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Operations that do not disturb partially known quantum states
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Consider a situation in which a quantum system is secretly prepared in a state chosen from the known set of
states. We present a principle that gives a definite distinction between the operations that preserve the states of
the system and those that disturb the states. The principle is derived by alternately applying a fundamental
property of classical signals and a fundamental property of quantum ones. The principle can be cast into a
simple form by using a decomposition of the relevant Hilbert space, which is uniquely determined by the set
of possible states. The decomposition implies the classification of the degrees of freedom of the system into
three parts depending on how they store the information on the initially chosen state: one storing it classically,
one storing it nonclassically, and the other one storing no information. Then the principle states that the
nonclassical part is inaccessible and the classical part is read-only if we are to preserve the state of the system.
From this principle, many types of no-cloning, no-broadcasting, and no-imprinting conditions can easily be
derived in general forms including mixed states. It also gives a unified view on how various schemes of
quantum cryptography work. The principle helps one to derive optimum amount of resources~bits, qubits, and
ebits! required in data compression or in quantum teleportation of mixed-state ensembles.

DOI: 10.1103/PhysRevA.66.022318 PACS number~s!: 03.67.Dd, 03.65.Ta, 89.70.1c
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I. INTRODUCTION

Quantum mechanics pose fundamental restrictions w
one reads out information from a quantum system. The m
basic rule is well known—if one reads out information fro
a quantum system in an unknown initial state, the quan
state of the system will change@1#. Recent development o
quantum information theory proposes various schemes
handling information through quantum systems, and und
standing of more detailed rules seems to become an im
tant issue. One particular direction of such investigation
the cases when the initial state is partially known@2–5#. In
such situations, some operations can be done without in
ducing any disturbance in the original quantum system. O
of the fundamental questions here is the following: Wh
kind of information can be extracted, and what cannot
without changing the state? This problem is important
quantum cryptography, since the initial state is chosen by
sender among a few definite states. The problem is also
rectly related to the physical feasibility of cloning~making a
copy of the original! and imprinting~catching a trail without
affecting the original! of partially known quantum states. S
far, the conditions for the initial states allowing such tas
were derived, such as broadcasting of mixed states@4# and
cloning of pure entangled states@5#. The proofs were base
on the complicated series of inequalities related to the fid
ity, and it is not always easy to infer the conditions even
slightly different tasks.

In this paper, we present a principle that gives a defin
distinction between what one can do and what one canno
without changing given states of a system. Given a se
possible initial states, we propose a particular decomposi
@Eq. ~86!# of the system, which classifies the degrees of fr
dom of the system into three parts, based on how they h
the information on which one of the states is chosen as
initial state. The principle is then stated as the restriction
1050-2947/2002/66~2!/022318~17!/$20.00 66 0223
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the access to each part. We provide a proof that clarifies
physical origin of the principle—it is obtained by simpl
applying two fundamental theorems alternately, which
spectively, reflect the basic property of classical sign
~Theorem 1! and that of quantum signals~Theorem 2!. This
principle can be applied to various problems of cloning a
imprinting of quantum states, and reveals conditions for f
sibility of various tasks, such as no-imprinting condition
mixed states. It also gives a good insight into the basic c
cepts of quantum cryptography, and helps us to solve pr
lems related to quantum data compression and quantum
portation. Note that our approach takes just the oppo
direction to the one by Lindblad@6#, where the latter answer
what are the states that are invariant under given operati

This paper is organized as follows. In Sec. II, we form
late the problem considered in this paper. In Sec. III,
derive two theorems that reflect the basic property of cla
cal signals and that of quantum signals. The latter one s
gests a structure of Hilbert space in which tensor produ
and direct sums are involved, and we discuss notation
treat such structures in Sec. IV. In Sec. V, we repeatedly
the two basic theorems and derive the main result, the p
erty of the operations preserving a set of states. Section
discusses properties of the decomposition used in stating
main theorem, such as its uniqueness and relation to
well-known mathematical concepts. In Sec. VII, the ma
theorem is restated in a scenario of faithful transfer, wh
makes it convenient to apply the theorem to communicat
problems. In Sec. VIII, we give applications of the theore
to various problems of cloning, imprinting, quantum cry
tography, quantum data compression, and teleportation.

II. FORMULATION OF THE PROBLEM

The main problem considered in this paper is described
follows. Consider a quantum systemA, which is described
©2002 The American Physical Society18-1
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by a Hilbert spaceHA8 . Initially systemA is secretly pre-
pared in a state described by a normalized density oper
rs , one in the known set of states$rs%sPS . HereS is the set
of possible values of indexs. For example, if the initial state
is chosen fromn states,S is assumed be$1,2,...,n%. S can
also be an infinite set. We assume that$rs%sPS is supported
by a subspace with a finite dimension. This assumption
more precisely stated as follows. Let us write the suppor
rs as supp(rs), and define

HA[ ø
sPS

supp~rs!. ~1!

Then, the said assumption is that the dimension ofHA is
finite.

Next, we prepare an ancilla~an auxiliary system! E, de-
scribed by a Hilbert spaceHE , in a standard quantum sta
SE5uu&E^uu, and apply a unitary operationU on HA8
^ HE . After this operation, the marginal density operator
HA8 becomes

TU~rs![TrE@U~rs^ SE!U†#. ~2!

What we seek is the requirement forU to preserve the mar
ginal density operator ofA, namely,TU(rs)5rs for all s
PS. Note that what we concern here is not the whole pr
erty of U:HA8 ^ HE→HA8 ^ HE , but that of the isometry
given as its restriction,U:HA^ uu&E→HA8 ^ HE . Let Uall be
the set of all isometries fromHA^ uu&E to HA8 ^ HE . The
problem here is thus to identify the subset

UND[$UPUalluTU~rs!5rs , ;sPS%. ~3!

It is convenient to construct a density operatorrall from
$rs%sPS , satisfying the following conditions:

Tr~rall!51, ~4!

TU~rall!5rall ,
;UPUND , ~5!

and

supp~rall!5HA . ~6!

When a probability distributionp(s)(sPS) overSsatisfying
p(s).0 for all sPS is assigned to the set$rs%sPS , rall can
be constructed as an averaged state, namely, by a sumrall
5SsPSp(s)rs , or by an integralrall5*ds p(s)rs . Alterna-
tively, we can always pick upn(<dim HA) states
$r1 ,r2 ,...,rn% from the set$rs%sPS such that supp(S i 51

n r i)
5HA . Then, settingrall5S i 51

n r i /n satisfies Eqs.~4!–~6!.

III. BASIC PROPERTY OF CLASSICAL
AND QUANTUM SIGNALS

A. Useful lemmas

In this section, we introduce two lemmas that will b
frequently used in this paper.
02231
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Lemma 1. Let O be a Hermitian operator acting onH, and
U be an unitary operator onH^ HE ~or an isometry from
H^ uu&E to H^ HE! satisfyingTU(O)5O. Then,

@P1 ^ 1E ,U#~P1 ^ SE!50, ~7!

where P1 is the projection onto the space spanned by
eigenvectors ofO with positive eigenvalues.

This lemma implies that an operation preserving a Hermit
operatorO does not transfer the eigenvectors ofO with posi-
tive eigenvalues to the space for nonpositive eigenvalue
proof is given as follows. Let us defineP̄1[12P1 . The
operatorO can be decomposed asO5O12O2 by a positive
definite operatorO1[P1O and a positive semidefinite op
eratorO2[2 P̄1O. SinceTU is linear,

Tr@P1TU~O!#5Tr@P1TU~O1!#2Tr@P1TU~O2!#

5Tr@TU~O1!#2Tr@ P̄1TU~O1!#

2Tr@P1TU~O2!#. ~8!

From TU(O)5O, we have

Tr@P1TU~O!#5Tr@P1O#5Tr@O1#. ~9!

On the other hand, sinceTU is a trace-preserving map, w
have

Tr@TU~O1!#5Tr@O1#. ~10!

Combining Eqs.~8!–~10!, we obtain

Tr@ P̄1TU~O1!#1Tr@P1TU~O2!#50. ~11!

Since TU is a complete positive map, Tr@ P̄1TU(O1)#>0
and Tr@P1TU(O2)#>0. This means that both terms in th
left-hand side~lhs! of Eq. ~11! are non-negative, and w
obtain Tr@ P̄1TU(O1)#50. This relation is also written as
Tr@QQ†#50 with Q5( P̄1 ^ 1E)U(AO1 ^ SE). This means
Q50, or equivalently,

~ P̄1 ^ 1E!U~P1 ^ SE!50. ~12!

SubstitutingP̄1512P1 completes the proof of Lemma 1.
Lemma 2. Let r be a positive semidefinite operator actin

on H. Suppose that its support supp~r! is written as a direct
sum of two subspaces as supp(r)5H1% H2 , and letPi be
the projection ontoHi( i 51, 2). Let U be an unitary operato
on H^ HE ~or an isometry fromH^ uu&E to H^ HE! satis-
fying TU(r)5r and @P1^ 1E ,U#(P1^ SE)50. Then

@P2^ 1E ,U#~P2^ SE!50. ~13!

This lemma implies that ifU does not transfer the vectors i
subspaceH1 to subspaceH2 , U does not include the transfe
in the opposite way~H2 to H1!. Lemma 2 is proved as fol-
lows. The assumption@P1^ 1E ,U#(P1^ SE)50 implies that
(P2^ 1E)U(P1^ SE)50. Using this, we have

Tr@P2TU~r!#5Tr$P2TU@~P11P2!r~P11P2!#%

5Tr@P2TU~P2rP2!#. ~14!
8-2
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From TU(r)5r, we have

Tr@P2TU~r!#5Tr@P2r#. ~15!

SinceTU is a trace-preserving map,

Tr@TU~P2rP2!#5Tr@P2r#. ~16!

Combining Eqs. ~14!–~16!, we obtain Tr@TU(P2rP2)#

5Tr@P2TU(P2rP2)#, or equivalently, Tr@ P̄2TU(P2rP2)#

50 with P̄2[12P2 . This relation is also written as
Tr@QQ†#50 with Q5( P̄2^ 1E)U(AP2rP2^ SE). This
meansQ50, or equivalently,

~ P̄2^ 1E!U~P2^ SE!50. ~17!

SubstitutingP̄2512P2 completes the proof of Lemma 2.

B. Property of classical signals

In this section, we derive a theorem that stems from
general property of classical signals. Before the derivation
the theorem, it is instructive to consider an example in
purely classical situation. A classical counterpart of the pr
lem considered here is obtained by replacing the requirem
of preserving density operators by that of preserving pr
ability distributions. Consider a purely classical example
which a signalX is drawn from either of the two probability
distributions p1(x) and p2(x), according to the value o
s(51,2), and a signalX̃ is then produced from the value o
X according to a rule that is independent of the value os.
Namely, if X5x, X̃ is set toX̃5y with probability p(yux).
The probability distribution forX̃ is then given byp̃s(x)
5(x8p(xux8)ps(x8). Let K05$xup1(x)1p2(x).0% be the
set of the possible values ofX. Let us divideK0 into two
sets, Ka[$xup1(x).p2(x)% and Kb[$xup2(x)
>p1(x),p2(x).0%. A necessary condition for the transitio
matrix p(yux) in order thatp̃s(x) coincides withps(x) for
either value ofs is that the transition must be made with
each of the two setsKa andKb , which is proved as follows

Let us define p(s)(ZPK)[(xPKProb$Z5x%(Z5X,X̃,
K5Ka ,Kb) as the probability that the value ofZ belongs to
K. Consider quantitiesda(X)[p(1)(XPKa)2p(2)(XPKa)
and pb(X)[p(1)(XPKb)1p(2)(XPKb), and their changes
in the transitionp(yux), namely,Dda[da(X̃)2da(X) and
Dpb[pb(X̃)2pb(X). In order for p̃s(x)5ps(x), these
changes must be zero. These changes are caused by the
sition fromKa to Kb or vice versa, andDda is written as the
sum of two nonpositive parts,

Dda52 (
yPKb

(
xPKa

p~yux!@p1~x!2p2~x!#

2 (
yPKa

(
xPKb

p~yux!@p2~x!2p1~x!#. ~18!

In order to satisfyDda50, either part must be zero. Sinc
p1(x)2p2(x).0 in the first part,p(yux) with yPKb and
02231
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xPKa must vanish. Under this condition,Dpb is contributed
only by the transition fromKb to Ka , and is given by

Dpb52 (
yPKa

(
xPKb

p~yux!@p1~x!1p2~x!#. ~19!

Sincep1(x)1p2(x).0, p(yux) with yPKa andxPKb must
also vanish in order to satisfyDpb50. Hence, preserving
p1(x) and p2(x) requires that for anyyPKb and xPKa ,
p(yux) and p(xuy) should vanish. The transition must b
made within each of the two setsKa andKb .

This argument almost directly applies to the quantu
case, that is, we can show that any operation that prese
two different density operatorsr and r8, must act on two
subspaces independently. In order to represent this prop
in a simple form, we write the set of all isometries fromH
^ uu&E to H^ HE asU~H!, whereH is an arbitrary subspace
Then, the property is described by the following theorem

Theorem 1.Let r and r8 be two density operators fo
different states. LetH be the support ofr1r8, and take the
decompositionH5H1% H2 whereH1 is the space spanne
by the eigenvectors ofO[r/Tr(r)2r8/Tr(r8) with positive
eigenvalues. Then,H1 and H2 are nonzero subspaces, an
any UPU(H) that satisfiesTU(r)5r and TU(r8)5r8 can
be written asU5U1% U2 with UiPU(Hi) ( i 51,2).

For later convenience, the theorem allows for the pos
bility that r andr8 are un-normalized. Theorem 1 is prove
as follows. Sincer and r8 represent different states,O is
nonzero. The form ofO implies thatO is a traceless Hermit-
ian operator. HenceO has positive and negative eigenvalue
and H1 and H2 are nonzero spaces. Next, suppose thaU
PU(H) satisfiesTU(r)5r and TU(r8)5r8. Let Pi be the
projection ontoHi ( i 51,2). SinceTU is linear,TU(O)5O
and TU(r1r8)5r1r8. From TU(O)5O, Lemma 1 leads
to

@P1^ 1E ,U#~P1^ SE!50. ~20!

This relation andTU(r1r8)5r1r8 fulfill the requisite of
Lemma 2~with r replaced byr1r8!, and we obtain

@P2^ 1E ,U#~P2^ (E!50. ~21!

Using Eqs.~20! and ~21!, we haveU5U(P1^ (E)1U(P2
^ (E)5( i 51,2(Pi ^ 1E)U(Pi ^ (E). This implies thatU is
written asU5U1% U2 with UiPU(Hi) ( i 51,2).

Now let us turn back to the classical example of prese
ing p1(x) andp2(x). We have seen that the transitionp(yux)
must occur within the setsKa andKb independently. We can
then consider each set separately. For example, let us
sider the conditional probability distributions forxPKa ,
namely,ps(xuxPKa)[ps(x)/(xPKa

ps(x) (s51,2). The op-

eration of p(yux) on the setKa should preserve these tw
probability distributions. Then, ifp1(xuxPKa) and p2(xux
PKa) are different, the above argument can be appl
again, namely,Ka is separated into two subsets, within whic
the transitionp(yux) should occur independently. These ne
sets andKb may be further separated into smaller ones
repeating similar procedures. This refinement continues
8-3
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should finally stop, as long as the set of all possible val
(K0) is a finite set. In order to identify the final form of th
refinement, let us introduce the functionsf s(x)
[ps(x)/(sps(x). In a refinement process in which a subs
Y is divided into two subsets, the criteria of this division
whether p1(xuxPY)2p2(xuxPY) is positive or not. This
function can be written in the form @a1f 1(x)
2a2f 2(x)#(sps(x). Hence any two elementsx andx8 that
satisfy f s(x)5 f s(x8) for all s are always classified into th
same subset. If we write the final form asK5ø lK

( l ) with
K ( l )ùK ( l 8)5B for lÞ l 8, p1(xuxPK ( l )) and p2(xuxPK ( l ))
should be identical for each subsetK ( l ), since otherwise a
further refinement would be possible. This condition mea
that f s(x)5 f s(x8) for all s and for anyx, x8PK ( l ). There-
fore, the final form is the classification of the elementsx
according to the set of values~a vector indexed bys!
$ f s(x)%, and hence it is unique. This statement also holds
the cases when more than two probability distributions
preserved.

In quantum cases, we can similarly conduct the refi
ment of the decomposition of the Hilbert space into a dir
sum of subspaces by repeated uses of Theorem 1. The
form of the decomposition, however, is not unique in co
trast to the classical cases. One reason for this differenc
that the preservation of quantum states requires another
of conditions, which will be described in the following se
tion.

C. Property of quantum signals

In this section, we describe another basic theorem
applies when a stater is preserved by an operation that a
fects two subspaces,H1 andH2 , independently. In order to
preserve the off-diagonal partP2rP1 , the operation onH1
and that onH2 must satisfy a kind of ‘‘similarity.’’ This
requirement is stated in the form of the following theorem

Theorem 2.Let P1 and P2 be the projections onto or
thogonal subspacesH1 and H2 , respectively. Letr be a
density operator whose support isH1% H2 . Suppose that
P2rP1Þ0. Let K1 andK2 be the support and the image
P2rP1 , respectively, andKi

'[Hi2Ki ( i 51,2). Take the
polar decompositionP2rP15WN, whereN is a positive op-
erator onK1 and W is a unitary operator fromK1 to K2 .
Then, any pair of UiPU(Hi) ( i 51,2) that satisfies
TU1% U2

(r)5r can be written asUi5Vi % Ṽi , where Vi

PU(Ki), ṼiPU(Ki
'), and

V25~W^ 1E!V1~W†
^ SE!. ~22!

An intuitive explanation for this theorem is as follow
The polar decomposition ofP2rP1 means that it is written as
P2rP15(kakuk&2 1^ku, whereak are positive numbers, an
$uk& i% is a basis ofKi ( i 51,2). This implies that the coher
ence inr is held in the pair (uk&1 ,uk&2). In order to retain
this coherence, the operationTU1% U2

should not change this

pairing relation, namely, if the operationV1 on K1 changes
uk&1 to uk8&1 , the operationV2 on K2 should also change
uk&2 to uk8&2 . In addition, the change in the ancilla systemE
02231
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caused by the operationV1 must be identical to that byV2 in
order to avoid decoherence in the marginal state forH1
% H2 . Therefore,V1 and V2 must operate onK1^ HE and
K2^ HE identically under the isomorphismW, which is im-
plied by Eq.~22!.

Theorem 2 is proved as follows. Let us regardN andW as
operators fromH12[H1% H2 to H12 by extending the do-
main and the range. Note thatN:H12→H12 is a positive
semidefinite operator with its supportK1 and its imageK1 ,
and W:H12→H12 is a partial isometry with its supportK1
and its imageK2 . The operatorW satisfiesW250, W†W is
the projection ontoK1 , andWW† is the projection ontoK2 .
Let us define

P6[@W†W1WW†6~W1W†!#/2. ~23!

These two operators are orthogonal projections since we
easily obtainP6

2 5P6 andP1P250. Note thatP11P2 is
the projection ontoK1% K2 . Using these projections, defin

O[4~P1ANP1!224~P2ANP2!2. ~24!

Substituting Eq.~23! and using relations such asW25NW
50 andW†WAN5AN, we obtainO5WN1NW†5P2rP1
1P1rP2 . SinceO25WN2W†1N2, the support ofO is K1
% K2 . Let us suppose thatU1PU(H1) andU2PU(H2) sat-
isfy TU1% U2

(r)5r. Noting that

@Pi ^ 1E ,U1% U2#~Pi ^ SE!50 ~ i 51,2!, ~25!

we have

TU1% U2
~PirPj !5PiTU1% U2

~r!Pj5PirPj ~26!

for any i 51, 2 and j 51, 2. From this relation, we have
TU1% U2

(O)5O. The form of Eq.~24!, together with the fact

that the support ofO coincides with the support ofP1

1P2 , means thatP1 is the projection onto the spac
spanned by the eigenvectors ofO with positive eigenvalues
Then, using Lemma 1, we obtain

@P1 ^ 1E ,U1% U2#~P1 ^ SE!50. ~27!

Similarly, noting thatTU1% U2
(2O)52O and thatP2 is the

projection onto the space spanned by the eigenvector
2O with positive eigenvalues, we have

@P2 ^ 1E ,U1% U2#~P2 ^ SE!50. ~28!

Combining Eqs. ~27! and ~28! with W†W1WW†5P1

1P2 , we obtain @(W†W1WW†) ^ 1E ,U1% U2#@(W†W
1WW†) ^ (E#50, or equivalently,

@W†W^ 1E ,U1#~W†W^ SE!50 ~29!

and

@WW†
^ 1E ,U2#~WW†

^ SE!50. ~30!
8-4
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From Eq. ~26!, we have TU1% U2
(P1rP1)5TU1

(P1rP1)

5P1rP1 . Applying this and Eq.~29! to Lemma 2~note that
the support ofP1rP1 is H15K1% K1

'!, we obtain

@~P12W†W! ^ 1E ,U1#@~P12W†W! ^ SE#50. ~31!

Equations~29! and ~31! imply that U1 can be written as
U15V1% Ṽ1 , whereV1PU(K1) andṼ1PU(K1

') are related

to U1 as V15U1uK1 and Ṽ15U1uK1
' . The same argumen

applies to Eq.~30!, leading to the conclusion thatU2 can be
written asU25V2% Ṽ2 , whereV2PU(K2) and Ṽ2PU(K2

')

are related toU2 as V25U2uK2 and Ṽ25U2uK2
' . Finally,

combining Eqs.~27! and ~28! with W1W†5P12P2 , we
obtain @(W1W†) ^ 1E ,U1% U2#@(W1W†) ^ (E#50. Ex-
panding this leads to

~W^ 1E!U1~W†
^ SE!1~W†

^ 1E!U2~W^ SE!2U1~W†W

^ SE!2U2~WW†
^ SE!50. ~32!

Applying P2^ 1E from the right~and restricting the domain
to K2!, we obtain Eq.~22!, which completes the proof.

IV. STRUCTURE OF HILBERT SPACE

The requirement coming from Theorem 2 introduces
structure in the Hilbert space, which is more complica
than a direct-sum decomposition into subspaces, nam
some of the subspaces~e.g., K1 and K2! are isometrically
isomorphic through unitary operators~e.g., W! connecting
them. To handle such a structure in general, we introduc
way of decomposing a Hilbert spaceH as follows. First,H is
decomposed to a direct sum of its orthogonal subspa
H(1), H(2),...,H( l max), namely,

H5 %
l 51

l max

H~ l !. ~33!

The size of each subspace is arbitrary. Then, each subs
H( l ) is further decomposed to a direct sum of its orthogo
subspacesH1

( l ) , H2
( l ) , ...,Hj

max
(l)

(l)
, namely,

H~ l !5 %
j 51

j max
~ l !

Hj
~ l ! . ~34!

Here the subspaces$Hj
( l )% ( j 51,2,...,j max

(l) ) are of the same
size, and an isometrically isomorphic relation is defin
among them through a set of unitary operators$Wj 8 j

( l ) :Hj
( l )

→Hj 8
( l )% satisfying Wk j

( l )Wji
( l )5Wki

( l ) . The numbersl max and
j max
(l) should satisfy

dim H5(
l 51

l max

j max
~ l ! dim H1

~ l ! . ~35!
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The above decomposition can be completely specified
a set of partial isometries$Wj 8 j

( l ) % acting onH satisfying the
following three conditions:

Wj 8 j
~ l !†

5Wj j 8
~ l ! , ~36!

Wj 8 i 8
~ l 8! Wi j

~ l !5d l ,l 8d i ,i 8Wj 8 j
~ l ! , ~37!

and

(
l 51

l max

(
j 51

j max
~ l !

Wj j
~ l !51, ~38!

where1 is the projection ontoH. Given such$Wj 8 j
( l ) %, we can

determine $Hj
( l )% as follows. From Eq.~37!, we have

Wj 8 j 8
( l 8) Wj j

( l )5d l ,l 8d j , j 8Wj j
( l ) . This means that$Wj j

( l )% are projec-
tion operators orthogonal to each other. If we takeHj

( l ) as the
support ofWj j

( l ) , Eq. ~38! assures that Eqs.~33! and~34! are
satisfied. For j Þ j 8, the relation Wj 8 j

( l )†Wj 8 j
( l )

5Wj j
( l ) and

Wj 8 j
( l ) Wj 8 j

( l )†
5Wj 8 j 8

( l ) resulting from Eqs.~36! and ~37! means

that the support and the image ofWj 8 j
( l ) are Hj

( l ) and Hj 8
( l ) ,

respectively. The mapWj 8 j
( l ) :Hj

( l )→Hj 8
( l ) is hence unitary and

introduces an isometrically isomorphic relation betweenHj
( l )

andHj 8
( l ) . The compatibility relationWj 8 i

( l ) Wi j
( l )5Wj 8 j

( l ) coming
from Eq. ~37! assures that an isometrically isomorphic re
tion is defined among$Hj

( l )% ( j 51,2,...,j max
(l) ).

The isomorphic relation among$Hj
( l )% naturally defines

an isomorphism~unitary map! G ( l ) from H( l ) to a tensor-
product Hilbert spaceHJ

( l )
^ HK

( l ) , where dimHJ
( l )5 j max

(l) and
dim HK

( l )5dim H1
( l )(5dim H2

( l )5¯). The unitary map
G ( l ):H( l )→HJ

( l )
^ HK

( l ) is defined as follows. Take an arbitrar
basis$u j &J

( l )% ( j 51,2,...,j max
(l) ) for HJ

( l ) and an arbitrary unitary
operatorG1

( l ) from H1
( l ) to u1&J

( l )
^ HK

( l ) . Then,G ( l ) is given by

G~ l !5(
j 51

j max
~ l !

~ u j &J
~ l !^1u ^ 1K

~ l !!G1
~ l !W1 j

~ l ! . ~39!

From$G ( l )%, we can construct an isomorphism~unitary map!
G from H to % lHJ

( l )
^ HK

( l ) as

G5 %
l

G~ l !. ~40!

Conversely, given a unitary mapG:H→ % lHJ
( l )

^ HK
( l ) , we

can construct a set of partial isometries$Wj 8 j
( l ) % in H satisfy-

ing Eqs.~36!–~38! as follows. Take an arbitrary basis$u j &J
( l )%

( j 51,2,...,j max
(l) ) for HJ

( l ) . Then, if we set

Wj 8 j
~ l !

5G†~ u j 8&J
~ l !^ j u ^ 1K

~ l !!G, ~41!

Eqs.~36!–~38! are apparently satisfied.
In the above construction of$Wj 8 j

( l ) % from G, we see that

different decompositions, for example,$Wj 8 j
( l ) % and $W̃j 8 j

( l ) %,
can be derived from the sameG due to the arbitrariness in th
8-5
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choice of basis$u j &J
( l )%. This implies that the two differen

sets$Wj 8 j
( l ) % and $W̃j 8 j

( l ) % correspond to the same structure
H. The definition ofG also has similar degeneracy, e.g
changing the order of the indexl merely alters the way o
representation and does not change the structure itself.
thus natural to define astructurein H as an equivalence clas
defined among the sets$W̃j 8 j

( l ) % or among the isometriesG in

the following way. Two decompositions specified by$Wj 8 j
( l ) %

and$W̃j 8 j
( l ) % are equivalent and correspond to the same st

ture if

W̃j 8 j
@P~ l !#

5(
i ,i 8

uj 8 i 8
~ l ! Wi 8 i

~ l !uji
~ l !* , ~42!

whereP( l ) is a permutation of the indexl andui j
( l ) is the~i,j!

element of a unitary matrixu( l ). Two decompositions speci
fied by G:H→ % lHJ

( l )
^ HK

( l ) and G̃:H→ % lH̃J
( l )

^ H̃K
( l ) are

equivalent and correspond to the same structure ifG̃G† is
written as

G̃G†5 %
l

vJ
~ l !

^ vK
~ l ! , ~43!

wherevJ
( l ) is a unitary map fromHJ

( l ) to H̃J
@P( l )# , andvK

( l ) is

a unitary map fromHK
( l ) to H̃K

@P( l )# .
The relation among the definitions made so far is summ

rized as follows. A structureD is specified if a set$Wj 8 j
( l ) % or

a mapG is given. Given a structureD, the set$Wj 8 j
( l ) % and the

mapG are not uniquely determined, and are only determin
up to the conditions~42! and ~43!. The quantity l max is
uniquely determined, and$ j max

(l) % are unique up to the permu
tation of the indexl.

In the rest of the paper, we represent the isomorphic r
tion defined fromG:H→ % lHJ

( l )
^ HK

( l ) simply by

H5 %
l

HJ
~ l !

^ HK
~ l ! . ~44!

An operatorA acting onH and an operatorAJK acting on
% lHJ

( l )
^ HK

( l ) is regarded as the same if

AJK5GAG† ~45!

holds. We also simply write this relation as

AJK5A, ~46!

whenever the identity ofG is obvious in the context.

V. OPERATION PRESERVING A SET OF STATES

In this section, we give a solution to the problem form
lated in Sec. II, namely, we identify the setUND given in Eq.
~3!. We first define a set of isometriesV(D) associated with
a structureD in HA , and define an indexr (D) that gives the
degree of refinement ofD. Then we apply Theorems 1 and
repeatedly to refine the structure inHA , obtaining a series o
structures D0 ,D1 ,...,Dfin satisfying r (D0),r (D1),¯
02231
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,r(Dfin) and V(D0).V(D1).V(Dfin).UND . It will be
shown that under the final structureDfin , the states$rs% have
a simple form@Eq. ~85!#, and we can easily identify the se
UND .

We first define a set of isometriesV(D) associated with a
structureD in HA . Let WD5$Wj 8 j

( l ) % be a set of isometries
that specifiesD. With this notation, we define the setV(D) as

V~D ![$UPUallu;Wj 8 j
~ l ! PWD ,U~Wj 8 j

~ l !
^ SE!

5~Wj 8 j
~ l !

^ 1E!U%. ~47!

This definition is consistent with the arbitrariness in t
choice of WD , namely, V(D) depends only onD. Let
GD :HA→ % lHJ

( l )
^ HK

( l ) be the isomorphism determined from
WD through Eqs.~39! and~40!. Under this isomorphism, le
OA be an operator acting onHA that is written as

OA5 %
l

OJ
~ l !

^ 1K
~ l ! , ~48!

whereOJ
( l ) operates onHJ

( l ). Using Eq.~41!, OA is written as
a linear combinationOA5( l( j , j 8cj 8 j

( l ) Wj 8 j
( l ) . Hence,U(OA

^ (E)5(OA^ 1E)U holds for anyUPV(D). SinceU satis-
fies this equation for anyOA in the form of Eq.~48!, we
conclude that anyUPV(D) can be written in a simple form

U5 %
l

1J
~ l !

^ UKE
~ l ! , ~49!

where UKE
( l ) PU(HK

( l )). Conversely, any isometry written in
the form~49! belongs toV(D), because anyWj 8 j

( l ) has a form
of OA in Eq. ~48!.

Next, we introduce an indexr (D) that represents the de
gree of refinement of the structureD, defined as

r ~D ![
1

2 S (
l 51

l max

j max
~ l ! D S (

l 51

l max

j max
~ l ! 11D 2 l max11. ~50!

This quantity takes an integer value in the following rang

1<r<
1

2
~dimHA!~dimHA11!. ~51!

This bound ensures that, when dimHA is finite, any proce-
dure of finding a series of structures with increasing deg
of refinement will halt within a finite number of steps.

The starting point of the refinement is to show that t
trivial structureD0 in HA , for which l max51, and j max

(1) 51,
satisfiesUND,V(D0). Applying rall to Lemma 1 and noting
Eq. ~6!, we obtain

@1A^ 1E ,U#~1A^ SE!50 ~52!

for any isometryUPUall that satisfiesTU(rall)5rall . Here
1A is the projection ontoHA . This equation implies that the
image of anyUPUND is a subspace ofHA^ HE , namely,
8-6
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UND,U(HA). Since the setWD0
consists of only one ele

ment, W11
(1)51A , it is obvious from the definition~47! that

UND,V(D0).
Next, we state two lemmas to show that applying The

rems 1 and 2 generally advances the refinement.

Lemma 3.Let G:HA→ % lHJ
( l )

^ HK
( l ) be a unitary map tha

specifies a structureD. Suppose thatUND,V(D) and there

exist sPS, l 8, a pure stateua&PHJ
( l 8) , and a unitary opera

tor V acting onHJ
( l 8) such that for anyc>0,

~ ua&^auV^ 1K
~ l 8!!rs~V†ua&^au ^ 1K

~ l 8!!

Þc~ ua&^au ^ 1K
~ l 8!!rall~ ua&^au ^ 1K

~ l 8!!. ~53!

Then, there exists a structureD̃ such thatr (D̃).r (D) and
UND,V(D̃).

For the proof, we actually constructD̃ assuming that
r[(ua&^auV^ 1K

(1))rs(V
†ua&^au ^ 1K

(1)) and r8[(ua&^au
^ 1K

(1))rall(ua&^au ^ 1K
(1)) are different states~here we have

assumed thatl 851, without loss of generality!. Let H5ua&
^ HK

(1) . Equation~6! assures thatH is the support ofr8, and
hence is the support ofr1r8. Then, using Theorem 1, w
can find the decompositionH5H1% H2 , whereH1 andH2

are nonzero subspaces. Next, take a basis$u j &J
( l )% ( j

51,2,...,j max
(l) ) for HJ

( l ) , such thatu1&J
(1)5ua&, and construct a

set W5$Wj 8 j
( l ) % by using Eq.~41!. Let P1 and P2 be the

projections ontoH1 andH2 , respectively, and define a ne
setW̃5$W̃j 8 j

( l ) % as follows:

W̃j 8 j
~1![Wj 81

~1! P1W1 j
~1! , ~54!

W̃
j 8 j

~ l max11!
[Wj 81

~1! P2W1 j
~1! , ~55!

W̃j 8 j
~ l !

5Wj 8 j
~ l ! , ~2< l< l max!. ~56!

Noting thatP11P25W11
(1) , we can easily confirm that th

conditions ~36!–~38! are satisfied by this new setW̃, and
henceW̃ specifies a structure ofHA . Let us denote this
structure byD̃.

The quantitiesl̃ max and j̃ max
(l) for W̃ are related tol max and

j max
(l) for W as

l̃ max5 l max11, ~57!

j̃ max
~1! 5 j̃ max

~ l max11!
5 j max

~1! , ~58!

j̃ max
~ l ! 5 j max

~ l ! ~2< l< l max!. ~59!

Then, from Eq.~50! and j max
(1) >1, we have

r ~D̃ !2r ~D !5
j max
~1!

2 S 2(
l 51

l max

j max
~ l ! 1 j max

~1! 11D 21>1. ~60!
02231
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SinceUND,V(D), any UPUND can be written asU5

% l1J
( l )

^ UKE
( l ) @Eq. ~49!#. From this form and the relation

TU(rs)5rs and TU(rall)5rall , we have TU0
(r)5r and

TU0
(r8)5r8, whereU0[ua&^au ^ UKE

(1)PU(H). Then, from

Theorem 1,U0 is written asU05U1% U2 with UiPU(Hi)
( i 51,2). This form implies thatU(Pi ^ SE)5U0(Pi ^ SE)
5(Pi ^ 1E)U05(Pi ^ 1E)U for i 51, 2. Since UPV(D),
U(Wj 8 j

( l )
^ SE)5(Wj 8 j

( l )
^ 1E)U for any Wj 8 j

( l ) PW. Combining
these commuting relations and Eqs.~54!–~56!, we have

U~W̃j 8 j
~ l !

^ SE!5~W̃j 8 j
~ l !

^ 1E!U ~61!

for any W̃j 8 j
( l ) PW̃. Hence UPV(D̃), and we obtain

UND,V(D̃). This completes the proof of Lemma 3.

Lemma 4.Let G:HA→ % lHJ
( l )

^ HK
( l ) be a unitary map tha

specifies a structureD. Suppose thatUND,V(D) and there

existsPS, l 8, l 9(Þ l 8), a pure stateua& in HJ
( l 8) , and a pure

stateub& in HJ
( l 9) satisfying the following conditions:

supp@~ ua&^au ^ 1K
~ l 8!!rs~ ua&^au ^ 1K

~ l 8!!#5ua& ^ HK
~ l 8! ,

~62!

supp@~ ub&^bu ^ 1K
~ l 9!!rs~ ub&^bu ^ 1K

~ l 9!!#5ub& ^ HK
~ l 9! ,

~63!

and

~ ub&^bu ^ 1K
~ l 9!!rs~ ua&^au ^ 1K

~ l 8!!Þ0. ~64!

Then, there exists a structureD̃ such thatr (D̃).r (D) and
UND,V(D̃).

For the proof, we actually constructD̃ assuming that condi-
tions~62!–~64! are satisfied forl 851 andl 952, without loss
of generality. LetH15ua& ^ HK

(1) , H25ub& ^ HK
(2) , and Pi

be the projection ontoHi ( i 51,2). Then, we can apply
Theorem 2 by choosingr5(P11P2)rs(P11P2), and ob-
tain the decompositionHi5Ki % Ki

' ( i 51,2) whereK1 and
K2 are nonzero subspaces, and the unitary operatorW:K1

→K2 . Without loss of generality, we assume that dimK1
'

>dim K2
' . Note thatKi

' ( i 51,2) may be zero. Next, take
basis $u j &J

( l )% ( j 51,2,...,j max
(l) ) for HJ

( l ) ( l 51,2) such that
u1&J

(1)5ua& and u1&J
(2)5ub&, and construct a setW5$Wj 8 j

( l ) %
by using Eq.~41!. Let Qi andQi

' be the projections ontoKi

and Ki
' ( i 51,2), respectively, and define a new setW̃

5$W̃j 8 j
( l ) % as follows:

W̃j 8 j
~1![Wj 81

~1! Q1W1 j
~1! , ~65!

W̃j 8,b1 j
~1! [Wj 81

~1! Q1W†Q2W1 j
~2! , ~66!

W̃b1 j 8, j
~1! [Wj 81

~2! Q2WQ1W1 j
~1! , ~67!

W̃b1 j 8,b1 j
~1! [Wj 81

~2! Q2W1 j
~2! , ~68!
8-7
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W̃j 8 j
~ l 21![Wj 8 j

~ l !
~3< l< l max!, ~69!

W̃
j 8 j

~ l max![Wj 81
~1! Q1

'W1 j
~1! if dim K1

'Þ0, ~70!

W̃
j 8 j

~ l max11!
[Wj 81

~2! Q2
'W1 j

~2! if dim K2
'Þ0, ~71!

where b[ j max
(1) . Noting that Qi1Qi

'5W11
( i ) ( i 51, 2), we

can easily confirm that the conditions~36!–~38! are satisfied
by this new setW̃, and henceW̃ specifies a structure ofHA .
Let us denote this structure byD̃.

The quantitiesl̃ max and j̃ max
(l) for W̃ are related tol max and

j max
(l) for W as

l̃ max5 l max211s11s2 , ~72!

j̃ max
~1! 5 j max

~1! 1 j max
~2! , ~73!

j̃ max
~ l 21!5 j max

~ l ! ~3< l< l max!, ~74!

j̃ max
~ l max!5 j max

~1! if dim K1
'Þ0, ~75!

j̃ max
~ l max11!

5 j max
~2! if dim K2

'Þ0, ~76!

wheresi51 if dim Ki
'Þ0, andsi50 if dim Ki

'50. Then,
from Eq. ~50!, we have

r ~D̃ !2r ~D !5
s

2 S 2(
l 51

l max

j max
~ l ! 1s11D 112s12s2 ,

~77!

where s[s1 j max
(1) 1s2jmax

(2) . Since s>s11s2>0, we obtain

r (D̃)2r (D)>1. Hencer (D̃).r (D).
SinceUND,V(D), any UPUND can be written asU5

% l1J
( l )

^ UKE
( l ) . From this form and the relationsTU(rs)

5rs , we have TU1% U2
(r)5r, where U1[ua&^au ^ UKE

(1)

PU(H1) and U2[ub&^bu ^ UKE
(2)PU(H2). Then from Theo-

rem 2 Ui5Vi % Ṽi , where ViPU(Ki), ṼiPU(Ki
') ( i

51,2), andV25(W^ 1E)V1(W†
^ SE). This form implies

that for i 51,2, U(Qi ^ SE)5Vi(Qi ^ SE)5(Qi ^ 1E)Vi

5(Qi ^ 1E)U and U(Qi
'

^ SE)5Ṽi(Qi
'

^ SE)5(Qi
'

^ 1E)Ṽi5(Qi
'

^ 1E)U. We can also show thatU(W^ SE)
5V2(W^ SE)5(W^ 1E)V15(W^ 1E)U and U(W†

^ SE)
5V1(W†

^ SE)5(W†
^ 1E)V25(W†

^ 1E)U. Since U
PV(D), U(Wj 8 j

( l )
^ SE)5(Wj 8 j

( l )
^ 1E)U for any Wj 8 j

( l ) PW.
Combining these commuting relations and Eqs.~65!–~71!,
we have

U~W̃j 8 j
~ l !

^ SE!5~W̃j 8 j
~ l !

^ 1E!U ~78!

for any W̃j 8 j
( l ) PW̃. Hence UPV(D̃), and we obtain

UND,V(D̃). This completes the proof of Lemma 4.
Lemmas 3 and 4 mean that starting fromD0 , we can find

a sequenceD0 , D1 , D2 ,..., Dn ,... that satisfiesr (D0)
,r (D1),r (D2),¯ and UND,V(Dn). Since the integer
02231
value r (Dn) has an upper bound as shown in Eq.~51!, the
sequence must end at some point. LetDfin be the last one in
the sequence, and consider an isomorphismGfin :HA→
% lHJ

( l )
^ HK

( l ) corresponding toDfin . Dfin should not satisfy
the prerequisites of Lemmas 3 and 4. From the prerequ
of Lemma 3, we see thatDfin satisfies the following: for any
sPS,l , a pure stateua&PHJ

( l ) , and any unitary operatorV
acting onHJ

( l ) , there existsc>0 such that

~ ua&^auV^ 1K
~ l !!rs~V†ua&^au ^ 1K

~ l !!5c~ ua&^au ^ 1K
~ l !!rall~ ua&

3^au ^ 1K
~ l !!. ~79!

Let us fix l and ua& for the moment. Because of Eq.~6!, Z
[Tr@(ua&^au ^ 1K

( l ))rall(ua&^au ^ 1K
( l ))#Þ0. Let us define a

normalized density operatorrK
( l ) acting onHK

( l ) as

rK
~ l ![~^au ^ 1K

~ l !!rall~ ua& ^ 1K
~ l !!/Z. ~80!

Equation~6! also assures that

supp~rK
~ l !!5HK

~ l ! . ~81!

The condition~79! can be stated as, for anysPS and any
unitary operatorV, there existsc8>0 such that

~ ua&^auV^ 1K
~1!!rs~V†ua&^au ^ 1K

~ l !!5c8ua&^au ^ rK
~ l ! .

~82!

This is satisfied if and only if$rs%sPS are written in the form

~1J
~ l !

^ 1K
~ l !!rs~1J

~ l !
^ 1K

~ l !!5p~s,l !rJ
~s,l !

^ rK
~ l ! , ~83!

where p(s,l )>0 and rJ
(s,l ) , which is defined only when

p(s,l ).0, is a normalized density operator acting onHJ
( l ) .

Note thatrK
( l ) is independent ofs.

Next, let us consider the prerequisites~62!–~64! of
Lemma 4. If Eq. ~64! is satisfied, (ua&^au
^ 1K

( l 8))rs(ua&^au ^ 1K
( l 8))Þ0. Then, the form~83! and Eq.

~81! implies that Eq.~62! is also satisfied. Similarly, Eq.~63!
is also satisfied and all the prerequisites are met. Theref
the condition thatDfin should not satisfy the prerequisite o
Lemma 4 means that

~1J
~ l 8!

^ 1K
~ l 8!!rs~1J

~ l !
^ 1K

~ l !!50 ~84!

for any l and l 8(Þ l ).
Now we can state the main conclusion of this paper. Fr

Eqs.~1!, ~83!, and~84!, we conclude thatrs is written as

rs5 %
l

p~s,l !rJ
~s,l !

^ rK
~ l ! ~85!

under the decomposition of their supportHA ,

HA5 %
l

HJ
~ l !

^ HK
~ l ! , ~86!

which corresponds toDfin . HererJ
(s,l ) and rK

( l ) are normal-
ized density operators acting onHJ

( l ) andHK
( l ) , respectively,
8-8
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andp(s,l ) is the probability for the staters to be in the sub-
spaceHJ

( l )
^ HK

( l ) . Note thatrK
( l ) is independent ofs. Since

UND,V(Dfin), anyUPUND should be written as

U5 %
l

1J
~ l !

^ UKE
~ l ! , ~87!

whereUKE
( l ) PU(HK

( l )). It is obvious thatUKE
( l ) must obey

TrE@UKE
~ l ! ~rK

~ l !
^ SE!UKE

~ l !†#5rK
~ l ! . ~88!

The condition expressed by Eqs.~87! and~88! together is an
equivalent condition for the conditionTU(rs)5rs , since the
sufficiency is apparently satisfied.

The condition ~87!, which is applied for an isometry
U:HA^ uu&E→HA8 ^ HE , can be rewritten in the form tha
applies to a unitary operator acting onHA8 ^ HE as follows.
Any unitary operatorU acting onHA8 ^ HE that preserves
$rs%sPS is expressed in the following form:

U~1A^ SE!5 %
l

1J
~ l !

^ UKE
~ l ! ~1K

~ l !
^ SE!, ~89!

where UKE
( l ) are unitary operators acting on the combin

spaceHK
( l )

^ HE .
From the decomposition~85!, we can classify the degree

of freedom of the system into three types:
~a! The indexl. The information ons is stored classically,

since there are no off-diagonal elements and everythin
expressed by the probability distributionp(s,l ). The operation
U, which preserves$rs%, must act independently on eac
subspaceHJ

( l )
^ HK

( l ) . With suchU one can establish classic
correlations between the system and the ancilla throughl, but
not quantum correlations.

~b! The inner degree of freedom for eachHJ
( l ) . The infor-

mation ons is stored nonclassically, in the sense that th
are nonvanishing off-diagonal elements for any nontriv
observables. The operationU must not act on this degree o
freedom.

~c! The inner degree of freedom for eachHK
( l ) . No infor-

mation ons is stored here. The operationU can do anything
as long as it leaves the system in the known staterK

( l ) . For
example, one can establish quantum correlation between
system and the ancilla.

In short, the principle derived here is stated as follows
order to preserve the state of a system, no access is allo
to the part with quantum information, classical access is
lowed to the part with classical information, and quantu
access is allowed to the part with no information.

VI. PROPERTIES OF STRUCTURE

In the last section, we introduced a procedure to actu
construct a structureDfin , and stated the principle for th
operations preserving$rs% using Dfin . In this section, we
will show that the structureDfin derived from the procedure
is unique. We will also give a criteria of determining wheth
a given structure is equivalent toDfin or not, without doing
the procedure in Sec. V.
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We first define a property of structure called ‘‘maximal
which is, as will soon be shown, the property possessed
Dfin .

Definition 1. Let G:HA→ % lHJ
( l )

^ HK
( l ) be a unitary iso-

morphism corresponding to a structureD. We call D maxi-
mal if the following three conditions are met:

~i! GrsG
† is written as

GrsG
†5 %

l

p~s,l !rJ
~s,l !

^ rK
~ l ! , ~90!

whererJ
(s,l ) andrK

( l ) are normalized density operators actin
on HJ

( l ) andHK
( l ) , respectively.

~ii ! If a projectionP:HJ
( l )→HJ

( l ) satisfies

Pp~s,l !rJ
~s,l !5p~s,l !rJ

~s,l !P ~91!

for all sPS, thenP51J
( l ) or P50.

~iii ! No unitary operatorV:HJ
( l )→HJ

( l 8) ( lÞ l 8) exists that
satisfies

Vp~s,l !rJ
~s,l !5ap~s,l 8!rJ

~s,l 8!V ~92!

for all sPS and for a positive numbera.
We will then prove that the structure derived and used

the preceding section satisfies the above conditions.

Lemma 5.Any structureDfin derived by the procedure in
Sec. V is maximal.

Let Gfin :HA→ % lHJ
( l )

^ HK
( l ) be an isomorphism corre

sponding toDfin . The condition~i! in Definition 1 is appar-
ently satisfied. For the condition~ii !, suppose that a projec
tion P:HJ

( l )→HJ
( l ) satisfiesPp(s,l )rJ

(s,l )5p(s,l )rJ
(s,l )P for any

sPS. Construct an isometryU1PU(HA) such that it oper-
ates onH( l ) as

U1@~1J
~ l !

^ 1K
~ l !! ^ uu&E^uu#5~P^ 1K

~ l !! ^ uu'&E^uu1@~1J
~ l !2P!

^ 1K
~ l !# ^ uu&E^uu, ~93!

whereuu'&E is a state orthogonal touu&E , andU1 leaves the
other subspaces unaltered. It is easy to show thatU1PUND

using the relationPp(s,l )rJ
(s,l )5p(s,l )rJ

(s,l )P. This means that
U1 should be written in the form of Eq.~87!, which is only
possible whenP51J

( l ) or P50. For the condition~iii !, we
will show that the existence ofV leads to a contradiction
Without loss of generality, assume that there exists a uni
operator V:HJ

(1)→HJ
(2) that satisfies p(s,1)VrJ

(s,1)V†

5ap(s,2)rJ
(s,2) . We can construct an isometryU2PUND in

the following way. LetHE
(1) and HE

(2) be orthogonal sub-
spaces ofHE that are also orthogonal touu&E . There exists
an isometry VKE

(21) :HK
(1)

^ uu&E→HK
(2)

^ HE
(2) satisfying

TrE@VKE
(21)(rK

(1)
^ SE)VKE

(21)†#5rK
(2) . Physically, a simple ex-

ample is the operation that discards the input state away
prepares the system inrK

(2) . Similarly, let VKE
(12) :HK

(2)
^ uu&E

→HK
(1)

^ HE
(1) be an isometry satisfying TrE@VKE

(12)(rK
(2)

^ SE)VKE
(12)†#5rK

(1) . Then, we can construct a unitary oper
tor U2 such that it acts onH(1)

% H(2) as
8-9
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U2@~P~1!1P~2!! ^ SE#5b~P~1!
^ SE1V†

^ VKE
~12!!

1A12b2~V^ VKE
~21!1P~2!

^ SE!,

~94!

where P( l )[1J
( l )

^ 1K
( l ) ~l 51, 2! and b5Aa/(11a), and it

does nothing on the other subspaces withl .2. It is then easy
to show that U2PUND using the relationp(s,1)VrJ

(s,1)V†

5ap(s,2)rJ
(s,2) . On the other hand, because of the cross te

V†
^ VKE

(12) andV^ VKE
(21) , U2 cannot be written in the form o

Eq. ~87!, leading to a contradiction. The lemma is th
proved.

It is convenient to give a lemma showing that the con
tions ~ii ! and ~iii ! in Definition 1 are equivalent to slightly
stronger conditions.

Lemma 6.Let G:HA→ % lHJ
( l )

^ HK
( l ) be a unitary isomor-

phism that corresponds to a maximal structureD, and
GrsG

†5 % l p
(s,l )rJ

(s,l )
^ rK

( l ) . Then
~a! if an operatorL:HJ

( l )→HJ
( l ) satisfies

Lp~s,l !rJ
~s,l !5bp~s,l !rJ

~s,l !L ~95!

for all sPS and for a complex numberb, then L5c1J
( l ) ,

where c is a complex number. Especially,L50 when b
Þ1.

~b! If an operatorL:HJ
( l )→HJ

( l 8) ( lÞ l 8) satisfies

Lp~s,l !rJ
~s,l !5ap~s,l 8!rJ

~s,l 8!L ~96!

for all sPS and for a positive numbera, thenL50.

First, we prove condition~a!. If L is invertible inHJ
( l ) , op-

eratingL21 from the left and taking the trace for both sid
of Eq. ~95!, we havep(s,l )5bp(s,l ) for any s and henceb
51. L is thus not invertible ifbÞ1. Let c be an eigenvalue
of L when b51, and letc50 whenbÞ1. DefineL8[L
2c1J

( l ) . Then,L8 is not invertible inHJ
( l ) for any value ofb.

From Eq.~95!, we haveL8p(s,l )rJ
(s,l )5bp(s,l )rJ

(s,l )L8. Let P
be the projection onto kerL8, the kernel ofL8. For any
vector ua&PkerL8, L8p(s,l )rJ

(s,l )ua&5bp(s,l )rJ
(s,l )L8ua&50,

and hencep(s,l )rJ
(s,l )ua&PkerL8. We thus havePp(s,l )rJ

(s,l )

5p(s,l )rJ
(s,l )P. Since L8 is not invertible in HJ

( l ) , PÞ0.
From ~ii ! in Definition 1, we haveP51J

( l ) andL850, hence
L5c1J

( l ) . For the proof of~b!, suppose that Eq.~96! holds.
Together with its Hermite conjugate, we hav
L†Lp(s,l )rJ

(s,l )5p(s,l )rJ
(s,l )L†L for all s. From ~b!, L†L

5c1J
( l ) . A similar argument givesLL†5c81J

( l 8) . If LÞ0,

c.0 andL/Ac:HJ
( l )→HJ

( l 8) is unitary, but this conflicts with
~iii ! in Definition 1. HenceL50.

The conditions~ii ! and~iii ! for maximal structures have
simple meaning when we consider the algebra overC gen-
erated by the set of operators$rs%sPS . Let us denote this
algebra byX. HA is then regarded as aX module. Let
G:HA→ % lHJ

( l )
^ HK

( l ) be an isomorphism corresponding to
maximal structureD. Let us write a diagonalization ofrK

( l ) ,
as
02231
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~ l !5(

k
qk

~ l !uak&K
~ l !^aku, ~97!

where$uak&K
( l )% (k51, 2,..., dimHK

( l )) is a basis ofHK
( l ) , and

qk
( l ).0 since supp(rall)5HA . Consider a direct-sum decom

positionHA5 % l( % kH( l ,k)), whereH( l ,k)5HJ
( l )

^ uak&K
( l ) un-

der the isomorphismG. H( l ,k) are then theX submodules,
namely, Aux&PH( l ,k) for any APX and for any ux&
PH( l ,k). The condition ~ii ! or ~a! implies that H( l ,k) is
simple, namely, it has no submodules other than zero
H( l ,k) itself. The condition~iii ! or ~b! means that two sub
modulesH( l ,k) andH( l 8,k8) with lÞ l 8 are notX isomorphic.
To show it, suppose thatH( l ,k) andH( l 8,k8) areX isomorphic,
namely, there exists a linear invertible mapL:H( l ,k)

→H( l 8,k8) satisfyingLAux&5ALux& for any APX and for
any ux&PH( l ,k). GLG† is written as GLG†5L8

^ uak8&K
( l 8)

K
( l )^aku, whereL8 is a nonzero operator fromHJ

( l )

to HJ
( l 8) . SinceLrs5rsL for any sPS, we have

qk
~ l !L8p~s,l !rJ

~s,l !5qk8
~ l 8!p~s,l 8!rJ

~s,l 8!L8. ~98!

Lemma 6 implies that this happens only whenl 5 l 8.
While H( l ,k) and H( l 8,k8) are notX isomorphic whenl

Þ l 8, H( l ,k) and H( l ,k8) are X isomorphic only whenqk
( l )

5qk8
( l ) , and notX isomorphic whenqk

( l )Þqk8
( l ) . It may be

convenient if we can construct an algebraX̃ such thatH( l ,k)

and H( l 8,k8) are X̃ isomorphic iff l 5 l 8. We will show that
such an algebra can be constructed by ‘‘normalizing’’$rs%
relative torall . First, take a decomposition ofHA into simple
X submodules,HA5 % m( % iHmi), whereHmi andHm8 i 8 are
X isomorphic iff m5m8. Let Pmi be the projection onto
Hmi , andPm[( i Pmi . Then, we definer̃s as

r̃s5(
m,i

rsPmi@Tr~rallPmi!#
215(

m
@Tr~rallPm1!#21rsPm ,

~99!

where we have used the fact that Tr(rallPmi) is independent
of i sincerallPX. Let X̃ be the algebra overC generated by
the set of operators$r̃s%sPS . This definition is independen
of the choice of the decompositionHA5 % m( % iHmi). To
prove it, take another decompositionHA5 % m( % iHmi8 ) and
definePmi8 andPm8 in the same way as before. The number
submodules are the same in the two decompositions, and
can makeHmi andHmi8 to beX isomorphic by appropriately
arranging the order of summation~Jordan-Ho¨lder theorem!.
Let Vmi :Hmi→Hmi8 be aX isomorphism. Then,Pm8 jVmi is a
X homomorphism fromHmi to Hm8 j and hencePm8 jVmi

50 if mÞm8 ~Schur’s lemma!. This implies thatHmi8 is a
subspace of% iHmi . We thus havePm8 Pm5Pm8 , and simi-
larly, Pm8 Pm5Pm , hencePm5Pm8 . SinceHm1 andHm18 are

X isomorphic, Tr(rallPm1)5Tr(rallPm18 ). The algebraX̃ and
$r̃s% are thus uniquely defined by Eq.~99! when$rs% andrall
are given.
8-10



on

g

f

at

ds a
ure

e

t-

ure

ed

by

n

al

ure

e-
indi-

OPERATIONS THAT DO NOT DISTURB . . . PHYSICAL REVIEW A66, 022318 ~2002!
SinceHA5 % l( % kH( l ,k)) is also a decomposition ofHA
into simpleX submodules, we can calculater̃s as follows.
The form ~90! of rs assures thatrall is written as

GrallG
†5 %

l

pall
~ l !rJ

~all,l !
^ rK

~ l ! , ~100!

where rJ
(all,l ) are normalized density operators acting

HJ
( l ) . Equation~6! assures thatpall

( l ).0. If we write the pro-
jection onto H( l ,k) as P( l ,k), we have Tr(rallP

( l ,k))
5pall

( l )qk
( l ) . Then we obtain

Gr̃sG
†5 %

l

p~s,l !

pall
~ l ! rJ

~s,l !
^ 1K

~ l ! . ~101!

It is now obvious thatH( l ,k) and H( l 8,k8) are X̃ isomorphic
when l 5 l 8. It is also easy to show that they are notX̃ iso-
morphic whenlÞ l 8, using a similar argument as above@Eq.

~98! changes toL8(p(s,l )/pall
( l ))rJ

(s,l )5(p(s,l 8)/pall
( l 8))rJ

(s,l 8)L8
in this case#.

Using the property of the algebraX̃, we can prove the
following lemma.

Lemma 7.The maximal structure is unique.

Let G:HA→ % lHJ
( l )

^ HK
( l ) be an isomorphism correspondin

to a maximal structureD, and Ḡ:HA→ % lH̄J
( l )

^ H̄K
( l ) be an

isomorphism corresponding to a maximal structureD̄. Take
bases$ubk&K

( l )% for HK
( l ) and $ub̄k&K

( l )% for H̄K
( l ) . Let H( l ,k) be

the image ofHJ
( l )

^ ubk&K
( l ) by G†, andH̄( l ,k) be the image of

H̄J
( l )

^ ub̄k&K
( l ) by Ḡ†. By appropriately choosing the order o

the indexl, we can make dimH̄K
( l )5dim HK

( l ) , andH( l ,k) is

X̃ isomorphic toH̄( l ,k8) if and only if l 5 l 8 ~Jordan-Ho¨lder
theorem!. Through the isomorphismsG and Ḡ, % lHJ

( l )

^ HK
( l ) and% lH̄J

( l )
^ H̄K

( l ) can be regarded asX̃ modules. Two

X̃ submodulesHJ
( l )

^ ubk&K
( l ) and H̄J

( l 8)
^ ub̄k8&K

( l 8) are X̃ iso-

morphic if and only if l 5 l 8. SinceḠG† is a unitaryX̃ iso-
morphism, it is a direct sum of unitaryX̃ isomorphisms
V( l ):HJ

( l )
^ HK

( l )→H̄J
( l )

^ H̄K
( l ) ~Schur’s lemma!. Note that

V( l )†@5(V( l ))21# is also aX̃ isomorphism. LetPk
( l ) be the

projection ontoHJ
( l )

^ ubk&K
( l ) , andP̄k

( l ) be the projection onto

H̄J
( l )

^ ub̄k&K
( l ) . Without loss of generality, we assume th

PW 1
( l )V( l )P1

( l )Þ0. SinceP̄1
( l )V( l )P1

( l ) and (PW 1
( l )V( l )P1

( l ))† are X̃
homomorphisms, (P̄1

( l )V( l )P1
( l ))†( P̄1

( l )V( l )P1
( l ))5(c11)

2P1
( l )

with c11.0 ~Schur’s lemma! and hence P̄1
( l )V( l )P1

( l )

5c11VJ
( l )

^ ub̄1&K
( l )^b1u, whereVJ

( l ) is a unitary map fromHJ
( l )

to H̄J
( l ) . Since1J

( l )
^ ub1&K

( l )^bku and 1̄J
( l )

^ ub̄k8&K
( l )^b̄1u are X̃

isomorphisms,VJ
( l )

^ ub̄k8&K
( l )^bku is also aX̃ isomorphism for

any k and k8. Then, from Schur’s Lemma (VJ
( l )

^ ub̄k8&K
( l )

3^bku)†PW k8
( l )V( l )Pk

( l )5ck8kPk
( l ) , and we obtainP̄k8

( l )V( l )Pk
( l )

5ck8kVJ
( l )

^ ub̄k8&K
( l )^bku. We thus obtain
02231
ḠG†5 %
l

V~ l !5 %
l

%
k,k8

P̄k8
~ l !V~ l !Pk

~ l !5 %
l

VJ
~ l !

^ VK
~ l ! ,

~102!

whereVK
( l ) :HK

( l )→H̄K
( l ) is unitary sinceḠG† andVK

( l ) are uni-

tary. This means that the two structures,D and D̄, are
equivalent@see Eq.~43!#, and the lemma is proved.

Let us write this maximal structure asDmax($rs%) that is
uniquely determined when$rs% is given. Lemmas 5 and 7
mean that the procedure described in Sec. V always yiel
unique maximal structure. This also means that if a struct
is found to be maximal, it must satisfy the properties ofDfin
derived in Sec. V. It will be convenient to state this in th
form of a theorem.

Theorem 3.Let $rs%sPS be a set of density operators ac
ing on HA8 . Suppose that the dimension ofHA

[øsPSsupp(rs) is finite. Let G:HA→ % lHJ
( l )

^ HK
( l ) be a

unitary isomorphism that corresponds to a maximal struct
Dmax($rs%sPS). Then, any unitary operatorU acting onHA8
^ HE that satisfiesTU(rs)5rs for any sPS is expressed in
the following form under the isomorphismG:

U~1A^ SE!5 %
l

1J
~ l !

^ UKE
~ l ! ~1K

~ l !
^ SE!, ~103!

where UKE
( l ) are unitary operators acting on the combin

spaceHK
( l )

^ HE .
Finally, let us consider the situation in which systemA is

made up of subsystems such thatHA5HA1^ HA2^¯ , and
the preparation of the initial state of systemA is indepen-
dently done for each subsystemHAi . In this case, the maxi-
mal structure forHA is simply given by the ‘‘direct product’’
of the maximal structures for each subsystem, as shown
the following theorem.

Theorem 4.Let $rs%sPS1
be density operators acting o

HA1 and$ss%sPS2
be density operators acting onHA2 . Sup-

pose that the dimensions ofHA1[øsPS1
supp(rs) andHA2

[øsPS2
supp(rs) are finite. LetG1 :HA1→ % l 1

HJ1
( l 1)

^ HK1
( l 1)

be a unitary isomorphism that corresponds to a maxim
structureDmax($rs%sPS1

), andG2 :HA2→ % l 2
HJ2

( l 2)
^ HK2

( l 2) be a
unitary isomorphism that corresponds to a maximal struct
Dmax($ss%sPS2

). Define HA[HA1^ HA2 , HJ
( l )[HJ1

( l 1)

^ HJ2
( l 2) , and HK

( l )[HK1
( l 1)

^ HK2
( l 2) , where l represents the

double index$ l 1 ,l 2%. Then,G[G1^ G2 :HA→ % lHJ
( l )

^ HK
( l )

corresponds to the maximal structureDmax($rs
^st%sPS1,tPS2

).

This theorem implies that the collective operation to ind
pendently prepared systems has the same power as
vidual operations. For the proof, we will show thatG satisfies
the three conditions of Definition 1. FromG1rsG1

†5

% l 1
p(s,l 1)rJ1

(s,l 1)
^ rK1

( l 1) and G2s tG2
†5 % l 2

q(t,l 2)sJ2
(t,l 2)

^ sK2
( l 2) ,

we have
8-11
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Grs^ s tG
†5 %

l 1 ,l 2

p~s,l 1!q~ t,l 2!~rJ1
~s,l 1!

^ sJ2
~ t,l 2!

! ^ ~rK1
~ l 1!

^ sK2
~ l 2!

!, ~104!

which meansG satisfies the condition~i! of Definition 1.
Next, construct a density operatorsall by a linear combina-
tion of the states$s t% tPS2

, such that supp(sall)5HA2 ~see

Sec. II!. Then, sall is written asG2sallG2
†5 % l 2

qall
( l 2)

sJ2
(all,l 2)

^ sK2
( l 2) , whereqall

( l 2)
.0 @see Eq.~100!#. Take a basis$uk& ( l 2)%

of HJ2
( l 2) that diagonalizessJ2

(all,l 2) , namely, sJ2
(all,l 2)uk& ( l 2)

5ck
( l 2)uk& ( l 2) with ck

( l 2)
.0. Suppose that for a value ofl

5$ l 1 ,l 2%, a projection operatorP:HJ
( l )→HJ

( l ) satisfies
Pp(s,l 1)q(t,l 2)(rJ1

(s,l 1)
^ sJ2

(t,l 2)) 5 p(s,l 1)q(t,l 2)(rJ1
(s,l 1)

^ sJ2
(t,l 2))P

for all s and t. Then,sJ2
(all,l 2) also satisfies

P~p~s,l 1!rJ1
~s,l 1!

^ sJ2
~all,l 2!

!5~p~s,l 1!rJ1
~s,l 1!

^ sJ2
~all,l 2!

!P
~105!

for all s. P can generally be written asP5(kk8Ak8k

^ uk8& ( l 2)^ku, whereAk8k are operators acting onHJ1
( l 1) . Sub-

stituting it into Eq. ~105!, we have Ak8kp
(s,l 1)rJ1

(s,l 1)

5bp(s,l 1)rJ1
(s,l 1)Ak8k for all s, where b5c

k8

( l 2)
/ck

( l 2) , and

henceAk8k5ak8k1J1
( l 1)

~Lemma 6!. P is thus written asP

51J1
( l 1)

^ BJ2 , whereBJ2 is an operator onHJ2
( l 2) . A similar

argument withHJ1
( l 1) andHJ2

( l 2) interchanged leads to the form

P5BJ1^ 1J2
( l 2) , whereBJ1 is an operator onHJ1

( l 1) . Noting

that P is a projector, we conclude thatP51J1
( l 1)

^ 1J2
( l 2) or P

50, which meansG satisfies the condition~ii ! of Definition
1. Finally, suppose that, without loss of generality, an ope

tor L:HJ1
(1)

^ HJ2
( l 2)→HJ1

(2)
^ H

J2
( l 28)

satisfiesp(s,1)q(t,l 2)L(rJ1
(s,1)

^ sJ2
(t,l 2))5p(s,2)q(t,l 28)(rJ1

(s,2)
^ s

J2
(t,l 28)

)L for all s and t. Then
we have

p~s,1!qall
~ l 2!

L~rJ1
~s,1!

^ sJ2
~all,l 2!

!5p~s,2!q
all
~ l 28!

~rJ1
~s,2!

^ s
J2
~all,l 28!

!L
~106!

for all s. L can generally be written asL5(kk8Ak8k

^ uk8& ( l 28)( l 2)^ku, whereAk8k are operators fromHJ1
(1) to HJ1

(2) .
Substituting it into Eq. ~106!, we have Ak8kp

(s,1)rJ1
(s,1)

5ap(s,2)rJ1
(s,2)Ak8k for all s, wherea5q

all
( l 28)

c
k8

( l 28)
/(qall

( l 2)ck
( l 2))

.0. From Lemma 6, we haveAk8k50 and henceL50,
which meansG satisfies the condition~iii ! of Definition 1.

To summarize this section, we introduced a struct
called ‘‘maximal,’’ that is uniquely defined when$rs% is
given. A set of conditions~see Definition 1! was given to
check whether a given structure is maximal or not. Give
maximal structure, requirement for the operations to prese
$rs% is stated in a simple manner. The procedure describe
Sec. V gives a way to find a maximal structure in finite ste
Alternatively, a maximal structure is obtained by constru
02231
-
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a
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ing the algebraX̃ and by decomposing theX̃ moduleHA into
simple X̃ submodules, just like in finding irreducible repre
sentations for a group.

VII. FAITHFUL TRANSFER OF QUANTUM STATES

In the problem considered so far, the initial state of s
tem A and the final state of the same physical systemA are
required to be identical. In the problems concerning w
communication, we often encounter a slightly different si
ation in which the initial state of systemA ~held by the
sender! and the final state of another physical systemB ~held
by the receiver! are required to be identical. Here we wi
make a remark that this problem of faithful transfer of qua
tum states is essentially the same as the problem consid
in the preceding sections. The equivalence may be s
evident when the dimensions of systemA and that of system
B are the same, if we note that we can freely transfer the s
from systemA to systemB or vice versa. When the dimen
sions of the two systems are different, there is a subtlety
this transfer and it will be worthwhile providing a detaile
argument here. The argument may also help clarifying
notations used in Sec. VIII that discusses examples of c
munication problems.

Let HA8 andHB8 be the Hilbert spaces for systemsA andB,
respectively, andHE be the Hilbert space for an auxiliar
systemE. Initially, systemA is secretly prepared in a stat
rs(sPS). SystemsB and E are prepared in standard stat
SB[uu&B^uu andSE[uu&E^uu, respectively. In order to de
fine the faithful transfer, we should assume a corresponde
between the two physical systemsA andB beforehand. This
correspondence is given by a unitary map~isomorphism!
WB:A :HA→HB , whereHB is a subspace ofHB8 with the
same dimension asHA[øsPSsupp(rs). Any physical opera-
tion of the transfer can be described by a unitary opera
UABE acting onHA8 ^ HB8 ^ HE . Let ss be the reduced stat
of systemB after the operation ofUABE . The requirement
for the faithful transfer of$rs% is that the relationss

5WB:ArsWB:A
† should hold for anysPS. As before, the con-

dition for this requirement will be given as a requirement f
the isometryŪABE :HA^ uu&B^ uu&E→HA8 ^ HB8 ^ HE , which
is a restriction ofUABE . The conditionss5WB:ArsWB:A

† is
explicitly written as

TrAE@ŪABE~rs^ SB^ SE!ŪABE
† #5WB:ArsWB:A

† .
~107!

In this problem, there is no requirement for the final state
systemA, and we can make it in an arbitrary state by app
ing a unitary operation on systemsA and E. We can thus
impose an additional requirement that the final state of s
tem A should be a standard stateSA[uu&A^uu, without loss
of generality. We thus assume that the image ofŪABE is
contained in uu&A^ HB8 ^ HE . Let us define VB:A

[uu&A(WB:A)B^uu that is a unitary map fromHA^ uu&B to
uu&A^ HB . Since the operatorŪABE(VB:A

†
^ SE) is an isom-

etry from uu&A^ HB^ uu&E to uu&A^ HB8 ^ HE , it can be writ-
ten as
8-12
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ŪABE~VB:A
†

^ SE!5SA^ ŪBE , ~108!

whereŪBE is an isometry fromHB^ uu&E to HB8 ^ HE . Note
that the relation

rs^ SB5VB:A
† ~SA^ WB:ArsWB:A

† !VB:A ~109!

holds for anyrs . Substituting this into Eq.~107! and using
Eq. ~108!, we have

TrE@ŪBE~WB:ArsWB:A
†

^ SE!ŪBE
† #5WB:ArsWB:A

† .
~110!

This means that ŪBE preserves the set of state
$WB:ArsWB:A

† %, and the main result of Sec. V or Theorem
can be applied. Noting that the isomorphic relation is defin
betweenHA andHB , we can write the result as

ŪBE5WB:AS %
l

1J
~ l !

^ UKE
~ l ! DWB:A

† . ~111!

Combined with Eq.~108!, we arrived at the following theo
rem.

Theorem 5.Let $rs%sPS be a set of density operators ac
ing on HA8 . Suppose that the dimension ofHA

[øsPSsupp(rs) is finite. Let G:HA→ % lHJ
( l )

^ HK
( l ) be a

unitary isomorphism that corresponds to a maximal struc
Dmax($rs%sPS). Let WB:A :HA→HB be a unitary map, where
HB is a subspace ofHB8 . Then, any isometryŪABE :HA

^ uu&B^ uu&E→uu&A^ HB8 ^ HE that satisfies

TrAE@ŪABE~rs^ SB^ SE!ŪABE
† #5WB:ArsWB:A

† ~112!

for any sPS is expressed in the following form under th
isomorphismG:

ŪABE5uu&A~WB:A!S %
l

1J
~ l !

^ UKE
~ l ! D B^uu, ~113!

whereUKE
( l ) are isometries fromHK

( l )
^ uu&E to HK

( l )
^ HE .

VIII. APPLICATION TO VARIOUS PROBLEMS

In this section, we apply the derived properties of t
operations preserving a set of states to various problems
as cloning, cryptography, and data compression.

A. Broadcasting of mixed states

No-broadcasting condition for mixed states, which w
derived in Ref.@4#, can easily be rederived. The broadcast
is the task of preparing the marginal state of a subsystem
E in rs , and leaving the reduced state of the systemA un-
disturbed as inrs . Since the operations that do not distu
$rs% are insensitive to the state changes in the subsp
HJ

( l ) , complete broadcasting is possible only when the
mensions of the subspacesHJ

( l ) are all unity, or equivalently,
when$rs% can be simultaneously diagonalized.
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In addition to rederiving this criteria, the derived princip
here can also determine the feasibility of various correlati
between the two broadcast systems, which was raised a
open question in Ref.@4#. Let us consider the broadcasting
$rs% in systemA into the two systemsB andC. Let HX8 (X
5A, B, C) be the Hilbert space for systemX, and suppose
that the dimension ofHA[øsPSsupp(rs) is finite. Take a
subspaceHX,HX8 (X5B, C) with the same size asHA , and
let WB:A :HA→HB andWC:A :HA→HC be unitary maps de-
fining the relation among the three systems. The proces
broadcasting is defined as

rs^ SB^ SC→SA^ xBC
~s! ~114!

with

TrC~xBC
~s! !5WB:ArsWB:A

† , TrB~xBC
~s! !5WC:ArsWC:A

† ,
~115!

whereSX[uu&X^uu (X5A, B, C) are standard states. Whe
the broadcasting is possible, the supporting spaceHA can be
decomposed asHA5 % lHK

( l ) , sinceHJ
( l ) is one-dimensional

and can thus be neglected. Then, by taking appropriate b
$uak&K

( l )% for HK
( l ) , we can write rs5 % l p

(s,l )rK
( l )

5S lSkp
(s,l )qk

( l )uak&K
( l )^aku. Let us take bases forHB andHC

by uak&B
( l )[WB:Auak&K

( l ) anduak&C
( l )[WC:Auak&K

( l ) . The broad-
cast statexBC

(s) satisfying Eq.~115! is not unique and various
types of correlations between systemsB andC are conceiv-
able. For example, a state with no correlation

xBC
~s! 5WB:ArsWB:A

†
^ WC:ArsWC:A

† , ~116!

a state with classical correlations

xBC
~s! 5(

l
(

k
p~s,l !qk

~ l !uak&B
~ l !^aku ^ uak&C

~ l !^aku, ~117!

and a state with quantum correlationsxBC
(s) 5ux (s)&^x (s)u with

ux~s!&5(
l

(
k

exp~ iu l ,k!Ap~s,l !qk
~ l !uak&B

~ l !uak&C
~ l ! ,

~118!

all satisfy Eq.~115!. The question here is, among these a
other conceivable correlations, what are feasible by a ph
cal process Eq.~114!. To answer this problem, let us start b
noting that any physical process acting on$rs% corresponds
to an isometryŪABCE:HA^ uu&B^ uu&C^ uu&E→uu&A^ HB8
^ HC8 ^ HE with an auxiliary systemE. Along with the de-

composition HA5 % lHK
( l ) , we can decomposeŪABCE as

ŪABCE5 % l ŪABCE
( l ) by isometriesŪABCE

( l ) :HK
( l )

^ uu&B^ uu&C

^ uu&E→uu&A^ HB8 ^ HC8 ^ HE . Since rs is exactly trans-
ferred fromA to B, we have, from Theorem 5,

ŪABCE5uu&A~WB:A!S %
l

1J
~ l !

^ UKCE
~ l ! D B^uu, ~119!

where UKCE
( l ) are isometries fromHK

( l )
^ uu&C^ uu&E to HK

( l )

^ HC8 ^ HE . Noting that we are omittingHJ
( l ) , we have
8-13
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ŪABCE
~ l ! 5uu&A~WB:A!~UKCE

~ l ! !B^uu. ~120!

This means that the image ofŪABCE
( l ) is contained inuu&A

^ HB
( l )

^ HC8 ^ HE , whereHB
( l ) is the image ofHK

( l ) by WB:A .
Similarly, sincers is exactly transferred fromA to C, we
have another expression,

ŪABCE
~ l ! 5uu&A~WC:A!~UKBE

~ l ! !C^uu, ~121!

where UKBE
( l ) are isometries fromHK

( l )
^ uu&B^ uu&E to HK

( l )

^ HB8 ^ HE . By this expression, the image ofŪABCE
( l ) is fur-

ther restricted touu&A^ HB
( l )

^ HC
( l )

^ HE , whereHC
( l ) is the

image of HK
( l ) by WC:A . The operationŪABCE thus only

connects the subspaces labeled by the same value of indl.
The broadcast statexBC

(s) , which is given by

xBC
~s! 5TrAE@ŪABCE~rs^ SB^ SC^ SE!ŪABCE

† #, ~122!

should therefore be written as

xBC
~s! 5 %

l

p~s,l !zBC
~ l ! , ~123!

wherezBC
( l ) is a density operator acting onHB

( l )
^ HC

( l ) , given
by

zBC
~ l ! [TrAE@ŪABCE

~ l ! ~rK
~ l !

^ SB^ SC^ SE!ŪABCE
~ l !† #.

~124!

The condition~115! for broadcasting is satisfied iff

TrC~zBC
~ l ! !5WB:ArK

~ l !WB:A
† , TrB~zBC

~ l ! !5WC:ArK
~ l !WC:A

†

~125!

holds for all l. SincezBC
( l ) is independent ofs, it can be any

state by choosingŪABCE
( l ) appropriately. This means that an

type of correlation is feasible in each subspaceHB
( l )

^ HC
( l ) ,

ranging from quantum correlation~entanglement! to no cor-
relation. On the other hand, Eq.~123! means that for the
index l, a complete classical correlation should always
established between the broadcast systems.

One of the interesting consequences from the above
eral result is that the condition for the feasibility of th
broadcast state with no correlation@Eq. ~116!# and that of
broadcast states with full quantum correlation@Eq. ~118!# are
the same. For both cases, the condition is that anyrs should
be contained in one of the subspacesHK

( l ) , or equivalently,
any pair of states from$rs% must be identical or orthogona

B. Imprinting of mixed states

Another open question was the condition for the feasi
ity of the imprinting process@7#. The no-imprinting condi-
tion is the requirement for$rs% such that any attempt to rea
out the information ons should lead to some changes in t
state of systemA. More formally, under the notations use
here, it is the condition for$rs% such that for any unitary
operator U acting on HA8 ^ HE satisfying TrE@U(rs
02231
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^ SE)U†#5rs , the reduced state of systemE, TrA@U(rs
^ SE)U†#, should be independent ofs.

This condition is obvious now. According to the prese
result, such an operationU is insensitive to the contents o
HJ

( l ) , andHK
( l ) holds no information ons. On the other hand

the index l can be read out freely without disturbing$rs%.
Hence the condition is stated asp(s,l )5p(s8,l ) for all $s,s8,l %,
namely, the probability distribution for the indexl is identical
for all s. In other words, this is the requirement that if$rs%
are written as matrices in the maximally simultaneou
block-diagonalized form, the traces for each block are
same for alls.

A generalized version of this theorem, where the set
states$ss8%s8PS8 to be distinguished is different from the s
of states$rs% to be preserved, can also be derived from t
above results. A little care should be taken for the fact t
the support of all states, defined asH̄A
5@øsPSsupp(rs)#ø@øs8PS8supp(ss8)#, may generally be
larger than HA5øsPSsupp(rs). Let us write H̄A5HA

% H0 . Consider the set of all isometriesU:H̄A^ uu&E→H̄A
^ HE that preserve$rs%, namely, TrE@U(rs^ SE)U†#5rs .
What we ask here is the condition for$ss8%s8PS8 such that
TrA@U(ss8^ SE)U†# is independent ofs8PS8 under any
suchU. We first derive a sufficient condition. According t
Theorem 3, a decompositionHA5 % lHJ

( l )
^ HK

( l ) is deter-
mined from$rs%, andU is written as

U5U0E% S %
l

1J
~ l !

^ UKE
~ l ! D , ~126!

whereUKE
( l ) are isometries fromHK

( l )
^ uu&E to HK

( l )
^ HE , and

U0E is an isometry fromH0^ uu&E to H̄A^ HE . Note that the
image ofU0E is not necessarily confined inH0^ HE . Then
we can write

TrA@U~ss8^ SE!U†#

5TrA@U0E~ss8^ SE!U0E
† #

1(
l

„TrA@U0E~ss8^ SE!~1J
~ l !

^ UKE
~ l ! !†#

1TrA@~1J
~ l !

^ UKE
~ l ! !~ss8^ SE!U0E

† #

1TrA@~1J
~ l !

^ UKE
~ l ! !~ss8^ SE!~1J

~ l !
^ UKE

~ l ! !†#…. ~127!

Let P0 , PA , andPA
( l ) be the projection operators ontoH0 ,

HA , andHJ
( l )

^ HK
( l ) , respectively. Equation~127! means that

the state left in systemE depends only on the following part
of the initial statess8 , defined as

ss8
~00![P0ss8P0 ,

ss8
~0A![P0ss8PA , ss8

~A0![PAss8P0 ,

ss8
~ l ![TrJ

~ l !~PA
~ l !ss8PA

~ l !!, ~128!

and Eq.~127! becomes
8-14
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TrA@U~ss8^ SE!U†#

5TrA@U0E~ss8
~00!

^ SE!U0E
† #

1(
l

„TrA@U0E~ss8
~0A!

^ SE!~1J
~ l !

^ UKE
~ l ! !†#

1TrA@~1J
~ l !

^ UKE
~ l ! !~ss8

~A0!
^ SE!U0E

† #

1TrK
~ l !@UKE

~ l ! ~ss8
~ l !

^ SE!~UKE
~ l ! !†#…. ~129!

Here TrJ
( l ) and TrK

( l ) are the partial traces overHJ
( l ) andHK

( l ) ,
respectively. Hence a sufficient condition for the state lef
systemE to have no dependence ons8 is that the operators
defined in Eq.~128! are independent ofs8.

To show that this condition is also necessary, we w
consider a particular measurement strategy. Letl * be one of
the possible values of the indexl. The first step of the strat
egy is to conduct an ideal projection measurement to m

sure whether the state is in the subspaceH0% HJ
( l* )

^ HK
( l* )

or not. It is obvious that this measurement does not dist
$rs%. Let p( l * ,s8) be the probability of obtaining the pos
tive outcome when the initial state wasss8 . Suppose that the
result of the measurement was positive. Prepare auxil
physical systemsJ and K with Hilbert spacesHJ and HK

5HK0% HK1 , respectively, where dimHJ5dim HJ
( l* ) ,

dim HK15dim HK
( l* ) , and dimHK05dim H0 . Take unitary

mapsGJ :HJ
( l* )→HJ , GK:HK

( l* )→HK1 , andG0 :H0→HK0 .

Take an arbitrary stateux&PHJ
( l* ) , and let G08 :H0

→(GJux&) ^ HK0 be the unitary map naturally determine

from G0 . Then, we can construct an isometryG:H0% HJ
( l* )

^ HK
( l* )→HJ^ HK by G[G08% GJ^ GK . The second step is

to transfer the postmeasurement state of systemA, which is

projected inH0% HJ
( l* )

^ HK
( l* ) , to the combined system ofJ

and K according to the isometryG. Note that if the initial
state wasrs , the state ofHJ^ HK after the second step i

GJrJ
(s,l* )GJ

†
^ GKrK

( l* )GK
† . The third step is to conduct arb

trary measurement on systemK, and to leave systemK in

GKrK
( l* )GK

† , which is independent of the initial state
At the final step, the state ofHJ^ HK , which should be
contained in the image ofG, is transferred back to

H0% HJ
( l* )

^ HK
( l* ) . It is easy to see that the whole proce

does not disturb$rs%. When the initial state wasss8 , the
marginal state of systemK after the second step, multiplie
by p( l * ,s8), is

TrJ@G~P0% 1J
~ l* !

^ 1K
~ l* !!ss8~P0% 1J

~ l* !
^ 1K

~ l* !!G†#

5G0ss8
~00!G0

†1G0ss8
~0A!

~ ux& ^ 1K
~ l* !)GK

†

1GK~^xu ^ 1K
~ l* !!ss8

~A0!G0
†1GKss8

~ l* !GK
† . ~130!

If we require, for this particular strategy, that the statistics
the outcomes of the measurement of the first step and
arbitrary measurement in the third step should be indep
dent ofs8, then the reduced state in Eq.~130! must be inde-
pendent ofs8. Since the choices ofl * andux& were arbitrary,
02231
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we conclude that it is necessary thatss8
(00) , ss8

(0A) , ss8
(A0) , and

ss8
( l ) for any l be independent ofs8. It is worth emphasizing

here that the above result shows that any difference in
off-diagonal part (ss8

(0A)) betweenH0 and HA is detectable
even under a stringent restriction to the operation toHA .

C. Cloning and imprinting of composite systems

Consider the situation in which the system holding
unknown initial statexs is composed of two subsystemsA
andB, and it is allowed to access these subsystems onl
sequence, namely, subsystemA must be released before su
systemB is accessed@5,7#. In order to preserve the state
$xs% in the whole system, the marginal density operator inA,
rs[TrB(xs), must not be modified when it is released. T
present results can thus be applied and restrict the form
the operation when subsystemA is at hand. Let us write this
operation by an isometryUAE :HA^ uu&E→HA^ HE , where
HA5øsPSsupp(rs), andHE describes an auxiliary system
initially prepared in a standard stateSE5uu&E^uu. Let HB be
the Hilbert space for subsystemB. According to Theorem 3,
a decompositionHA5 % lHJ

( l )
^ HK

( l ) is determined from$rs%,
andUAE is written as

UAE5 %
l

1J
~ l !

^ UKE
~ l ! , ~131!

where UKE
( l ) are isometries fromHK

( l )
^ uu&E to HK

( l )
^ HE .

Then we can write the marginal statexBE
(s) of the combined

system ofE andB after the operationUAE as

xBE
~s![TrA@~UAE^ 1B!~xs^ SE!~UAE

†
^ 1B!#

5(
l

TrA@~1J
~ l !

^ UKE
~ l !

^ 1B!~xs^ SE!~1J
~ l !

^ UKE
~ l !†

^ 1B!#

5(
l

TrK
~ l !@~UKE

~ l !
^ 1B!~xs

~ l !
^ SE!~UKE

~ l !†
^ 1B!#, ~132!

where

xs
~ l ![TrJ

~ l !@~PA
~ l !

^ 1B!xs~PA
~ l !

^ 1B!#. ~133!

This means that if we are to preserve TrB(xs), we can obtain
only the part of the correlations betweenA and B, namely,
we can obtain classical correlations related to the indexl and
quantum correlations related to eachHK

( l ) , but cannot obtain
quantum correlations related to the indexl or any correla-
tions related to eachHJ

( l ) . Note that extracting this informa
tion to the auxiliary systemE may destroy original quantum
correlations betweenA andB.

When $xs% are all different pure states, the cloning
$xs% is possible only when$xs% are all orthogonal. Hence, i
the cloning is possible, we should be able to determins
completely by conducting a measurement onxBE

(s) , namely,
$xBE

(s) % should be all orthogonal. This is possible only wh
xs

( l ) andxs8
( l ) are orthogonal for anyl and for anysÞs8. This
8-15
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condition is also sufficient for the cloning to be possib
since under that condition we can determine the value ofs by
accessingB and E without disturbing the whole state (UAE

^ 1B)(xs^ SE)(UAE
†

^ 1B). At this stage, we know exactly
the current pure state of the systemABE, and the marginal
state of subsystemA is TrB(xs). Then we can determine
unitary operation overBE that drives the state ofABE back
into xs^ SE .

When the initial states$xs% include mixed states, it is no
always possible to restore the original quantum correlati
betweenA and B by manipulating systemBE only. Also in
the problem of imprinting of more than two pure states,
restoration is not always possible because the identifica
of s by accessing systemBE is not necessarily possible. Th
feasibility of this restoration of quantum correlation will b
an interesting future problem.

D. Various schemes of quantum key distribution

An attempt was recently made by Mor@7# to give a uni-
fied explanation of why various schemes of quantum k
distribution work in the ideal situations, which was based
the no-cloning principle of mixed states. Since we have
tained a general principle including the no-cloning princip
we provide a unified formalism of various schemes for qu
tum key distribution. The principle here places some rest
tion on the eavesdropper’s access to the first quantum sy
A transmitted from the sender to the receiver, if the eav
dropper wants to preserve the state in order to conceal
presence. Then we can find three different ways to con
the bit value from the eavesdropper, namely~i! encoding it
directly on the inner degree of freedom forHJ

( l ) , ~ii ! encod-
ing it on the correlation betweenA and another systemB
through the inner degree of freedom forHJ

( l ) , and ~iii ! en-
coding it on thequantum correlation betweenA and B,
through the indexl. The original four-state scheme of Ben
nett and Brassard@8# corresponds to the case~ii !, since the
bit value is encoded on the correlation between the quan
state of the photon and the information of the basis trans
ted later@9#, which corresponds to the systemB. The scheme
@10# using two nonorthogonal pure states corresponds to
case~i!, and the schemes using three@11# or two @12# en-
tangled states in the composite system correspond to the
~iii !.

E. Optimal compression rate of quantum-state signals

Consider a source that produces the ensembleE
5$ps ,rs%, namely, it emits a system in a quantum staters
with probability ps.0. One of the fundamental questions
quantum information theory is to identify the optimal com
pression rate ofE, namely, to determine how much qubits a
needed to compress a sequence of systems independ
prepared from this source so that it can be decompre
back with negligible errors in the asymptotic limit of th
infinitely long sequence. Noting that the original statesrs are
reproduced after the decompression, the present results
be applied to the whole operation of compression and
compression, and reveal the optimal compression rate in
02231
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blind scenario. Using the decompositionrs5 % l p
(s,l )rJ

(s,l )

^ rK
( l ) , the average density operatorr[Sspsrs is also de-

composed as

r5 %
l

p~ l !rJ
~ l !

^ rK
~ l ! , ~134!

wherep( l )[Sspsp
(s,l ) andrJ

( l )[(Sspsp
(s,l )rJ

(s,l ))/p( l ). This
naturally gives a decomposition of the von Neumann entro
of r, defined asS(r)[2Trr log2r, into the sum of three
parts as follows:

S~r!5(
l

p~ l !@2 log2 p~ l !1S~rJ
~ l !!1S~rK

~ l !!#

[I C1I NC1I R . ~135!

Then, the formrs5 % l p
(s,l )rJ

(s,l )
^ rK

( l ) tells us thatE can be
compressed intoI C1I NC qubits, and its optimality can be
shown from the fact that any compression-decompress
scheme must be written in the form ofUAE5 % l1J

( l )
^ UKE

( l )

@13#. It was also shown that amongI C1I NC qubits,I C qubits
can be replaced by the same number of classical bits@14,15#.
A similar argument can also be made to the teleportation
the ensembleE, and the optimally required amount of en
tanglement was shown to beI NC ebits. These results agai
suggest that the decompositionrs5 % l p

(s,l )rJ
(s,l )

^ rK
( l ) gives

a way to classify the degrees of freedom into the three pa
namely, classical, nonclassical, and redundant parts.

Using Theorem 4 derived in Sec. VI, we immediately s
that the above information-theoretic functionsI C(E),
I NC(E), I R(E), and hence the various optimal rates, are
ditive for independent sources. That is to say, if we consi
another sourceE85$qs8 ,ss8% and the combined sourceẼ
5$psqs8 ,rs^ ss8%, we have I X( Ẽ)5I X(E)1I X(E8) (X
5C,NC,R).

IX. CONCLUSION

In this paper, we have considered a situation that we
quently encounter in dealing with problems in quantum
formation, namely, given a system secretly prepared in
of the possible states$rs%, conducting a general operation t
the system, then leaving the state of the system exactly in
same state as the initially given state. In order to deriv
general property of such operations, we noted two basic p
ciples. One is a natural extension of a property of class
signals, which states that in order not to disturb a signal t
may be produced by two different probability distribution
we are not allowed to operate on the entire signal sp
freely, but are forced to operate on two or more signal s
spaces independently. The other principle stems genui
from quantum origin, and it states that if we are to operate
two subspaces independently while preserving a state ha
a nonzero off-diagonal part with respect to the two su
spaces, the operations to the two subspaces must sati
similarity defined through the off-diagonal part of the sta
The two types of constraints alternately invoke each oth
and finally reveal a stringent condition for the operations
8-16
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preserve$rs%, together with a decomposition of the suppo
space of$rs%, which takes a formHA5 % lHJ

( l )
^ HK

( l ) . Under
this decomposition, the states$rs% are written asrs5

% l p
(s,l )rJ

(s,l )
^ rK

( l ) . If we consider how the information o
the state indexs is encoded on three parts, namely, on ind
l, on Hilbert spaceHJ

( l ) , and on Hilbert spaceHK
( l ) , we may

regard them as classical, nonclassical~quantum!, and redun-
dant parts, respectively, sincers has no off-diagonal par
with respect to indexl, and no information ons is stored on
HK

( l ) . Under this decomposition, the main result describ
the property of the operations to preserve$rs% is written as
UAE5 % l1J

( l )
^ UKE

( l ) that informally implies that the nonclas
sical part is untouchable, the classical part is read only,
the redundant part is open.

The result may be viewed as an unexpectedly straight
ward extension of the simplest case of binary strings50, 1
encoded on two pure statesuC0& and uC1&. We can distin-
guish three cases according to the inner product of the
pure states. The encoding will be regarded as ‘‘classic
when the two states are orthogonal, ‘‘nonclassical’’ wh
they are nonorthogonal and nonidentical, and ‘‘redunda
when identical. When this situation is extended to allo
mixed states and a larger number of states, it has turned
that the three types of the encoding may coexist, but they
still distinct. The inner product for two vectors must be r
placed by mathematical concepts describing rather com
cated relations among many density operators. In this pa
we have attempted to do this by regarding the Hilbert sp
as a module over an algebra generate by$rs% with a proper
normalization. Then, the notion of ‘‘nonorthogonal’’ corre
sponds to irreducibility~being simple! of a submodule, the
notion of ‘‘orthogonal’’ corresponds to reducibility into in
ev

hu

Pr

02231
t

x

g

d

r-

o
l’’
n
t’’

ut
re
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equivalent simple submodules, and the notion of ‘‘identica
corresponds to reducibility into equivalent simple submo
ules.

The main result was shown to be applicable to vario
problems of quantum information. The tasks of clonin
broadcasting, imprinting, and eavesdropping in quant
cryptography belong to a class of problems in which extr
tion of information on the initial state of the system is r
quired without introducing disturbance. The present res
can naturally be applied to this class of problems, and he
to derive various conditions on the set of possible init
states for various tasks to be feasible. In addition, the re
was also successfully applied to tasks such as quantum
compression and quantum teleportation, in which the extr
tion of the information on the initial state is not direct
required. It was shown~see also Refs.@13,15#! that the opti-
mal rates of bits and qubits for asymptotically faithful blin
compression is simply equal to the Shannon or von Neum
entropy of the classical and nonclassical parts, respectiv
This result also justifies the terminology of classical, no
classical, and redundant parts in operational sense, nam
the classical part can be encoded on bits and sent throu
classical channel, but the nonclassical part can be enco
only on qubits and requires shared entanglement to be
over a classical channel.
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