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Nonlocal Hamiltonian simulation assisted by local operations and classical communication
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Consider a set dfl systems and an arbitrary interaction Hamiltonkhthat couples them. We investigate the
use of local operations and classical communicatlddCC), together with the Hamiltoniahl, to simulate a
unitary evolution of theN systems according to some other Hamiltonkdh First, we show that the most
general simulation usingl and LOCC can also be achieved, with the same time efficiency, by just interspers-
ing the evolution oH with local unitary manipulationé_U) of each system and a corresponding local ancilla
(in a so-called LU-anc. protocal Thus, the ability to make local measurements and to communicate classical
information does not help in nonlocal Hamiltonian simulation. Second, we show that both for the case of two
d-level systemsd>2), or for that of a setting with more than two systens<{2), LU+anc. protocols are
more powerful than LU protocols. Therefore local ancillas are a useful resource for nonlocal Hamiltonian
simulation. Third, we use results of majorization theory to explicitly solve the problem of optimal simulation
of two-qubit Hamiltonians using LWequivalently, LU+anc., LO, or LOCG.
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I. INTRODUCTION time of interactionH that it takes to simulate interactidt’
for a timet’.

The problem of using a given nonlocal Hamiltoni&h
and some class of local operations to simulate another non- A, Ancillary systems, generalized local measurements, and
local HamiltonianH' has very recently attracted the atten- classical communication in nonlocal Hamiltonian simulation
tion of several authors in quantum information science The aim of thi is 10 elucidate the rol ber of
[1-7]. Nonetheless, average Hamiltonian techniques, a basic €am CI) 1S pr?per. IS IO eluci fa € Ie rol ea n.Ll’m €r o
ingredient in nonlocal Hamiltonian simulation, have been!cS0UTCES play In the simulation of nonloca Ham|ton|a.ns.
studied for many years in control theofg], and are com- Relatedly, we seek to'establlsh equivalences betwegn dlffer-
monly used in the area of nuclear magnetic resoné@ke S?(';tg::a:)slses of operations that may be used in a simulation

From the perspective of quantum information science, We first address the question whether classical communi-
nonlocal Hamiltonian simulation sets a frame for the param- d

etrization of the nonlocal resources contained in multiparticl cation(CC) between the systems is useful in nonlocal Hamil-

Hamiltonians, very much in the line of thought pursued toe[onian simulation. Recall that in protocols that include local
' y easurements, the ability to communicate which outcome

guantify the entanglement of multiparticle quantum states. | X ; :
the most common setting, fast local unitary operations L as been obtained in measuring one of the systems allows for

are performed on a series of systems to effectively modif);ubsequent operations on other systems to depend on this

the HamiltonianH that couples them. A remarkable result is information. Now, can this ability be used in nonlocal Hamil-

the qualitative equivalence of all bipartite interactions undell.om"",r)1 S|mulat|pn to enlarge the set of gchlevqble simula-
LU [2,4—7. This can be shown to imply that any Hamil- tions? Suggestively enough, the answer is yes in the closely

tonianH with pairwise interactions between some of the SyS_related problem of converting one nonlocal gate into another

tems can simulate any other Hamiltoniai consisting of nonlocal gate using LO. For instance, a series of two-qubit

arbitrary pairwise interactions between the same systems. %%tr?tsrg Igg;ﬁ)ﬁ”‘g?:ﬁ?féé@ tﬁi igwr?gte Sebgcﬁﬁg\?é?g]g;
At a quantitative level, the time efficiency with which a 9 y

HamiltonianH is able to simulate a Hamiltonidd’ can be Cowéogtes%Ns(?[Ldgaiﬁeaggv;gt;@e. of using ancillary svstems in
used as a criterion to endow the set of nonlocal Hamiltonians. Y 9 9 Yy Sy

: . Simulation protocols, as well as performing general local op-
with a (pseudo partial order structure that allows to compare erations instead of just local unitary transformations. Alto-
the nonlocal capabilities oH and H’ [4]. For two-qubit J Y :

Hamiltonians, simulations using LU or arbitrary local opera-getheri our analysis refe_rs to the foll_owing classes of trans-
tions LO hav,e been shown to yield the same optimal timeformatlons: (@ local unitary operations(LU), (b) local
efficiencies, and the resulting partial order structure has beeLrﬁnltary operations with ancillad_-U J_ranc),_(c) Iocal_ opera-
computed explicitly. This has led to the necessary and suffiyons.(l‘c.)) [11], and(d) local operations with classical com-
cient conditions foH to be able to simulatel’ efficientlyfor munication(LOCO).
infinitesimal times, that is, the conditions under which the

use ofH for time t allows to simulateH’ for the same time

t, in the small timet limit. Equivalently, this result shows This paper contains the following three main results con-
how to time-optimallysimulateH’ with H, in the sense of cerning the simulation of nonlocal Hamiltonian evolutions

achieving the maximal simulation ratid/t, wheret is the  for infinitesimal times.

B. Results
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(i) LOCC (or LO) simulation protocols can be reduced to tween the sets of achievable simulations and time efficien-
LU +anc. simulation protocols. That is, fdkparticle Hamil-  cies. For instance, since LOCC simulation protocols strictly
tonian interaction$d andH’, any protocol that simulatds’ contain all LU simulation protocols, we expect that LOCC
usingH and LOCC(or LO) can be replaced, without chang- protocols may be more powerful than LU protocols.
ing its time efficiency, with a protocol involving onlg and
local unitary transformations. Each local unitary transforma- B. Infinitesimal-time simulations
lt:)ocrglrr;)gitl)l:performed jointly on one of thesystems and a The_ n’warlximal simulation factas(t’')=t’/t when simulat-

(i) Apart from exceptional cases such as that of two-qubiind € " * by usingH for time t may depend on’. How-
Hamiltonians[4]—in which any LU+anc. protocol can be €ver, we are ultimately interested in characterizing the non-
further replaced with an even simpler protocol that uses onljocal properties of interaction Hamiltonians, irrespective of
LU on each qubit— the use of ancillas is, in general, advaninteraction times. A sensible way to proceed is by consider-
tageous. This is proven by constructing explicit examples ofnd the worst case situation, namely, the tiriefor which
LU +anc. protocols where ancillas are used to obtain simuthe optimal ratios(t’) achieves its minimal value. This oc-
lations that cannot be achieved with only LU operations,curs for an infinitesimal time’. That is, simulations oH’
both in the case of twak-level systems ¢>2) and in the for atime such thalfH't'[|<1 are, comparatively, the most
case ofN>2 systems. expensive in terms of the required timef interactionH.

(|||) For tWO-QUbit Hamiltonians, we use results of major- The reason is tha(l) simulations for an infinitesimal time
ization theory to recover the optimality results presented irgre & particular case of simulation, providing an upper bound
Ref.[4]. In view of the equivalence between LU, btanc., for the minimum of s(t’), and (i) any finite-time
LO, and LOCC protocols for two-qubit systems, this solvessimulation—orgate synthesis-can be achieved, maybe not
the problem of time optimal, two-qubit Hamiltonian simula- optimally, by concatenating infinitesimal-time simulations.
tion under any of these classes of operations. We shall denotesy:y the limit lim _os(t’), and call it

The structure of the paper is as follows. In Sec. Il wethe simulation factor oH’ with H (s, corresponds to the
introduce some known results. Sections Ill, IV, and V preseninverse of the time overhead of Ref. [3], that is, s/
results (i), (i), and (iii), respectively. Section VI contains =~ ). Then, apart from quantifying the time efficiency in
some conclusions and Appendixes A and B discuss somigfinitesimal simulationssy |y has also two other meanings.

technical aspects of Secs. Ill and V. (1) T'/spyrn upper bounds. the time of use ofH needed
to perform the unitary gate™™H'T’, for any T’ (gate simu-
Il. PRELIMINARIES lation or gate synthesifl13]).

(2) sy w is the optimal time efficiency ilynamics simu-
on. That is,sy |y is the maximal achievable ratio’/T,
Where T is the time ofH required to simulate thentire

evolution of a system according ® '’ wheret’ runs

A. Nonlocal Hamiltonian simulation and classes of operations from 0 to T’ [12]. . N
: I . . In an abuse of notation, we shall refer to condition
Recall that the aim of nonlocal Hamiltonian simulation is, H't’||<1 as the small time limit, of whick(t") [or O(t)]

given a set of systems that interact according to Hamiltoniaryiii denote the first order corrections.
H for time t and a clas< of local control operations, to be

able to produce an evoluticer "'t for the systems, where C. Optimal and efficient simulations

H’ andt’ are the simulated Hamiltonian and the simulated
time. (We takeh =1 along the paper. For any classCe {LU, LU+anc., LO, LOCG of the

As mentioned above, one can consider several classes 8POVe operations and in the small time limit, the space of
operations to assist in the simulation, including LU, LU achievable evolutions using Hamiltonikhand operation€

+anc., LO, and LOCC. As in Ref4], we make two basic turns _out to be convex. Then the following two probl_ems
assumptions(i) these additional operations can be imple-(PD given anyH andH’, determine wherH" can be effi-
mented very fast compared to the time scale of the Hamilciently (i.e.,t"=t) simulated withH for infinitesimal times,
tonianH (we actually consider the setting in which they candenoted

be performednstantaneoushand thus characterize the fast H'< H: 1)
control limit); (i) these operations are a cheap resource, so ch

that optimality over simulation protocols is defined only in (P2 given anyH and H', determine the simulation factor

terms of_the ratia’/_t, that ,is, in terms of how much time Sy are equivalent, sincsy|y is nothing but the greatest
of evolution according téi" can be produced by usitgfor  g'g,ch thatsH’ can be efficiently simulated b, that is,
a timet. Another interesting parameter characterizing Simu,c thaisH' < .H.

lations, which we do not analyze here, would be some mea-
sure of the complexity of the simulation, that is, of the num-
ber of control operations that are performed.

We also note that the inclusions between classes of opera- The simulation of nonlocal Hamiltonians using LO and
tions, LU C LU+anc.C LO C LOCC, imply relations be- that using LU+anc. are equivalerisee Ref[4] for details,

We start by reviewing some background material fromlati
Ref. [4], of which the present work can be regarded as a
extension.

D. Equivalence of LO and LU+anc. protocols
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in that any protocol based on LO can be replaced with anHilbert spaceHa =K® Hmeass givVen by projection opera-
other one that uses only Lkanc. and that has the same time tors {P#}; and (iv) tracing out a factor spac@” of Haas
efficiency. The ultimate reason for this equivalence is tha&ng@ T#, whereH %, and 7% may depend on the mea-
even if LO provide, through measurement outcomes, inforsyrement outcomg of step (ii). Under (i)—(iv) the initial

mation that can be used to decide on posterior local manipustate| ¢,) of qubit A transforms with probability ; accord-
lations, this information cannot be transmitted to the othefng o

parties(unless the interaction itself is used for this purpose,
but this leads to null efficiency’ /t whent—0); then, uni- 1
tarity of the simulated evolution implies that each party is |¢’A><¢A|_>€ﬁ(|¢A><¢A|): —tr78 PPU(| pa){p| ©]0a)
effectively applying a trace-preserving local operation on its Pg
subsystem, and this can always be achieved using only LU X(0p/|)UTPA] %)
+anc. '

The previous situation changes when classical communigpare pﬁztr[PﬁU(|¢A)<d>A|®IOA,)(OAII)UTPB]. We can
cation is allowed between the parties, because then they c roduce operator®? 1 H ,—HE
coordinate their manipulations. In spite of this fact, CC does oA out?
not help in Hamiltonian simulation, as we move to discuss

next. MFP=(i#|PPU[0/), 3)

Il EQUIVALENCE OF LOCC AND LU +anc. PRoTocoLs  Where{|i”)} is an orthonormal basis af”. Then Eq.(2) can
be rewritten as
In this section we show that any protocol for nonlocal

Hamiltonian simulation based on LOCC can be replaced 1

with another one based only on bt&nc. and having the Egllpa)(pal)=— 2 MPpa)(palMFT. (4)
same time efficiency. This result, valid for infinitesimal-time Pp

simulations on arbitrariN-particle systems, brings an impor-
tant simplification to the general problem of nonlocal Hamil-
tonian simulation, since it implies the equivalence of LOCC
LO, and LU+anc. protocols.

Now, since in our case the eventual result of this manipula-
tion must be a unitary evolution, we are interested in trans-
"formations&, that map pure states into pure states, that is,

We first describe in detail the most general protocol forSUCh that can be implemented by just one operbt6r?,

Hamiltonian simulation using LOCC. Then we show— HHE““
through an argument that exploits the fact that entanglement

only decreases under LOCC—that any such protocol can be
replaced with another one using only Hanc. The key

point of the proof is to assume that one of the systems is
initially entangled with an auxiliary syste@ and to realize pﬁ=tr[Mﬁ|¢A)<¢A|M5T]. Therefore the effect of the local
that a nontrivial measuremer(i.e., a measurement not manipulation on qubitA is a generalized measureme
equivalent to some local unitary transformafi@m the sys- that, with probabilityp?, maps the state o into a state
tem would partially destroy this entanglement in an irrevers-supported or+ fut,
ible way. Since we are simulating a unitary process on the

systems(which should preserve the entanglement between 1

those andZ), all local measurements must be trivial, and can | pp)— ——=MB| pa), (6)
be replaced with unitary transformations. Jp?

1
|¢A><¢A|HP_BMB|¢A><¢A|MBT, 5

o _ _ and produces classical informatigh The measurement op-
A. Hamiltonian simulation using LOCC erators{MB} characterizingM satisfy = ;M BtM B=1,.

For the sake of clarity we will perform most of the analy-  More generally, in a simulation protocol measuremft
sis in the simplest nontrivial case, that involving only two Mmay depend on some previous informatienin which case
qubits, because this already contains all the ingredients of th&e write M . In addition, the corresponding measurement
generalN-particle setting. Let us consider, then, that quiits operators{fM#“} may map states from a two-dimensional
andB, with Hilbert space$t, andHg, interact according to  subspacé{{{, CHaa into another two-dimensional subspace
H for an overall timet, and that, simultaneously, they are H %:4CHu that depends both on the measurement outcome
being manipulated locally. B and on the previous informatiom, that is,

1. Local manipulation MA@ HE HE )

out -
The most general local operation on, say, qubitan be

achieved by(i) appending toA an ancillary systenA’ in In the following, a series of measurements$ will be con-
some blank statd0,/)eHa:; (i) performing a unitary catenated, in such a way that tbet subspacé,, for a
transformationU on Haa =Ha® Ha:; (iii) performing an  given measurement is related to tinesubspacet;,, for the
orthogonal measurement on a factor spae.,s0f the total  next one.
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We consider that a sufficiently large ancillary systérn , M, M] M}
in a pure state has been initially appended to galsb that ﬁ {F{ R r ﬁj: A .
it provides at once the extra degrees of freedom needed t y

perform all generalized measurement$ on A. Finally, all

the above considerations apply also to quhito which an iHE | FiHE, n/ S
ancillary systenB’ is appended. . —
e S R
2. LOCC sinulation protocol — T
N1 Nn

A LOCC protocol for simulating™"""" by H for timett is

characterized by a partitioft; ,t,, . .. t,} of t, wheret; FIG. 1. Schematic representation of a Hamiltonian simulation

>0, 3t=t, and a series of local measurements,pmtoco' using .LOCC. The unitary evolution.of. the compositq sys-
Mo, No) (M ay ./\/al) M an ./\/a”)}. The brotocol tem AB according toH and for a timet=X,t; is interspersed with
{(Mo, No), 1o "W 7 P local measurement$1 ¥ (on systemsAA’) and A/ (on systems
runs as follows. _ _ BB') to obtain a unitary evolution oAB according toH’ and for a
(1) The simulation begins with measurementy andNy  timet’. Herea, indicates the local measurements performed at step
being performed orA and B, respectively. These map the g which may depend on the outcome of all previous steps, owing to
original state ofAB into a state supported on some subspacene classical communication between the systéwiading lines.

of AA'BB’. In the figure we have replaced the superscriggsvith I', ' denot-
(2) Then the two qubité\ andB are left to evolve accord- ing a particular branch of the protodaif. Eq.(8)]. Thus, in branch
ing to H for a timet;. I' measurement operatorsl} (corresponding to measurement

(3) After that, measurementd;* and Nj* are per- M) andNi (corresponding to measuremekf) transform sys-
formed. Here, indexy, indicates that the measurements be-1eMSAA" andBB’ at stepk of the protocol.
ing performed after time¢; may depend on the outcomes of e~ 't Therefore, for any initial vectdy) of the two-qubit

measurementd1, and . r \fyn
(4) Again, the measurements are followed by an evolySYStEMAB, the measurement operatq( ,Ni) o must

tion, for timet,, of A andB according toH, and the protocol obey
continues in an iterative fashion. i
(5) In stepk, qubitsA and B are first left to evolve ac- \/Ee l)

cording toH for a timet, and then measurements! . * and =(MIoNDe tH... (ML oND)e tH(ME @ ND)|4),

/\/ﬁk (a, denoting again a possible dependence on the out- ®)

come of all previous measuremenase locally performed in

AA’ andBB'. wherepr denotes the probability that bran€hoccurs in the
(6) The protocol finishes after measurememsr‘:” and  protocol. Equatior(8) is the starting point for the rest of the

N have been performed. These last measurements muapalysis in this section.
leave the two-qubit systedB in a pure statéthat is, uncor-
related from systemA’B’ that are traced out
Thus, the two-qubit systerAB is initially in some state
|4), becomes entangled with the ancillas andB’ during As discussed in the Introduction, we are interested here in
the manipulations described above, but ends up in the stafmulations for an infinitesimal simulation tinteIn this re-
efiH’t’|¢> after timet. gime Eq.(8) ;ignificqntly simplifies, be_cause we can expand
Note that the protocol described above has a tree struét,‘e exponentials to first order trior equivalently, inft,} and
ture, starting with a preestablished pair of local manipulat ), thereby obtaining an equation that is linear bothiiand
tions and ending up at the extreme of a branch characterized - I adg:hyon, iftis small then qubit#\ andB interact only
by the outcomes of al{conditioned local operations per- a I|ttle_b|t. In what follows_ we will use this fact to prove
formed during the time interval We move now to charac- the main result of this section, namely, that all the measure-
terize one of these branches. ment operator§M, ,Ni }i_o in Eq. (8) must be, up to neg-
ligible corrections, proportional to unitary operators in some
corresponding relevant supports. This will eventually imply
3. One branch of the protocol that LU+anc. protocols can already simulate any evolution
Let us suppose we run the simulation once. This corree~H't" gchievable in a LOCC protocol.
sponds to some given branch of the protocol, which we label \We note that this result is not valid for the interconversion
I', and which we have represented in Fig. 1. Braiichs  of nonlocal gateg10]. There the systems are allowed to
characterized by a series of measurement operatoigiteract according to a finite gate.g., a ControlledoT
{(Mg,Ng), - ..,(Mp,N})}, where the superindices, con-  gate, and thus accumulate some finite amount of entangle-
taining the information that characterizes the branch havenent(e.g., anebit) in the ancillary systems, that can be used,
been replaced with' to simplify the notation. Recall that the together with LOCC, to perform some new nonlocal gate
aim of the protocol is to achieve an evolution according to(e.g., through some teleportation schéme

B. LOCC protocols are as efficient as LUtanc. protocols for
infinitesimal-time simulations
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1. LOCC protocols for infinitesimal-time simulations

We define a series of operatdv, and M, by

M=ML. ..M, k=1,...n,

M&EMLI...Mg, k=1, --,n,

Mo=Mpy---Mg, 9
and also an analogous series of operatégsN, , and Ng.
Notice that operatoM, describes a concatenation of all lo-
cal measurements in branthperformed from the beginning
of the protocol and up to step—1 on the state initially
supported orHa: , While M collects the manipulations that
will be performed from stefx until the end of the protocol.

In the small time regime, we can expand the exponentials i

Eq. (8) as a series ih, andt’ to obtain, up to second order
correctionsO(t?),

n

Vpr(lag—istH")| )= M0®No—itk§1 P(M@Ny)

XH(My@Ny) ||4), (10

where we have introduced probabilitipg=t, /t and the ef-
ficiency factors=t’/t of the branch, so that all times are
expressed in terms df

This equation indicates that

Mo® No| %) = \pr! agl )+ O(1),

for any two-qubit statd), from which it follows that the
probability py- that brancH™ occurs cannot depend ¢i) up
to O(t) corrections, also that botkl ; and Ny must be pro-
portional to the identity operator iH, andHg,

(11)

Mo=prala+O0(1), (12)
No=q Ylg+O(t), (13

whereq is some positive parameter. Notice that the order
corrections in Eq(11) correspond to local terms, that is, to
operators of the form(l ,® Og+O,®1g), and thus are ir-
relevant to this discussigri4]. In what follows we neglect

PHYSICAL REVIEW A 66, 022315 (2002

where, because of Eq11l), some other constraints apply.
More precisely, ifM, andN, are given by

M= VPra(] w§)(Oal+ 1 £5)(1aD),

Ne=0q" (| v§)(0g| + | v)(La]),

where{i)} and{|ig)} are orthonormal bases &f, andHg
and {|uK) e Han'} and{|v¥) e Hgg/} are arbitrary vectors,
not necessarily normalized, thém, andN, must fulfill

(16)

M= [0a) (| + [ La) (1| +O(1),

N =]0g)(vE| +|12) (| + O(1), (17)

where{|u{)} is the biorthonormal basiL5] of {|xf)} (in

the subspace spanned fy.f)}), that is, (| {) = 8; , and

similarly {|7¥)} is the biorthonormal basis df»)}, so that
Mo®No= (M M) ® (NN, fulfills Eq. (11).

Now, going back to the measurement operafdis, we
can expand them as

Mo=pra(| ug)(0al +|u1)(LaD),

M=l W (abl+ e @Y, k=1,..., n-1
MEZ |OA><;’*8| +|1a) (R +O(),

and similarly for theNj, .

(18

2. Unitarity and conservation of entanglement

We carry on this analysis by focusing our attention only
on the operations performed on systef&'. We will show
that operatordM,. and M, can be replaced with operators
proportional to(0,/|Uy andU|[|0,/), whereU, is a unitary
matrix acting orH 5 . We will use the fact that the protocol
must be able to keep the entanglementfofvith another
systemZ.

Let us suppose, then, that qulditis entangled with a
distant qubitz, with the maximally entangled vector

1
E(|OA>®|OZ>+|1A>®|1Z>) (19

these local terms for the sake of Clarity. Bearing this remarlﬁescribing the pure state &Z. Any unitary evolution of

and Eqg.(11) in mind, we rewrite Eq.(10) as the operator
equation

n
Vpr(lag—istH")= \/E'As_itkgl Pr(M®@Ny)

XH(M[®N;)+O(t?). (14

That is,

VprsH'= 2 pM@NYH(M@N+0(1), (19

qubits A and B preserves the amount of entanglement be-
tween qubitZ and qubitsAB. In particular, if the unitary
evolutions according tél are infinitesimal, then up t®(t)
corrections qubitZ must be still in a maximally entangled

state withA after the simulated evolutioa™'s*"". This sets

very strong restrictions on the kind of measurements that can
be performed o during the simulation protocol. If during

the k™ measurement in brandh part of the entanglement is
destroyed, then the simulation protocol necessarily fails with
some probability, because the destroyed entanglement cannot
be deterministically recovered. Indeed, even if subsequent
measurement operators in brariclwould be able to restore
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the entanglement and so obey E§), another branchH™’

PHYSICAL REVIEW A 66, 022315 (2002

The same argument leads to expressing the operhliors

diverging fromI" after thekth measurement must necessarily and N, in terms of unitary transformation¥, acting on

fail to recover the entanglemeifitecall the monotonically

Hgp' @s

decreasing character of entanglement under LOCC, see, e.qg.,

Ref.[16]) and thus with some probability the protocol must

fail to simulate the unitary evolutiofi7].

Let us see the effect of this restriction on the first mea-

surement operatoIVIg in Eq. (18). It transforms the initial
entangled state into a new state proportional to
|10 ®102) + |1y ®|17), (20
which remains maximally entangled if and only|[fu3)||
=|||«})||=r1 and({ ug| 1) =0. But this is precisely the con-
dition for M1 (= Mg) to be proportional to a unitary operator
from H, to the out space(,,, spanned by|u!)} or, equiva-
lently, to an isometry front{, to Haas . Thus, we can write

Mi=r,U][0a), (22)

where

dpr—1

IZ]. |§I ,0><OAIA’|

|M1>

|Mo>
_<1AOA’| +

ui= _<OA0A'|

+1& (Ll arl

is some unitary operation defined &tp, . Hered,, is the
dimension ofH,; and{|§,,0>,|§|,l>}|dj'l is some set of vectors
that together witHu3)/r, and|u1)/r, form an orthonormal
basis ofH, s . Equation(17) implies that, in addition,

J—q

M1

|Us. (22

This characterization in terms of a unitary transformation

can now be easily extended to the rest of operaltbgsand
M, . We use induction ovet. We already have that the char-
acterization works fok=1. Suppose it works for somle
—1, that is, in the decomposition E(.6) for M, _, we have
s DI=[es™ DI and (ug *uf ')=0. This means
that after the k— 1) measurement in brandh, the initial
state of Eq.(19) becomes a state proportional to

|6 H®[0)+|ui e 1) +0(), (23
where theO(t) corrections are due to evolutions AB ac-
cording toH for a time of ordert, which slightly entangld3
with AZ. Then, preservation of entanglement during kife
measurementimplemented by operatavl E_ 1) requires that
also ||| u)|[=l| wiol|=r« and (ug] i) =0, and therefore

Ng=sV{|0g/)+O(1),
1

N=—(0g/ |V, +O(1). (25)
rdg

Therefore Eq(15) finally reads, up td(t) corrections that
vanish in thet—0 or fast control limit,

)|0a/0g).
(26)

=2k P(0a/0p/| (U@ VOH (U@ V]

3. Equivalence betweehOCC and LU+anc. protocols

The setS°“C of nonlocal Hamiltonians that can be effi-

ciently simulated byH and LOCC isconvex if H can effi-
ciently simulateH,; andH,, then it can also efficiently simu-
late the HamiltoniarpH;+ (1—p)H,. Indeed, we just need
to divide the infinitesimal time into two parts and simulate
H, for time pt and thenH, for time (1—p)t. The resulting
Hamiltonian is precisely the above averagetbf and H,.
Thus, in order to characterize the convex Sgt“®, we can
focus on itsextreme pointsNotice that the previous convex-
ity argument also holds for the s8f”*2"® of Hamiltonians
that can be efficiently simulated with Ltlanc., so that
SrY e s also convex. Recall also thah” *3"¢c SHOCC,
Now, Eq. (26) says that all points ir85°° can be ob-
tained as a convex combination of terms of the form

(27)

In addition, in Appendix A we show that any such term can
be obtained in a simulation protocol using tanc. It fol-
lows that(i) any extreme point 085°°“ is of the form(27),
and that (i) any extreme point ofS;°CC belongs to
S Tane | so thatShY "2"¢=SEPCC. This finishes the proof
of the fact that infinitesimal-time simulations using LOCC
can always be accomplished using tldnc.

Summarizing, we have seen that angscaled two-qubit
Hamiltonian sH’ achievable in branchH™ of our LOCC-
simulation protoco[cf. Eq.(26)] can also be achieved, with
the same time efficiency, by just using local unitary transfor-

(0a0g/ [(UV)H(UT®VT)|0, 0g/).

mations and ancillas as extra resources. It is now straightfor-

ward to generalize the above argumentN®ystems, each

one having two or more levels, thereby extending the equiva-

lence of LOCC and LUW-anc. protocols to general multipar-
ticle interactions. Indeed, for arytlevel system involved in

the simulation, we just need to require that its entanglement
with some remote, auxiliarg-level system be preserved, and
we readily obtain that all measurements performed during
the simulation protocol can be replaced with local unitary
operations. We thus can conclude, using the notation intro-
duced in Sec. I B, that

My =rUf|0a)+O(t),

Jﬁq

M=

(0a/|U+0O(1), (24

for some unitary transformatiod, acting onHa,: -

H'<_occHeH < y+ancH- (28
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IV. LU +anc. PROTOCOLS ARE NOT EQUIVALENT In Ref. [4] it was shown that, in the particular case of
TO LU PROTOCOLS two-qubit systems, the previous conditions can always be

. o . . . fulfilled. Next we shall show that this is sometimes not the
The equivalence between infinitesimal-time simulations

using LOCC and LU-anc. may be conceived as a satisfac-22>¢ for Hamiltor_lians of twa-level systems fod>2, and
tory result. On the one hand, it discards local measuremenfaslso for Hamiltonians of more than two systems.

and classical communication as useful resources for the )

simulation of nonlocal Hamiltonians. This essentially says B Inequivalence between LUkanc. and LU protocols
that in order to simulate Hamiltonian dynamics, we can re- 1. Example 1: Twod-level systemgd>2)

strict the external manipulation to unitary operations, possi-

bly involving some ancillary system. In this way the set of
interesting simulation protocols has been significantly sim

We first consider twal-level system# andB, d>2, that
interact according to

plified. On the other hand, it is reassuring to see that, despite d—1
thg d_|verS|ty of class_es of operations that we may use as a K=Py® Py+ E P,®P;, (31)
criterion to characterize the nonlocal properties of multipar- i=1

ticle interactions, most of these critelaOCC, LO, and LU
+anc) yield an equivalent classification and quantification.where Pi@ P;=[ia)(ial®|jg)(js|. We will show that by
In other words, we do not have to deal with a large numbefmeans of LUranc., Hamiltoniark can be used to efficiently
of alternative characterizations. We shall show here, how{that is, with unit efficiency factos) simulate
ever, that simulation using only LU, that is, without ancillas, d-1
is not equivalent to that using Ltanc. .

The reason for this inequivalence is the following. Con- K'=Po®Py+ Z‘l Pi®Pi. (32)
sider a multipartite Hamiltonian of the forH,®Hgc...,
whereH , acts on al-dimensional spacg(, andHgc... acts ~ We will also show thatk’ cannot be efficiently simulated

on Hg®Hc- - -. In the presence of an ancilld,,, LU can  using only LU.
be used so that operatét, acts on somed-dimensional Let A’ be ad-level ancilla. We need a unitary transforma-
factor spacelC of Haa (Haa =K®K'). The net result is tion U satisfying
an effective Hamiltonian acting ofi{,. As the following 41
examples show, some of these effective Hamiltonians cannot B .
be achievedat least with the same time efficiencidsy us- (Oar[U=04)(1a0n/|+ 21 lia)(ial (33
ing only LU.
As we discuss in Appendix A, the transformation of a Hamil-
A. LU +anc. protocols versus LU protocols tonianH acting onAB,
In the preceding section we saw that, in the fast control E(H)E(OA,OB/lU(H®IA,Bf)UT|OA,OB,), (34)

limit, the extreme points of the convex s8t” 2" of bi-
partite Hamiltonians that can be efficiently simulated with  can be achieved using Lthnc.[notice that this corresponds
using LU+anc.(equivalently, those of the s&,°°°) are, up  to choosingVgg: =g in Eq.(AL)]. In particular, this trans-

to local terms, of the form formation takes any term of the for@;® P; into
E(H)=(0a0g/ U V(H®I g )UT@V'|05/0g/) 0, i=0,
29 .
29 EPi@P)=1 (PotP)eP;, i=1, (35
(an analogous expression holds for the multipartite )case Pi®P;, i>1,

Notice that in Eq.(29) we have replaced operatbt of Eq.
(27) with H® 1.5, to make more explicit that ancillas are which in particular implies
being used.
Can all simulations of this type be achieved by using only EK)=K". (36)

LU? The most general simulation that can be achieved from . L . . .
H and by LU readgsee Ref[4] for more details Now, if this simulation is to be possible with the same time

efficiency by using only LU, then we must have, because of
Eq. (30),
> k@ uHUl @ v+ melg+1,@n+alag,  (30)
k K,:Q+m®|5+|A®n+a|AB, (37)

where{py}, Zpx=1, is a probability distribution{u} and  where Q=333 puP;ut®vPivi=0, but this is not
{vi} are local unitaries acting oA and B, m andn are  possible. Indeed, we first notice that, by taking the trace of

self—gdjoint, tra_celess operators, aqnﬂs a real constant. The  this expression we obtam=0, whereas by tracing out only
previous question translates then into whether fordgnd  systemB we obtain

Vin Eq.(29), we can find a seftp;, Uy, v}, M, n, anda such
that Eq.(30) equals&(H) in Eqg. (29). I=1+dm, (39
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and thusm=0. Tracing out only syster leads to forward to construct similar examples in higher-dimensional
systems, and also with more than three systems.
d-1 We note that, as far as interactions involving more than
2P1+2 P;=I1+dn, (39  two systems are concerned, the inequivalence between LU
1=2 +anc. and LU simulation protocols is not only quantitative,
o leading to different simulation factors, but also qualitative.
so thath=(—Py+ P4)/d and condition(37) becomes '
(=Pot+Py) (37) The last example above shows that LU protocols cannot be
d-1 | used to simulate Hamiltonians that can be simulated using
K'=Po®P;+ > P,@P,=Q+ EA®(_ Po+Py). LU +anc. and the same interactibh
i=1
(40) V. OPTIMAL SIMULATION OF TWO-QUBIT

Then, recalling the positivity 0@, we obtain the following HAMILTONIANS USING LocC

contradiction: In this section we address the problem of optimal Hamil-
tonian simulation using LU for the case of two-qubit inter-
0=tr[P,®P,K"] actions. We recover the results of Rg4], but through an
alternative, simpler proof, based on known results of major-
= tr[ P2® PlQ]

ization theory—and thus avoiding the geometrical construc-

In tions of the original derivation4]. The equivalence of

+1tr| (P,® P1)(g®(— Po+ Pl)” LOCC and LU+anc. strategies presented in Sec. lll, together
with that of LU+anc. and LU strategies for two-qubit
—tr[ (P,®P;)Q]+ 1/d=1/d. (41) Hamiltonians proved in Ref4], imply that these results are

also optimal in the context of LOCC, LO, and Ltanc.
Thus, for anyd>2, we have explicitly constructed an ex- Hamiltonian simulation.
ample of LU+anc. simulation for Hamiltonians acting on ~ We start by recalling some basic facts. Any two-qubit
two d-level systems that cannot be achieved using only LUHamiltonianH is equivalent, as far as LU simulation proto-
We recall, however, that for two-particle Hamiltonians, LU cols are concerned, to its canonical fofin4]
+anc. and LU protocols only differ quantitatively, for LU
protocols are able to simulate any bipartite Hamiltor&hn 3
starting from any otheH with nonvanishingsy |y [2,4,7). H =21 hiogi®ayj, 47

=

2. Example 2: A2X2X?2 composite system .
_ P _ p Y ~ whereh;=h,=|hs|=0 and the operators; are the Pauli
Let us consider now the simulation, for an infinitesimal matrices,

time t, of the three-qubit Hamiltonian

0 1 0 —i 1 O
K,EI®O'3®O'3, (42) o= 1 0, 0= i 0 y J3= .

by the Hamiltonian (48)

K=03® 03® 03, (43) A brief justification for this canonical form is as follows. Any
two-qubit Hamiltonian

where

1 0 Ha®lg+1a®@Hg+ X, hjoi®0; (49)
= (44) !
0'3 0 _1 .

can efficiently simulatgor be efficiently simulated byits
This is possible, when allowing for L¥anc. operations, by canonical form(47): on the one hand we can always use
considering the transformatidn acting on qubitA and on a  traceless operators and n as in Eq.(30) to remove (or

one-qubit ancillaA’ in state|04/), where introduce the local operator$i, andHg; then the remain-
ing operator>;;hjjo;®o; can be taken into the canonical
(0a/|U=]0,)(0p| @(0p | +]|1a)0a| @(1p/|.  (45) form by means of one-qubit unitary operatianandv such

that U®v)S;h;o®cj(u'®@v’) is diagonal when ex-
Indeed, we have thgD,/|U(o3®14)UT|0s)=1,, so that pressed in terms of Pauli matrices. The coefficignt® Eq.

(47) turn out to be related to the singular values of the matrix

(0 |UKUTI0A ) =K". (46)  hj.

Therefore we only need to study the conditions for effi-
On the other hand it is impossible to simuldté by K and  cient simulation between Hamiltonians which are in a ca-
LU, for it would imply to transformo; into | through unitary  nonical form. Let{|®;)} stand for the basis of maximally
mixing, which is a trace-preserving operation. It is straight-entangled vectors of two qubits
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1 1

|<I>1>=E(|01>+|10>), |®2>=E(|00>+|11>),

Bay= (100~ 11)), D)= (|01~ |10

| 3>_ﬁ(| )—11D), | 4>_J§(| )= 110)).
(50

ThenH can be alternatively expressed as

4
H:; Ni| DDy, (51

PHYSICAL REVIEW A 66, 022315 (2002

hi+h;—hi<h;+h,—hs,

hi+hj+hi<h;+h,+hs, (58

and correspond to the(speciaj-majorization relation,h’

<Sﬁ, introduced in Ref[4]. Thus, we have already recov-
ered the necessary conditions of Réf] for H to be able to
efficientlysimulateH’ in LU protocols[19] (and thus, since
we are in the two-qubit case, also in LOCC protogols

In order to see that condition$7) [and thus conditions
(58)] are also sulfficient for efficient LU simulation, we con-

where\; are decreasingly ordered, real coefficients fulfilling catenate on two other results of majorization theory. The first

the constrain;\;=0 (coming from the fact thaH has no
trace and

Ny=hy+h,—hs, (52)
No=hy—h,+hs, (53)
Ng=—h;+hy+hs, (54)
Ns=—h;—h,—hs. (55)

The most general simulation protocol usikjand LU
leads to

H'=; P v HUl @], (56)
where we have assumed, without loss of generality, hat

is also in its canonical form, as in Eq&l7) and (51), with
corresponding coefficients| and\; .

A. Necessary and sufficient conditions for efficient simulation
and optimal simulation factor

Let us derive the necessary and sufficient conditiongifor
to be able to simulatéd’ using LU and for infinitesimal
simulation times. Uhimann’s theorefa8] states that the ei-
genvalues\| of operatorH’ in Eqg.(56), a unitary mixing of
operatorH, are majorized by the eigenvalugsof H, that is,

NS<\q,
INEDVES TR VY
N FNGFENGSN H N+ A3,

N FNGFENGFNL= N H N H N3+ Ny, (57

where the last equation is trivially fulfilled due to the fact
thatH andH'’ are traceless operators. Succinctly, we shall

write X' <X, as usuaJ15]. In terms of the coefficients; and
h{ the previous conditions read

one (see Theorem 11.1.10 of Ref15]) states thah’ <N\ if
and only if a doubly stochastic matrim exists such that
N{=Z;m;j\j. The second result is known as Birkhoff’s
theorem[15], and states that the matrix can always be
written as a convex sum of permutation operat{#®s}, so
that

N A
Y Ao

= P 59
A, Ek) PKPk As (59
7\4'1 Ny

This means that whenever conditio(&7) are fulfilled we
can obtainH’ from H by using a mixing of unitary opera-
tions T;, where eaciT; permutes the vectof§d;)},

H' =2 pTHT/. (60)

Then, all we still need to see is that all 424 possible
permutations of the vectof$d;)} can be performed through
local unitary operationsT;. Recall, however, that any per-
mutation o,  taking elements  (1,2,3,4) into
[0(1),0(2),0(3),0(4)], can be obtained by composing
(several timepthe following three transpositions:

(1,2,3,4—(2,1,3,4, (61)
(1,2,3,4—(1,3,2,4, (62)
(1,2,3,4—(1,2,4,3, (63

where each permutation affects two neighboring elements.
The corresponding three basic permutations of
(®,,P,,P5,d,) can be easily obtained using LU. Indeed,
in order to permute®,,®,,d;,d,) into

(CI)ZI(D]J(I)31(I)4)1
((I)11(I)3|(I)21q)4)1

(P1,D5,D4,P3), (64)
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we can simply apply, respectively, the following local unitary

operations: SH'|H)\'=Ek PkPiA. (69
| ~ioy ® ! Y This is done in Appendix B by using standard techniques of
V2 V2 convex set theory. There we show how to construct a solu-
tion involving at most four termg, T for s<sy, |y, and at
I+ios |—ios most three terms for optimal simulation, that is, when
® il :S
z 2 K-
l+io, l—ioy VI. CONCLUSIONS
—® (65) . . I . .
J2 V2 In this paper we have studied Hamiltonian simulation un-

der the broader scope of LOCC protocols. We have focused

Therefore, any permutationr of the stateg50) can be on infinitesimal-time simulations, for which we have shown
accomplished through local unitary operatiohs and any that LOCC protocols are equivalent to Héanc. protocols,
Hamiltonian H' satisfying conditions(58) [equivalently, also that LU+anc. protocols are in general inequivalent to
conditions(57)] can be efficiently simulated witH and LU. LU protocols (two-qubit Hamiltonians being an exceptjon

In the following we condense the previous findings into For two-qubit Hamiltonians we have rederived and extended
two results(R1) and(R2), which provide an explicit answer the results of Ref{4], to finally provide the optimal solution
to problems(P1) and (P2, respectively, announced in Sec. using LOCC.
[I C of the paper. We assume that the two-qubit Hamiltonians Thus, the problem of simulating Hamiltonian evolutions
H andH’ are in their canonical form, with, h, X', andh’  has received a complete answer for infinitesimal times and
the corresponding vectors of coefficients. using LOCC, for the simplest case of two-qubit systems.

(R1) HamiltonianH’ can be efficiently simulated byl ~ Several interesting questions remain open. On the one hand,
and LOCC—or LU, LUt+anc., or LO—if and only if condi- the generalization of these results to systems other than two

tions (58) [or, equivalently, conditioné&57)] are fulfilled, i.e., qubits appears challenging. On the other hand, the
asymptotic scenario for Hamiltonian simulation, whétes

H'< occHeh <heN <X, (66)  used to simulated’ many times on different systems, cer-
tainly deserves a lot of attention.
(R2) The simulation factosyy for LOCC—or LU, LU Finally, we note that entangled ancillary systems have
+anc., or LO—protocols is given by the maxinsat0 such  been recently shown to be of interest in nonlocal Hamil-
thatsh’' <:h or, equivalently, such thax’<X. tonian simulatior 20]. In particular, entanglement can act as

a catalyst for simulations, both in the infinitesimal-time and
finite-time regimes, in that in the presence of entanglement

better time efficiencies can be obtained, although the en-

The last question we address is how to actually construghnglement is not used up during the simulation but is fully
a simulation protocol. That is, givettandH’, we show how  recovered after the manipulations.

to simulatesH’ usingH and LU, for anyse [0,y 4]
A complete answer to this question is given by a probabil-

B. Explicit optimal LU protocols

ity distribution {p,} and a set of unitary operationsi, ACKNOWLEDGMENTS
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{Tk}Eil. Then the above problem reduces to finding an ex-

plicit probability distribution{p,} such that APPENDIX A: EXTREME POINTS OF THE SET
NONLOCAL HAMILTONIAN SIMULATIONS
sH,‘HH':Ek PTHTL, (69) ACHIEVABLE BY LU +anc.
In this appendix we show that in Lbanc. simulations
or, equivalently, such that any Hamiltonian of the form
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H'=(0a 05/ |URV(H®IAp)UT®@VT0,0g/) (A1)

can be efficiently simulated bid, for any pair of unitary
operationsU andV acting onAA’ andBB’. The result is
valid also for more than two systems after a straightforwar
generalization of the following proof.

Notice that we can always writd andV using product

basis{|iaja)} and{|igjg)} as

dA*l dAr*l

UZEO JZO i aj A il (A2)
dg—1dg/—1

V=i§0 jzo |iBjB’><¢ij|, (A3)

where {|¢;;)} and {|;;)} are other orthonormal bases of
systemsAA’ andBB’, respectively, andl, denotes the di-
mension of systenx.

To perform this simulation, we need to make the output of

the ancilla be the stat®,,0g/), unentangled with the sys-

temsAB. This cannot be achieved by performing just trans-

formationsU and V, but by considering also a series of
local unitary operationdU,®V,}, ae{0, --,da,—1}, b
e{0, --,dg —1},

dar—1

Us=lol > ei2”<a"dA’)||A,><|A,|)u, (A4)
I=0
dBf—l

Ve=lo| > e‘zw(b”dB’)IB,)<IB,|)V, (A5)
I=0

and a uniform probability distribution {pay}, Pab
=1/(da/dg/). Then we have that)]|0,)=UT|0,/), and
that ,U,=da:|0a/){(0a:|U, and similarly forV,, so that
we obtain

; PabUa®Vp(H® 1 arg ) U@ V]| 04 0g/)

=]0,/0g/}{0a/ 05/ |URV(H®I o5 )UT@VT|0,,0g/).
(A6)

Therefore Eq.(A6) defines a protocol that simulates the
Hamiltonian of Eq.(A1) with unit time efficiency.

APPENDIX B: EXPLICIT TWO-QUBIT LU SIMULATION
PROTOCOLS

In this appendix we show how to find a probability distri-
bution{p,} and permutation§P,} such that

ﬁ=2k PP, (B1)

for any two given four-dimensional, real vectaxsand w
(w=s\' in Sec. VB such that <X, where % )\,
:E4=1Mi20-

PHYSICAL REVIEW A 66, 022315 (2002

We first note two facts that will allow us to use standard
techniques of convex set theorfy) the setS={r [7<X\} is
convex, andii) {P\}2*, are the extreme points & as it

GL?Ilows from Birkhoff's theorem[15]. We can then proceed

s follows.

(a) We check whether.=P;X for anyi=1, . ..,24. If we
find one such permutation we are done. Otherwise we move
to step(b).

(b) Facts(i) and (ii) guarantee that there is at least one
permutationP,, that we callQ,, and a positivee>0 such
that

p=eQ\+ (1=, (B2)
where 7 also belongs td5, and therefore satisfies<X. In
other words, we have to search until we find a permutation
Q; such that
(= eQN)/(1-e)<X, (B3)
for some e>0. Once we have found it we only need to
increasee to its maximal value compatible with E¢B3).
Let q; be this maximal value oé. Then we can write

#=01Q:N+(1=qy) iz, (B4)

where u,<X is on one of the surfaces &—otherwise we
could have taken a greatgs.

Such a surface is, again, (lower dimensional convex
set, whose extreme points are some oflﬂaﬁ 's, and whose

elementsr fulfill <X but with one of the majorization in-
equalities replaced with an equality. This allows us to repeat

points (a) and (b), but now aiming to decompose, as a
convex sum of vector@kﬁ. That is, first we check whether

,&2 corresponds t(Pk): for somek. And, if not, we search
until we find a permutatioP,, let us call itQ,, such that,
again,

(12— €QaN)/(1—€)<X. (B5)

The maximum value o& compatible with this equation, say
g, leads to a second termyQ, [q,=(1—q4)q] for the de-

composition ofx,

p=(01Q1+ 92Qu)N +(1— g1 — dp) i3, (B6)

and to a newﬁg, that lies on a surface of yet lower dimen-
sionality of the original convex s&d We iterate the proce-

dure until the remaining vectQIq lies on a convex surface of
S of dimension zero, which means that the surface contains

only one elementy,. In this way we obtain the desired
decomposition,

|
ﬁ:gl QN (B7)

What is the minimal value of? For nonoptimal simulation
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protocols we have thai=s\’, wheres<sy |, andg isin  the minimal decomposition contains at mbst4 terms. For
the interior ofS, which is a three-dimensional set. Therefore optimal-simulation protocolﬁ=sH,‘HX’ is already in a sur-
the above procedure has to be iterated at most three timéace of S and therefore the minimal decomposition contains
before we are left with a zero-dimensional surfaceSohnd  from 1 to 3 terms.
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