the projection ontd<;(i=1, 2). Let U be an unitary operator
on H® Hg (or an isometry fronH® |u)g to H® Hg) satis-
fying 7,(p)=p and[P;® 1 ,U](P;®2¢)=0. Then

[P,®1g,U](P,®%¢)=0. (13

This lemma implies that i) does not transfer the vectors in
subspacé, to subspacéi,, U does not include the transfer
in the opposite wayH, to H;). Lemma 2 is proved as fol-
lows. The assumptiopP,® 1¢,U](P,®2¢) =0 implies that
(P,®1g)U(P,®2g)=0. Using this, we have

TP 7y(p)]=TH{PLTy[(P1+P2)p(P1+P2) 1}

=TI[P,7,(P2pPy)]. (14
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From 7,(p) =p, we have

T P274(p)]=Tr Pp]. (15
Since7y is a trace-preserving map,
T 7y(P2pP2) |=Tr[ Pap]. (16)

Combining Egs. (14)—(16), we obtain Tr7Zy(P,pP5)]
=T P7y(P2pP3)], or equivalently, TrP,7y(P2pP5)]
=0 with P,=1-P,. This relation is also written as

T{QQ'1=0 with Q=(P,®1g)U(\P,pP,®3). This
meansQ=0, or equivalently,

(P,®1g)U(P,@3¢)=0. (17)

Substituting52= 1-P, completes the proof of Lemma 2.

B. Property of classical signals
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x € K, must vanish. Under this conditioh,py, is contributed
only by the transition fronK, to K,, and is given by

App=— 2 > pYX[pi(x)+pa(x)]. (19

yeK, XxeKy

Sincep;(x) + p2(x)>0, p(y|x) with y e K, andx e K, must
also vanish in order to satisfxp,=0. Hence, preserving
p1(x) and p,(x) requires that for any e K, andxeK,,
p(y|x) and p(x|y) should vanish. The transition must be
made within each of the two sels, andK,,.

This argument almost directly applies to the quantum
case, that is, we can show that any operation that preserves
two different density operators and p’, must act on two
subspaces independently. In order to represent this property
in a simple form, we write the set of all isometries froth
®|u)g to H® He asU(H), where’H is an arbitrary subspace.
Then, the property is described by the following theorem.

Theorem 1.Let p and p’ be two density operators for

In this section, we derive a theorem that stems from dlifferent states. Let{ be the support op+p’, and take the
general property of classical signals. Before the derivation ofl€Compositiort{=",®H, where?, is the space spanned
the theorem, it is instructive to consider an example in thd?y the eigenvectors @=p/Tr(p) —p'/Tr(p") with positive
purely classical situation. A classical counterpart of the prob€igenvalues. Theri{; and H, are nonzero subspaces, and
lem considered here is obtained by replacing the requireme@y U e U(H) that satisfiesy(p)=p and7y(p’)=p" can
of preserving density operators by that of preserving probbe written adJ=U,;&U, with U; e U(H;) (i=1,2).

ability distributions. Consider a purely classical example in

which a signalX is drawn from either of the two probability
distributions p;(x) and p,(x), according to the value of
s(=1,2), and a signaX is then produced from the value of
X according to a rule that is independent of the values.of
Namely, if X=x, X is set toX=y with probability p(y|x).
The probability distribution forX is then given byP(x)
=2, p(X|X")ps(x). Let Ko={x|p1(x)+ pz(x)>0} be the
set of the possible values of Let us divideK, into two
sets,  Ka={X|p1(x)>po(x)}  and  Ky={x|p,(x)
=p4(X),po(x)>0}. A necessary condition for the transition
matrix p(y|x) in order thatpg(x) coincides withpg(x) for
either value ofs is that the transition must be made within
each of the two set, andK,,, which is proved as follows.
Let us define p®(ZeK)=3,_ProdZz=x}(Z=X,X,
K=K,,Kp) as the probability that the value @fbelongs to
K. Consider quantitiesl,(X)=p®(XeK,) —p@(XeK,)
and py(X)=p®(XeK,)+pP(XeK,), and their changes
in the transitionp(y|x), namely,AdaEda(i)—da(X) and
ApPp=pp(X) —pp(X). In order for Py(x)=ps(x), these

For later convenience, the theorem allows for the possi-
bility that p andp’ are un-normalized. Theorem 1 is proved
as follows. Sincep and p’ represent different state§) is
nonzero. The form oD implies thatO is a traceless Hermit-
ian operator. Henc® has positive and negative eigenvalues,
and H; and H, are nonzero spaces. Next, suppose that
e U(H) satisfies7(p)=p and 7 (p’')=p’. Let P; be the
projection ontoH; (i=1,2). SinceZ is linear,7;(0)=0
and7y(p+p')=p+p’. From7Z;(0)=0, Lemma 1 leads
to

[P1®1:,U](P1®%¢)=0. (20

This relation andZ(p+p’)=p+p’ fulfill the requisite of
Lemma 2(with p replaced byp+p’), and we obtain

[P,®1g,U](P,®2g)=0. (21

Using Egs.(20) and (21), we haveU=U(P,;®2g)+U(P,
®2g)=Zi-1(Pi®1g)U(P;®Zg). This implies thatU is
written asU=U,®U, with U; e U(H;) (i=1,2).

Now let us turn back to the classical example of preserv-

changes must be zero. These changes are caused by the tréiig-P1(X) andpy(x). We have seen that the transitipy|x)

sition fromK, to K, or vice versa, andnd, is written as the
sum of two nonpositive parts,

Ada=— > > p(y[x)[pi(x)—pa(x)]

yeKp xeKy

- > 2 ply[pax)—pi(x)].  (18)

yeK, XxeKy

In order to satisfyAd,=0, either part must be zero. Since
p1(X) —p2(x)>0 in the first part,p(y|x) with yeK, and

must occur within the set€, andK}, independently. We can
then consider each set separately. For example, let us con-
sider the conditional probability distributions fore K,,
namely,ps(x|x e Ka) =Pps(X)/Zxck Ps(X) (s=1,2). The op-
eration ofp(y|x) on the setk, should preserve these two
probability distributions. Then, ip;(x|xe K,) and p,(x|x

e K,) are different, the above argument can be applied
again, namelyK , is separated into two subsets, within which
the transitionp(y|x) should occur independently. These new
sets andK, may be further separated into smaller ones by
repeating similar procedures. This refinement continues and
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should finally stop, as long as the set of all possible valuesaused by the operatiofy must be identical to that by, in
(Kp) is a finite set. In order to identify the final form of the order to avoid decoherence in the marginal state 7qr
refinement, let wus introduce the functiondy(x) ®H,. Therefore,V,; andV, must operate oiC,;® Hg and
=p(X)/Zsps(X). In a refinement process in which a subsetX,® Hg identically under the isomorphisiy, which is im-

Y is divided into two subsets, the criteria of this division is plied by Eq.(22).

whether p1(x|x e Y)—p,(x|xeY) is positive or not. This
function can be written in the form [a4f(X)
—asfo(X)]2sps(X). Hence any two elementsandx’ that

satisfy f(x) =fs(x") for all s are always classified into the

same subset. If we write the final form &s=U,K(") with
KONK = for 1#17, py(x|xe KDY and p,(x|x e KM)

Theorem 2 is proved as follows. Let us regardndW as
operators fromH,=H,;®H, to Hq, by extending the do-
main and the range. Note th&t:H;,—H;, is a positive
semidefinite operator with its suppd@; and its imagefC,,
and W:H,,—Hq, is a partial isometry with its suppoft,
and its imageC,. The operatoiV satisfiesWw?=0, W'W is

should be identical for each subgét, since otherwise a the projection ontdC;, andWW" is the projection ontdC,.
further refinement would be possible. This condition meand-et us define

that f(x) =f4(x’) for all s and for anyx, x’ e K. There-
fore, the final form is the classification of the elemerts

according to the set of value&@ vector indexed bys) o .
{f4(x)}, and hence it is unique. This statement also holds ford Nese two operators are orthogonal projections since we can

the cases when more than two probability distributions ar&asily obtainPZ=P.. andP,P_=0. Note thatP, +P_ is
preserved. the projection ontdC;& KC,. Using these projections, define
In quantum cases, we can similarly conduct the refine-
ment of the decomposition of the Hilbert space into a direct
sum of subspaces by repeated uses of Theorem 1. The final
form of the decomposition, however, is not unique in con-Substituting Eq(23) and using relations such a§*=NW
trast to the classical cases. One reason for this difference 50 andW'WyN= N, we obtainO=WN-+NW'=P,pP;
that the preservation of quantum states requires another typeP1pP5. SinceO?=WN*W'+ N2, the support 0 is ;
of conditions, which will be described in the following sec- ©X,. Let us suppose thad; e U(H,) andU, e U(H,) sat-

P, =[WW+WW +(W+W"]/2. (23

O=4(P,NP,)2—4(P_\{NP_)2 (24)

tion. isfy 7[11®U2(p) =p. Noting that
C. Property of quantum signals [Pi®lg,UdU,](Pi®%g)=0 (i=12, (25
In this section, we describe another basic theorem thafe nave
applies when a state is preserved by an operation that af-
fects two subspace${, andH,, independently. In order to Ty eu,(PipP)=PiTy ou,(p)Pj=PipP (26)

preserve the off-diagonal paR,pP,, the operation ort{;
and that onH, must satisfy a kind of “similarity.” This
requirement is stated in the form of the following theorem.
Theorem 2.Let P, and P, be the projections onto or-
thogonal subspaces/; and H,, respectively. Letp be a
density operator whose support 1$,®H,. Suppose that
P,pP1#0. Let £, and K, be the support and the image of
P,pP,, respectively, andC=H;—K; (i=1,2). Take the
polar decompositio®,pP;=WN, whereN is a positive op-
erator onK; and W is a unitary operator fronk; to /C,.
Then, any pair of U;el(H;,) (i=1,2) that satisfies
TLJ1®U2(p)=p can be written asU;=V,®V,, whereV,

eU(K;), VieU(K), and

for anyi=1, 2 andj=1, 2. From this relation, we have
Tuleuz(O)zo. The form of Eq.(24), together with the fact

that the support ofO coincides with the support oP
+P_, means thatP, is the projection onto the space
spanned by the eigenvectors ©fwith positive eigenvalues.
Then, using Lemma 1, we obtain

[P+®1E,U1®U2](P+®2E):O. (27)

Similarly, noting thatTlJl®U2(—O)= —O and thatP_ is the

projection onto the space spanned by the eigenvectors of
— O with positive eigenvalues, we have

V,=(We1p)Vi(WeSe). (22

[P_®1,U;®U,](P_®3g)=0. (28)

An intuitive explanation for this theorem is as follows.
The polar decomposition &,pP; means that it is written as
P,pP1=3=a,/k), 1(k|, wherea, are positive numbers, and
{|k);} is a basis of; (i=1,2). This implies that the coher-

Combining Egs.(27) and (28) with WW+WW'=P,
+P_, we obtain [(WW+WW")e1l:,U;eU,][(W'W
+WW)®=]=0, or equivalently,

ence inp is held in the pair [k),,|k),). In order to retain WWe 1, U, J((WWeSg)=0 (29)
this coherence, the oper«':ltidhl@u2 should not change this

pairing relation, namely, if the operatio, on K; changes and

|k);, to |k’);, the operationV, on K, should also change

|k), to |k’),. In addition, the change in the ancilla syst&m [WW®1,U,J(WW®3g)=0. (30
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From Eg. (26), we have 7y ¢y,(P1pP1)=7y,(P1pP1)
=P,pP;. Applying this and Eq(29) to Lemma 2(note that
the support ofP1pP; is H,=K,®K7), we obtain

[(Pi—W'W)® 1, U J[(P,—W'W)@3]=0. (31)

Equations(29) and (31) imply that U; can be written as
U,=V,&V,, whereV, e U(K,) andV, e U(K}) are related
to U; asV;=U,|K; andV,;=U,|K; . The same argument
applies to Eq(30), leading to the conclusion that, can be
written asU,=V,&V,, whereV,eU(K,) andV,eU(K35)
are related tdJ, asV,=U,|K, andV,=U,|K; . Finally,
combining Eqs(27) and (28) with W+W'=P,—P_, we
obtain [(W+W"&1e,U;@U,][(W+WH®Se]=0. Ex-
panding this leads to

(WR1p)U;(W'eSp) +(Welp)U(WeSe) — U (Ww
@3)—U(WW®3 ) =0. (32

Applying P,® 1¢ from the right(and restricting the domain
to K5), we obtain Eq(22), which completes the proof.

IV. STRUCTURE OF HILBERT SPACE

PHYSICAL REVIEW A6, 022318 (2002

The above decomposition can be completely specified by
a set of partial isometrieSNf',)j} acting onH satisfying the
following three conditions:

1 _\/h
W, =W, (36)
K |
V\/j'i)'\Ni(jl)zfsl,V@,i/VVf/)j, (37)
and
Imax | ma
> Wi'=1, (38
i=1j=1
wherel is the projection ont@{. Given sucr{Wf',).}, we can

j
determine {#{"} as follows. From Eq.(37), we have

W}',;),WJ(})z 8+ 8; /W) . This means thatw(})} are projec-
tion operators orthogonal to each other. If we taléé’ as the
support of W), Eq.(38) assures that Eq$33) and(34) are
satisfied. Forj#j’, the relation Wf',)jTWJ(',)j:Wﬂ) and
WJ(',)].WJ(',)J.TZW}',)], resulting from Eqgs(36) and (37) means
that the support and the image W(',)j are 1" and Hj(',),

respectively. The ma}i!\/f',)j :H}')—>de,) is hence unitary and
introduces an isometrically isomorphic relation betwééH

. . . | T . | _ | .
The requirement coming from Theorem 2 introduces aandHf,). The compatibility re|§t'0“A/fr)i_W§j)—_VV§r)j coming
structure in the Hilbert space, which is more complicatedfrom Eq. (37) assures that an isometrically isomorphic rela-
than a direct-sum decomposition into subspaces, namelfion is defined amongH{"} (j=1,2,...j ).

some of the subspacés.g., C; and K,) are isometrically
isomorphic through unitary operatofs.g., W) connecting

them. To handle such a structure in general, we introduce groduct Hilbert spacét’@ #{), where dimH+{’=j%

way of decomposing a Hilbert spat¢éas follows. FirstH is

decomposed to a direct sum of its orthogonal subspac

HD, 1P Hmad namely,

Imax
H=EH HD. (33)
I=1

The isomorphic relation amonff{"} naturally defines
an isomorphism(unitary map I'"" from H() to a tensor-
max and

dim H =dim H{)(=dim #{’=---). The unitary map

PO HO - HD o HY is defined as follows. Take an arbitrary

basis{|j){"} (j=1,2,...;9.)) for #{) and an arbitrary unitary
operatod’{" from H{) to|1){’ @ H{ . Then,I'" is given by

(D
max

rO=3 (1D5ae 1w (39

The size of each subspace is arbitrary. Then, each subspace
H() is further decomposed to a direct sum of its orthogonaFrom{I'"’}, we can construct an isomorphigmmitary map

subspacegt{", 1Y ,...,Hj(l()n , namely,

max

]

Imax

HY=P H. (34)
i=1

Here the subspacest("} (j=1,2,...j),) are of the same

I from H to &/ H o HY as

r=pro,
|

(40

Conversely, given a unitary map: H— & HP e H , we
can construct a set of partial isometri{eNJ(',)j} in H satisfy-
ing Egs.(36)—(39) as follows. Take an arbitrary bagig ){}

s . | I .
size, and an isometrically isomorphic relation is defined( =1.2,--i) for H§’. Then, if we set

among them through a set of unitary operat J(')J H()
—H\)} satisfying W)W =W . The numbers y,q, and
jO_ should satisfy

dim =, j dim #{". (35)
I=1

W =TT([j) e 3T, (4D
Egs.(36)—(38) are apparently satisfied.

In the above construction ({NV(',)J.} from I', we see that
different decompositions, for exampl{avvf',)j} and {VVJ(',)j},
can be derived from the sanhedue to the arbitrariness in the
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choice of basig|j){’}. This implies that the two different <r(D;,) and V(Do) DW(D1) DW(Dsn) DlUnp. It will be
sets{Wf',)j} and {\7Vj(',)j} correspond to the same structure in shown that under the final structubg;,, the state¢ps} have
H. The definition of " also has similar degeneracy, e.g., @ Simple form[Eq. (85)], and we can easily identify the set
changing the order of the inddxmerely alters the way of Unp -

representation and does not change the structure itself. It is We first define a set of isometrie§D) associated with a
thus natural to define structurein 7 as an equivalence class structureD in H,. Let WDz{Wf',)j} be a set of isometries
defined among the Se{’g\[}lr)j} or among the isometriek in that specifie@. With this notation, we define the SE(D) as
the following way. Two decompositions specified j',)j}
and{VVf',)j} are equivalent and correspond to the same struc-
ture if = (W @1g)U}. (47)

V(D)E{U eL{a“|VV\/§|,)j € WD ,U(W}I,)j®EE)

WPOIZS uD Wy (42)  This definition is consistent with the arbitrariness in the
M TR . choice of Wy, namely, V(D) depends only onD. Let
Ip:Ha— & HP@HY be the isomorphism determined from
. . . OF . D A (RN ] K
whereP(l) is a permutatpn(?)f the indebandu s the i) . W)p through Eqs(39) and(40). Under this isomorphism, let
element of a unitary matrix'’. Two decompositions speci- O, be an operator acting oH,, that is written as

fied by I'H— o HPeHY and T:H—o HPoHY are
equivalent and correspond to the same structulif is O,=EP 001, (48
written as '

=@ ooy, (43)  whereO operates orH{. Using Eq.(41), O, is written as
! a linear combinationOA=E,2M,cfl,)jWJ(',)j . Hence,U(Op4
®2Eg)=(0,®1g)U holds for anyU € V(D). SinceU satis-

(M j i (M g HLPM] (1
wherevj’ is a unitary map fron¥’ to H;", andvy’ i fias this equation for any, in the form of Eq.(48), we

a unitary map front¢) to 7 "M conclude that any € V(D) can be written in a simple form,
The relation among the definitions made so far is summa-
rized as follows. A structur® is specified if a sefw} or U= 1yeulL, (49)

a mapl is given. Given a structurb, the sel{vvf',)j} and the !

mapI are not uniquely determined, and are only determined " 0 ) _ )
up to the conditions(42) and (43). The quantityl, . is WhereUggelU(Hy’). Conversely, any isometry written in
uniquely determined, angd ).} are unique up to the permu- the form(49) belongs to(D), because aanlr),- has a form

tation of the indeX. of O, in Eq. (48).
In the rest of the paper, we represent the isomorphic rela- Next, we introduce an index(D) that represents the de-
tion defined froml: H— @ H @ H{ simply by gree of refinement of the structui® defined as
H=EP HYoHy . (44)

| |
1 maX. maX'
l o= 2 [ 3 it

—lmaxt 1. (50

An operatorA acting on’H and an operatoA;x acting on

®|HS|)®H§<|) is regarded as the same if This quantity takes an integer value in the following range:

Aw=TAl (45) L=r= (dimHp) (dimH+1). (51)

holds. We also simply write this relation as

This bound ensures that, when diy is finite, any proce-
dure of finding a series of structures with increasing degree
whenever the identity of is obvious in the context. of refinement will halt within a finite number of steps.

The starting point of the refinement is to show that the
trivial structureDy in H,, for which I,,=1, andj& =1,
satisfieddypCWV(Dg). Applying py to Lemma 1 and noting

In this section, we give a solution to the problem formu- Eq. (6), we obtain
lated in Sec. I, namely, we identify the dét given in Eq.

(3). We first define a set of isometri@4D) associated with [1a®1,U](1,®2)=0 (52

a structureD in H,, and define an index(D) that gives the

degree of refinement d@. Then we apply Theorems 1 and 2 for any isometryU e U, that satisfiesZ|(pa) = pa- Here
repeatedly to refine the structurei) , obtaining a series of 1, is the projection ontd{, . This equation implies that the
structures Dq,Dq,...,Dys, satisfying r(Dg)<r(Dq)<--- image of anyU eyp is a subspace oH,® Hg, namely,

A=A, (46)

V. OPERATION PRESERVING A SET OF STATES
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UnpCU(H,). Since the seWDO consists of only one ele-

ment, W{Y)=1,, it is obvious from the definitior{47) that
UnpCW(Dy).

PHYSICAL REVIEW A6, 022318 (2002

Hencer (D)>r (D).
SinceUypCWV(D), any U e Uyp can be written asg)=
@10UlL [Eq. (49)]. From this form and the relations

Next, we state two lemmas to show that applying Theo-Zu(ps)=ps and 7y(pai)) =pai, We have 7y (p)=p and

rems 1 and 2 generally advances the refinement.

Lemma 3LetI:Hy— @ H @ H{ be a unitary map that
specifies a structur®. Suppose that/ypC V(D) and there
existse S, I, a pure statéa) e H{ ", and a unitary opera-
tor V acting onH{ ") such that for anyc=0,

(la)(alve 1) pyViayal© 1)

#c(laalo i pa(layaey)). (63
Then, there exists a structui® such thatr (D)>r(D) and
UnpC V(D).

For the proof, we actually construd® assuming that
p=(la)(alVe 1) py(Via)(al®1d) and p'=(la)al
21 pa(la)(al@1d)) are different stateghere we have
assumed thalt’ =1, without loss of generalily Let H=|a)
®H) . Equation(6) assures thak{ is the support op’, and
hence is the support gf+p’. Then, using Theorem 1, we
can find the decompositio="H,;®H,, whereH, andH,
are nonzero subspaces. Next, take a bd$js{’} (j
=1,2,..j0 ) for #}?, such that1){Y=|a), and construct a
set W={Wf',)j} by using Eq.(41). Let P, and P, be the
projections ontdH,; and’H,, respectively, and define a new
set)7v={\7vf',)j} as follows:

Wi=wi i P wi, (54)

~ (I +1) 1) 1
W= WP (55)
W =W (2<1=Ipa. (56)

J

Noting thatP;+P,=W{}, we can easily confirm that the
conditions (36)—(38) are satisfied by this new sév, and
hence )V specifies a structure of{,. Let us denote this
structure byD.

The quantitied ,,and] Y. for W are related td s and
jO_ for W as

l max— l maxt 1, (57

~ ~ |max+ 1)_ .
](rnlz;x: inax _]Er%zzlx’ (58)
T e (2<I=<I1a). (59)

Then, from Eq.(50) andj},.=>1, we have
j(l) Imax
= max . .

r(D)—r(D)= 7(221 jO 40 +1-1=1. (60)

Tu,(p')=p’, whereUp=|a)(a|©U{2eU(H). Then, from
Theorem 1Ug is written asUy=U® U, with U; e U(H;)
(i=1,2). This form implies that)(P;®3g) =Uq(P;®2g)
=(Pi®1g)Uy=(P;®1g)U for i=1, 2. SinceUe (D),
U(WJ(',)J@EE):(W}',)]-@lE)U for anyW].(',)j e W. Combining
these commuting relations and E§54)—(56), we have

U(W @)= (W) (61)

) ®1e)U

for any W}',)jer. Hence UeV(D), and we obtain

UnpC V(D). This completes the proof of Lemma 3.
Lemma 4LetF:HA—>€B|H\(JI)®HE) be a unitary map that
specifies a structur®. Suppose that/ypC V(D) and there
existse S, I”, I”(#1"), a pure statéa) in +{", and a pure
state|b) in (") satisfying the following conditions:

supi(|ay(al® 1y ) pe(|ay(al @1l )]=a)ye Hy

(62)
sup (|b)(b|®1¢")p(|b)(b|® 18 ) 1= bY@ MY,
(63)
and
(Ib)(bl@ 18 )p(la)(al@1y ) #0. (64)

Then, there exists a structu such thatr (D)>r(D) and
UnpC V(D).

For the proof, we actually construbt assuming that condi-
tions(62)—(64) are satisfied fol’ =1 andl”= 2, without loss
of generality. LetH;=|a)®H), Ho=|b)oH?, andP;
be the projection ontd®; (i=1,2). Then, we can apply
Theorem 2 by choosing=(P;+ P,)ps(P;+ P5), and ob-
tain the decompositioft;, = K;® K" (i=1,2) wherek; and
IC, are nonzero subspaces, and the unitary opetatde,
—C,. Without loss of generality, we assume that diip
=dim K5 . Note thatiCi- (i=1,2) may be zero. Next, take a
basis {|j){’} (j=1,2,..j%.) for H? (1=1,2) such that
11)§Y=|a) and|1)§?=|b), and construct a set/={W\,)
by using Eq.(41). Let Q; andQ;" be the projections ontf;
and K- (i=1,2), respectively, and define a new Sét
={\7\I§',)j} as follows:

Wi =W QW4T (65)

W g = Wi QuW' QWA (66)
ngllj > EWJ(?)leleW%) : (67)
Wﬁlij "B ] EWJ(%inW(ﬁ) : (69)
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W V=W (3<1<lpa0, (69)
W;I,Ta")z\/\/}l)Qlw(l) if dim Ki#0, (70

Wi V=wZQiwd it dim K5#0, (71

where B=j&) . Noting that Q;+ Qi =W{) (i=1,2), we

can easily confirm that the conditiof36)— (38) are satisfied
by this new set’, and hencé/ specifies a structure 6{, .
Let us denote this structure .

The quantitied ,,and] Y for W are related td s and
jO_ for W as

Tmalemax_1+sl+521 (72

Tt ]t I e (73

T =imax (3<I=<Imap, (74)

Fimad = (U i dim Kt #0, (75)

Timact =2 it dim K5 #0, (76)

wheres;=1 if dim K #0, ands;=0 if dim K =0. Then,
from Eq. (50), we have

r(D)-r(D)== (22 jl +s+1]|+1—s,—s,,
(77)

where s=s,j) +5,j@ . Since s=s;+5,=0, we obtain
r(D)—r(D)=1. Hencer(D)>r(D).

SinceUypCW(D), any U eUyp can be written ad) =
®1’2U{L. From this form and the relationd(ps)
=ps, We have Ty u,(p)=p, where U;=|a)(al@ U2
eU(H;) andU,=|b)(b|@U& eU(H,). Then from Theo-
rem 2 U;=V;®V,, where V,eU(K), VieU(K}) (i
=1,2), andV,=(W® 1)V (W'®3¢). This form implies
that for i:1,2, U(Qi®2E):Vi(Qi®EE):(Qi®1E)Vi
=(Q®lgU  and U(Q e =Vi(QieZg=(Q
®1g)V;=(Q- ©1g)U. We can also show that (W)
=V2(W®2E)=(W®1E)V1=(W®1E)U and UW'®3g)
=V;(W'e3p) =(W'el)V,=(W'®1)U. Since U
eV(D), UW @3 =(Wel)U for any WS ew.
Combining these commutmg relations and ECﬁS) (72),
we have

UW ) @3e) =W 1)U (79)

for any Wf',)jeVV. Hence Ue (D), and we obtain

UnpC V(D). This completes the proof of Lemma 4.
Lemmas 3 and 4 mean that starting fr@y, we can find

a sequenceDy, D4, Ds,..., D,,... that satisfiesr(Dy)

<r(Dy)<r(D,)<--- and UypCWV(D,). Since the integer

PHYSICAL REVIEW A 66, 022318 (2002

valuer(D,) has an upper bound as shown in E§l), the
sequence must end at some point. Dgf, be the last one in
the sequence, and consider an isomorphiBgy:Ha—
o HPeHY corresponding tdy,. Dy, should not satisfy

the prerequisites of Lemmas 3 and 4. From the prerequisite

of Lemma 3, we see th@)g;, satisfies the following: for any

seS,|, a pure statéa)e 1!, and any unitary operato/

acting onH}’ , there existe=0 such that

(la)(alve 1) py(V'a)(ale 1) = c(la)(al© L) pai(|2)
x(a|®1Y)). (79)

Let us fix| and|a) for the moment. Because of E(f), Z
=Tr{(Ja)(a|@ 1) pa(la)(a]©1{)]#0. Let us define a
normalized density operatei’ acting onH{ as

p'=(ale1)pa(laye1)/Z. (80)
Equation(6) also assures that
suppipi) =My . (81)

The condition(79) can be stated as, for arge S and any
unitary operatolV, there existe’=0 such that

(la)(alVe 1)) p(VTa)(al@ 1)) =c'a)(al® pi .
(82

This is satisfied if and only ifpg}s. s are written in the form

(o110 1) i V0nl), (@
where p©®"=0 and p{*", which is defined only when
p(sN>0, is a normalized density operator acting & .
Note thatp{’ is independent o$.

Next, let us consider the prerequisit€62)—(64) of
Lemma 4. |If Eq. (64 is satisfied, [a)(a]
®107)ps(|a)(al®1{")#0. Then, the form(83) and Eq.
(81) implies that Eq(62) is also satisfied. Similarly, E¢63)

is also satisfied and all the prerequisites are met. Therefore,

the condition thaDg, should not satisfy the prerequisite of
Lemma 4 means that

(15018 )py(1 0 1) =0 (84)
for anyl andl’ (#1).

Now we can state the main conclusion of this paper. From
Egs.(1), (83), and(84), we conclude thap, is written as

ps= D pVp5wpy (85
|
under the decomposition of their supp®t} ,
(86)

Ha= D nYomy,
|

which corresponds t®y,. Herep™" and p{ are normal-
ized density operators acting ad’ andH{’, respectively,
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andp®! is the probability for the statp, to be in the sub- We first define a property of structure called “maximal,”
spaceH{"@H{. Note thatp{ is independent of. Since ~ Wwhich is, as will soon be shown, the property possessed by
UnpC W (D), any U e Uyp should be written as Diin -
Definition 1.Let I':'Hy— @ /H @ H{) be a unitary iso-
U=@P 1eulL, (87)  morphism corresponding to a structube We call D maxi-
|

mal if the following three conditions are met:
(i) Tp T is written as

Tpl =D ppFVepl, (90)
Tre[ULL(p S ) UL T=p. 89) Y

whereU{L e 4(HY). It is obvious thatU () must obey

The condition expressed by Ed87) and(88) together is an  wherep{®" andp{’ are normalized density operators acting
equivalent condition for the conditiofy,(ps) = ps, since the  on () andH{), respectively.
sufficiency is apparently satisfied.

The condition (87), which is applied for an isometry
U:Ha®|UYe—HpA® He, can be rewritten in the form that pp<s,l)p5&|>:p<s,l>p(Js,l>p (91)
applies to a unitary operator acting @i, ® Hg as follows.

Any unitary operatorU acting onH,® Hg that preserves for all se S, thenP=1{" or P=0.
{ps}scs is expressed in the following form: (iii ) No unitary operatoW: H{)—H{") (1#1’) exists that
satisfies

(ii) If a projectionP: H{)—H{) satisfies

U(1,®3p)= P 1o Ul (1Ve3e), (89
| Vp(s,l)pgs,l)= ap(s,l )PSS'I )V (92)

where U{L are unitary operators acting on the combinedfor all se S and for a positive numbet.
spaceHy) ® He . We will then prove that the structure derived and used in
From the decompositio85), we can classify the degrees the preceding section satisfies the above conditions.
of freedom of the system into three types: ) .
(a) The indexl. The information ors is stored classically, Lemma 5Any structureDy, derived by the procedure in
since there are no off-diagonal elements and everything iS€C. V is maximal.
expressed by the probability distributipf®". The operation
U, which preserveqps}, must act independently on each
subspacé{{’®H{ . With suchU one can establish classical
correlations between the system and the ancilla throuight

Let Ty :HA—>@|HS')®H&') be an isomorphism corre-
sponding toDy,. The condition(i) in Definition 1 is appar-
ently satisfied. For the conditiofii), suppose that a projec-
tion P:H{)—H{) satisfiesP p(s!) p(e)=pEDpSDP for any

not quantum correlations. . )
. ) .. seS. Construct an isometri; e U(H,) such that it oper-
(b) The inner degree of freedom for eat} . The infor ates onH® as

mation ons is stored nonclassically, in the sense that there

are nonvanishing off-diagonal elements for any ”O”triVia|Ul[(1(J')®1§<'>)®|u>E<u|]=(P®1§<'))®|uL>E(u|+[(1(J'>—P)

observables. The operatidh must not act on this degree of

freedom. @1 1@ |u)eul, (93
(c) The inner degree of freedom for eaﬁ'ﬂ). No infor-

mation onsis stored here. The operatidhcan do anything Where|u')e is a state orthogonal tai)e, andU, leaves the

as long as it leaves the system in the known sﬁéé[)e For Other subspaces unaltered. It is easy to show that Uyp

example, one can establish quantum correlation between thing the relatiorP pp(>)=php(eDp. This means that

system and the ancilla. U, should be written in the form of Eq87), which is only
In short, the principle derived here is stated as follows. Inpossible wherP=1{) or P=0. For the condition(iii), we

order to preserve the state of a system, no access is allowadll show that the existence of leads to a contradiction.

to the part with quantum information, classical access is alWithout loss of generality, assume that there exists a unitary

lowed to the part with classical information, and quantumoperator V:H{"—H(?  that satisfies pSIVpEHVT

access is allowed to the part with no information. :ap(sz)pgﬂ)_ We can construct an isometty, e Uyp in
the following way. LetH{") and H?) be orthogonal sub-
VI. PROPERTIES OF STRUCTURE spaces ofHg that are also orthogonal o). There exists

: 21).4 (1 2 2 .y
In the last section, we introduced a procedure to actuall n 'g?)mit{)y V(KE)(';()% )®|lg)EHHf< ),® H(E) sgﬂsfymg
construct a structur®y,, and stated the principle for the rE[VK_E (pK ®2E)\_/KE ]:pg . Phy5|ca_lly, a simple ex-
operations preservingps} using Dg,. In this section, we ample is the operanory t?at dllsc.ards the |n|102ut stgte away and
will show that the structur®., derived from the procedure Prepares the system o). Similarly, let Vi@ : H{Zs |u)e
is unique. We will also give a criteria of determining whether — H’® HE) be an isometry satisfying #V(2 (ol
a given structure is equivalent @, or not, without doing  ®3g)V{2=p{ . Then, we can construct a unitary opera-

the procedure in Sec. V. tor U, such that it acts oMo H? as
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U [(PY+P@)e3]=B(PYe3c+ Ve Vi)
+1-BAVeV@ + PP g3,
(94)

where PO=121{ (I=1, 2 and B=Ja/(1+a), and it
does nothing on the other subspaces Wit2. It is then easy
to show thatU,elfyp using the relationp®Yvp iyt

=ap®?p>?) . On the other hand, because of the cross term
VieVvE? andve V@, U, cannot be written in the form of

PHYSICAL REVIEW A 66, 022318 (2002

pi'=2 alak’(ad, (97)
where{|a )} (k=1, 2,..., dmHY)) is a basis ofH{’, and
>0 since suppf,) =Ha . Consider a direct-sum decom-
position Ha= @, (& H"Y), whereH('W=H o |a){ un-
der the isomorphisni’. H("¥ are then thet submodules,
namely, A|x)e H('® for any AeX and for any |x)

T H"M. The condition(ii) or (a) implies that H('¥ is
simple, namely, it has no submodules other than zero and

Eq. (87), leading to a contradiction. The lemma is thus /(b jiself. The condition(iii) or (b) means that two sub-

proved.

It is convenient to give a lemma showing that the condi-
tions (ii) and (iii) in Definition 1 are equivalent to slightly

stronger conditions.

Lemma 6Let I':Ha— @ HY’®H{) be a unitary isomor-
phism that corresponds to a maximal structube and
TplT=a,p®p e pl) . Then

(a) if an operatorA: H$) —H{) satisfies

ApEpi = pllp A (95)

for all se'S and for a complex numbes, then A=c1{",
where c is a complex number. Especiallp =0 when B
#1.

(b) If an operatorA:HS')aHS'/) (1#1") satisfies
Ap<s’|)PSS’|)= ap(s,l’)pss,lr)A (96)
for all se S and for a positive numbet, then A =0.

First, we prove conditiora). If A is invertible in7{", op-

eratingA ~* from the left and taking the trace for both sides

of Eq. (95), we havep®"=pBp(! for any s and hences

=1. A is thus not invertible if3+# 1. Letc be an eigenvalue

of A when8=1, and letc=0 whenB#1. DefineA’'=A
—c1{). Then,A" is not invertible in+$’ for any value of.
From Eq.(95), we haveA ' p®Dph=gphpEhAr Letp
be the projection onto kdr', the kernel ofA’. For any
vector |a) e kerA’, A’pplsDia)y=pgpEhpshA’|a)=0,
and hencep®"p{>"|a) e kerA’. We thus haveP ps)p(!)
=pEDpEIP. Since A’ is not invertible inH{?, P=0.
From (ii) in Definition 1, we have®=1{" andA’ =0, hence
A=c1{). For the proof of(b), suppose that Eq96) holds.
Together with its Hermite conjugate, we
ATApENpEN = pENpDATA for all s. From (b), ATA
=c1{’. A similar argument gives\ AT=c’1{". If A%0,
¢>0 andA/\c:HY)—H{") is unitary, but this conflicts with
(iii) in Definition 1. HenceA =0.

The conditiondii) and(iii) for maximal structures have a

simple meaning when we consider the algebra dveyen-
erated by the set of operatofps}s.s. Let us denote this
algebra by X. H, is then regarded as & module. Let

modulesH"¥ and={" ") with | #1” are notX isomorphic.
To show it, suppose that!'X) and#("¥") are x isomorphic,
namely, there exists a linear invertible mafp:+("®
—HU"K) satisfying AA|x)=AA|x) for any Ae X and for
any |x)eH"®. TATT is writen as TATT=A’
®|a )l O(ay, whereA’ is a nonzero operator from{)
to H{"). SinceAps=psA for anyse S, we have
qE(I)A/p(s,l)pgs|l):qf(|,')p(s,l’)pf]s,l’)Ar_ (98)
Lemma 6 implies that this happens only wHenl'.

While H('K and H{!"¥") are notX isomorphic whenl
#1', "9 and H("K) are X isomorphic only wheng(
=q(?, and notX isomorphic wheng{’+q"). It may be
convenient if we can construct an algeBrauch that(%

and ") are X isomorphic iffI=1". We will show that
such an algebra can be constructed by “normalizifgs
relative topy . First, take a decomposition &f, into simple
X submodulesHp= & (®Hyi), whereH,; andH,,i. are
X isomorphic iff m=m’. Let P,,; be the projection onto
Hmi, andP,=Z;P.,;. Then, we defing as

Ps= % PsPmil Tr(panPmi)] 1= % [Tr(PaIIPml)]ilPst )
| (99

where we have used the fact that @g(P ;) is independent
of i sincep, e X. Let X be the algebra ove€ generated by
the set of operator§ps}s.s. This definition is independent
of the choice of the decompositiogHa= & (®;Hmi). TO
prove it, take another decompositiét, = ® (®H,,) and

have defineP/ . andP/, in the same way as before. The number of

submodules are the same in the two decompositions, and we
can makeH,,,; andH,,; to be X isomorphic by appropriately
arranging the order of summatigdordan-Héder theorem

Let Vi : Hmi— Hp,; be aX isomorphism. TherP iV, is a

& homomorphism fromH,; to Hy,; and henceP Vi,

=0 if m#m’ (Schur’s lemma This implies thatH,,; is a
subspace ofp;H,;. We thus haveP, P,=P/,, and simi-

larly, P;,Pm=P,, henceP,=P/,. SinceH,,, andH,,, are

I Ha— @ HY©HY be an isomorphism corresponding to a x isomorphic, Trp,Pm1) = Tr(paiP L) . The algebrat and

maximal structureD. Let us write a diagonalization of{)) ,
as

{ps} are thus uniquely defined by E@9) when{p} andpy
are given.
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Since Ha=@,(®H") is also a decomposition df, ITT= @ yvih= POVOpI = D vy gy
into simple X submodules, we can calculdig as follows. EIB e? @ K K e? J ’
The form(90) of pg assures thab,, is written as ik (102

Tpal' ™= €D pilp @i, (100

whereV{) : H{)—H{) is unitary since'T'" andV{ are uni-
tary. This means that the two structurd3, and D, are
equivalentsee Eq(43)], and the lemma is proved.

Let us write this maximal structure d3,,,({ps}) that is
uniquely determined whefpg} is given. Lemmas 5 and 7
mean that the procedure described in Sec. V always yields a
unique maximal structure. This also means that if a structure

p(s) g f(_)undd to be maximall,"itbmust satisfy the propertik?sD_qf] A
50 =P - pEh @D (101) foerrr::/?)f ;ntr?ezcr.e\n/i.lt will be convenient to state this in the

Theorem 3Let {ps}s. s be a set of density operators act-
ing on H,. Suppose that the dimension of{,
R g =U,.sSUpPps) is finite. Let IHa— & HPoHY be a
whenl=1". Itis also easy to show that they are nbiso- | nitary isomorphism that corresponds to a maximal structure
morphic wherl #1’, using a similar argument as abo\g. Dmal{pdsco). Then, any unitary operatdd acting on’j

(98) changes toA’ (p&"/p{))p§*"=(p©1p{) S IA" @ that satisfiesT,(ps) = ps for any se S is expressed in

where p@") are normalized density operators acting on
HY). Equation(6) assures thap{})>0. If we write the pro-
jection onto H""W as PUW ~—we have Trp,P!W)
=p{la"’. Then we obtain

| all

It is now obvious that{{"X) and #('" ¥ are X isomorphic

in this cas¢ ~ the following form under the isomorphisift
Using the property of the algebr&, we can prove the
following lemma. U(La@3e)= P 10 UlL(1Ves,), (103

|
Lemma 7.The maximal structure is unique.

0) i i i
LetF:HAH@WS')@Hﬂ) be an isomorphism corresponding where U(Il§E are unitary operators acting on the combined
spaceHy’ ® Hg .

i T WOrY¥()

FO a max!mal structur@,.andF.HAe'ea,HJ ©HK be an Finally, let us consider the situation in which systénis
isomorphism corresponding to a maximal structireTake  made up of subsystems such thét="Hx; ® Hap®: -+, and
bases{|b) '} for H and{|by)} for 1. Let H(!"¥ be  the preparation of the initial state of systetis indepen-
the image 017'[5')®|bk>f<l) by I'", andH("¥ be the image of dently done for each subsystefty,; . In this case, the maxi-
775')®|Ek>§<|) by T By appropriately choosing the order of mal structure fofH is simply given by the “direct product”
he indexl. we can make dimiz® = dim H®  and =9 is of the maximal structures for each subsystem, as shown by
Ee Index, we can m K Ko ) the following theorem.
X isomorphic toH("k) if and only if I=1" (Jordan-Htder
theorem. Through the isomorphismd™ and T, o /HY Theorem 4Let {ps}s.s, be density operators acting on
oHY ande H @ HY can be regarded & modules. TWo 7, and{o}s.s, be density operators acting Gt,. Sup-
X submodulesH’® bk’ and HY '@ |by )i ) are X iso-  pose that the dimensions &fa;=Us.s Suppps) and Ha,
morphfc if gnq only i.fl =1’ Sincel"l“’.r isNa .unitaryX ?so— EUSESZSupp(OS) are finite. Letl'; i Ha— @) HSIf)@H(Kl?I-_)
morphism, it is a direct sum of unitant’ isomorphisms  be a unitary isomorphism that corresponds to a maximal

Y DY (O P ( :
V(:)-THS’@D?I%Q??#S)@H&L (Schur's lemma l\(llt))te that  structureD me{{pdscs), andly: Ha— @, Hi2 @ H(Z be a
vOT =(v(D)~1] is also aX isomorphism. LetP{) be the  unitary isomorphism that corresponds to a maximal structure
projection ontak{) @b, andP(’ be the projection onto  Dyaf{odscs).  Define  Ha=Ha®Hap,  HY=H]P
HY® b)Y . Without loss of generality, we assume that®Hg'22), and H(Kl)sﬁﬂi)@}(ﬂ;), where | represents the
POVOPN 0. SinceP'VPY and PPVIPY)" areX  double index{l,,l,}. Then,[=T;®T,:Ha— & HY @ HY
homomorphisms, ROVOPMYT(PIIVOPY)=(c,)2P{)  corresponds to the maximal  structureD . ({ps
with ¢;;>0 (Schur's lemma and hence PYVIP)  ®0iscs tes)-
=c VY ®|by)(by|, whereV{) is a unitary map front#) . o . _ _
to HS'). Sincelg')®|bl>(K')(bk| andIS')®|bk,>(K')<bl| are ¥ This theorem implies that the collective operation to |nd'e-.
, , D by Diby | is also a¥i hismm f pendently pr_epared systems has thg same power as indi-
isomorphismsYy’® by )’(by is also aX isomorphism for  yiqa| operations. For the proof, we will show tHasatisfies

any k and k’. Then, from Schur's LemmaV{’®|b/)¥’  the three conditions of Definition 1. Fron' p 1=
S(! | | H | |

X<bk|)TP(k,)\/_(|)P(k):CkrkP|((), and we Obtalnﬁl((,)v(l)Pl(() @llp(svll)pgi'll)(gpl(ljl-) and l"zo-tl";: ®|2q(t’|2)032I2)®0ﬂ§)1

=c V@b )(b. We thus obtain we have

022318-11



MASATO KOASHI AND NOBUYUKI IMOTO

| |
F.DS@O-’(FT: @ p(sll)q(t '2)(p sl g (t 2))®( Kl
I1.l2
®0y3), (104)

which meansl’ satisfies the conditiorti) of Definition 1.
Next, construct a density operatay, by a linear combina-

tion of the statego};cs,, such that supp(a”)—HAz (see
Sec. I). Then, oy is written asT oy '5=, qa| Sazn’|2)
®af<'§) ' whereq('2)>0 [see Eq(100)]. Take a basig|k)('2)}
of Hglzz) that dlagonallzeScr(a”'Z). namely, ngllllz)|k>(|2)
=c{"?[k)(2 with ¢!?>0. Suppose that for a value dof

={l,,1,}, a projection operatorP:H{"—H{) satisfies
J J

p(5’|1)q(t’|2)(p(5*|1)®0.(”2)) - p(s'll)q(t'lz)(pgsl'll) (t |2))P
for all s andt. Then, a(a" 12) also satisfies
P(p®17) sll) (aIII 2) = (ple1p (sl 32” 2)p
(105

for all s. P can generally be written a® =2, Ax
®|k")12)(k|, whereA,, are operators acting 0]1('1) Sub-
stituting it into Eq. (105, we have Ay kp(s'l) Gl
=ppthp] (sl 1)Ak,k for all s, where g= c(IZ)/c('Z) and
henceAk,k— ak'k131 (Lemma 6. P is thus written asP
=1('1)®BJ2, whereB, is an operator orHS'zz). A similar
argument WlthH(ll) andH('Z) interchanged leads to the form
P=B;® 1322), whereBj; is an operator orH('l) Noting
that P is a projector, we conclude th&= 15'11) 15'22) or P
=0, which meand" satisfies the conditiofii) of Definition
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ing the algebrat and by decomposing th& moduleH, into

simple X submodules, just like in finding irreducible repre-
sentations for a group.

VIl. FAITHFUL TRANSFER OF QUANTUM STATES

In the problem considered so far, the initial state of sys-
tem A and the final state of the same physical systeire
required to be identical. In the problems concerning with
communication, we often encounter a slightly different situ-
ation in which the initial state of systerA (held by the
sender and the final state of another physical sys@itneld
by the receiver are required to be identical. Here we will
make a remark that this problem of faithful transfer of quan-
tum states is essentially the same as the problem considered
in the preceding sections. The equivalence may be self-
evident when the dimensions of systénand that of system
B are the same, if we note that we can freely transfer the state
from systemA to systemB or vice versa. When the dimen-
sions of the two systems are different, there is a subtlety in
this transfer and it will be worthwhile providing a detailed
argument here. The argument may also help clarifying the
notations used in Sec. VIII that discusses examples of com-
munication problems.

Let H, andHg be the Hilbert spaces for systersandB,
respectively, and{g be the Hilbert space for an auxiliary
systemE. Initially, systemA is secretly prepared in a state
ps(seS). SystemsB andE are prepared in standard states
Ss=|u)g(u| andX=|u)g(u|, respectively. In order to de-
fine the faithful transfer, we should assume a correspondence
between the two physical systerAsand B beforehand. This
correspondence is given by a unitary magomorphism
Wg.a:Ha—Hg, WhereHg is a subspace ot with the
same dimension &d = U sSupplps). Any physical opera-

1. Finally, suppose that, without loss of generality, an operation of the transfer can be described by a unitary operation

tor A:HPeH P — H(2)®’H( ? satisfiesps gt 12A (p(SY

P I2)) peAqtl2(p3e 0'( |2))A for all s andt. Then
we have

| (al (a5 ( ||| )
pEYag? A(p e oy ) =p a7 (PP 0y P)A
(106
for all s. A can generally be written as\ =2,/ Ax
®|k")1202(k|, whereA, are operators fror{Y to 1.
Substituting it into Eq. (106, we have Ak,kp(svl) (s

=ap®2pS2A,., for all s, where a= qalf) (z)l(qglf) (|2))

>0. From Lemma 6, we havé,, =0 and henceA =0,
which meand” satisfies the conditiofiii) of Definition 1.

To summarize this section, we introduced a structur

called “maximal,” that is uniquely defined whefip,} is
given. A set of conditiongsee Definition 1 was given to
check whether a given structure is maximal or not. Given

maximal structure, requirement for the operations to preserv

acontalned

Uage acting onH,® Hg® He . Let o be the reduced state
of systemB after the operation ol ,ge. The requirement
for the faithful transfer of{ps} is that the relationog
=W;g.apsWi. 5 should hold for ang e S. As before, the con-
dition for this requirement will be given as a requirement for
the isometryU age: Ha® |U)g® |UYe— HA® Hp® He , which

is a restriction ofU xgg. The conditionos=Wg.apsW. 4 is
explicitly written as

TrAE[UABE(Ps(X’EB@zE)ULBE] = WB:APSWE:A . (109
10

In this problem, there is no requirement for the final state of
systemA, and we can make it in an arbitrary state by apply-
ing a unitary operation on systerds and E. We can thus
impose an additional requirement that the final state of sys-

&em A should be a standard stafe.=|u)A(u|, without loss

of generality. We thus assume that the |mageUQ\fBE is
in U A®HE®He. Let us define Vga
5 U)a(Wa:a)e(ul that is a unitary map front{,®|u)g to

{ps} is stated in a simple manner. The procedure described iH)a®Hg . Since the operatdd sge(VE A®3g) is an isom-
Sec. V gives a way to find a maximal structure in finite stepsetry from|u)a® Hg® |U)g to |U)p®@ HE® He, it can be writ-
Alternatively, a maximal structure is obtained by construct-ten as
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Unpe(VE @3 0)=3 @ Uge, 108 In addition to reder_iving this cri.tefr_ia, the dgrived principle
ase(Ve:a®2e) =2a® Uge (108 here can also determine the feasibility of various correlations
between the two broadcast systems, which was raised as an
open question in Ref4]. Let us consider the broadcasting of

{ps} in systemA into the two system® andC. Let Hy (X
@S a=Vi (3. ®Ws. x0-WE Ve, 109 =A, B, C) be the Hilbert space for systgm .a_nd suppose
Ps®2p=VealXa®WeapsWe:a)Vorn (109 that the dimension of{,=U_ssuppp,) is finite. Take a

holds for anyps. Substituting this into Eq(107) and using SubspacéixCHj (X=B, C) with the same size &4, and

whereUBE is an isometry fronHg® |u)g to Hy® He . Note
that the relation

Eq. (108), we have let Wg.p i Ha— Hg andWe. 5 1 Ha— Hc be unitary maps de-
fining the relation among the three systems. The process of
Tre[Upe(We:apsWhia® 3 ) Ube] = Wa:apeWhia - broadcasting s defined as
110
(119 Ps®Zp®3c—Sa® XL (114

This means that UBE preserves the set of states
{Wg.apsWL. 1}, and the main result of Sec. V or Theorem 3
can be applied. Noting that the isomorphic relation is defined  Tro(xSL) =Wg.apsWh. a2 Tra(xSL)=We.apsWE. 4,

betweenH, andHg, we can write the result as (115
Unc=W-a. 1MeUulL\ W, . 11 whereX y=|u)x(u| (X=A, B, C) are standard states. When
BE BA EP J KE|TTBA 1y the broadcasting is possible, the supporting sgagean be

decomposed a&(,=® HY, sinceH{" is one-dimensional

Combined with Eq(108), we arrived at the following theo- and can thus be neglected. Then, by taking appropriate bases

rem. {lag@ for HY, we can write p=a®pcp{
Theorem 5Let {pg}sc s be a set of density operators act- =3, 3,p®"q{"|a,){’(a,|. Let us take bases fdtg andHc

ing on H,. Suppose that the dimension oHx by |a)P=Wg.la){ and|a)P=Wc.Ala){ . The broad-

=U,.sSUppps) is finite. Let T:Hy—® H @ HY be a  cast state§) satisfying Eq.(115) is not unique and various

unitary isomorphism that corresponds to a maximal structurgypes of correlations between systeBisind C are conceiv-

Dimad{pslscd)- Let Wa:a:Ha—Hp be a unitary map, where able. For example, a state with no correlation

Hg is a subspace of{g. Then, any isometryUagg:Ha

(s) — T t
®|U)p®|Uye—|Uya® Hg® He that satisfies Xsc=We:apsWe:a®We:apsWeia (118

— — + a state with classical correlations
TragUape(ps®Zg®2g)Upgel =Wg.apsWp.4 (112

for any se S is expressed in the following form under the X(BSéIEI: Ek: pSa|ags(al ®|ayiayl, (117
isomorphisml’:

and a state with quantum correlation$k=|x®)(x(®| with

Unge=|Wa(We.n) [ D 150 URE|(ul, (113
| Y= 3 extio 0 pTqllagd a0l
whereU (L are isometries fronH{’® |u)e to HY @ He . (119
VIII. APPLICATION TO VARIOUS PROBLEMS all satisfy Eq.(115. The question here is, among these and

other conceivable correlations, what are feasible by a physi-
In this section, we apply the derived properties of thecal process Eq114). To answer this problem, let us start by
operatiqns preserving a set of states to variou; problems sueidting that any physical process acting ign} corresponds
as cloning, cryptography, and data compression. to an isometryUABCE:HA®|u>B®|u)c®|u)E—>|u)A®H,’3
®He® He with an auxiliary systenE. Along with the de-

composition Hy= & ,HY, we can decompose)gce as
No-broadcasting condition for mixed states, which wasy ,,..=®,Ul}.¢ by isometriesUl).c:HY ® |u)g®|u)c
derived in Ref[4], can easily be rederived. The broadcast|ng®|U>E_>|U>A®Hé®HrC®HE_ Since p is exactly trans-

is the task of preparing the marginal state of a subsystem qfred fromA to B. we have. from Theorem 5
E in ps, and leaving the reduced state of the sys#emn-

disturbed as irps. Since the operations that do not disturb Ungce=|u)a(Wa. )
. D . ABCE A B:A

{ps} are insensitive to the state changes in the subspaces

H{), complete broadcasting is possible only when the di-

mensions of the subspaced” are all unity, or equivalently, where U{%¢ are isometries fronH{’® |u)c®|u)e to HY

when{pg} can be simultaneously diagonalized. ®HE®He . Noting that we are omitting{{", we have

A. Broadcasting of mixed states

S, 1S”®U<K”CE)B<uI. (119
|
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1l |

ABce=|W)a(Wa:a) (Ukce)s(ul- (120

This means that the image &fY}.¢ is contained inju),

@ HY ©HE©He , whereHY) is the image ofH{) by Wi, 4.

Similarly, sincepg is exactly transferred fromd to C, we
have another expression,

Ulthee=[u)a(Wea) (Us ) e(ul, (121)

where UL are isometries fromH{’®|u)g®|u)e to HY)
®Hp®He. By this expression, the image ofl) ¢ is fur-
ther restricted tqu,@ HY @ HY @ He, where HY is the
image of H{ by Wc.». The operationUgce thus only

connects the subspaces labeled by the same value of inde

The broadcast statg$, which is given by
XESS)C:TrAE[UABCE(ps®2B®EC®EE)UI\BCE]! (122
should therefore be written as

xse= B peV ke, (123
|

where{) is a density operator acting il H | given
by

g(BIéETrAE[Gf’-\l?BCE(p(KI)(X)EB®EC®EE)U9\)BTC .

(124

The condition(115 for broadcasting is satisfied iff

Tre(£85) =Wg.aplt' Wi 4, TrB<§Sé>=Wc;Ap&>WEE;A5)
12

holds for alll. Sincezy is independent o, it can be any

PHYSICAL REVIEW A 66, 022318 (2002

®3g)UT=ps, the reduced state of systeB) Tra[U(ps
®3g)UT], should be independent sf

This condition is obvious now. According to the present
result, such an operatiod is insensitive to the contents of
HY), andH{ holds no information ors. On the other hand,
the index!| can be read out freely without disturbidgs}.
Hence the condition is stated p§" =p‘") for all {s,s’, I},
namely, the probability distribution for the indéis identical
for all s. In other words, this is the requirement thaf if.}
are written as matrices in the maximally simultaneously
block-diagonalized form, the traces for each block are the
same for alls.

A generalized version of this theorem, where the set of
state{ o} o t0 be distinguished is different from the set

%of states{p,} to be preserved, can also be derived from the

above results. A little care should be taken for the fact that
the support of all states, defined asHa
=[Uscssuppps) JU[Us csrSUpplosr) ], may generally be
larger than Hpa=U_ssupplps). Let us write Ha=Hpa
@®H,y. Consider the set of all isometrigs: Ha® |U)g— Ha

® He that preservdpgt, namely, TE[U(ps®2g)UT]=ps.
What we ask here is the condition féog }s .5 such that
TrAU(os®2g)UT] is independent ok’ €S’ under any
suchU. We first derive a sufficient condition. According to
Theorem 3, a decompositioh(,=® H @ HY is deter-
mined from{ps}, andU is written as

U=UOE@( >, 13'>®U§<'>E), (126)
|

whereU (). are isometries frort({’® |u)g to HY ®@ He , and

Uog is an isometry fronH,® |u)e to Ha® He . Note that the
image ofUyg is not necessarily confined iHy® Hg. Then
we can write

state by choosing )¢ appropriately. This means that any TralU(oy®@g)UT]

type of correlation is feasible in each subspat® @ HY
ranging from quantum correlatia@ntanglementto no cor-
relation. On the other hand, E¢123 means that for the

:TrA[UOE(Us’®EE)UgE]

index |, a complete classical correlation should always be — +>' (Tra[Upe(oe @3 ) (10Ul
|

established between the broadcast systems.

One of the interesting consequences from the above gen-
eral result is that the condition for the feasibility of the

broadcast state with no correlatipkq. (116)] and that of
broadcast states with full quantum correlatjéy. (118)] are
the same. For both cases, the condition is that@nshould
be contained in one of the subspadéy , or equivalently,
any pair of states frorfips} must be identical or orthogonal.

B. Imprinting of mixed states

Another open question was the condition for the feasibil-

ity of the imprinting proces$7]. The no-imprinting condi-

tion is the requirement fofps} such that any attempt to read
out the information ors should lead to some changes in the
state of systemA. More formally, under the notations used

here, it is the condition fofps} such that for any unitary
operator U acting on Ha®Hg satisfying Te[U(ps

+Tral (1 ® Ukp) (05 @) Uge]

+TrAl (1 @ URh (0w ®36) (10U D). (127
Let Py, P,, andP{) be the projection operators ontdy,
Ha, andH @ HY, respectively. Equatiofi27) means that

the state left in syster depends only on the following parts
of the initial stateo, , defined as

O'(S?O)E Po(fsl Po,
O'(S(,)A)E Poa'sr PA! O'g,M))E PAO-S’PO’

=T (P oY), 128

and Eq.(127) becomes
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we conclude that it is necessary thé?o), o(s(,m g//w), and
a(s',) for any| be independent aé’. It is worth emphasizing
here that the above result shows that any difference in the
off-diagonal part (TS)A)) betweenH, and H, is detectable
even under a stringent restriction to the operatioft}o.

g

TralU(og ®3g)UT]

= TrA[UOE(U(SS)O)@EE)UgE]

+E| (TralUoe(c Vo3 e) (1) 0 U T

(A0)
S/

®2E)U$E]

+ TRV (e @3 e (U ).

(1 (1
+Tral(1y’®Uke) (o C. Cloning and imprinting of composite systems

Consider the situation in which the system holding an
unknown initial stateys is composed of two subsystemis
Here T and T§ are the partial traces ovét{) andH{),  andB, and it is allowed to access these subsystems only in
respectively. Hence a sufficient condition for the state left insequence, namely, subsysténmust be released before sub-
systemE to have no dependence gh is that the operators systemB is accessed5,7]. In order to preserve the states
defined in Eq(128 are independent of'. {xs} in the whole system, the marginal density operatoh,in

To show that this condition is also necessary, we willps=Trg(xs), must not be modified when it is released. The
consider a particular measurement strategy.|teie one of  present results can thus be applied and restrict the form of
the possible values of the indéxThe first step of the strat- the operation when subsystekis at hand. Let us write this
egy is to conduct an ideal projection measurement to measperation by an isometiy og: Hao® |U)g— Ha® He, Where
sure whether the state is in the subspanBHg'*)c@Hf('*) Ha=UscsSUpplps), andHg describes an auxiliary system

or not. It is obvious that this measurement does not disturitially prepared in a standard stafe = |u)e(ul. LetHg be
{ps}. Let p(I*,s’) be the probability of obtaining the posi- the Hilbert space for subsysteita According to Theorem 3,

(129

tive outcome when the initial state wag . Suppose that the
result of the measurement was positive. Prepare auxiliar
physical systemg and K with Hilbert spacesH; and Hy
=Hko®Hky1, respectively, where dirfi{;=dim HS'*),
dim Hy,=dim H{ "), and dimH,=dim H,. Take unitary
mapsl; H ) —H;, T HE ) —Hyr, andT o Ho— Huco.-
Take an arbitrary state|x)e ("), and let T'y:H,
—(T|x))®Hgo be the unitary map naturally determined
from T'y. Then, we can construct an isomefryHyo H{ ™
QHY ) —H,@H, by T=T'}eT;@T . The second step is
to transfer the postmeasurement state of sysiemvhich is
projected inHo® HY @ H{™), to the combined system df
and K according to the isometry. Note that if the initial
state waspg, the state ofH;® Hy after the second step is
T8 M ier T . The third step is to conduct arbi-
trary measurement on systely and to leave systerK in
Tepl L, which is independent of the initial state.
At the final step, the state of{;®Hy, which should be
contained in the image ofl', is transferred back to
HodH{ D eH™) . It is easy to see that the whole process
does not distur ps}. When the initial state was , the
marginal state of systed after the second step, multiplied
by p(1*,s"), is

THIT(Pe@ 1" ©10") og (P 1 @10 )T

(00)
S/

=Too T+ T ooV (X @18 )k

(X @1+ Tol TE. (130

If we require, for this particular strategy,
the outcomes of the measurement of the first step and t

arbitrary measurement in the third step should be indeperf0MP

dent ofs’, then the reduced state in H4.30 must be inde-
pendent of’. Since the choices df and|x) were arbitrary,

a decompositioft{y= & H}’® H{ is determined frorpg},
@nd U 5 is written as

Une= P 1SI)®U|<<I)E’
|

(131

where U{L are isometries fronH{’®|u)e to HP @ H.

Then we can write the marginal sta). of the combined
system ofE andB after the operatiotJ 5 as

XSE=TrAl(Uae®1p) (xs®3e) (ULe® 15)]

=2 Tl (1 Ui 1) (xso3e) (1 8 UK ©15) ]
=2 LUk 1e)(xs 82 (UKt ®19)], (132

where

X =T(PR el xs(Ph@ls)]. (133
This means that if we are to preserveg(lys), we can obtain
only the part of the correlations betwednand B, namely,
we can obtain classical correlations related to the irdend
quantum correlations related to eakfy’ , but cannot obtain
quantum correlations related to the indexr any correla-
tions related to each{ . Note that extracting this informa-
tion to the auxiliary systenk may destroy original quantum
correlations betweeA andB.

When {x¢} are all different pure states, the cloning of

that the statistics oftXs! IS Possible only whefiy} are all orthogonal. Hence, if
Hbe cloning is possible, we should be able to deterngne

letely by conducting a measurementdf)., namely,
{x§L} should be all orthogonal. This is possible only when
x{) andx")) are orthogonal for anyand for anys+s'. This
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condition is also sufficient for the cloning to be possible,blind scenario. Using the decompositiqurgz@|p(s")p§5")

since under that condition we can determine the valuebyf () the average density operatpe3 pops is also de-

accessing3 and E without disturbing the whole statdJe  composed as

®1p) (xs@2g)(ULe®1g). At this stage, we know exactly

the current pure state of the systé&BE, and the marginal p= EB p(')pg')®pf<'), (139

state of subsystem is Trg(xs). Then we can determine a [

unitary operation oveBE that drives the state ABE back

into y.®3¢. wherep®=3ppE" and p§= (S psp ) /pM. This
When the initial state§y.} include mixed states, it is not naturally gives a decomposition of the von Neumann entropy

always possible to restore the original quantum correlation8f p, defined asS(p)=—Trp logzp, into the sum of three

betweenA and B by manipulating systenBE only. Also in  parts as follows:

the problem of imprinting of more than two pure states, the

restoration is not always possible because the identification _ r _ 0 0 0

of s by accessing systeBE is not necessarily possible. The S(e) Z P~ log, P+ S(py )+ Slpk )]

feasibility of this restoration of quantum correlation will be

an interesting future problem. =lctInctlr: (139

Then, the formp,=®,p®"pN e p{) tells us that€ can be
D. Various schemes of quantum key distribution compressed intdc+ 1 yc qubits, and its optimality can be
shown from the fact that any compression-decompression
scheme must be written in the form tfxe=®,1’@ UL
13]. It was also shown that amorg+ | yc qubits,| - qubits
can be replaced by the same number of classica[ bitd 5.

An attempt was recently made by MP#] to give a uni-
fied explanation of why various schemes of quantum ke
distribution work in the ideal situations, which was based o

th_e no-cloning prlnplpl_e Of. mlxed states. Slnce_we hgve_ Ob'A similar argument can also be made to the teleportation of
tained a general principle including the no-cloning pr|nC|pIe,the ensemble, and the optimally required amount of en-

we provide a unified formalism of various schemes for quan_tanglement was shown to B ebits. These results again

tum key distribution. The principle here places some restric- t that the d o 1) (1) o (1)

tion on the eavesdropper’s access to the first quantum syste?Hgges at the decompositipg=©,p™"p;" & pi’ gIves

A transmitted from the sender to the receiver, if the eaves® V&Y to cIasgn‘y the degregs of freedom into the three parts,
dropper wants to preserve the state in order to conceal hgpme_ly, clarl]ssmal, nogclass(;c_al, and redund_ant pzfts- |
presence. Then we can find three different ways to concez#1 Using Theorem 4 derived in Sec. VI, we Immediately see

the bit value from the eavesdropper, nam@)yencoding it at the above mformatlon-th_eoretlc _funchonti:(é'),
directly on the inner degree of freedom &}, (ii) encod- Inc(€), r(£), and hence the various optimal rates, are ad-
ing it on the correlation betweea and anotr,ler systerB ditive for independent sources. That is to say, if we consider

through the inner degree of freedom i), and i) en- ~ another sourc&’={qy o} and the combined source

coding it on thequantum correlation betweemA and B,  =1{PsOs .ps®0s}, we have 1x(&)=1x(€) +1x(€) (X
through the index. The original four-state scheme of Ben- =C,NC,R).

nett and BrassarfB] corresponds to the cas#), since the

bit value is encoded on the correlation between the quantum IX. CONCLUSION

state of the photon and the information of the basis transmit-
ted late{ 9], which corresponds to the syst8nThe scheme

[10] using two nonorthogonal pure states corresponds to th ) . .
case(i), and the schemes using thrEEL] or two [12] en- ormation, namely, given a system secretly prepared in one

tangled states in the composite system correspond to the ca Ethe possible stathps}, conducting a general operation_ to
(iii). the system, then leaving the state of the system exactly in the

same state as the initially given state. In order to derive a
general property of such operations, we noted two basic prin-
ciples. One is a natural extension of a property of classical
Consider a source that produces the enseméle signals, which states that in order not to disturb a signal that
={ps,pst, Namely, it emits a system in a quantum state may be produced by two different probability distributions,
with probability ps>0. One of the fundamental questions in we are not allowed to operate on the entire signal space
guantum information theory is to identify the optimal com- freely, but are forced to operate on two or more signal sub-
pression rate of, namely, to determine how much qubits are spaces independently. The other principle stems genuinely
needed to compress a sequence of systems independenfilgm quantum origin, and it states that if we are to operate on
prepared from this source so that it can be decompressaudio subspaces independently while preserving a state having
back with negligible errors in the asymptotic limit of the a nonzero off-diagonal part with respect to the two sub-
infinitely long sequence. Noting that the original stgigsre  spaces, the operations to the two subspaces must satisfy a
reproduced after the decompression, the present results caimilarity defined through the off-diagonal part of the state.
be applied to the whole operation of compression and deThe two types of constraints alternately invoke each other,
compression, and reveal the optimal compression rate in thend finally reveal a stringent condition for the operations to

In this paper, we have considered a situation that we fre-
uently encounter in dealing with problems in quantum in-

E. Optimal compression rate of quantum-state signals
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preserve{pg}, together with a decomposition of the support equivalent simple submodules, and the notion of “identical”
space of p}, which takes a forni{,= ® H{"©H{’. Under  corresponds to reducibility into equivalent simple submod-
this decomposition, the statelps} are written aspg= ules.

®,pNpN@pd . If we consider how the information of The main result was shown to be applicable to various
the state indes is encoded on three parts, namely, on indexProblems of quantum information. The tasks of cloning,
| on Hilbert spacé{ﬁ'), and on Hilbert spacé{&'), we may broadcasting, imprinting, and eavesdropping in quantum
regard them as classical, nonclassicalantum, and redun-  C'yPtography belong to a class of problems in which extrac-
dant parts, respectively, singe. has no off-diagonal part tion of information on the initial state of the system is re-
with respect to index, and no information ors is stored on quired without mtrodpcmg dl_sturbance. The present result
H&'). Under this decomposition, the main result describin can naturally be applied to this class of problems, and helps

the property of the operations to presefyg} is written as %o derive various conditions on the set of possible initial
prop (,)y ) pe Preselys states for various tasks to be feasible. In addition, the result
Uae= @15’ ® Ukt that informally implies that the nonclas-

ial J hable. the classical ) d onl as also successfully applied to tasks such as quantum data
sical part Is untouchable, the classical part Is read only, anfl, 5 ression and quantum teleportation, in which the extrac-
the redundant part is open.

h | be viewed dl iahf tion of the information on the initial state is not directly
The result may be viewed as an unexpectedly straig torFequired. It was showrsee also Ref§13,15) that the opti-
ward extension of the simplest case of binary sti$sg0, 1

- mal rates of bits and qubits for asymptotically faithful blind
encoded on two pure statgdo) and|[Wy). We can distin- -y 5ression is simply equal to the Shannon or von Neumann

guish three cases according to the inner product of the W0y of the classical and nonclassical parts, respectively.

pure states. The encoding will be regarded as “classical g resylt also justifies the terminology of classical, non-

when the two states are orthogonal, “nonclassical” wheng,sgical and redundant parts in operational sense, namely,
they are nonorthogonal and nonidentical, and “redundant

: . ST the classical part can be encoded on bits and sent through a
when identical. When this situation is extended to allowasgical channel, but the nonclassical part can be encoded

mixed states and a larger number of states, it has turned oyl on qubits and requires shared entanglement to be sent
that the three types of the encoding may coexist, but they arg, &, o classical channel.

still distinct. The inner product for two vectors must be re-
placed by mathematical concepts describing rather compli-
cated relations among many density operators. In this paper,
we have attempted to do this by regarding the Hilbert space This work was supported by a Grant-in-Aid for Encour-
as a module over an algebra generate iy} with a proper agement of Young Scientist&Grant No. 12740243and a
normalization. Then, the notion of “nonorthogonal” corre- Grant-in-Aid for Scientific Research(B) (Grant No.
sponds to irreducibilitybeing simple of a submodule, the 12440111 by the Japan Society for the Promotion of Sci-
notion of “orthogonal” corresponds to reducibility into in- ence.
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