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Universal simulation of Hamiltonian dynamics for quantum systems
with finite-dimensional state spaces
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What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system?
Doddet al. @Phys. Rev. A65, 040301~R! ~2002!# provided a partial solution to this problem in the form of an
efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entan-
gling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems
are qudits, that is, haveD dimensions. As a consequence we explain how universal quantum computation can
be performed with any fixed two-body entanglingN-qudit Hamiltonian, and local unitaries.
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I. INTRODUCTION

A fundamental problem of physics is to determine if the
exist physical systems that areuniversal, in the sense tha
they can be used to efficiently simulate any other syst
A candidate for such a universal system was proposed
Deutsch’s 1985 paper@1# in the form of auniversal quantum
computer@1–3#. The purpose of this paper is to investiga
what physical systems are universal for quantum comp
tion.

The standard model of a quantum computer consists oN
qubits, prepared in the stateu0& ^ N, that can be manipulate
by a sequence of one- and two-qubit operations, and
subsequently measured in the computational basis. Ther
many possible physical implementations of this model, a
in general it is an interesting problem to determine w
critical feature or features of a physical system enable u
versal quantum computation.

In earlier work by Dodd, Nielsen, Bremner, and Thew@4#
it was shown thatentanglementis a crucial physical ingredi-
ent for quantum computation. In particular,@4# showed that
the ability to do local unitary operations together with a
fixed N-qubit two-body entangling Hamiltonian may be us
to do universal quantum computation on thoseN qubits.

In this paper we generalize this result to Hamiltonia
defined onqudits, that is, D-dimensional quantum system
spanned by the statesu0&, . . . ,uD21&. This is of intrinsic
interest, and is also noteworthy because of the much ric
structure revealed in the general proof than in theD52 case
studied in Ref.@4#.

To state our main result more precisely, we expand
arbitrary Hamiltonian onN qudits as

H5 (
j 1k1••• j NkN

a j 1k1••• j NkN
Xj 1Zk1^ •••^ Xj NZkN, ~1!

*Electronic address: nielsen@physics.uq.edu.au
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where j 1 ,k1 , . . . ,j N ,kN each run from 0 throughD21,
a j 1k1••• j NkN

are complex numbers, and the operatorsX andZ

are D-dimensional generalizations of the familiar Pauli o
erators, to be defined more precisely later. In our work
restrict attention to the case of Hamiltonians that only
clude two-body coupling terms, and do not allow three-
more-body coupling terms. Atwo-body couplingbetween a
pair of qudits p and q is a term in Eq.~1! of the form
XjZk

^ XlZm, where neitherXjZk nor XlZm is equal to the
identity, so that the term acts nontrivially on quditsp andq,
and acts as the identity on all other qudits. In order to g
erate arbitrary entanglement in the system it is necessary
each qudit pair (s,t) must beconnectedin the sense tha
there are coupling terms in Eq.~1! for each adjacent pair in
some sequence (s, . . . ,t) of qudits in the system. More ex
plicitly, to any two-body Hamiltonian one can associate
graph whose vertices correspond to the qudits in the sys
and whose edges connect vertices representing qudits tha
coupled by the Hamiltonian. A Hamiltonian is said to be
two-body N-qudit entangling Hamiltonian if the graph is con
nected, that is, there is a path between any pair of verti
Our main result is as follows:

Let H be a given two-body entangling Hamil-
tonian onN qudits, and letK be a desired two-
body Hamiltonian onN qudits. Then we have an
efficient algorithm to simulate evolution due toK
using only~a! the ability to evolve according to
H, and ~b! the ability to perform local unitaries
~that is, single-qudit unitaries! on the individual
qudits.

The algorithm we explain below for performing this sim
lation is only ‘‘efficient’’ in the sense of computer scienc
That is, it requires resources polynomial in the number
qudits N in the system. Our simulation technique is qu
involved, and probably too complicated to be experimenta
practical. However, the point of principle demonstrated
our simulation technique is of great importance, namely, t
all two-body N-qudit entangling Hamiltonians are qualita
tively equivalent, given the ability to perform local unitar
©2002 The American Physical Society17-1
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operations. Thus, in some sense, the ability to entangle
be regarded as a fundamental physical resource—a typ
‘‘dynamic entanglement’’@37#—that can be utilized to per
form interesting processes. We explore this idea and m
some concrete suggestions for its development in the c
cluding section, Sec. V. Furthermore, our work may motiv
future research on more practically viable methods for do
universal simulation.

Antecedents to our work may be identified in many d
ferent parts of the scientific literature. We now enumerate
different fields in which antecedents may be found, bef
giving a detailed account of the prior work, and how it r
lates to our own. The basic techniques we use are gene
zations of standard techniques from nuclear magnetic r
nance~NMR!, especially the techniques known asrefocusing
and decoupling. The main motivation for our work is in-
spired by research into universal gates for quantum com
tation. More recently there has been substantial inte
within the quantum information science literature in t
problem of determining when one set of Hamiltonians can
used to simulate another. This interest has arisen largely
dependently of work in the quantum control literature, whe
closely related issues are being addressed, albeit using
ferent techniques and language.

The main antecedents of our methods are standard N
techniques for decoupling and refocusing@5,6# that have
been developed and refined over the past half century. T
techniques have mostly been applied to manipulate spe
Hamiltonians, rather than general classes of Hamiltonia
Ideas from NMR have been applied in the quantum comp
ing context by Jones and Knill@7#, and by Leung, Chuang
Yamaguchi, and Yamamoto@8#, who considered the problem
of efficiently implementing logic gates using a restrict
class of Hamiltonians that arises naturally in NMR.

One of the main motivations for our work is the desire
understand what resources are universal for quantum com
tation. Much prior work has been done on this subject, a
many universal sets of gates for quantum computation
known. See, for example, Refs.@2,9#. The work most closely
related to ours is independent work of Brylinski and Bryli
ski @10#, who used the representation theory of compact
groups and real algebraic geometry to study the problem
which two-qudit gates are universal for computation, giv
the ability to do single-qudit gates. In particular, they defin
the class ofimprimitiveunitary gates on two qudits to be th
gates that are not of the formV^ W or (V^ W)S, whereV
andW are single-qudit unitaries, andS is the swap operation
They showed that any imprimitive gate is universal for qua
tum computation, given the ability to also do arbitrary loc
unitary operations. Their results thus imply ours for the c
when N52. Our results differ from theirs in several way
First, even in the case whenN52, the techniques used in ou
proof are radically different. Our techniques are much m
elementary, relying only on basic linear algebra, a sim
result from the theory of majorization, and some very
ementary number theory. Thus, our methods give differ
insights into the problem of universality than those in R
@10#. Second, we consider the case whereN.2, which is
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potentially of great interest for applications to quantum co
putation and quantum control.

Also related to our results is the work on universal ga
by Deutsch, Barenco, and Ekert@11# and by Lloyd @12#,
where it was shown that almost any two-qubit gate is univ
sal for quantum computation. Lloyd sketched a generali
tion of these results to the case of qudits, and this sketch
recently been made rigorous by Weaver@13#. This work dif-
fers from ours in that it focuses on unitary gates rather th
continuous-time Hamiltonian evolution, and does not res
in an explicit characterization of which sets of unitary ga
are universal. Our work explicitly determines which tw
body Hamiltonians, together with local unitary operation
are universal. Furthermore, in Refs.@11–13# it was assumed
that gates could be independently applied toany pair of qu-
dits in the computer, and thus required the ability to turn
and turn off interactions between arbitrary pairs of qudits.
contrast, we assume only a fixed entangling operation.

Interest in universal quantum gates has recently motiva
interest in the quantum information science literature in
problem of simulating one Hamiltonian with another. Ind
pendently of Dodd, Nielsen, Bremner, and Thew@4#, the
problem of Hamiltonian simulation for qubits was consi
ered by Du¨r, Vidal, Cirac, Linden, and Popescu in Ref.@14#,
where it was shown that all two-qubit entangling Hamilt
nians are qualitatively equivalent, in the sense that one
be used to simulate the other, given the ability to do lo
unitaries. Wocjan, Janzing, and Beth@15# considered aspe-
cific Hamiltonian acting on a system containingN spin-1/2
particles, and considered the overhead incurred when u
this Hamiltonian to simulate other Hamiltonians. Benne
Cirac, Leifer, Leung, Linden, Popescu, and Vidal@16# have
considered the problem ofoptimal simulation of one two-
qudit Hamiltonian by another, using general local operatio
possibly including ancillas and measurements. Thus t
considered a different model than ours, which only involv
local unitary operations, and, in particular, does not requ
the ability to perform interactions with local ancilla. Benne
et al. showed that in the two-qubit case the two models a
in fact, equivalent. We also note that the results in Ref.@16#
are restricted to the caseN52. Vidal and Cirac@17# ex-
tended the results of Bennettet al.by explicitly obtaining the
optimal simulation of one two-qubit Hamiltonian by anoth
in the case where classical communication between partie
allowed, in addition to the ability to do local operation
including the use of ancillas and measurement. They a
showed that in the case of two qudits the model where lo
unitary operations are allowed isdistinct from the case where
local unitary operations and ancilla are allowed, in the se
that the latter may be more efficient than the former. We n
that Leung and Vidal@18# have independently obtained re
sults on problems related to those we consider. It is wo
noting that while related problems are being addressed in
long list of papers, the methods used are quite varied, and
different methods may provide different insights into qua
tum dynamics.

Independently of the quantum information science lite
ture there has been much interest in Hamiltonian simula
in the field ofquantum control. A recent overview of work in
7-2
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quantum control may be found in Ref.@19#. Of particular
interest in this context is a general set of necessary and
ficient conditions for determining whether a given set
Hamiltonians can be used to simulate an arbitrary Ham
tonian ~see, for example, Schirmer, Solomon, and Lea
@20#!. These conditions can be applied to determine whet
in any specific instance, a collection of Hamiltonians can
used to simulate an arbitrary Hamiltonian, however, they
not directly speak to the question of what class of inter
tions is universal for quantum computation, given the abi
to perform local unitaries.

Finally, we note that the techniques used in this paper
closely related to the interesting problem of using a Ham
tonian H to simulate time-reversed evolution due to t
Hamiltonian 2H. Results on this problem have been o
tained by Janzing, Wocjan, and Beth@21#, and by Leung
@22#.

The structure of our paper is as follows. Section II intr
duces background techniques needed in the main body o
paper, including results on the Pauli group and majorizat
Section III explains theN52 case of the general problem
that is, how any two-qudit entangling Hamiltonian can
used to simulate any other two-qudit Hamiltonian, provid
local unitaries are allowed. In Sec. IV we explain how th
result can be applied to the general problem of quan
computation onN qudits, and prove our central result. F
nally, Sec. V concludes the paper with a summary and
cussion of our results, and a discussion of open problem

As the main body of the paper involves a quite extens
construction, some readers may not wish to wade through
the details. We have structured the paper so that suc
reader may follow the summaries provided at the beginn
of Secs. II and III, all of Sec. IV on universal quantum com
putation, and all of the discussion in Sec. V.

II. BACKGROUND

We now review the background needed to appreciate
main body of the paper. At a first read it may be useful
skip over the proofs, and pause mainly to appreciate the
menclature and basic results. Readers who wish to skip
entire section should note the main result: given the ability
evolve according to a HamiltonianJ and perform unitary
operationsUk it is possible to simulate evolution accordin
to a Hamiltonian of the form(kakUkJUk

† , where theak are
real numbers. This composition law for Hamiltonians is t
basis for all our later simulation results. Note also th
throughout the paper we use5D to indicate equality modulo
D. So, for example, 7543, since 7 is equal to 3, modulo 4

The structure of the section is as follows. In Sec. II A w
summarize the relations satisfied by operators in the P
group. Sec. II B describes the composition laws used late
the paper to build up a library of Hamiltonians we can e
ciently simulate given the primitive Hamiltonians initially a
our disposal. Finally, Sec. II C reviews the basic elements
the theory of majorization, including a corollary of Uh
mann’s theorem crucial to our later analysis.
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A. The Pauli group

The D-dimensional Pauli group consists of a
D-dimensional operators of the formv lXjZk, where j ,k,l
50, . . . ,D21, v5exp(2pi/D),

Xuz&[uz% 1&; Zuz&[vzuz&, ~2!

and % denotes addition moduloD. The properties of the
Pauli group were investigated in detail by Gottesman@23#,
and the reader is referred to that paper for additional inf
mation.

It is worth noting a few simple properties of the Pau
matrices. First,XD5ZD5I . Thus, when writing the Paul
matrices we can freely interchange expressions such asZD21

andZ21, and expressions likeZ† andZ21. In a similar vein,
note that (XjZk)†5Z2kX2 j . Through most of the paper w
use notation likeZ2kX2 j in preference to (XjZk)†.

The basic commutation relations for the Pauli group m
be written as

~XjZk!~XsZt!5vks2 j t~XsZt!~XjZk!. ~3!

We will have very frequent occasion to use these commu
tion relations. In particular, note thatXjZk commutes with
XsZt if and only if ks5D jt .

Gottesman@23# studied the properties of the Pauli grou
under conjugation byD-dimensional unitary operators. I
particular, he was interested innormalizer operations, that is,
unitary operationsU such that under conjugation byU the
Pauli group is taken to itself. In Appendix A we explicitl
describe unitary operators performing the following thr
conjugation operations:

X→Z, Z→X21, ~4!

X→XZ, Z→Z, ~5!

X→Xa, Z→Za21
, when gcd~a,D !51, ~6!

whereA→B means thatUAU†5eiuB for some phase facto
eiu. Note that the phase factors are unimportant for the pro
and will mostly be ignored in the sequel. These equatio
imply that the following three conjugation operations m
also be performed:

X→Z21, Z→X, ~7!

X→X, Z→XZ, ~8!

X→Xa21
, Z→Za, when gcd~a,D !51. ~9!

We now use the normalizer operations to prove what
term the Pauli-Euclid-Gottesman~PEG! lemma. Aside from
its interest as applied in this paper, the PEG lemma is a
interesting because it enables us to explicitly calculate
eigenvalues and eigenvectors of all elements of the P
group, showing a surprising connection between the P
group and Euclid’s algorithm~ @24#, Book 7, Propositions 1
and 2! for finding the greatest common divisor.
7-3
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Pauli-Euclid-Gottesman Lemma. For any dimensionD
and for integersj andk such that 1< j ,k<D21, there exists
a unitary operatorU such thatXjZk→Zgcd(j ,k) under conju-
gation byU.

Note, incidentally, that the PEG lemma implies that t
eigenvalues ofXjZk are equal to the eigenvalues ofZgcd(j ,k),
up to a global phase which may be calculated from the pro
below. The eigenvalues ofZgcd(j ,k) are easily calculable
sinceZ is already diagonal. The eigenvectors ofXjZk may
also be extracted from the proof of the PEG lemma, bel
where we explain how to construct the conjugating ope
tion, U.

Proof. From Eqs.~4!–~9! we see that it is possible t
perform the following operations under conjugation:

XjZk→XjZk1a j , ~10!

XjZk→Xj 1akZk, ~11!

wherea is any integer. The basic idea of the proof is to u
these two operations and Euclid’s algorithm on the pai
exponents ofX andZ. We will give an example of how this
is done, with the general proof following similar lines. Co
sider the operatorX104Z80. Recall how Euclid’s algorithm is
used to find the greatest common divisor of 104 and 80.
write 10451380124, so gcd(104,80)5gcd(80,24). Next,
we write 805332418, so gcd(104,80)5gcd(24,8). Fi-
nally, we write 245338, so gcd(104,80)58. These steps
are easily mimicked with the Pauli operators using Eqs.~10!
and ~11!. We have

X104Z80→X10421380Z805X24Z80, ~12!

X24Z80→X24Z80233245X24Z8, ~13!

X24Z8→X242338Z85Z8. ~14!

The general proof proceeds analogously, using Euclid’s a
rithm. j

A key tool in our analysis is theoperator expansion. We
will explain in detail how this expansion works for the ca
of two qudits. Any operatorJ on two qudits may be ex
panded in the form

J5 (
jklm

r jklmXjZk
^ XlZm, ~15!

where the sum is over the rangej ,k,l ,m50, . . . ,D21, and
the coefficientsr jklm may be calculated using the expressio

r jklm5
tr@~Z2kX2 j

^ Z2mX2 l !J#

D2
. ~16!

In general it is useful to introduce the convention that
indices in sums always range over 0, . . . ,D21, unless oth-
erwise noted.

Equation~15! applies for any operator, however, Herm
ian operators satisfy additional constraints on the form of
coefficientsr jklm . For example, if a term of the formaZk

^ Zm appears in the operator expansion, then its Hermi
02231
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conjugatea* Z2k
^ Z2m must also appear in the operator e

pansion. In general, terms in the operator expansion o
Hermitian operator appear in Hermitian conjugate pairs.

The operator expansion may be used to establish a us
identity satisfied by any operatorJ on a single qudit,

(
jk

~XjZk!J~Z2kX2 j !5Dtr~J!I . ~17!

The identity Eq.~17! is well known in quantum information
science from the properties of the depolarizing channel
D-dimensional systems. The identity may be verified by
rect calculation, or by substituting an operator expansion
J. Equation~17! may also be extended to multiple qudits. F
our purposes all that matters is the two-qudit case, wh
reads

(
jklm

~XjZk
^ XlZm!J~Z2kX2 j

^ Z2mX2 l !5D2tr~J!I ^ I .

~18!

We conclude this section with a brief digression, noti
that an alternate proof of Eq.~17! may be obtained by ap
plying Schur’s lemma from group representation theory@25#.
Let GD denote the Pauli group inD dimensions, and note
that

(
jk

~XjZk!J~Z2kX2 j !5
1

D (
UPGD

UJU†. ~19!

The factor 1/D on the right-hand side arises because of
phasesv l in front of a general member of the Pauli grou
v lXjZk. The right-hand side of this equation commutes w
any UPGD . The result follows from Schur’s lemma if we
can prove thatGD is irreducible. SupposeGD is reducible, so
that there exists a nontrivial subspace of the qudit state sp
stable under the operations inGD . Let P denote the projector
onto that subspace. Because the subspace is stable it fo
thatZPZ215P, and thusZ commutes withP. It follows that
P can be diagonalized in the basisu0&, . . . ,uD21&, and thus
the stable subspace is spanned by a strict subse
u0&, . . . ,uD21&. Supposeuz& is in the stable subspace, bu
uz% 1& is not. But Xuz&5uz% 1&, so the subspace is no
stable, which is a contradiction. This completes the proof
Eq. ~17!.

B. Composition laws for Hamiltonian simulation

The basic idea employed in the main part of the pape
to use our primitive set of operations and a small numbe
composition lawsto build up a library of Hamiltonian evo-
lutions we can simulate. We now explain the compositi
laws that we use, adapting from Ref.@4#.

~a! Imagine we can evolve according to the Hamiltoni
J, and perform unitary operationsU andU†. Then it follows
from the identitye2 i tUJU†

5Ue2 i tJU† that we can exactly
simulate evolution according to the HamiltonianUJU†.

~b! Imagine we can evolve according to the Hamiltonia
J1 andJ2. Then we can simulate evolution due toJ11J2 for
7-4
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small timesD, due to the approximate identity

e2 iD(J11J2)'e2 iDJ1e2 iDJ2. ~20!

We treat this identity as though it is exact. This is justifie
since to simulate a Hamiltonian for a timet it suffices to
performn separate simulations of a timeD[t/n each, giving
an error ofn3O(D2)5O(tD). This error can thus be mad
arbitrarily small by makingD sufficiently small. Further re-
marks on the error analysis are made for the qubit cas
Ref. @4#, and these results carry over directly to the qu
case.

~c! Imagine we can evolve according to the Hamiltoni
J. Then, by appropriate timing, we can exactly simulate e
lution according tolJ for any l.0.

~d! Imagine we can evolve according to the Hamiltoni
J. Then we can evolve according to the Hamiltonian2J. We
will explicitly prove this only for the case of two-qudi
HamiltoniansJ, however the proof easily generalizes. No
that we can rewrite Eq.~18!,

2J5( ~XjZk
^ XlZm!J~Z2kX2 j

^ Z2mX2 l !

2D2tr~J!I ^ I , ~21!

where we have extracted the2J by taking the sum on the
right-hand side over all terms except (j ,k,l ,m)5(0,0,0,0).
Physically, the term2D2tr(J)I ^ I is an unimportant rescal
ing of the energy and can be neglected. The other term
the expansion for2J are all easily simulated using tech
niques ~a! and ~b! above. Note that the complexity of th
simulation scales asO(D4).

The above observations~a!–~d! may be summarized in a
single equation as follows. Given the ability to perform ev
lution according to the HamiltonianJ and the ability to per-
form unitariesUk , it is possible to simulate evolution ac
cording to a Hamiltonian of the form

(
k

akUkJUk
† , ~22!

where theak can be arbitrary real numbers.

C. Majorization

The final area of background we shall need is the the
of majorization, whose basic elements we now revie
following Ref. @26#. More detailed introductions to majoriza
tion may be found in Chaps. 2 and 3 of Ref.@27# and in Refs.
@28,29#. Supposex5(x1 , . . . ,xD) andy5(y1 , . . . ,yD) are
two D-dimensional real vectors. The relation ‘‘x is majorized
by y’’ is intended to capture the notion thatx is more mixed
~i.e., disordered! than y. To make the formal definition we
introduce the notation↓ to denote the components of a ve
tor rearranged into nonincreasing order, sox↓

5(x1
↓ , . . . ,xD

↓ ), wherex1
↓>x2

↓>•••>xD
↓ . We say thatx is

majorized byy, and writexay, if
02231
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xj
↓<(

j 51

k

yj
↓ , ~23!

for k51, . . . ,D21, and with the inequality holding with
equality whenk5D.

The notion of majorization can be extended in a natu
way to Hermitian operators. We say that the Hermitian o
eratorA is majorized by the Hermitian operatorB, and write
AaB, if the spectruml(A) of eigenvalues ofA is majorized
by the spectruml(B) of eigenvalues ofB, where we regard
the spectral(A) andl(B) as vectors. So, for example,

F 1

2
0

0
1

2

GaF 1

2

1

2

1

2

1

2

G , ~24!

since the spectra of the two matrices satisfy the majoriza
criterion, (1/2,1/2)a(1,0).

It is not immediately obvious how this definition of op
erator majorization connects to any natural notion of co
parative disorder. There is a beautiful result due to Uhlma
@30# ~see also the reviews@31# and@32#! that provides such a
connection. Uhlmann’s theorem states thatAaB if and only
if A5(npnUnBUn

† , where theUn are unitary operators, an
the pn form a probability distribution. That is,AaB if and
only if A can be obtained fromB by mixing together opera-
tors unitarily equivalent toB. Two important points about the
proof of Uhlmann’s theorem are that the procedure for fin
ing thepn andUn is constructive, and, furthermore, there ar
at mostD2 operatorsUn .

We now observe that Uhlmann’s theorem has a beau
corollary when applied toany two traceless Hermitian opera
tors A andB @38#.

Theorem. Let A and B be any two traceless Hermitia
operators, and assumeBÞ0. ThenAacB for some positive
constantc. Uhlmann’s theorem then gives an algorithm
find a set of at mostD2 unitary operatorsUn , and cn.0,
such that

A5(
n

cnUnBUn
† . ~25!

As an example of this theorem in action, consider that
any (j ,k)Þ(0,0) and (l ,m)Þ(0,0) there existUn and cn
such that

XjZk1Z2kX2 j5(
n

cnUn~XlZm1Z2mX2 l !Un
† . ~26!

Using the techniques of the preceding section, notably
~22!, we see that this equation can be interpreted as pro
ing a means of simulating the HamiltonianXjZk1Z2kX2 j

given the HamiltonianXlZm1Z2mX2 l and the ability to per-
form the unitary operationsUn . On its own, this is not an
especially useful simulation result! However, similar b
more sophisticated variants on this idea will be used in
later construction.
7-5
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Proof. The case whenA50 follows by noting that 0
acB for all c.0, so we assumeAÞ0. We aim to show that
l(A)acl(B), for somec.0. Choose

c[ max
k51, . . . ,D21

(
j 51

k

l j
↓~A!

(
j 51

k

l j
↓~B!

. ~27!

SinceA andB are traceless and not equal to 0, it follows th
c.0. Fork51, . . . ,D21 we have

(
j 51

k

l j
↓~A!5

(
j 51

k

l j
↓~A!

(
j 51

k

l j
↓~B!

(
j 51

k

l j
↓~B! ~28!

<c(
j 51

k

l j
↓~B!. ~29!

Finally, note that

(
j 51

D

l j
↓~A!505(

j 51

D

cl j
↓~B!, ~30!

which completes the proof. j

III. TWO-QUDIT HAMILTONIAN SIMULATION

In this section we study universal simulation with tw
qudit Hamiltonians, that is, Hamiltonians of the form

H5 (
jklm

a jklmXjZk
^ XlZm. ~31!

We show that provided this Hamiltonian has a nonzero c
pling term, that is, a term not of the formI ^ (•) or (•) ^ I ,
thenH and local unitary operations can be used to simu
any other two-qudit HamiltonianK.

The basic idea of the proof is to use the composition la
of Sec. II B to increase the library of Hamiltonians that c
be simulated. It will be convenient to use the notati
H1 ,H2 , . . . to denote the different Hamiltonians that w
show how to simulate. The construction is rather comp
cated, for which reason we break it up into steps. This se
ration into steps makes it convenient to introduce some
bal notational conventions. Terms such asj ,k,l ,m,n,r ,s,t
are specific to each step, and sometimes to individual line
the proof, often being used as dummy variables, with
meaning to be determined from context. Terms such
a,b,c,d, f carry over from one step to another. All of the
terms (j ,k, . . . anda,b, . . . ) areconsistently integers in the
range 0, . . . ,D21.

The general strategy through most of the proof is
gradually eliminate more and more terms from the Ham
tonian, while keeping particular desired couplings. At t
end of the proof we are able to simulate a Hamiltonian of
02231
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especially simple form, which can then be used to build
arbitrarily complicated Hamiltonians. We now give an ou
line of the proof. Note that the numbering scheme used in
outline is mirrored in the numbering scheme used in
detailed explanation of the proof given below in Sec. III A

~1! We show thatH and local unitaries can be used
simulate a HamiltonianH1 that contains aZa

^ Zb coupling
term. This term is the focus of most of the remaining steps
the proof, as we try to eliminate most of the other coupli
terms from the Hamiltonian.

~2! We show thatH1 and local unitaries can be used
eliminate terms inH1 not of the formZj

^ Zk, and thus to
simulate a HamiltonianH2 of the form( jka jkZj

^ Zk, which
still contains the nonzero couplingaabZ

a
^ Zb.

~3! We show thatH2 and local unitaries can be used
simulate a Hamiltonian of the formH35(nbn(Zc

^ Zd)n,
with at least one nonzero coupling coefficientb f .

~4! We show thatH3 and local unitaries can be used
simulate a Hamiltonian of the formH65kZa

^ Zb1k* Z2a

^ Z2b, for any complexk.
~5! We show thatH6 and local unitaries can be used

simulateH85(Za1Z2a) ^ (Zb1Z2b).
~6! Using the corollary to Uhlmann’s theorem we sho

thatH8 can be used to simulate any Hamiltonian of the fo
J^ J8, whereJ andJ8 are arbitrary traceless Hermitian op
erators. Any two-qudit Hamiltonian can be expressed a
sum of terms of this form, together with local interactions,
we conclude that any two-qudit Hamiltonian can be sim
lated usingH and local unitaries.

This construction is complex, and a detailed efficien
analysis is not especially enlightening. Nonetheless, from
proof below it follows that the total simulation requires
number of periods of evolution due toH which ispolynomial
in the dimensionD. This can be seen by examining each st
in the construction and verifying that they involve only
summation(kak(Uk^ Vk)J(Uk^ Vk)

† over at most polyno-
mially many terms inD, where theUk and Vk are local
unitaries,J is some entangling Hamiltonian that we are a
ready able to simulate, and the coefficientsak are also poly-
nomial in D.

It is worth noting that the proof can be substantially sim
plified if one assumes thatD is prime. The reason this sim
plification occurs is because in prime dimensions all no
trivial elements of the Pauli group are equivalent to o
another by unitary conjugation. Thus, given a nonzero c
pling term in the Hamiltonian it is easy to simulate a Ham
tonian in which a nonzero coupling of the formZ^ Z ap-
pears. Given this, steps 1 and 3 can be considera
simplified. We describe in detail how this simplification o
curs in Sec. III B.

A. Detailed proof

1. Simulating a Hamiltonian with a nonzero Za‹Zb coupling

By assumption, our Hamiltonian includes a coupling te
of the formXjZk

^ XlZm with a nonzero coefficient. Ifj Þ0
or lÞ0 then the PEG lemma and Eq.~4! imply that by per-
forming local unitary conjugation we can convert this to
coupling term of the formZa

^ Zb with a nonzero coefficient.
7-6
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Let H1 be the Hamiltonian that results when this conjugat
is performed. It will be convenient for our later discussion
fix coprimec andd such thatc/d5a/b, that is,c/d is a/b in
lowest common terms. It will also be convenient to definf
such thata5 f c andd5 f b.

2. Simulating a Hamiltonian of the form( jka jkZj‹Zk

We have shown thatH1 contains a coupling term of th
form Za

^ Zb, however, it could also contain many other co
pling terms. We aim to eliminate these other terms, wh
keeping the couplingZa

^ Zb. In particular, we now explain
how to eliminate those terms containingX or a power ofX.
Note that given the ability to doH1 we can simulate

H25(
lm

~Zl
^ Zm!H1~Z2 l

^ Z2m!. ~32!

To evaluate this sum we first use the commutation relati
for the generalized Pauli operators and then the observa
that ( tv

st5D whens5D0, and( tv
st50 otherwise. Using

these facts we see thatH2 has the form

H25(
jk

a jkZj
^ Zk. ~33!

The termZa
^ Zb in H1 was nonzero, soaabÞ0.

3. Elimination of all terms not of the form„Zc‹Zd
…

n

The next step of the proof is to eliminate all the terms
H2 that are not powers of (Zc

^ Zd). Note that we know there
is at least one nonzero term of this form, the termZa

^ Zb

5(Zc
^ Zd) f . The key to this is a simple number-theore

lemma.
Lemma. Suppose gcd(l ,m)51. Thenjm5Dkl if and only

if there existsn such that

j 5Dnl, and k5Dnm. ~34!

We will give two proofs of this lemma. The first is
constructive proof that only involves elementary numb
theory. The second proof is in some sense more elegan
that it invokes the PEG lemma, and makes use of notion
linear algebra. The second proof is given in Appendix B.

Proof. The reverse implication follows by a simple su
stitution, so we prove only the forward implication. Sin
gcd(l ,m)51 there exist integersr and s such thatrl 1sm
51. Now choosen[ j r 1ks. Then we have

nl5D jrl 1ksl ~35!

5D jrl 1 jsm ~36!

5D j ~rl 1sm! ~37!

5D j , ~38!

as required. A similar calculation shows thatnm5Dk. j
Applying our composition laws we see that we can sim

late
02231
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H35(
l

~X2d
^ Xc! lH2~Xd

^ X2c! l . ~39!

Applying the commutation relations for the Pauli matric
this simplifies to

H35(
jk

a jkF(
l

v (d j2ck) l GZj
^ Zk. ~40!

Note that the sum overl is zero unlessd j5Dck. By the
lemma, this is the case if and only ifj 5Dnc andk5Dnd for
somen, and thusZj

^ Zk5(Zc
^ Zd)n for somen. Thus H3

has the form

H35(
n

bn~Zc
^ Zd!n, ~41!

where thebn are complex numbers. Recall thata5 f c and
b5 f d, so b f}aab , and there is at least one nonzero co
pling term inH3.

4. Simplifying to a sum of at most two terms

Our next task is to eliminate nearly all the coupling term
in H3. First, we set up some notation. Since gcd(c,d)51 we
can choosel andm such thatlc1md51. It will be conve-
nient to write the coefficientsbn as aD-dimensional vector,
that is bW 5(b0 ,b1 , . . . ,bD21), where we use the conven
tion that expressions like (x,y,z, . . . ) denote column vec-
tors. It will also be convenient to use the notatio
eW0 , . . . ,eWD21 for the unit vectors in thisD-dimensional vec-
tor space, and to identifyeW 2 j with eWD2 j . So, for example,
eW15(0,1,0,0, . . . ,0), andeW 225eWD22. Note that the con-
straint thatH3 is Hermitian implies thatbW * 5PbW , where
PeWn5eW 2n for n50, . . . ,D21.

Next, supposegW 5(g0 , . . . ,gD21) is a real vector. Using
our composition laws we can simulate the Hamiltonian

H45(
j

g j~X2 l
^ X2m! jH3~Xl

^ Xm! j . ~42!

Our strategy will be to choosegW in such a way thatH4 has
an especially simple form. Applying the commutation re
tions for the Pauli operators gives

H45(
jn

g jbnv ( lc1md) jn~Zc
^ Zd!n ~43!

5(
n

dn~Zc
^ Zd!n, ~44!

where in the second step we used the fact thatlc1md51,
and we define

dn[bn(
j

vn jg j . ~45!
7-7
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The sum on the right-hand side is most conveniently writ
in matrix form asMgW , whereM is the matrix with entries
Mn j[vn j. Up to a constantM is just the matrix representa
tion of the discrete Fourier transform, which is easily i
verted, so we can choosegW such thatMgW 5eW f1eW 2 f .

Recall that theg j in Eq. ~42! must be real in order for a
simulation of H4 to be possible. We now use a symmet
argument to show that this is the case. Note thatMgW 5eW f

1eW 2 f , by definition ofgW . SinceP, eW f andeW 2 f are real,

MgW 5eW f1eW 2 f5@P~eW f1eW 2 f !#* . ~46!

Next, from MgW 5eW f1eW 2 f andP* 5P we obtain

@P~eW f1eW 2 f !#* 5PM* gW * . ~47!

Combining these results we see thatPM* gW * 5MgW . Observ-
ing thatPM* 5M we obtainMgW * 5MgW , and thusgW is real.

Summarizing, we have obtained the ability to simulate
Hamiltonian

H45bZa
^ Zb1b* Z2a

^ Z2b, ~48!

whereb[b f , and the fact thatb2 f5b* follows from the
fact thatH4 is Hermitian. Conjugating byX21

^ I we also
obtain the ability to simulate the Hamiltonian

H55bvaZa
^ Zb1~bva!* Z2a

^ Z2b. ~49!

However, note thatany complex numberk can be formed
from real linear combinations ofb and bva, so by taking
appropriate real linear combinations ofH4 and H5 we see
that we can simulate any Hamiltonian of the form

H65kZa
^ Zb1k* Z2a

^ Z2b. ~50!

5. Simulation of a tensor product Hamiltonian

Applying Eq. ~6! to the second qudit we see that we c
simulate any Hamiltonian of the form

H765kZa
^ Z6b1k* Z2a

^ Z7b, ~51!

and it follows by taking linear combinations that we c
simulate

H85~Za1Z2a! ^ ~Zb1Z2b!. ~52!

6. Simulation of any Hamiltonian

Note thatZa1Z2a and Zb1Z2b are nonzero, traceless
Hermitian operators, so by the corollary to Uhlmann’s the
rem we can simulateany Hamiltonian of the formJ^ J8,
whereJ and J8 are arbitrary traceless, Hermitian operato
The operator expansion implies that an arbitrary two-qu
Hamiltonian can be formed as a real linear combination
such Hamiltonians, together with single-qudit terms of t
form J^ I or I ^ J8. Thus, with the ability to performH and
local unitary operations we can simulate an arbitrary tw
qudit Hamiltonian.
02231
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B. The case whereD is prime

The proof just given can be substantially simplified in t
case whereD is prime. We now sketch how the simplifie
proof goes. The reason for the simplification is that any n
trivial elementXjZk of the Pauli group is equivalent unde
conjugation toZ. To see this, note that ifj Þ0 andkÞ0 then,
using the PEG lemma it is possible to conjugateXjZk to Zl ,
up to a phase factor, for somel such that 1< l<D21. Simi-
larly, if k50 then we can conjugate to some suchZl using
Eq. ~4!, while if j 50 then the term is already in this form. I
turn this may be conjugated toZ using Eq.~6!, since l is
coprime toD whenD is prime. It follows that in step 1 of the
above proof we can show that it is possible to simulate
HamiltonianH1 that contains aZ^ Z coupling term. Step 2
proceeds exactly as before, and results in a Hamiltonian
the formH25( jka jkZj

^ Zk, such thata11Þ0.
Step 3 of the preceding proof is substantially simplifie

In particular, we note that it is possible to simulate t
Hamiltonian

H35(
l

~Xl
^ X2 l !H2~X2 l

^ Xl !, ~53!

5(
jkl

a jkv l (k2 j )Zj
^ Zk, ~54!

5D(
j

a j j ~Z^ Z! j . ~55!

The remainder of the proof can then be completed as bef

IV. APPLICATIONS TO UNIVERSAL QUANTUM
COMPUTATION

We have shown that any two-qudit entangling Ham
tonian, together with local unitary operations, may be used
simulate any other two-qudit Hamiltonian. We now exte
this result to the problem of universal quantum computat
on N qudits. In particular, we show that any two-bod
N-qudit entangling Hamiltonian, together with local unita
ies, can be used to perform universal quantum computat

The basic strategy follows the method presented in R
@4#. The idea is to reduce the problem to the two-qudit ca
already solved. To do this, we divide the system into aprin-
cipal system Pconsisting of two qudits coupled by th
HamiltonianH of the entire system, and theremainderof the
system, denotedS. Our techniques generalize the results
Refs.@7,8#, which are themselves generalizations of stand
techniques from NMR. The basic idea is to turn off all th
interactions betweenP andS, and withinS, leaving only the
interactions present inP. We will refer to such a suppressio
of interactions asdecoupling. The remaining interactions ca
then be used, as before, to simulate arbitrary dynamics on
two qudits in P. Thus it is possible to simulate arbitrar
dynamics onany two qudits coupled byH. Finally, an arbi-
trary interaction between quditss and t may be effected by
performing a sequence ofSWAP gates between the qudit
connectings and t ~in the sense defined in Sec. I!, applying
7-8
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the desired interaction, and swapping back. Note that su
sequence ofSWAP operations can be performed using t
method already described for simulating quantum gates
this way we can effect any two-qudit Hamiltonian betwe
any pair of qudits in the system, and thus perform univer
quantum computation.

The obvious technique for achieving decoupling is
eliminate couplings betweenP andS, and withinS, one at a
time, using techniques along the lines of those used to si
late one two-qudit Hamiltonian with another. Unfortunate
this procedure is not efficient, for reasons we now expla
As an example, supposeP consists of two qudits, labeledA
andB, andS consists of two qudits,E andF. Then interac-
tions between quditE and the remainder of the system m
be effectively turned off by simulating the Hamiltonian,

H85

(
U

UEHUE
†

D2
, ~56!

whereU runs over all Pauli matricesXjZk and theE indi-
cates thatU is being applied to the quditE. While we can, in
principle, turn off all interactions in this way, the resultin
procedure is not efficient. To see this, notice that turning
all the couplings to the quditE required a sum overD2

terms, each a conjugated form of the HamiltonianH. For an
N-qudit system generalizing this procedure in the obvio
way would require a sum overDN terms. The correspondin
simulation would therefore have exponential complex
which is not efficient.

Fortunately, much more efficient techniques for deco
pling can be devised. In this section we explain two su
techniques. Sec. IV A explains how the decoupling can
performed for a completelyarbitrary two-qudit Hamiltonian,
while Sec. IV B explains how the procedure for decoupli
can be substantially simplified and made more efficient w
the Hamiltonian has the localized structure found in m
physical systems.

A. The case of arbitrary two-qudit interactions

SupposeH is an arbitrary two-qudit entangling Hami
tonian. We now explain how to efficiently eliminate all co
plings between a principal systemP and the remainder of the
systemS, and to eliminate all couplings internal toS, while
leaving the couplings withinP invariant. The method is a
straightforward generalization of that described for qubits
Dodd et al. @4#. Let U run over all Pauli matricesXjZk. De-
fine US to be the tensor product of identical operatorsU
acting ditwise on the qudits inS. We form the Hamiltonian

H85
1

D2 (
U

USHUS
† , ~57!

and observe thatH8 leaves the Hamiltonian onP invariant,
but eliminates all coupling terms betweenP and S, and all
single-qudit terms acting withinS.

We now explain a recursive construction to eliminate
remaining couplings inS. First, we break the blockS into
02231
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two blocksS0 and S1 of approximately equal size. We de
coupleS0 andS1 by forming the Hamiltonian

H95
1

D2 (
U

US0
H8US0

† . ~58!

Next, we breakS0 into two blocksS00 and S01 of approxi-
mately equal size, and breakS1 into two blocksS10 andS11
of approximately equal size. We can decoupleS00 from S10,
and S01 from S11 in a single step by forming the Hamil
tonian,

H-5
1

D2 (
U

~US00
^ US10

!H9~US00
^ US10

!†. ~59!

By repeating this blocking procedured log2(n22)e times we
can complete the decoupling, leaving a sum ov
O(D2 log2N)5O(N2 log2D) terms involving the conjugation o
H by local unitary operations. Thus we can decoupleP from
S, leaving only the interaction on systemP, using a proce-
dure of complexityO(N2 log2D). This interaction on systemP
can then be used to simulate an arbitary two-qudit interac
on P, using the techniques described in the preceding s
tion.

B. The case of localized two-qudit interactions

The method just described assumes a general two-q
Hamiltonian H. Of course, the Hamiltonians occurring i
Nature are usually much more constrained. In particular,
very common for Hamiltonians to have some sort of loc
ized structure. In this section we explain how localized str
ture can be exploited to obtain more efficient decoupl
schemes than described above for the general case. Note
similar constructions in the context of NMR were reported
Refs.@7,8#.

Suppose, for example, thatH contains only nearest
neighbor interactions on a one-dimensional lattice. This
obviously a special case, but is a good illustration of t
ideas used for more general cases. We number the qu
1,2, . . . ,N, and suppose thatP contains qudits 1 and 2
while S contains qudits 3 throughN. The case of generalP
andS follows using similar techniques. We can split the d
coupling up into three steps. In the first step we eliminate
couplings betweenP andS, which can be achieved by elimi
nating all couplings between qudits 2 and 3. We call t
resulting HamiltonianH8. The second step is to eliminate a
single-body terms inS. This can be done by simulating th
Hamiltonian

H95
1

D2 (
U

USH8US
† . ~60!

We complete the decoupling by simulating
7-9
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H-5
1

D2 (
U

~ I ^ I ^ U ^ I ^ U ^ I ^ ••• !

3H9~ I ^ I ^ U ^ I ^ U ^ I ^ ••• !†, ~61!

where the conjugation byU is applied to qubits 3,5,7, . . . ,
which we can easily see turns off all couplings acting b
tween qudits inS.

Thus, we see that for a nearest-neighbor Hamiltonian o
one-dimensional lattice, the decoupling can be performed
constant~with respect toN) cost in the simulation, as op
posed to theO(N2 log2D) cost incurred in the case when ge
eral interaction terms appear in the Hamiltonian.

This result can easily be generalized. SupposeS can be
broken up into a partitionS1 , . . . ,Sm with the property that
qudits in one member of the partitionSj only couple to qu-
dits outsideSj . To decouple we do the following. For eac
element of the partitionSj turn off all couplings betweenSj
and the remainder of the system by simulating the Ham
tonian

H j5(
U

USj
H j 21USj

† , ~62!

where H0[H. It is easy to see that the HamiltonianHm
contains no single-body terms fromS, no couplings between
P andS, and all couplings internal toShave been eliminated
The total cost of the simulation scales as (D2)m5D2m. This
cost can be reduced even further by using a recursive pr
dure like that described for the general two-qudit case,
sulting in a scaling ofO(D2log2m).

Many cases of interest can be described in the framew
just introduced. For example, consider anr-dimensional cu-
bic lattice of qudits, with nearest-neighbor interaction
There is a natural partitioning of this lattice into 2r different
sublattices, as follows. First, fix a site in the lattice, and th
consider the cubic sublatticeS1 generated by stepping tw
lattice spacings in every direction. We generate the parti
of sublatticesS1 ,S2 , . . . ,S2r by translatingS1 one lattice
spacing in various directions.~We are ignoring boundary
conditions in this discussion; they are easily accommoda
or one can imagine that the lattice has periodic bound
conditions.! Now remove the qudits inP from whichever
elementsSp and Sq of the partition they happened to fa
into. Notice that qudits inSj only ever coupleout of Sj ,
since the interactions are nearest-neighbor. Thus the pr
dure described above makes it is possible to decoupleP from
SusingO(D2r) operations. More generally, it is not difficu
to use such constructions to efficiently decoupleP andS for
any Hamiltonian containing only localized interactions.

V. DISCUSSION

We have shown that, given any two-qudit entangli
HamiltonianH and local unitaries we can simulate any oth
two-qudit Hamiltonian. This result was then applied to o
tain universal gate constructions for quantum computat
Our results are of interest because they show that such
versal simulation is possible, in principle. However, the co
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plexity of our construction limits the practicality of potentia
implementations, and should encourage the search for m
practical methods.

There are two aspects to the analysis of efficiency for
simulations. The first is how they scale with the dimensionD
of the qudits in the system, and the second is how they s
with the numberN of qudits present in the system. The sca
ing with N is the critical factor, while the scaling withD is
not so important, since for most physical systems of inter
D is a constant. We have shown that the scaling for simu
tion of one two-qudit Hamiltonian with another is polyno
mial in D, and the scaling withN behaves asO(N2 log2D).
Thus the total scaling isO„poly(D)N2 log2D

…, which is poly-
nomial in bothN andD.

Our results show that all two-bodyN-qudit entangling
Hamiltonians are qualitatively equivalent, given the ability
perform local unitary operations. Thus, in some sense
ability to entangle can be regarded as a fundamental phys
resource—a type of ‘‘dynamic entanglement’’@39#—that can
be utilized to perform interesting processes. It would be
tremely interesting to develop a detailed quantitative the
of such dynamic entanglement. Following the line of r
search we have pursued in this paper, some potential q
tions one might attempt to answer in developing such
theory of dynamic entanglement include

~a! What is the optimal procedure for simulating on
Hamiltonian with another? See Refs.@15–17# for prelimi-
nary results in this direction.

~b! Can an entangling Hamiltonian defined on aD3D8
system, whereDÞD8, be used to perform universal simula
tion on those systems? Note that this question has rece
been settled in the affirmative@33,34#, using methods rathe
different than that in our paper.

~c! Our model assumes that the constituent systems ar
finite dimensionalityD. It would be interesting to determin
whether analogous results hold in infinite dimensions.

~d! Are universal simulation results possible for nonun
tary processes? For measurement processes? Prelimina
sults in this direction have been obtained in Refs.@35,36#.

~e! Can we weaken the condition that arbitrary local u
tary operations be allowed during the simulation procedu
It would be interesting, for example, if universal simulatio
could be performed in a system where local unitaries
applied homogeneously across the entire system.

~f! Our model assumes that only a single Hamiltonian
being applied at any given time, namely, either the ent
gling HamiltonianH, or a local Hamiltonian on a single qu
dit. In practice, this is not likely to be exactly the case. Wh
effect do imperfections have?

~g! In the theory of entangled state transformation there
a crucial distinction between ‘‘single-shot’’ manipulation o
entangled states, where just a single copy of the state is a
able, and manipulations that are performed in the asympt
limit where a large number of copies of the state are av
able. The results obtained in the present paper are for sin
shot Hamiltonian simulation; it would be interesting to o
tain results for the asymptotic case as well.

Note added. Recently we became aware that Wocja
7-10
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Roetteler, Janzing, and Beth have independently obta
some similar results in Ref.@34#.
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APPENDIX A: NORMALIZER OPERATIONS FOR THE
D-DIMENSIONAL PAULI GROUP

In this Appendix we construct the unitary operationsU
used to perform the conjugation operations Eqs.~4!–~6!,
which we reproduce here for convenience,

X→Z, Z→X21, ~A1!

X→XZ, Z→Z, ~A2!

X→Xa, Z→Za21
, provided gcd~a,D !51. ~A3!

Our constructions are based on those of Gottesman@23#,
however, Gottesman’s interest was mainly in the case
prime D greater than 2, and his constructions only apply
odd values ofD. The following constructions apply forD
both odd and even.

The conjugation operation for Eq.~A1! is just the
D-dimensional discrete Fourier transform, defined by

Uu j &[ (
k50

D21

v jkuk&. ~A4!

A straightforward calculation shows thatUXU†5Z and
UZU†5Z21, so Eq.~A1! holds.

The definition of the conjugation operation for Eq.~A2!
depends on whetherD is odd or even. WhenD is odd we
define
-

o

02231
ed

t-
to
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d
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-

of
r

Uu j &[v j ( j 21)/2u j &. ~A5!

A straightforward calculation shows thatUXU†5XZ and
UZU†5Z, so Eq.~A2! holds for oddD. WhenD is even we
define

Uu j &[v j 2/2u j &, ~A6!

and then check thatUXU†5v1/2XZ andUZU†5Z, so that
Eq. ~A2! also holds for evenD.

Finally, the conjugation operation for Eq.~A3! is defined
by

Uu j &[ua j&, ~A7!

from which it follows thatUXU†5Xa and UZU†5Za21
,

which completes the constructions needed to verify E
~A1!–~A3!.

APPENDIX B: SECOND PROOF OF THE NUMBER
THEORY LEMMA

In this Appendix we provide an alternate proof of th
number theory lemma used in Sec. III A of the paper. Rec
the statement of the lemma:

Lemma. Suppose gcd(l ,m)51. Thenjm5Dkl if and only
if there existsn such that

j 5Dnl; k5Dnm. ~B1!

Proof. By the PEG lemma there exists a normalizer o
eration U such that UXlZmU†5Zgcd(l ,m)5Z, where the
equalities hold up to phase factors. Note thatXlZm commutes
with XjZk, sincejm5Dkl, soUXjZkU† must commute with
Z5UXlZmU†. It follows that UXjZkU†5Zn, up to a phase
factor, for somen, and thus

XjZk5U†ZnU ~B2!

5~U†ZU!n ~B3!

5~XlZm!n ~B4!

5XlnZmn, ~B5!

where, again, the equalities hold up to unimportant ph
factors. It follows thatj 5Dln andk5Dmn, as claimed. j
s.
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