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What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system?
Doddet al.[Phys. Rev. A65, 040301R) (2002] provided a partial solution to this problem in the form of an
efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entan-
gling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems
are qudits, that is, havi@ dimensions. As a consequence we explain how universal quantum computation can
be performed with any fixed two-body entangliNgqudit Hamiltonian, and local unitaries.
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I. INTRODUCTION where j;,kq, ... jn.Ky €ach run from O throughb—1,
aj k,...jk, @re complex numbers, and the operatiendZ

A fundamental problem of physics is to determine if thereare p-dimensional generalizations of the familiar Pauli op-
exist physical systems that aumiversal in the sense that grators, to be defined more precisely later. In our work we
they can be used to efficiently simulate any other systemyegirict attention to the case of Hamiltonians that only in-
A candidate for such a universal system was proposed i qe two-body coupling terms, and do not allow three- or
Deutsch's 1985 papét] in the form of auniversal quantum o0 hody coupling terms. Awo-body couplingoetween a
computer[;—S]. The purpose olf this paper is to investigate air of quditsp and q is a term in Eq.(1) of the form
what physical systems are universal for quantum comput %i75a X 7™ where neitherxizk nor X'Z’.“ is equal to the

tion. ; ; L ;
The standard model of a quantum computer consisté of identity, so that t_he te.rm acts nonterlaIIy.on quditsndg,
and acts as the identity on all other qudits. In order to gen-

qubits, prepared in the sta@)®V, that can be manipulated . . -
by a sequence of one- and two-qubit operations, and arerate arbitrary entanglement in the system it is necessary that

subsequently measured in the computational basis. There a@ch qudit pair ,t) must beconnectedin the sense that
many possible physical implementations of this model, andhere are coupling terms in E@l) for each adjacent pair in
in general it is an interesting problem to determine whatsome sequences(. .. t) of qudits in the system. More ex-
critical feature or features of a physical system enable uniplicitly, to any two-body Hamiltonian one can associate a
versal quantum computation. graph whose vertices correspond to the qudits in the system,
In earlier work by Dodd, Nielsen, Bremner, and Thegly  and whose edges connect vertices representing qudits that are
it was shown thaentanglemenis a crucial physical ingredi- coupled by the Hamiltonian. A Hamiltonian is said to be a
ent for quantum computation. In particulf4] showed that two-body Nqudit entangling Hamiltonian if the graph is con-
the ability to do local unitary operations together with anynected, that is, there is a path between any pair of vertices.
fixed Nqubit two-body entangling Hamiltonian may be used Our main result is as follows:
to do universal quantum computation on thdsgubits.

In this paper we generalize this result to Hamiltonians Let H be a given two-body entangling Hamil-
defined onqudits that is, D-dimensional quantum systems tonian onN qudits, and leK be a desired two-
spanned by the staté®), ... |D—1). This is of intrinsic body Hamiltonian orN qudits. Then we have an
interest, and is also noteworthy because of the much richer efficient algorithm to simulate evolution dueko
structure revealed in the general proof than inhe2 case using only(a) the ability to evolve according to
studied in Ref[4]. _ H, and (b) the ability to perform local unitaries

To state our main result more precisely, we expand an (that is, single-qudit unitarigson the individual
arbitrary Hamiltonian orN qudits as qudits.

H= Qo k Xi1izkig ... @XINZMN, (1) The algorithm we explain below for performing this simu-
jikg inky P NN lation is only “efficient” in the sense of computer science.

That is, it requires resources polynomial in the number of
qudits N in the system. Our simulation technique is quite
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SElectronic address: amchilds@mit.edu all two-body N-qudit entangling Hamiltonians are qualita-
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1050-2947/2002/6@)/02231712)/$20.00 66 022317-1 ©2002 The American Physical Society



NIELSEN, BREMNER, DODD, CHILDS, AND DAWSON PHYSICAL REVIEW A6, 022317 (2002

operations. Thus, in some sense, the ability to entangle cgmotentially of great interest for applications to quantum com-
be regarded as a fundamental physical resource—a type pltation and quantum control.
“dynamic entanglement[37]—that can be utilized to per- Also related to our results is the work on universal gates
form interesting processes. We explore this idea and makiey Deutsch, Barenco, and Ekdril] and by Lloyd[12],
some concrete suggestions for its development in the corwhere it was shown that almost any two-qubit gate is univer-
cluding section, Sec. V. Furthermore, our work may motivatesal for quantum computation. Lloyd sketched a generaliza-
future research on more practically viable methods for doingion of these results to the case of qudits, and this sketch has
universal simulation. recently been made rigorous by Wea{/&8]. This work dif-
Antecedents to our work may be identified in many dif- fers from ours in that it focuses on unitary gates rather than
ferent parts of the scientific literature. We now enumerate theontinuous-time Hamiltonian evolution, and does not result
different fields in which antecedents may be found, befordn an explicit characterization of which sets of unitary gates
giving a detailed account of the prior work, and how it re- are universal. Our work explicitly determines which two-
lates to our own. The basic techniques we use are generafpody Hamiltonians, together with local unitary operations,
zations of standard techniques from nuclear magnetic resge universal. Furthermore, in Refd1-13 it was assumed

nance(NMR), especially the techniques knownrafocusing ~ that gates could be independently appliecfy pair of qu-
and decoupling The main motivation for our work is in- dits in the computer, and thus required the ability to turn on

spired by research into universal gates for quantum complf’-‘nd turn off interactions between arbitrary pairs of qudits. By

tation. More recently there has been substantial interedtontrast, we assume only a fixed entangling operation.
within the quantum information science literature in the. Interestin universal quantum gates has recently motivated

- oo interest in the quantum information science literature in the
problem of determining when one set of Hamiltonians can be

. . . . problem of simulating one Hamiltonian with another. Inde-
used to simulate another. This interest has arisen largely nﬁ—

d dently of Kin th i h endently of Dodd, Nielsen, Bremner, and Théd, the
ependently of work in the quantum control literature, Where ,pjam “of Hamiltonian simulation for qubits was consid-

closely reIatgd issues are being addressed, albeit using dif;eq by Du, Vidal, Cirac, Linden, and Popescu in REE4],
ferent techniques and language. where it was shown that all two-qubit entangling Hamilto-
The main antecedents of our methods are standard NMRjans are qualitatively equivalent, in the sense that one can
techniques for decoupling and refocusif6] that have pe ysed to simulate the other, given the ability to do local
been developed and refined over the past half century. Thesgiitaries. Wocjan, Janzing, and Bdttb] considered @pe-
techniques have mostly been applied to manipulate specifigific Hamiltonian acting on a system containifgspin-1/2
Hamiltonians, rather than general classes of Hamiltoniangarticles, and considered the overhead incurred when using
Ideas from NMR have been applied in the quantum computthis Hamiltonian to simulate other Hamiltonians. Bennett,
ing context by Jones and Knill7], and by Leung, Chuang, Cirac, Leifer, Leung, Linden, Popescu, and Vid6] have
Yamaguchi, and Yamamo{@&], who considered the problem considered the problem afptimal simulation of one two-
of efficiently implementing logic gates using a restricted qudit Hamiltonian by another, using general local operations,
class of Hamiltonians that arises naturally in NMR. possibly including ancillas and measurements. Thus they
One of the main motivations for our work is the desire toconsidered a different model than ours, which only involves
understand what resources are universal for quantum compiecal unitary operations, and, in particular, does not require
tation. Much prior work has been done on this subject, andhe ability to perform interactions with local ancilla. Bennett
many universal sets of gates for quantum computation aret al. showed that in the two-qubit case the two models are,
known. See, for example, Ref®,9]. The work most closely in fact, equivalent. We also note that the results in RE6]
related to ours is independent work of Brylinski and Brylin- are restricted to the cag¢=2. Vidal and Cirac[17] ex-
ski [10], who used the representation theory of compact Ligended the results of Bennett al. by explicitly obtaining the
groups and real algebraic geometry to study the problem abptimal simulation of one two-qubit Hamiltonian by another
which two-qudit gates are universal for computation, givenin the case where classical communication between parties is
the ability to do single-qudit gates. In particular, they definedallowed, in addition to the ability to do local operations,
the class ofmprimitive unitary gates on two qudits to be the including the use of ancillas and measurement. They also
gates that are not of the forM®W or (V®W)S, whereV ~ showed that in the case of two qudits the model where local
andW are single-qudit unitaries, ar®lis the swap operation. unitary operations are alloweddstinctfrom the case where
They showed that any imprimitive gate is universal for quan4ocal unitary operations and ancilla are allowed, in the sense
tum computation, given the ability to also do arbitrary local that the latter may be more efficient than the former. We note
unitary operations. Their results thus imply ours for the casehat Leung and Vida[18] have independently obtained re-
whenN=2. Our results differ from theirs in several ways. sults on problems related to those we consider. It is worth
First, even in the case whéh= 2, the techniques used in our noting that while related problems are being addressed in this
proof are radically different. Our techniques are much mordong list of papers, the methods used are quite varied, and the
elementary, relying only on basic linear algebra, a simpldifferent methods may provide different insights into quan-
result from the theory of majorization, and some very el-tum dynamics.
ementary number theory. Thus, our methods give different Independently of the quantum information science litera-
insights into the problem of universality than those in Ref.ture there has been much interest in Hamiltonian simulation
[10]. Second, we consider the case whéte 2, which is in the field ofquantum contralA recent overview of work in
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quantum control may be found in RdfL9]. Of particular A. The Pauli group
interest in this context is a general set of necessary and suf- The D-dimensional Pauli group consists of all

ficient conditions for determining whether a given set of p_gimensional operators of the fora'X/Z¥, wherej,k,|

Hamiltonians can be used to simulate an arbitrary Hamil-—g = D—1, w=exp(2mi/D),
tonian (see, for example, Schirmer, Solomon, and Leahy
[20]). These conditions can be applied to determine whether, X|zy=|z®1); Z|z)=w?z), 2

in any specific instance, a collection of Hamiltonians can be

used to simulate an arbitrary Hamiltonian, however, they dnd ® denotes addition modul®. The properties of the
not directly speak to the question of what class of interacPauli group were investigated in detail by Gottesriaal,
tions is universal for quantum computation, given the abilityand the reader is referred to that paper for additional infor-

to perform local unitaries. malttiqn. th noti f imol " f the Pauli
Finally, we note that the techniques used in this paper are IS worth noting a Tew simple properties of the ~aull

- - D_ D= g .
closely related to the interesting problem of using a Hamil-mZ:::ggz'W':e'rs;;( fr;ezl in:ér;rr?;r?, gvgfnrevg:itg;% ;ﬁ%,?l?éu“
tonian H to simulate time-reversed evolution due to the y 9 P

71 . . T 71 . . .
Hamiltonian —H. Results on this problem have been Ob_andZ , and expressions liké" andz ~. In a similar vein,

; . . note that K1Z¥)T=z"¥X~1. Through most of the paper we
'Ea”}ed by Janzing, Wocjan, and Bef1], and by Leung notatign IiI)<eZ*"X*j in prefergnce toXizt, P
22].

. . . The basic commutation relations for the Pauli group may
The structure of our paper is as follows. Section Il intro- be written as

duces background techniques needed in the main body of the

paper, including results on the Pauli group and majorization. (XIZK)(X5ZY) = ks It (XSZ) (XIZ). (3)
Section Il explains theN=2 case of the general problem,

that is, how any two-qudit entangling Hamiltonian can beWe will have very frequent occasion to use these commuta-
used to simulate any other two-qudit Hamiltonian, providedtion relations. In particular, note tha¢!Z¥ commutes with
local unitaries are allowed. In Sec. IV we explain how this X°Z" if and only if ks=pjt.

result can be applied to the general problem of quantum Gottesmar{23] studied the properties of the Pauli group
computation onN qudits, and prove our central result. Fi- under conjugation byD-dimensional unitary operators. In
nally, Sec. V concludes the paper with a summary and dispayticular, he was interested mormalizer operat?on,sthat is,
cussion of our results, and a discussion of open problems. Unitary operationd) such that under conjugation dy the

As the main body of the paper involves a quite extensivd”@uli group is taken to itself. In Appendix A we explicitly

construction, some readers may not wish to wade through aff€Scribe unitary operators performing the following three

the details. We have structured the paper so that such Gpnjugation operations:

reader may follow the summaries provided at the beginning X_s7  7_sx-1 (4
of Secs. Il and Ill, all of Sec. IV on universal quantum com- ' '
putation, and all of the discussion in Sec. V. X X7 757 )
-1
a a —
Il BACKGROUND X—X? Z—Z7% °, when gcda,D)=1, (6)

We now review the background needed to appreciate th&hereA— B means thatlAU"=¢'?B for some phase factor
main body of the paper. At a first read it may be useful toe'’. Note that the phase factors are unimportant for the proof,
skip over the proofs, and pause mainly to appreciate the n&nd will mostly be ignored in the sequel. These equations
menclature and basic results. Readers who wish to skip théply that the following three conjugation operations may
entire section should note the main result: given the ability tcalso be performed:
evolve according to a Hamiltoniad and perform unitary

operationsU, it is possible to simulate evolution according X—Z7Y  Z-X, (7)
to a Hamiltonian of the forn®«, U, JU{ , where then, are

real numbers. This composition law for Hamiltonians is the X=X, Z—=XZ, (8)
basis for all our later simulation results. Note also that

throughout the paper we usey to indicate equality modulo X—)Xa_l, Z—Z72 when gcda,D)=1. (9

D. So, for example, #,3, since 7 is equal to 3, modulo 4.

The structure of the section is as follows. In Sec. Il Awe We now use the normalizer operations to prove what we
summarize the relations satisfied by operators in the Pauterm the Pauli-Euclid-GottesmdPEG lemma. Aside from
group. Sec. Il B describes the composition laws used later iits interest as applied in this paper, the PEG lemma is also
the paper to build up a library of Hamiltonians we can effi- interesting because it enables us to explicitly calculate the
ciently simulate given the primitive Hamiltonians initially at eigenvalues and eigenvectors of all elements of the Pauli
our disposal. Finally, Sec. Il C reviews the basic elements ofjroup, showing a surprising connection between the Pauli
the theory of majorization, including a corollary of Uhl- group and Euclid’s algorithni [24], Book 7, Propositions 1
mann’s theorem crucial to our later analysis. and 2 for finding the greatest common divisor.
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Pauli-Euclid-Gottesman Lemmaor any dimensionD  conjugatex* Z X®Z ™™ must also appear in the operator ex-
and for integer$ andk such that &j,k<D—1, there exists pansion. In general, terms in the operator expansion of a
a unitary operatot) such thatx/zk— z940: ynder conju- Hermitian operator appear in Hermitian conjugate pairs.
gation byU. The operator expansion may be used to establish a useful

Note, incidentally, that the PEG lemma implies that theidentity satisfied by any operatdron a single qudit,
eigenvalues oK!Z* are equal to the eigenvalues 8¥°40-K),
up to a global phase which may be calculated from the proof, i >k k-
below. The eigenvalues aZ%¥ are easily calculable, % (XIZ5HIZ7*X) =Dl (17)
sinceZ is already diagonal. The eigenvectors X" may
also be extracted from the proof of the PEG lemma, belowThe identity Eq.(17) is well known in quantum information
where we explain how to construct the conjugating operascience from the properties of the depolarizing channel for

tion, U. D-dimensional systems. The identity may be verified by di-
Proof. From Egs.(4)—(9) we see that it is possible to rect calculation, or by substituting an operator expansion for
perform the following operations under conjugation: J. Equation(17) may also be extended to multiple qudits. For
. . : our purposes all that matters is the two-qudit case, which
XiZK— XiZk* e, (10 reads
XizKk— xitakzk (11)

> (XIZkeX'z™MI(z X Tez™X Y =D2r(J)I 1.
wheree is any integer. The basic idea of the proof is to use ikim
these two operations and Euclid’s algorithm on the paired (18)
exponents oX andZ. We will give an example of how this
is done, with the general proof following similar lines. Con-
sider the operatox!%4z8° Recall how Euclid’s algorithm is
used to find the greatest common divisor of 104 and 80. W
write 104=1X80+ 24, so gcd(104,8Gygcd(80,24). Next,
we write 80=3X24+8, so gcd(104,805gcd(24,8). Fi-
nally, we write 24=3X8, so gcd(104,8G3 8. These steps 1
are easily mimicked with the Pauli operators using Ea6) > (XIZ9Jzkxh== > uJu'. (19)
and(11). We have ik D uSs,

We conclude this section with a brief digression, noting
that an alternate proof of E¢17) may be obtained by ap-
lying Schur’s lemma from group representation the@%.
et Gp denote the Pauli group iD dimensions, and note
that

X 104780 _, 104~ 180780 24780 (120  The factor 1D on the right-hand side arises because of the
phasesw' in front of a general member of the Pauli group,
X24780_, x24780-3x24 y 2478 (13  'XIZ¥. The right-hand side of this equation commutes with
any U e G . The result follows from Schur’s lemma if we
X20Z8— x2473x878=78 (14)  can prove tha6p, is irreducible. Suppos@p, is reducible, so

. . that there exists a nontrivial subspace of the qudit state space
The general proof proceeds analogously, using Euclid's algos¢aple under the operations®y, . Let P denote the projector
rithm. onto that subspace. Because the subspace is stable it follows

A key tool in our analysis is theperator expansionWe  h417p7-1=p, and thusZ commutes wittP. It follows that
will explain in detail how this expansion works for the casep -4, pe diagonalized in the ba$d, . . . |D—1), and thus

of two qudits. Any operatod on two qudits may be ex- e stable subspace is spanned by a strict subset of
panded in the form

|0), ...,|D—1). Supposgz) is in the stable subspace, but
|z 1) is not. But X|z)=|z® 1), so the subspace is not
= FumXiZkeX'z™, (15)  stable, which is a contradiction. This completes the proof of
ficm Eq. (17).

where the sum is over the rangg&,|,m=0,... D—1, and - o ) )
the coefficients j,,, may be calculated using the expression, B. Composition laws for Hamiltonian simulation
_ The basic idea employed in the main part of the paper is
tr[(Z *X 1@z "X 1)J] to use our primitive set of operations and a small number of
D2 ' (16) composition lawgo build up a library of Hamiltonian evo-
lutions we can simulate. We now explain the composition
In general it is useful to introduce the convention that thelaws that we use, adapting from Re4].
indices in sums always range over.0. ,D—1, unless oth- () Imagine we can evolve according to the Hamiltonian
erwise noted. J, and perform unitary operation$ andU™. Then it follows
Equation(15) applies for any operator, however, Hermit- from the identitye‘”UJUT=Ue‘“JUJr that we can exactly
ian operators satisfy additional constraints on the form of theimulate evolution according to the Hamiltonia U™,
coefficientsrjy, . For example, if a term of the formz* (b) Imagine we can evolve according to the Hamiltonians
®Z™ appears in the operator expansion, then its Hermitiad,; andJ,. Then we can simulate evolution duexp+J, for

likim=
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small timesA, due to the approximate identity

k K
I< |
e iA1Hy) L oA g—iAdy (20) le Xj <j21 Yi (23

for k=1,... D—1, and with the inequality holding with
equality whenk=D.

The notion of majorization can be extended in a natural
way to Hermitian operators. We say that the Hermitian op-

We treat this identity as though it is exact. This is justified,
since to simulate a Hamiltonian for a timeit suffices to
performn separate simulations of a tinde=t/n each, giving

2 _ -
Zpbﬁ:;?irl Ol;ngaﬁ(t? 2n_afi§1tgAA).szf?ilc?ieer::)rscﬁglfhgir?ﬁer?ra:ge eratorA is majorized by the Hermitian operatBr and write
y y y ' A<B, if the spectrum\ (A) of eigenvalues of is majorized

marks on the error analysis are made for the qubit case in .
. .. by the spectrum (B) of eigenvalues oB, where we regard
Ref. [4], and these results carry over directly to the qudltthe spectra (A) and\ (B) as vectors. So, for example,

case.
(c) Imagine we can evolve according to the Hamiltonian

J. Then, by appropriate timing, we can exactly simulate evo- % 0 % %

lution according taxnJ for any A >0. < (24)
(d) Imagine we can evolve according to the Hamiltonian 1 1 1)

J. Then we can evolve according to the Hamiltoniad. We 0 2 2 2

will explicitly prove this only for the case of two-qudit
HamiltoniansJ, however the proof easily generalizes. Notesince the spectra of the two matrices satisfy the majorization
that we can rewrite Eq18), criterion, (1/2,1/2x(1,0).
It is not immediately obvious how this definition of op-
erator majorization connects to any natural notion of com-

—J=2 (XIZkeX'zMI(z "X Tez "X ) parative disorder. There is a beautiful result due to Uhimann
[30] (see also the review81] and[32]) that provides such a
—-D?tr(J)I®l, (21 connection. Uhlmann’s theorem states tAatB if and only

if A=2,p,U,B UI, where theU, are unitary operators, and

where we have extracted theJ by taking the sum on the the p, form a probability distribution. That isA<B if and
right-hand side over all terms exceptK,|,m)=(0,0,0,0). only if A can be obtained frorB by mixing together opera-
Physically, the term-D?tr(J)I®1 is an unimportant rescal- tors unitarily equivalent t@. Two important points about the
ing of the energy and can be neglected. The other terms iAroof of Uhimann’s theorem are that the procedure for find-
the expansion for—J are all easily simulated using tech- ing thep, andU, is constructiveand, furthermore, there are
niques(a) and (b) above. Note that the complexity of the at mostD? operators,, .
simulation scales a®(D?). We now observe that Uhlmann’s theorem has a beautiful
The above observatiorig)—(d) may be summarized in a corollary when applied tanytwo traceless Hermitian opera-
single equation as follows. Given the ability to perform evo-tors A andB [38].

lution according to the Hamiltoniad and the ability to per- Theorem Let A and B be any two traceless Hermitian
form unitariesU,, it is possible to simulate evolution ac- operators, and assune# 0. ThenA<cB for some positive
cording to a Hamiltonian of the form constantc. Uhlmann’s theorem then gives an algorithm to
find a set of at mosD? unitary operatordJ,,, andc,>0,
such that
> e U U, (22)
K t
A=, c,U,BU. (25)
n

where theay can be arbitrary real numbers.

As an example of this theorem in action, consider that for
any (j,k)#(0,0) and (,m)+(0,0) there existU,, and c,
such that

The final area of background we shall need is the theory
of majorization whose basic elements we now review,
following Ref.[26]. More detailed introductions to majoriza-
tion may be found in Chaps. 2 and 3 of Rgf7] and in Refs.
[28,29. Supposex=(Xy, ... Xp) andy=(y;, ... Yp) are  Using the techniques of the preceding section, notably Eq.
two D-dimensional real vectors. The relatior fs majorized  (22), we see that this equation can be interpreted as provid-
by y” is intended to capture the notion thatis more mixed ing a means of simulating the Hamiltoniatzk+Zz X~
(i.e., disorderefthany. To make the formal definition we given the HamiltoniarX'Z™+Z~™X "' and the ability to per-
introduce the notation to denote the components of a vec- form the unitary operationsl,. On its own, this is not an
tor rearranged into nonincreasing order, sa&'  especially useful simulation result! However, similar but
=(X], ... Xb), wherex;=xs=--.=x}. We say thaix is  more sophisticated variants on this idea will be used in our
majorized byy, and writex<y, if later construction.

C. Majorization

xizk+z—kx—i=; cUn(X'Z™+ 2™ Hul. (26)
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Proof. The case wherA=0 follows by noting that 0 especially simple form, which can then be used to build up
<cB for all c>0, so we assumA#0. We aim to show that arbitrarily complicated Hamiltonians. We now give an out-

M(A)<ch(B), for somec>0. Choose line of the proof. Note that the numbering scheme used in the
. outline is mirrored in the numbering scheme used in the
RV detailed explanation of the proof given below in Sec. IIl A.
“ A (A) (1) We show thatH and local unitaries can be used to
c= max ———. (27) simulate a Hamiltoniat ; that contains &2® Z® coupling
k=1,..., D—12 )\jL(B) term. This term is the focus of most of the remaining steps of

the proof, as we try to eliminate most of the other coupling
terms from the Hamiltonian.
SinceA andB are traceless and not equal to O, it follows that  (2) We show thatH, and local unitaries can be used to

c>0. Fork=1,... D—1 we have eliminate terms inH, not of the formZ!®Z¥, and thus to
K simulate a Hamiltoniam , of the formEJka,kZ ®2ZX, which
E i(A) still contains the nonzero coupling,,Z?® Z°.
K =1 K (3) We show thatH, and local unitaries can be used to
Z M(A)=f—— E \(B) (28)  simulate a Hamiltonian of the formti;=3,8,(Z°®Z%)",
N 2 A (B) with at least one nonzero coupling coefficighyt.

(4) We show thatH; and local unitaries can be used to
simulate a Hamiltonian of the formlg=kZ2® 2P+ k*Z 2
| ®Z"", for any complexx.
sczl Aj(B). (29 (5) We show thatHg and local unitaries can be used to
J simulateHg= (22423 ® (Z°+Z").
Finally, note that (6) Using the corollary to Uhlmann’s theorem we show
thatHg can be used to simulate any Hamiltonian of the form

D J®J’, whereJ andJ’ are arbitrary traceless Hermitian op-
Zl )\jl(A)ZOZZl c\j(B), (300 erators. Any two-qudit Hamiltonian can be expressed as a
= = sum of terms of this form, together with local interactions, so
which completes the proof. m We conclude that any two-qudit Hamiltonian can be simu-
lated usingH and local unitaries.
lIl. TWO-QUDIT HAMILTONIAN SIMULATION This construction is complex, and a detailed efficiency

analysis is not especially enlightening. Nonetheless, from the
In this section we study universal simulation with two- proof below it follows that the total simulation requires a
qudit Hamiltonians, that is, Hamiltonians of the form number of periods of evolution due Ebwhich ispolynomial
in the dimensiorD. This can be seen by examining each step
_ oK o vlom in the construction and verifying that they involve only a
H_,-%n ajumX'Z5 @ XZT. (31) summations a, (U@ V,)J(U,®V,)" over at most polyno-
mially many terms inD, where theU, and V| are local
We show that provided this Hamiltonian has a nonzero couunitaries,J is some entangling Hamiltonian that we are al-

pling term, that is, a term not of the forbm (-) or (-)®I,  ready able to simulate, and the coefficieatsare also poly-
thenH and local unitary operations can be used to simulateomial inD.
any other two-qudit HamiltoniarK. It is worth noting that the proof can be substantially sim-

The basic idea of the proof is to use the composition lawglified if one assumes thdd is prime. The reason this sim-
of Sec. Il B to increase the library of Hamiltonians that canplification occurs is because in prime dimensions all non-
be simulated. It will be convenient to use the notationtrivial elements of the Pauli group are equivalent to one
H,,H,, ... to denote the different Hamiltonians that we another by unitary conjugation. Thus, given a nonzero cou-
show how to simulate. The construction is rather compli-pling term in the Hamiltonian it is easy to simulate a Hamil-
cated, for which reason we break it up into steps. This sepaenian in which a nonzero coupling of the fordwZ ap-
ration into steps makes it convenient to introduce some glopears. Given this, steps 1 and 3 can be considerably
bal notational conventions. Terms such jak,I,m,n,r,s,t simplified. We describe in detail how this simplification oc-
are specific to each step, and sometimes to individual lines iours in Sec. Il B.
the proof, often being used as dummy variables, with the

meaning to be determined from context. Terms such as A. Detailed proof

a,b,c,d,f carry over from one step to another. All of these . ) o ) b .

terms (,k, ... anda,b, . ..) areconsistently integers in the 1. Simulating a Hamiltonian with a nonzero 2®Z" coupling
range Q... ,D—1. By assumption, our Hamiltonian includes a coupling term

The general strategy through most of the proof is toof the form X/ZK® X'Z™ with a nonzero coefficient. If#0
gradually eliminate more and more terms from the Hamil-or | #0 then the PEG lemma and E@) imply that by per-
tonian, while keeping particular desired couplings. At theforming local unitary conjugation we can convert this to a
end of the proof we are able to simulate a Hamiltonian of arcoupling term of the fornz2® Z® with a nonzero coefficient.
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Let H, be the Hamiltonian that results when this conjugation Cde e v
is performed. It will be convenient for our later discussion to ngZ (XTT@X®) Ha( X" X™%) (39
fix coprimec andd such thatc/d=a/b, that is,c/d isa/b in

IowEsthconln;on tedrrc?i.fltt) will also be convenient to define Applying the commutation relations for the Pauli matrices
such thala=Tfc andd=1b. this simplifies to

2. Simulating a Hamiltonian of the formE,-kaij‘G)Zk

2 w(dj—ck)l
I

— j k
We have shown that, contains a coupling term of the Hs—E ik AL YA (40

form Z2®Z°, however, it could also contain many other cou- a
pling terms. We aim to eliminate these other terms, whilenote that the sum over is zero unlessdj=pck. By the
keeping the coupling®®Z". In particular, we now explain  |emma, this is the case if and onlyji ync andk=pnd for
how to eliminate those terms containiXgor a power ofX.  gomen and thusZl ® Z¥= (2@ z%)" for somen. ThusHs

Note that given the ability to dél; we can simulate has the form
_ | m —I -m
Hp=2 (Z'@ZMHy(Z 'z ™). (32 Ha= Bz 7" @

To evaluate this sum we first use the commutation relations

; . . Where thep,, are complex numbers. Recall that fc and
for the generalized Pauli operators and then the observauq[r)l:fd S0 o and there is at least one NoNzero cou-
that =,w%'=D whens=;0, and=,»%'=0 otherwise. Using ’ F @ab.

these facts we see thelt, has the form pling term inH.
4. Simplifying to a sum of at most two terms

Ha= % aikzl®zk- (33) Our next task is to eliminate nearly all the coupling terms
in Hs. First, we set up some notation. Since grd() =1 we
The termZ2®Z® in H, was nonzero, sa,,#0. can choosé and m such thatic+md=1. It will be conve-
nient to write the coefficient,, as aD-dimensional vector,
3. Elimination of all terms not of the form(Z°®Zd)” that is B:(ﬂo'ﬂl, . 1BD71)! where we use the conven-

The next step of the proof is to eliminate all the terms intion that expressions likex(y,z, .. .) denote column vec-
H, that are not powers oZf®Z%). Note that we know there tors. It will also be convenient to use the notation

is at least one nonzero term of this form, the teffiwz® €, . .. €p_; for the unit vectors in thi®-dimensional vec-
=(Z°®Z¢)". The key to this is a simple number-theoretic tor space, and to identif¢_; with €, ;. So, for example,
lemma. e,=(0,1,0,0...,0), ande_,=ep_,. Note that the con-

Lemma Suppose gcd(m)=1. Thenjm=kl if and only

. . . . . "* — >
if there existsn such that straint thatH; is Hermitian implies that3* =P, where

Pe,=e_, forn=0,...D—1.
j=pnl, and k=pnm. (34 Next, suppose/=(yo, . ...¥p_1) iS a real vector. Using

o ] o our composition laws we can simulate the Hamiltonian
We will give two proofs of this lemma. The first is a

constructive proof that only involves elementary number o | _
theory. The second proof is in some sense more elegant in Ha=2 %(X'@X MIHa(X'e XM (42)
that it invokes the PEG lemma, and makes use of notions of !

linear algebra. The second proof is given in Appendix B. . -
Proof. The reverse implication follows by a simple sub- Our strategy will be to choosg in such a way that, has

stitution, so we prove only the forward implication. Since & €specially simple form. Applying the commutation rela-
ged(,m)=1 there exist integers and s such thatrl +sm  tions for the Pauli operators gives
=1. Now choosen=|r +ks. Then we have

= ) (lc+md)jn —~c dyn
nl=pjrl +ksl (35 H., ,En ¥, Bne (Z°® 2% 43)
=pjrl+jsm (36)
:Z 5n(zc®zd)n' (44)
=pj(rl+sm (37) n

5] (39) where in the second step we used the fact thatmd=1,

and we define

as required. A similar calculation shows theh=pk. N
Iat(;Applymg our composition laws we see that we can simu- 5nEBn; "y (45)
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The sum on the right-hand side is most conveniently written B. The case whereD is prime

in matrix form asMy, whereM is the matrix with entries The proof just given can be substantially simplified in the
M,j=w". Up to a constanM is just the matrix representa- case whereD is prime. We now sketch how the simplified
tion of the discrete Fourier transform, which is easily in- proof goes. The reason for the simplification is that any non-
verted, so we can choosesuch thatVl y=e;+e_;. trivial elementX/Z¥ of the Pauli group is equivalent under
Recall that they; in Eq. (42) must be real in order for a conjugation taZ. To see this, note that jf#0 andk# 0 then,
simulation ofH, to be possible. We now use a symmetry using the PEG lemma it is possible to conjugXt&® to Z',
argument to show that this is the case. Note tkiag= e up to a phase factor, for somheuch that :I<D—1. Simi-

> L - > -~ larly, if k=0 then we can conjugate to some suthusing
ey, by definition ofy. SinceP, e; ande_; are real, Eq. (4), while if j =0 then the term is already in this form. In

turn this may be conjugated t8 using Eq.(6), sincel is
coprime toD whenD is prime. It follows that in step 1 of the
above proof we can show that it is possible to simulate a
HamiltonianH, that contains &®Z coupling term. Step 2
proceeds exactly as before, and results in a Hamiltonian of
the form H2=EjkaijJ®Zk, SUCh thatﬂfl:ﬁﬁo.

- - - Step 3 of the preceding proof is substantially simplified.
* Ak —
Combining these results we see tRad™ y* =My. Observ- |, particular, we note that it is possible to simulate the

ing thatPM* =M we obtainM y* =My, and thusy is real.  Hamiltonian
Summarizing, we have obtained the ability to simulate a
Hamiltonian

M;/:é)f+é)_f:[P(é)f+é)_f)]*. (46)
Next, fromMy=e;+€e_; and P* =P we obtain

[P(g+e_)]* =PM* y*. (47)

Hy=2 (X'@X HHyX'eX)), (53
H,=BZ30Z°+B*Z 32", (48) |
where 8= B;, and the fact tha3_;= p* follows from the = ay0'Dzigzk (54)
fact thatH, is Hermitian. Conjugating bX '®1 we also W ! '
obtain the ability to simulate the Hamiltonian
Hs=Bw?Z20Z°+ (Bw?)*Z 32 ". (49 =D, ;;(Z82). (55)
J

However, note thaany complex numbern can be formed
from real linear combinations g8 and Bw?, so by taking
appropriate real linear combinations df, and H; we see
that we can simulate any Hamiltonian of the form IV. APPLICATIONS TO UNIVERSAL QUANTUM
COMPUTATION

The remainder of the proof can then be completed as before.

He=kZ20ZP+ k*Z 30272 P. (50) _ _ _
We have shown that any two-qudit entangling Hamil-
tonian, together with local unitary operations, may be used to
simulate any other two-qudit Hamiltonian. We now extend

Applying Eqg. (6) to the second qudit we see that we cantnis result to the problem of universal quantum computation
simulate any Hamiltonian of the form on N qudits. In particular, we show that any two-body
N-qudit entangling Hamiltonian, together with local unitar-
ies, can be used to perform universal quantum computation.

The basic strategy follows the method presented in Ref.
[4]. The idea is to reduce the problem to the two-qudit case
already solved. To do this, we divide the system inforia-

_(7ay7-a b, >-b cipal system Pconsisting of two qudits coupled by the
He=(2"+2 )@ (274277 2 HamiltonianH of the entire system, and tlemainderof the
system, denote®&. Our techniques generalize the results in
Refs.[7,8], which are themselves generalizations of standard

Note thatZz3+Z 2 and Z°+Z~® are nonzero, traceless, techniques from NMR. The basic idea is to turn off all the
Hermitian operators, so by the corollary to Uhlmann’s theo-interactions betweeR andS and withinS, leaving only the
rem we can simulatany Hamiltonian of the formJ®J’, interactions present iR. We will refer to such a suppression
whereJ andJ’ are arbitrary traceless, Hermitian operators.of interactions aslecoupling The remaining interactions can
The operator expansion implies that an arbitrary two-qudithen be used, as before, to simulate arbitrary dynamics on the
Hamiltonian can be formed as a real linear combination otwo qudits inP. Thus it is possible to simulate arbitrary
such Hamiltonians, together with single-qudit terms of thedynamics onany two qudits coupled byH. Finally, an arbi-
form J®I or I®J’. Thus, with the ability to perforntd and  trary interaction between qudissandt may be effected by
local unitary operations we can simulate an arbitrary two-{erforming a sequence &fwAp gates between the qudits
qudit Hamiltonian. connectings andt (in the sense defined in Seg, applying

5. Simulation of a tensor product Hamiltonian

Hyo=kZ3QZ*P+k*Z2 3027, (51

and it follows by taking linear combinations that we can
simulate

6. Simulation of any Hamiltonian
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the desired interaction, and swapping back. Note that suchtavo blocksS, and S; of approximately equal size. We de-

sequence ofswap operations can be performed using thecoupleS, andS; by forming the Hamiltonian

method already described for simulating quantum gates. In

this way we can effect any two-qudit Hamiltonian between L

any pair of qudits in the system, and thus perform universal " i

guantum computation. H"= D2 % UsH'Us,- (58)
The obvious technique for achieving decoupling is to

eliminate couplings betwedn andS, and withinS, one at a

time, using techniques along the lines of those used to simNext, we breakS, into two blocksSy and Sy; of approxi-

late one two-qudit Hamiltonian with another. Unfortunately, mately equal size, and bre& into two blocksS;; andS;;

this procedure is not efficient, for reasons we now explainof approximately equal size. We can decoujg from S,,,

As an example, supposeconsists of two qudits, labelel  and Sy; from S;; in a single step by forming the Hamil-

andB, andS consists of two quditsiE andF. Then interac- tonian,

tions between qudiE and the remainder of the system may

be effectively turned off by simulating the Hamiltonian,

1
S UHUL H :Eg (Ug,®Us JH"(Ug ®Us )" (59
H "= U—Z, (56)

D By repeating this blocking procedufg,(n—2)] times we
can complete the decoupling, leaving a sum over
O(D?'°%2N=0(N?'°%P) terms involving the conjugation of
H by local unitary operations. Thus we can decouplieom

#S leaving only the interaction on systeR) using a proce-
dure of complexityO(N?'°%P). This interaction on systei®

terms, each a conjugated form of the HamiltonknFor an can then be used to simulate an arbitary two-qudit interaction

N-qudit system generalizing this procedure in the obviou" P, using the techniques described in the preceding sec-

way would require a sum ové@" terms. The corresponding 10"
simulation would therefore have exponential complexity,
which is not efficient.

Fortunately, much more efficient techniques for decou- ) ) )
pling can be devised. In this section we explain two such 1Nne method just described assumes a general two-qudit
techniques. Sec. IV A explains how the decoupling can béiamiltonian H. Of course, the Hamiltonians occurring in
performed for a completelgrbitrary two-qudit Hamiltonian, Nature are usually muc_h more constrained. In particular, it is
while Sec. IV B explains how the procedure for decouplingV€"y common for Hamiltonians to have some sort of local-
can be substantially simplified and made more efficient wheriz€d structure. In this section we explain how localized struc-

the Hamiltonian has the localized structure found in mosfuré can be exploited to obtain more efficient decoupling
physical systems. schemes than described above for the general case. Note that

similar constructions in the context of NMR were reported in
Refs.[7,8].

Suppose, for example, thad contains only nearest-

SupposeH is an arbitrary two-qudit entangling Hamil- neighbor interactions on a one-dimensional lattice. This is
tonian. We now explain how to efficiently eliminate all cou- obviously a special case, but is a good illustration of the
plings between a principal systefand the remainder of the jdeas used for more general cases. We number the qudits
SystemS and to eliminate all couplings internal 8 while 1,2,... N, and suppose tha® contains qudits 1 and 2,
leaving the couplings withirP invariant. The method is a while S contains gudits 3 througN. The case of gener&
straightforward generalization of that described for qubits byand S follows using similar techniques. We can split the de-
Dodd et al. [4]. Let U run over all Pauli matriceX!Z*. De-  coupling up into three steps. In the first step we eliminate all
fine Us to be the tensor product of identical operatdis couplings betwee® andS, which can be achieved by elimi-
acting ditwise on the qudits i8. We form the Hamiltonian nating all couplings between qudits 2 and 3. We call the

resulting HamiltoniarH’. The second step is to eliminate all

whereU runs over all Pauli matriceX!Z¥ and theE indi-
cates thatJ is being applied to the qudi. While we can, in
principle, turn off all interactions in this way, the resulting
procedure is not efficient. To see this, notice that turning o
all the couplings to the qudiE required a sum oveb?

B. The case of localized two-qudit interactions

A. The case of arbitrary two-qudit interactions

1 . _ . . . .
'~ + single-body terms irs. This can be done by simulating the
H D2 % UsHUs, 57 Hamiltonian
and observe thatl’ leaves the Hamiltonian oR invariant, , 1 oot
but eliminates all coupling terms betwe®nand S and all H'= D2 % UsH"Us. (60)

single-qudit terms acting withis.
We now explain a recursive construction to eliminate all
remaining couplings irS First, we break the blocls into ~ We complete the decoupling by simulating
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plexity of our construction limits the practicality of potential

H"= iz 2 (IoloUsIoURI®---) implementations, and should encourage the search for more
v practical methods.
XH"(IgloUsloUsl®---)T (61) There are two aspects to the analysis of efficiency for our
simulations. The first is how they scale with the dimendion
where the conjugation by is applied to qubits 3,5,7.., of the qudits in the system, and the second is how they scale
which we can easily see turns off all couplings acting be-with the numbe of qudits present in the system. The scal-
tween qudits inS ing with N is the critical factor, while the scaling witD is

Thus, we see that for a nearest-neighbor Hamiltonian on aot so important, since for most physical systems of interest
one-dimensional lattice, the decoupling can be performed foD is a constant. We have shown that the scaling for simula-
constant(with respect toN) cost in the simulation, as op- tion of one two-qudit Hamiltonian with another is polyno-
posed to thed(N?'°%P) cost incurred in the case when gen- mial in D, and the scaling wittN behaves a©(N?2 '°%P).
eral interaction terms appear in the Hamiltonian. Thus the total scaling i® (poly(D)N? °%P), which is poly-

This result can easily be generalized. Supp8sean be  omial in bothN andD.
broken up into a partitior$, , . . . .Sy with the property that Our results show that all two-bod)-qudit entangling
qudits in one member of the partitid) only couple to qu-  yamiltonians are qualitatively equivalent, given the ability to
dits outsideS; . To decouple we do the following. For each ne form |ocal unitary operations. Thus, in some sense the
element of the_ partitiors; turn off all cou.pllngs. betwees, . ability to entangle can be regarded as a fundamental physical
and_ the remainder of the system by simulating the Ham"’resource—a type of “dynamic entanglemefi89}—that can
tonian be utilized to perform interesting processes. It would be ex-

tremely interesting to develop a detailed quantitative theory
Hi=> Ustjflugj, (62)  of such dynamic entanglement. Following the line of re-
v search we have pursued in this paper, some potential ques-

where Ho=H. It is easy to see that the Hamiltonia, tions one might attempt to answer in developing such a

contains no single-body terms frof no couplings between theory of dynamic entanglement include _
P andS, and all couplings internal t8 have been eliminated. (@) What is the optimal procedure for simulating one
The total cost of the simulation scales &2f™=D2". This Hamiltonian with another? See Refd5-17 for prelimi-
cost can be reduced even further by using a recursive proc&ary results in this direction.
dure like that described for the general two-qudit case, re- (b) Can an entangling Hamiltonian defined orDa< D’
sulting in a scaling oD(D?"°%™), system, wher® # D', be used to perform universal simula-
Many cases of interest can be described in the frameworkon on those systems? Note that this question has recently
just introduced. For example, consider radimensional cu- been settled in the affirmati@3,34], using methods rather
bic lattice of qudits, with nearest-neighbor interactions.different than that in our paper.
There is a natural partitioning of this lattice int6 @ifferent (c) Our model assumes that the constituent systems are of
sublattices, as follows. First, fix a site in the lattice, and therfinite dimensionalityD. It would be interesting to determine
consider the cubic sublattic®, generated by stepping two Whether analogous results hold in infinite dimensions.
lattice spacings in every direction. We generate the partition (d) Are universal simulation results possible for nonuni-
of sublatticesS;,S,, ... ,Sy by translatingS, one lattice tary processes? For measurement processes? Preliminary re-
spacing in various directiongWe are ignoring boundary sults in this direction have been obtained in R¢85,36.
conditions in this discussion; they are easily accommodated, (€) Can we weaken the condition that arbitrary local uni-
or one can imagine that the lattice has periodic boundaryary operations be allowed during the simulation procedure?
conditions) Now remove the qudits i® from whichever It would be interesting, for example, if universal simulation
elementsS, and S, of the partition they happened to fall could be performed in a system where local unitaries are
into. Notice that qudits ir§; only ever coupleout of S;,  applied homogeneously across the entire system.
since the interactions are nearest-neighbor. Thus the proce- (f) Our model assumes that only a single Hamiltonian is
dure described above makes it is possible to decdgfilem  being applied at any given time, namely, either the entan-
SusingO(D?") operations. More generally, it is not difficult gling HamiltonianH, or a local Hamiltonian on a single qu-
to use such constructions to efficiently decouplandSfor  dit. In practice, this is not likely to be exactly the case. What

any Hamiltonian containing only localized interactions. ~ effect do imperfections have? . _
(g) In the theory of entangled state transformation there is

a crucial distinction between “single-shot” manipulation of
entangled states, where just a single copy of the state is avail-
We have shown that, given any two-qudit entanglingable, and manipulations that are performed in the asymptotic
HamiltonianH and local unitaries we can simulate any otherlimit where a large number of copies of the state are avail-
two-qudit Hamiltonian. This result was then applied to ob-able. The results obtained in the present paper are for single-
tain universal gate constructions for quantum computationshot Hamiltonian simulation; it would be interesting to ob-
Our results are of interest because they show that such untiain results for the asymptotic case as well.
versal simulation is possible, in principle. However, the com- Note added Recently we became aware that Wocjan,

V. DISCUSSION
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Roetteler, Janzing, and Beth have independently obtained U|j>Ewi(J—1)/2|j>, (A5)
some similar results in Ref34].
A straightforward calculation shows th&tXUT=XZ and
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APPENDIX A: NORMALIZER OPERATIONS FOR THE

D-DIMENSIONAL PAULI GROUP APPENDIX B: SECOND PROOF OF THE NUMBER

THEORY LEMMA
In this Appendix we construct the unitary operatidds
used to perform the conjugation operations E@H—(6),
which we reproduce here for convenience,

In this Appendix we provide an alternate proof of the
number theory lemma used in Sec. Il A of the paper. Recall
the statement of the lemma:

X—=Z, Z—X1 (A1) Lemma Suppose gcd(m)=1. Thenjm=kl if and only
if there existsn such that

X—XZ, Z—1Z, (A2) .
j=pnl; k=pnm. (B1)

-1
X=X Z—-Z% ovided ,D)=1. (A3 . .
- - provi geda,D) (A3) Proof. By the PEG lemma there exists a normalizer op-

Our constructions are based on those of Gottesfiz@f, ~ eration U such thatUX'z"UT=z9™=7 where the
however, Gottesman’s interest was mainly in the case oequalities hold up to phase factors. Note tK&Z™ commutes
prime D greater than 2, and his constructions only apply forwith X)Z¥, sincejm= kI, soUX/Z*U must commute with
odd values ofD. The following constructions apply fob ~ Z=UX'Z™UT. It follows that UX/Z*U"=2", up to a phase

both odd and even. factor, for somen, and thus
The conjugation operation for Eq(Al) is just the NI
D-dimensional discrete Fourier transform, defined by X1z¥=u'z"u (B2)
D-1 _ t n
. =(uU'zU B3
uli)= 2, «(k). (A4) (2l 89
=(X'zm" (B4)

A straightforward calculation shows thatXU'=Z and
UzuU'™=7"1 so Eq.(A1) holds. =xInzmn (B5)
The definition of the conjugation operation for E¢\2)
depends on whethdd is odd or even. WheiD is odd we where, again, the equalities hold up to unimportant phase

define factors. It follows thaf =pln andk=pmn, as claimed. B
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