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Nonlocal Hamiltonian simulation assisted by local operations and classical communication
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Consider a set ofN systems and an arbitrary interaction HamiltonianH that couples them. We investigate the
use of local operations and classical communication~LOCC!, together with the HamiltonianH, to simulate a
unitary evolution of theN systems according to some other HamiltonianH8. First, we show that the most
general simulation usingH and LOCC can also be achieved, with the same time efficiency, by just interspers-
ing the evolution ofH with local unitary manipulations~LU! of each system and a corresponding local ancilla
~in a so-called LU1anc. protocol!. Thus, the ability to make local measurements and to communicate classical
information does not help in nonlocal Hamiltonian simulation. Second, we show that both for the case of two
d-level systems (d.2), or for that of a setting with more than two systems (N.2), LU1anc. protocols are
more powerful than LU protocols. Therefore local ancillas are a useful resource for nonlocal Hamiltonian
simulation. Third, we use results of majorization theory to explicitly solve the problem of optimal simulation
of two-qubit Hamiltonians using LU~equivalently, LU1anc., LO, or LOCC!.

DOI: 10.1103/PhysRevA.66.022315 PACS number~s!: 03.67.Hk, 03.65.Ta, 03.65.Ca
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I. INTRODUCTION

The problem of using a given nonlocal HamiltonianH
and some class of local operations to simulate another n
local HamiltonianH8 has very recently attracted the atte
tion of several authors in quantum information scien
@1–7#. Nonetheless, average Hamiltonian techniques, a b
ingredient in nonlocal Hamiltonian simulation, have be
studied for many years in control theory@8#, and are com-
monly used in the area of nuclear magnetic resonance@9#.

From the perspective of quantum information scien
nonlocal Hamiltonian simulation sets a frame for the para
etrization of the nonlocal resources contained in multipart
Hamiltonians, very much in the line of thought pursued
quantify the entanglement of multiparticle quantum states
the most common setting, fast local unitary operations
are performed on a series of systems to effectively mod
the HamiltonianH that couples them. A remarkable result
the qualitative equivalence of all bipartite interactions un
LU @2,4–7#. This can be shown to imply that any Hami
tonianH with pairwise interactions between some of the s
tems can simulate any other HamiltonianH8 consisting of
arbitrary pairwise interactions between the same system

At a quantitative level, the time efficiency with which
HamiltonianH is able to simulate a HamiltonianH8 can be
used as a criterion to endow the set of nonlocal Hamiltoni
with a ~pseudo! partial order structure that allows to compa
the nonlocal capabilities ofH and H8 @4#. For two-qubit
Hamiltonians, simulations using LU or arbitrary local oper
tions LO have been shown to yield the same optimal ti
efficiencies, and the resulting partial order structure has b
computed explicitly. This has led to the necessary and su
cient conditions forH to be able to simulateH8 efficientlyfor
infinitesimal times, that is, the conditions under which t
use ofH for time t allows to simulateH8 for the same time
t, in the small timet limit. Equivalently, this result shows
how to time-optimallysimulateH8 with H, in the sense of
achieving the maximal simulation ratiot8/t, where t is the
1050-2947/2002/66~2!/022315~12!/$20.00 66 0223
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time of interactionH that it takes to simulate interactionH8
for a time t8.

A. Ancillary systems, generalized local measurements, and
classical communication in nonlocal Hamiltonian simulation

The aim of this paper is to elucidate the role a number
resources play in the simulation of nonlocal Hamiltonian
Relatedly, we seek to establish equivalences between di
ent classes of operations that may be used in a simula
protocol.

We first address the question whether classical comm
cation~CC! between the systems is useful in nonlocal Ham
tonian simulation. Recall that in protocols that include loc
measurements, the ability to communicate which outco
has been obtained in measuring one of the systems allow
subsequent operations on other systems to depend on
information. Now, can this ability be used in nonlocal Ham
tonian simulation to enlarge the set of achievable simu
tions? Suggestively enough, the answer is yes in the clo
related problem of converting one nonlocal gate into anot
nonlocal gate using LO. For instance, a series of two-qu
gatesU exist such that they can be achieved by performin
Controlled-NOT gate and LOCC but cannot be achieved by
Controlled-NOT gate and LO@10#.

We also study the advantage of using ancillary system
simulation protocols, as well as performing general local o
erations instead of just local unitary transformations. Al
gether, our analysis refers to the following classes of tra
formations: ~a! local unitary operations~LU!, ~b! local
unitary operations with ancillas~LU1anc.!, ~c! local opera-
tions ~LO! @11#, and~d! local operations with classical com
munication~LOCC!.

B. Results

This paper contains the following three main results co
cerning the simulation of nonlocal Hamiltonian evolutio
for infinitesimal times.
©2002 The American Physical Society15-1
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~i! LOCC ~or LO! simulation protocols can be reduced
LU1anc. simulation protocols. That is, forN-particle Hamil-
tonian interactionsH andH8, any protocol that simulatesH8
usingH and LOCC~or LO! can be replaced, without chang
ing its time efficiency, with a protocol involving onlyH and
local unitary transformations. Each local unitary transform
tion may be performed jointly on one of theN systems and a
local ancilla.

~ii ! Apart from exceptional cases such as that of two-qu
Hamiltonians@4#—in which any LU1anc. protocol can be
further replaced with an even simpler protocol that uses o
LU on each qubit— the use of ancillas is, in general, adv
tageous. This is proven by constructing explicit examples
LU1anc. protocols where ancillas are used to obtain sim
lations that cannot be achieved with only LU operatio
both in the case of twod-level systems (d.2) and in the
case ofN.2 systems.

~iii ! For two-qubit Hamiltonians, we use results of majo
ization theory to recover the optimality results presented
Ref. @4#. In view of the equivalence between LU, LU1anc.,
LO, and LOCC protocols for two-qubit systems, this solv
the problem of time optimal, two-qubit Hamiltonian simul
tion under any of these classes of operations.

The structure of the paper is as follows. In Sec. II w
introduce some known results. Sections III, IV, and V pres
results ~i!, ~ii !, and ~iii !, respectively. Section VI contain
some conclusions and Appendixes A and B discuss s
technical aspects of Secs. III and V.

II. PRELIMINARIES

We start by reviewing some background material fro
Ref. @4#, of which the present work can be regarded as
extension.

A. Nonlocal Hamiltonian simulation and classes of operations

Recall that the aim of nonlocal Hamiltonian simulation
given a set of systems that interact according to Hamilton
H for time t and a classC of local control operations, to be
able to produce an evolutione2 iH 8t8 for the systems, where
H8 and t8 are the simulated Hamiltonian and the simulat
time. ~We take\[1 along the paper.!

As mentioned above, one can consider several classe
operations to assist in the simulation, including LU, L
1anc., LO, and LOCC. As in Ref.@4#, we make two basic
assumptions:~i! these additional operations can be imp
mented very fast compared to the time scale of the Ham
tonianH ~we actually consider the setting in which they c
be performedinstantaneouslyand thus characterize the fa
control limit!; ~ii ! these operations are a cheap resource
that optimality over simulation protocols is defined only
terms of the ratiot8/t, that is, in terms of how much timet8
of evolution according toH8 can be produced by usingH for
a time t. Another interesting parameter characterizing sim
lations, which we do not analyze here, would be some m
sure of the complexity of the simulation, that is, of the nu
ber of control operations that are performed.

We also note that the inclusions between classes of op
tions, LU , LU1anc., LO , LOCC, imply relations be-
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tween the sets of achievable simulations and time effici
cies. For instance, since LOCC simulation protocols stric
contain all LU simulation protocols, we expect that LOC
protocols may be more powerful than LU protocols.

B. Infinitesimal-time simulations

The maximal simulation factors(t8)[t8/t when simulat-
ing e2 iH 8t8 by usingH for time t may depend ont8. How-
ever, we are ultimately interested in characterizing the n
local properties of interaction Hamiltonians, irrespective
interaction times. A sensible way to proceed is by consid
ing the worst case situation, namely, the timet8 for which
the optimal ratios(t8) achieves its minimal value. This oc
curs for an infinitesimal timet8. That is, simulations ofH8
for a time such thatuuH8t8uu!1 are, comparatively, the mos
expensive in terms of the required timet of interactionH.
The reason is that,~i! simulations for an infinitesimal time
are a particular case of simulation, providing an upper bou
for the minimum of s(t8), and ~ii ! any finite-time
simulation—orgate synthesis—can be achieved, maybe no
optimally, by concatenating infinitesimal-time simulations

We shall denotesH8uH the limit limt8→0s(t8), and call it
the simulation factor ofH8 with H (sH8uH corresponds to the
inverse of the time overheadm of Ref. @3#, that is, sH8uH
5m21). Then, apart from quantifying the time efficiency
infinitesimal simulations,sH8uH has also two other meanings

~1! T8/sH8uH upper bounds the timeT of use ofH needed
to perform the unitary gatee2 iH 8T8, for any T8 ~gate simu-
lation or gate synthesis@13#!.

~2! sH8uH is the optimal time efficiency indynamics simu-
lation. That is,sH8uH is the maximal achievable ratioT8/T,
where T is the time of H required to simulate theentire

evolution of a system according toe2 i t 8H8, where t8 runs
from 0 to T8 @12#.

In an abuse of notation, we shall refer to conditio
uuH8t8uu!1 as the small time limit, of whichO(t8) @or O(t)#
will denote the first order corrections.

C. Optimal and efficient simulations

For any classCP $LU, LU1anc., LO, LOCC% of the
above operations and in the small time limit, the space
achievable evolutions using HamiltonianH and operationsC
turns out to be convex. Then the following two problem
~P1! given anyH and H8, determine whenH8 can be effi-
ciently ~i.e., t85t) simulated withH for infinitesimal times,
denoted

H8<CH; ~1!

~P2! given anyH and H8, determine the simulation facto
sH8uH ; are equivalent, sincesH8uH is nothing but the greates
s such thatsH8 can be efficiently simulated byH, that is,
such thatsH8<CH.

D. Equivalence of LO and LU¿anc. protocols

The simulation of nonlocal Hamiltonians using LO an
that using LU1anc. are equivalent~see Ref.@4# for details!,
5-2
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NONLOCAL HAMILTONIAN SIMULATION ASSISTED BY . . . PHYSICAL REVIEW A 66, 022315 ~2002!
in that any protocol based on LO can be replaced with
other one that uses only LU1anc. and that has the same tim
efficiency. The ultimate reason for this equivalence is t
even if LO provide, through measurement outcomes, in
mation that can be used to decide on posterior local man
lations, this information cannot be transmitted to the ot
parties~unless the interaction itself is used for this purpo
but this leads to null efficiencyt8/t when t→0); then, uni-
tarity of the simulated evolution implies that each party
effectively applying a trace-preserving local operation on
subsystem, and this can always be achieved using only
1anc.

The previous situation changes when classical comm
cation is allowed between the parties, because then they
coordinate their manipulations. In spite of this fact, CC do
not help in Hamiltonian simulation, as we move to discu
next.

III. EQUIVALENCE OF LOCC AND LU ¿anc. PROTOCOLS

In this section we show that any protocol for nonloc
Hamiltonian simulation based on LOCC can be replac
with another one based only on LU1anc. and having the
same time efficiency. This result, valid for infinitesimal-tim
simulations on arbitraryN-particle systems, brings an impo
tant simplification to the general problem of nonlocal Ham
tonian simulation, since it implies the equivalence of LOC
LO, and LU1anc. protocols.

We first describe in detail the most general protocol
Hamiltonian simulation using LOCC. Then we show—
through an argument that exploits the fact that entanglem
only decreases under LOCC—that any such protocol can
replaced with another one using only LU1anc. The key
point of the proof is to assume that one of the system
initially entangled with an auxiliary systemZ, and to realize
that a nontrivial measurement~i.e., a measurement no
equivalent to some local unitary transformation! on the sys-
tem would partially destroy this entanglement in an irreve
ible way. Since we are simulating a unitary process on
systems~which should preserve the entanglement betw
those andZ), all local measurements must be trivial, and c
be replaced with unitary transformations.

A. Hamiltonian simulation using LOCC

For the sake of clarity we will perform most of the anal
sis in the simplest nontrivial case, that involving only tw
qubits, because this already contains all the ingredients o
generalN-particle setting. Let us consider, then, that qubitsA
andB, with Hilbert spacesHA andHB , interact according to
H for an overall timet, and that, simultaneously, they a
being manipulated locally.

1. Local manipulation

The most general local operation on, say, qubitA can be
achieved by~i! appending toA an ancillary systemA8 in
some blank stateu0A8&PHA8 ; ~ii ! performing a unitary
transformationU on HAA85HA^ HA8 ; ~iii ! performing an
orthogonal measurement on a factor spaceHmeasof the total
02231
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Hilbert spaceHAA85K^ Hmeas, given by projection opera-
tors $Pb%; and ~iv! tracing out a factor spaceT b of HAA8
5H out

b
^ T b, whereH out

b andT b may depend on the mea
surement outcomeb of step ~iii !. Under ~i!–~iv! the initial
stateufA& of qubit A transforms with probabilitypb accord-
ing to

ufA&^fAu→Eb~ ufA&^fAu!5
1

pb
trT b@PbU~ ufA&^fAu ^ u0A8&

3^0A8u!U
†Pb#, ~2!

where pb[tr@PbU(ufA&^fAu ^ u0A8&^0A8u)U
†Pb#. We can

introduce operatorsMi
b :HA→H out

b ,

Mi
b[^ i buPbUu0A8&, ~3!

where$u i b&% is an orthonormal basis ofT b. Then Eq.~2! can
be rewritten as

Eb~ ufA&^fAu!5
1

pb
(

i
M i

bufA&^fAuMi
b† . ~4!

Now, since in our case the eventual result of this manipu
tion must be a unitary evolution, we are interested in tra
formationsEb that map pure states into pure states, that
such that can be implemented by just one operatorMb:HA

→H out
b ,

ufA&^fAu→ 1

pb
MbufA&^fAuMb†, ~5!

pb5tr@MbufA&^fAuMb†#. Therefore the effect of the loca
manipulation on qubitA is a generalized measurementM
that, with probabilitypb, maps the state ofA into a state
supported onH out

b ,

ufA&→
1

Apb
MbufA&, ~6!

and produces classical informationb. The measurement op
erators$Mb% characterizingM satisfy(bMb†Mb5I A .

More generally, in a simulation protocol measurementM
may depend on some previous informationa, in which case
we write M a. In addition, the corresponding measureme
operators$Mb,a% may map states from a two-dimension
subspaceH in

a ,HAA8 into another two-dimensional subspa
H out

b,a,HAA8 that depends both on the measurement outco
b and on the previous informationa, that is,

Mb,a:Hin
a →Hout

b,a . ~7!

In the following, a series of measurementsM will be con-
catenated, in such a way that theout subspaceHout for a
given measurement is related to thein subspaceHin for the
next one.
5-3
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We consider that a sufficiently large ancillary systemA8
in a pure state has been initially appended to qubitA so that
it provides at once the extra degrees of freedom neede
perform all generalized measurementsM on A. Finally, all
the above considerations apply also to qubitB, to which an
ancillary systemB8 is appended.

2. LOCC simulation protocol

A LOCC protocol for simulatinge2 i t 8H8 by H for time t is
characterized by a partition$t1 ,t2 , . . . ,tn% of t, where t i
>0, ( i t i5t, and a series of local measuremen
$(M0 ,N0),(M 1

a1 ,N 1
a1), . . . ,(M n

an ,N n
an)%. The protocol

runs as follows.
~1! The simulation begins with measurementsM0 andN0

being performed onA and B, respectively. These map th
original state ofAB into a state supported on some subsp
of AA8BB8.

~2! Then the two qubitsA andB are left to evolve accord
ing to H for a time t1.

~3! After that, measurementsM 1
a1 and N 1

a1 are per-
formed. Here, indexa1 indicates that the measurements b
ing performed after timet1 may depend on the outcomes
measurementsM0 andN0.

~4! Again, the measurements are followed by an evo
tion, for time t2, of A andB according toH, and the protocol
continues in an iterative fashion.

~5! In stepk, qubits A and B are first left to evolve ac-
cording toH for a time tk and then measurementsM k

ak and

N k
ak (ak denoting again a possible dependence on the

come of all previous measurements! are locally performed in
AA8 andBB8.

~6! The protocol finishes after measurementsM n
an and

N n
an have been performed. These last measurements

leave the two-qubit systemAB in a pure state~that is, uncor-
related from systemsA8B8 that are traced out!.

Thus, the two-qubit systemAB is initially in some state
uc&, becomes entangled with the ancillasA8 andB8 during
the manipulations described above, but ends up in the s
e2 iH 8t8uc& after timet.

Note that the protocol described above has a tree st
ture, starting with a preestablished pair of local manipu
tions and ending up at the extreme of a branch character
by the outcomes of all~conditioned! local operations per-
formed during the time intervalt. We move now to charac
terize one of these branches.

3. One branch of the protocol

Let us suppose we run the simulation once. This co
sponds to some given branch of the protocol, which we la
G, and which we have represented in Fig. 1. BranchG is
characterized by a series of measurement opera
$(M0

G ,N0
G), . . . ,(Mn

G ,Nn
G)%, where the superindicesak con-

taining the information that characterizes the branch h
been replaced withG to simplify the notation. Recall that th
aim of the protocol is to achieve an evolution according
02231
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e2 iH 8t8. Therefore, for any initial vectoruc& of the two-qubit
systemAB, the measurement operators$(Mk

G ,Nk
G)%k50

n must
obey

ApGe2 iH 8t8uc&

5~Mn
G

^ Nn
G!e2 i t nH•••~M1

G
^ N1

G!e2 i t 1H~M0
G

^ N0
G!uc&,

~8!

wherepG denotes the probability that branchG occurs in the
protocol. Equation~8! is the starting point for the rest of th
analysis in this section.

B. LOCC protocols are as efficient as LU¿anc. protocols for
infinitesimal-time simulations

As discussed in the Introduction, we are interested her
simulations for an infinitesimal simulation timet. In this re-
gime Eq.~8! significantly simplifies, because we can expa
the exponentials to first order int ~or equivalently, in$tk% and
t8), thereby obtaining an equation that is linear both inH and
H8. In addition, if t is small then qubitsA andB interact only
‘‘a little bit.’’ In what follows we will use this fact to prove
the main result of this section, namely, that all the measu
ment operators$Mk

G ,Nk
G%k50

n in Eq. ~8! must be, up to neg-
ligible corrections, proportional to unitary operators in som
corresponding relevant supports. This will eventually imp
that LU1anc. protocols can already simulate any evoluti
e2 iH 8t8 achievable in a LOCC protocol.

We note that this result is not valid for the interconversi
of nonlocal gates@10#. There the systems are allowed
interact according to a finite gate~e.g., a Controlled-NOT

gate!, and thus accumulate some finite amount of entang
ment~e.g., anebit! in the ancillary systems, that can be use
together with LOCC, to perform some new nonlocal ga
~e.g., through some teleportation scheme!.

FIG. 1. Schematic representation of a Hamiltonian simulat
protocol using LOCC. The unitary evolution of the composite s
tem AB according toH and for a timet5( i t i is interspersed with
local measurementsM k

ak ~on systemsAA8) andN k
ak ~on systems

BB8! to obtain a unitary evolution ofAB according toH8 and for a
time t8. Hereak indicates the local measurements performed at s
k, which may depend on the outcome of all previous steps, owin
the classical communication between the systems~winding lines!.
In the figure we have replaced the superscriptsak with G, G denot-
ing a particular branch of the protocol@cf. Eq. ~8!#. Thus, in branch
G measurement operatorsMk

G ~corresponding to measureme
M k

G) andNk
G ~corresponding to measurementN k

G) transform sys-
temsAA8 andBB8 at stepk of the protocol.
5-4
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1. LOCC protocols for infinitesimal-time simulations

We define a series of operatorsMk andMk8 by

Mk[Mn
G
•••Mk

G , k51, . . . ,n,

Mk8[Mk21
G

•••M0
G , k51,•••,n,

M0[Mn
G
•••M0

G , ~9!

and also an analogous series of operatorsNk ,Nk8 , and N0.
Notice that operatorMk8 describes a concatenation of all lo
cal measurements in branchG performed from the beginning
of the protocol and up to stepk21 on the state initially
supported onHAA8 , while Mk collects the manipulations tha
will be performed from stepk until the end of the protocol
In the small time regime, we can expand the exponential
Eq. ~8! as a series intk and t8 to obtain, up to second orde
correctionsO(t2),

ApG~ I AB2 istH8!uc&5S M0^ N02 i t (
k51

n

pk~Mk^ Nk!

3H~Mk8^ Nk8!D uc&, ~10!

where we have introduced probabilitiespk[tk /t and the ef-
ficiency factors[t8/t of the branch, so that all times ar
expressed in terms oft.

This equation indicates that

M0^ N0uc&5ApGI ABuc&1O~ t !, ~11!

for any two-qubit stateuc&, from which it follows that the
probabilitypG that branchG occurs cannot depend onuc& up
to O(t) corrections, also that bothM0 andN0 must be pro-
portional to the identity operator inHA andHB ,

M05ApGqIA1O~ t !, ~12!

N05q21I B1O~ t !, ~13!

whereq is some positive parameter. Notice that the ordet
corrections in Eq.~11! correspond to local terms, that is,
operators of the formt(I A^ OB1OA8 ^ I B), and thus are ir-
relevant to this discussion@14#. In what follows we neglect
these local terms for the sake of clarity. Bearing this rem
and Eq.~11! in mind, we rewrite Eq.~10! as the operator
equation

ApG~ I AB2 istH8!5ApGI AB2 i t (
k51

n

pk~Mk^ Nk!

3H~Mk8^ Nk8!1O~ t2!. ~14!

That is,

ApGsH85 (
k51

n

pk~Mk^ Nk!H~Mk8^ Nk8!1O~ t !, ~15!
02231
in

k

where, because of Eq.~11!, some other constraints appl
More precisely, ifMk8 andNk8 are given by

Mk85ApGq~ um0
k&^0Au1um1

k&^1Au!,

Nk85q21~ un0
k&^0Bu1un1

k&^1Bu!, ~16!

where$u i A&% and$u i B&% are orthonormal bases ofHA andHB

and $um i
k&PHAA8% and $un i

k&PHBB8% are arbitrary vectors,
not necessarily normalized, thenMk andNk must fulfill

Mk5u0A&^m̃0
ku1u1A&^m̃1

ku1O~ t !,

Nk5u0B&^ñ0
ku1u1A&^ñ1

ku1O~ t !, ~17!

where $um̃ i
k&% is the biorthonormal basis@15# of $um i

k&% ~in

the subspace spanned by$um i
k&%), that is,^m i

kum̃ j
k&5d i j , and

similarly $uñ i
k&% is the biorthonormal basis of$un i

k&%, so that
M0^ N05(MkMk8) ^ (NkNk8) fulfills Eq. ~11!.

Now, going back to the measurement operatorsMk
G , we

can expand them as

M0
G5ApGq~ um0

1&^0Au1um1
1&^1Au!,

Mk
G5um0

k11&^m̃0
ku1um1

k11&^m̃1
ku, k51, . . . , n21

Mn
G5u0A&^m̃0

nu1u1A&^m̃1
nu1O~ t !, ~18!

and similarly for theNk
G .

2. Unitarity and conservation of entanglement

We carry on this analysis by focusing our attention on
on the operations performed on systemsAA8. We will show
that operatorsMk and Mk8 can be replaced with operator
proportional to^0A8uUk andUk

†u0A8&, whereUk is a unitary
matrix acting onHAA8 . We will use the fact that the protoco
must be able to keep the entanglement ofA with another
systemZ.

Let us suppose, then, that qubitA is entangled with a
distant qubitZ, with the maximally entangled vector

1

A2
~ u0A& ^ u0Z&1u1A& ^ u1Z&) ~19!

describing the pure state ofAZ. Any unitary evolution of
qubits A and B preserves the amount of entanglement b
tween qubitZ and qubitsAB. In particular, if the unitary
evolutions according toH are infinitesimal, then up toO(t)
corrections qubitZ must be still in a maximally entangle
state withA after the simulated evolutione2 istH8. This sets
very strong restrictions on the kind of measurements that
be performed onA during the simulation protocol. If during
the kth measurement in branchG part of the entanglement i
destroyed, then the simulation protocol necessarily fails w
some probability, because the destroyed entanglement ca
be deterministically recovered. Indeed, even if subsequ
measurement operators in branchG would be able to restore
5-5
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the entanglement and so obey Eq.~8!, another branchG8
diverging fromG after thekth measurement must necessar
fail to recover the entanglement~recall the monotonically
decreasing character of entanglement under LOCC, see,
Ref. @16#! and thus with some probability the protocol mu
fail to simulate the unitary evolution@17#.

Let us see the effect of this restriction on the first me
surement operatorM0

G in Eq. ~18!. It transforms the initial
entangled state into a new state proportional to

um0
1& ^ u0Z&1um1

1& ^ u1Z&, ~20!

which remains maximally entangled if and only ifuuum0
1&uu

5uuum1
1&uu[r 1 and^m0

1um1
1&50. But this is precisely the con

dition for M18(5M0
G) to be proportional to a unitary operato

from HA to the out spaceH out
0 spanned by$um i

1&% or, equiva-
lently, to an isometry fromHA to HAA8 . Thus, we can write

M185r 1U1
†u0A8&, ~21!

where

U1
†[

um0
1&

r 1
^0A0A8u1

um1
1&

r 1
^1A0A8u1 (

l 51

dA821

uj l ,0&^0Al A8u

1uj l ,1&^1Al A8u

is some unitary operation defined onHAA8 . HeredA8 is the
dimension ofHA8 and$uj l ,0&,uj l ,1&% l 51

dA8 is some set of vectors
that together withum0

1&/r 1 and um1
1&/r 1 form an orthonormal

basis ofHAA8 . Equation~17! implies that, in addition,

M15
ApGq

r 1
^0A8uU1 . ~22!

This characterization in terms of a unitary transformat
can now be easily extended to the rest of operatorsMk and
Mk8 . We use induction overk. We already have that the cha
acterization works fork51. Suppose it works for somek
21, that is, in the decomposition Eq.~16! for Mk218 we have
uuum0

k21&uu5uuum1
k21&uu and ^m0

k21um1
k21&50. This means

that after the (k21)th measurement in branchG, the initial
state of Eq.~19! becomes a state proportional to

um0
k21& ^ u0Z&1um1

k21& ^ u1Z&1O~ t !, ~23!

where theO(t) corrections are due to evolutions ofAB ac-
cording toH for a time of ordert, which slightly entangleB
with AZ. Then, preservation of entanglement during thekth

measurement~implemented by operatorMk21
G ) requires that

also uuumk
0&uu5uuumk

1&uu[r k and ^mk
0umk

1&50, and therefore

Mk85r kUk
†u0A8&1O~ t !,

Mk5
ApGq

r k
^0A8uUk1O~ t !, ~24!

for some unitary transformationUk acting onHAA8 .
02231
.g.,
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The same argument leads to expressing the operatorNk

and Nk8 in terms of unitary transformationsVk acting on
HBB8 as

Nk85skVk
†u0B8&1O~ t !,

Nk5
1

r kq
^0B8uVk1O~ t !. ~25!

Therefore Eq.~15! finally reads, up toO(t) corrections that
vanish in thet→0 or fast control limit,

sH85(
k

pk^0A80B8u~Uk^ Vk!H~Uk
†

^ Vk
†!u0A80B8&.

~26!

3. Equivalence betweenLOCC and LU¿anc. protocols

The setSH
LOCC of nonlocal Hamiltonians that can be effi

ciently simulated byH and LOCC isconvex: if H can effi-
ciently simulateH1 andH2, then it can also efficiently simu
late the HamiltonianpH11(12p)H2. Indeed, we just need
to divide the infinitesimal timet into two parts and simulate
H1 for time pt and thenH2 for time (12p)t. The resulting
Hamiltonian is precisely the above average ofH1 and H2.
Thus, in order to characterize the convex setSH

LOCC , we can
focus on itsextreme points. Notice that the previous convex
ity argument also holds for the setSH

LU1anc. of Hamiltonians
that can be efficiently simulated with LU1anc., so that
SH

LU1anc. is also convex. Recall also thatSH
LU1anc.,SH

LOCC .
Now, Eq. ~26! says that all points inSH

LOCC can be ob-
tained as a convex combination of terms of the form

^0A80B8u~U ^ V!H~U†
^ V†!u0A80B8&. ~27!

In addition, in Appendix A we show that any such term c
be obtained in a simulation protocol using LU1anc. It fol-
lows that~i! any extreme point ofSH

LOCC is of the form~27!,
and that ~ii ! any extreme point ofSH

LOCC belongs to
SH

LU1anc. , so thatSH
LU1anc.5SH

LOCC . This finishes the proof
of the fact that infinitesimal-time simulations using LOC
can always be accomplished using LU1anc.

Summarizing, we have seen that any~rescaled! two-qubit
Hamiltonian sH8 achievable in branchG of our LOCC-
simulation protocol@cf. Eq. ~26!# can also be achieved, with
the same time efficiency, by just using local unitary transf
mations and ancillas as extra resources. It is now straigh
ward to generalize the above argument toN systems, each
one having two or more levels, thereby extending the equ
lence of LOCC and LU1anc. protocols to general multipa
ticle interactions. Indeed, for anyd-level system involved in
the simulation, we just need to require that its entanglem
with some remote, auxiliaryd-level system be preserved, an
we readily obtain that all measurements performed dur
the simulation protocol can be replaced with local unita
operations. We thus can conclude, using the notation in
duced in Sec. II B, that

H8<LOCCH⇔H8<LU1anc.H. ~28!
5-6
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IV. LU ¿anc. PROTOCOLS ARE NOT EQUIVALENT
TO LU PROTOCOLS

The equivalence between infinitesimal-time simulatio
using LOCC and LU1anc. may be conceived as a satisfa
tory result. On the one hand, it discards local measurem
and classical communication as useful resources for
simulation of nonlocal Hamiltonians. This essentially sa
that in order to simulate Hamiltonian dynamics, we can
strict the external manipulation to unitary operations, pos
bly involving some ancillary system. In this way the set
interesting simulation protocols has been significantly s
plified. On the other hand, it is reassuring to see that, des
the diversity of classes of operations that we may use a
criterion to characterize the nonlocal properties of multip
ticle interactions, most of these criteria~LOCC, LO, and LU
1anc.! yield an equivalent classification and quantificatio
In other words, we do not have to deal with a large num
of alternative characterizations. We shall show here, h
ever, that simulation using only LU, that is, without ancilla
is not equivalent to that using LU1anc.

The reason for this inequivalence is the following. Co
sider a multipartite Hamiltonian of the formHA^ HBC••• ,
whereHA acts on ad-dimensional spaceHA andHBC••• acts
on HB^ HC•••. In the presence of an ancillaHA8 , LU can
be used so that operatorHA acts on somed-dimensional
factor spaceK of HAA8 (HAA85K^ K8). The net result is
an effective Hamiltonian acting onHA . As the following
examples show, some of these effective Hamiltonians can
be achieved~at least with the same time efficiencies! by us-
ing only LU.

A. LU¿anc. protocols versus LU protocols

In the preceding section we saw that, in the fast con
limit, the extreme points of the convex setSH

LU1anc. of bi-
partite Hamiltonians that can be efficiently simulated withH
using LU1anc.~equivalently, those of the setSH

LOCC) are, up
to local terms, of the form

E~H ![^0A80B8uU ^ V~H ^ I A8B8!U
†

^ V†u0A80B8&
~29!

~an analogous expression holds for the multipartite ca!.
Notice that in Eq.~29! we have replaced operatorH of Eq.
~27! with H ^ I A8B8 to make more explicit that ancillas ar
being used.

Can all simulations of this type be achieved by using o
LU? The most general simulation that can be achieved fr
H and by LU reads~see Ref.@4# for more details!

(
k

pkuk^ vkHuk
†

^ vk
†1m^ I B1I A^ n1aIAB , ~30!

where$pk%, (kpk51, is a probability distribution,$uk% and
$vk% are local unitaries acting onA and B, m and n are
self-adjoint, traceless operators, anda is a real constant. The
previous question translates then into whether for anyU and
V in Eq. ~29!, we can find a set$pk ,uk ,vk%, m, n, anda such
that Eq.~30! equalsE(H) in Eq. ~29!.
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In Ref. @4# it was shown that, in the particular case
two-qubit systems, the previous conditions can always
fulfilled. Next we shall show that this is sometimes not t
case for Hamiltonians of twod-level systems ford.2, and
also for Hamiltonians of more than two systems.

B. Inequivalence between LU¿anc. and LU protocols

1. Example 1: Twod-level systems„dÌ2…

We first consider twod-level systemsA andB, d.2, that
interact according to

K[P0^ P01 (
i 51

d21

Pi ^ Pi , ~31!

where Pi ^ Pj[u i A&^ i Au ^ u j B&^ j Bu. We will show that by
means of LU1anc., HamiltonianK can be used to efficiently
~that is, with unit efficiency factors) simulate

K8[P0^ P11 (
i 51

d21

Pi ^ Pi . ~32!

We will also show thatK8 cannot be efficiently simulated
using only LU.

Let A8 be ad-level ancilla. We need a unitary transform
tion U satisfying

^0A8uU5u0A&^1A0A8u1 (
i 51

d21

u i A&^ i Ai A8u. ~33!

As we discuss in Appendix A, the transformation of a Ham
tonianH acting onAB,

E~H ![^0A80B8uU~H ^ I A8B8!U
†u0A80B8&, ~34!

can be achieved using LU1anc.@notice that this correspond
to choosingVBB85I BB8 in Eq. ~A1!#. In particular, this trans-
formation takes any term of the formPi ^ Pj into

E~Pi ^ Pj !5H 0, i 50,

~P01P1! ^ Pj , i 51,

Pi ^ Pj , i .1,

~35!

which in particular implies

E~K !5K8. ~36!

Now, if this simulation is to be possible with the same tim
efficiency by using only LU, then we must have, because
Eq. ~30!,

K85Q1m^ I B1I A^ n1aIAB , ~37!

where Q[( i 50
d21(kpkukPiuk

†
^ vkPivk

†>0, but this is not
possible. Indeed, we first notice that, by taking the trace
this expression we obtaina50, whereas by tracing out only
systemB we obtain

I 5I 1dm, ~38!
5-7
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and thusm50. Tracing out only systemA leads to

2P11 (
i 52

d21

Pi5I 1dn, ~39!

so thatn5(2P01P1)/d and condition~37! becomes

K85P0^ P11 (
i 51

d21

Pi ^ Pi5Q1
I A

d
^ ~2P01P1!.

~40!

Then, recalling the positivity ofQ, we obtain the following
contradiction:

05tr@P2^ P1K8#

5tr@P2^ P1Q#

1trF ~P2^ P1!S I A

d
^ ~2P01P1! D G

5tr@~P2^ P1!Q#11/d>1/d. ~41!

Thus, for anyd.2, we have explicitly constructed an ex
ample of LU1anc. simulation for Hamiltonians acting o
two d-level systems that cannot be achieved using only L
We recall, however, that for two-particle Hamiltonians, L
1anc. and LU protocols only differ quantitatively, for LU
protocols are able to simulate any bipartite HamiltonianH8
starting from any otherH with nonvanishingsH8uH @2,4,7#.

2. Example 2: A2Ã2Ã2 composite system

Let us consider now the simulation, for an infinitesim
time t, of the three-qubit Hamiltonian

K8[I ^ s3^ s3 , ~42!

by the Hamiltonian

K[s3^ s3^ s3 , ~43!

where

s3[S 1 0

0 21D . ~44!

This is possible, when allowing for LU1anc. operations, by
considering the transformationU acting on qubitA and on a
one-qubit ancillaA8 in stateu0A8&, where

^0A8uU5u0A&^0Au ^ ^0A8u1u1A&^0Au ^ ^1A8u. ~45!

Indeed, we have that^0A8uU(s3^ I A8)U
†u0A8&5I A , so that

^0A8uUKU†u0A8&5K8. ~46!

On the other hand it is impossible to simulateK8 by K and
LU, for it would imply to transforms3 into I through unitary
mixing, which is a trace-preserving operation. It is straig
02231
.

l

-

forward to construct similar examples in higher-dimensio
systems, and also with more than three systems.

We note that, as far as interactions involving more th
two systems are concerned, the inequivalence between
1anc. and LU simulation protocols is not only quantitativ
leading to different simulation factors, but also qualitativ
The last example above shows that LU protocols canno
used to simulate Hamiltonians that can be simulated us
LU1anc. and the same interactionH.

V. OPTIMAL SIMULATION OF TWO-QUBIT
HAMILTONIANS USING LOCC

In this section we address the problem of optimal Ham
tonian simulation using LU for the case of two-qubit inte
actions. We recover the results of Ref.@4#, but through an
alternative, simpler proof, based on known results of ma
ization theory—and thus avoiding the geometrical constr
tions of the original derivation@4#. The equivalence of
LOCC and LU1anc. strategies presented in Sec. III, togeth
with that of LU1anc. and LU strategies for two-qub
Hamiltonians proved in Ref.@4#, imply that these results ar
also optimal in the context of LOCC, LO, and LU1anc.
Hamiltonian simulation.

We start by recalling some basic facts. Any two-qu
HamiltonianH is equivalent, as far as LU simulation proto
cols are concerned, to its canonical form@1,4#

H5(
i 51

3

his i ^ s i , ~47!

where h1>h2>uh3u>0 and the operatorss i are the Pauli
matrices,

s1[S 0 1

1 0D , s2[S 0 2 i

i 0 D , s3[S 1 0

0 21D .

~48!

A brief justification for this canonical form is as follows. An
two-qubit Hamiltonian

HA^ I B1I A^ HB1(
i j

hi j s i ^ s j ~49!

can efficiently simulate~or be efficiently simulated by! its
canonical form~47!: on the one hand we can always u
traceless operatorsm and n as in Eq. ~30! to remove~or
introduce! the local operatorsHA andHB ; then the remain-
ing operator( i j hi j s i ^ s j can be taken into the canonica
form by means of one-qubit unitary operationsu andv such
that (u^ v)( i j hi j s i ^ s j (u

†
^ v†) is diagonal when ex-

pressed in terms of Pauli matrices. The coefficientshi in Eq.
~47! turn out to be related to the singular values of the ma
hi j .

Therefore we only need to study the conditions for e
cient simulation between Hamiltonians which are in a c
nonical form. Let$uF i&% stand for the basis of maximally
entangled vectors of two qubits
5-8
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uF1&[
1

A2
~ u01&1u10&), uF2&[

1

A2
~ u00&1u11&),

uF3&[
1

A2
~ u00&2u11&), uF4&[

1

A2
~ u01&2u10&).

~50!

ThenH can be alternatively expressed as

H5(
i 51

4

l i uF i&^F i u, ~51!

wherel i are decreasingly ordered, real coefficients fulfillin
the constraint( il i50 ~coming from the fact thatH has no
trace! and

l15h11h22h3 , ~52!

l25h12h21h3 , ~53!

l352h11h21h3 , ~54!

l452h12h22h3 . ~55!

The most general simulation protocol usingH and LU
leads to

H85(
k

pkuk^ vkHuk
†

^ vk
† , ~56!

where we have assumed, without loss of generality, thatH8
is also in its canonical form, as in Eqs.~47! and ~51!, with
corresponding coefficientshi8 andl i8 .

A. Necessary and sufficient conditions for efficient simulation
and optimal simulation factor

Let us derive the necessary and sufficient conditions foH
to be able to simulateH8 using LU and for infinitesimal
simulation times. Uhlmann’s theorem@18# states that the ei
genvaluesl i8 of operatorH8 in Eq. ~56!, a unitary mixing of
operatorH, are majorized by the eigenvaluesl i of H, that is,

l18<l1 ,

l181l28<l11l2 ,

l181l281l38<l11l21l3 ,

l181l281l381l485l11l21l31l4 , ~57!

where the last equation is trivially fulfilled due to the fa
that H and H8 are traceless operators. Succinctly, we sh
write lW 8alW , as usual@15#. In terms of the coefficientshi and
hi8 the previous conditions read
02231
ll

h18<h1 ,

h181h282h38<h11h22h3 ,

h181h281h38<h11h21h3 , ~58!

and correspond to thes~special!-majorization relation,hW 8

ashW , introduced in Ref.@4#. Thus, we have already recov
ered the necessary conditions of Ref.@4# for H to be able to
efficientlysimulateH8 in LU protocols@19# ~and thus, since
we are in the two-qubit case, also in LOCC protocols!.

In order to see that conditions~57! @and thus conditions
~58!# are also sufficient for efficient LU simulation, we con
catenate on two other results of majorization theory. The fi
one ~see Theorem II.1.10 of Ref.@15#! states thatlW 8alW if
and only if a doubly stochastic matrixm exists such that
l i85( jmi j l j . The second result is known as Birkhoff
theorem@15#, and states that the matrixm can always be
written as a convex sum of permutation operators$Pk%, so
that

S l18

l28

l38

l48

D 5(
k

pkPkS l1

l2

l3

l4

D . ~59!

This means that whenever conditions~57! are fulfilled we
can obtainH8 from H by using a mixing of unitary opera
tions Ti , where eachTi permutes the vectors$uF i&%,

H85(
i

piTiHTi
† . ~60!

Then, all we still need to see is that all 4!524 possible
permutations of the vectors$uF i&% can be performed through
local unitary operationsTi . Recall, however, that any per
mutation s, taking elements (1,2,3,4) into
@s(1),s(2),s(3),s(4)#, can be obtained by composin
~several times! the following three transpositions:

~1,2,3,4!→~2,1,3,4!, ~61!

~1,2,3,4!→~1,3,2,4!, ~62!

~1,2,3,4!→~1,2,4,3!, ~63!

where each permutation affects two neighboring eleme
The corresponding three basic permutations
(F1 ,F2 ,F3 ,F4) can be easily obtained using LU. Indee
in order to permute (F1 ,F2 ,F3 ,F4) into

~F2 ,F1 ,F3 ,F4!,

~F1 ,F3 ,F2 ,F4!,

~F1 ,F2 ,F4 ,F3!, ~64!
5-9
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G. VIDAL AND J. I. CIRAC PHYSICAL REVIEW A 66, 022315 ~2002!
we can simply apply, respectively, the following local unita
operations:

I 2 is1

A2
^

I 2 is1

A2
,

I 1 is3

A2
^

I 2 is3

A2
,

I 1 is1

A2
^

I 2 is1

A2
. ~65!

Therefore, any permutations of the states~50! can be
accomplished through local unitary operationsTi , and any
Hamiltonian H8 satisfying conditions~58! @equivalently,
conditions~57!# can be efficiently simulated withH and LU.

In the following we condense the previous findings in
two results,~R1! and~R2!, which provide an explicit answe
to problems~P1! and ~P2!, respectively, announced in Se
II C of the paper. We assume that the two-qubit Hamiltonia
H andH8 are in their canonical form, withlW , hW , lW 8, andh8W
the corresponding vectors of coefficients.

~R1! HamiltonianH8 can be efficiently simulated byH
and LOCC—or LU, LU1anc., or LO—if and only if condi-
tions ~58! @or, equivalently, conditions~57!# are fulfilled, i.e.,

H8<LOCCH⇔hW 8ashW⇔lW 8alW . ~66!

~R2! The simulation factorsH8uH for LOCC—or LU, LU
1anc., or LO—protocols is given by the maximals.0 such
that shW 8ashW or, equivalently, such thatslW 8alW .

B. Explicit optimal LU protocols

The last question we address is how to actually const
a simulation protocol. That is, givenH andH8, we show how
to simulatesH8 usingH and LU, for anysP@0,sH8uH#.

A complete answer to this question is given by a proba
ity distribution $pk% and a set of unitary operations$uk
^ vk% such that

sH85(
k

pkuk^ vkHuk
†

^ vk
† , ~67!

wheresP@0,sH8uH#, andsH8uH can be obtained using resu
~R2!.

We already argued that it is always possible to choose
uk^ vk such that they permute the vectors of Eq.~50!, so that
eachuk^ vk[Tk is just a composition of the local unitar
operation of Eqs.~65!. As before, let$Pk%k51

24 denote the 24
permutations implemented by the local unitary operatio
$Tk%k51

24 . Then the above problem reduces to finding an
plicit probability distribution$pk% such that

sH8uHH85(
k

pkTkHTk
† , ~68!

or, equivalently, such that
02231
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sH8uHlW 85(
k

pkPklW . ~69!

This is done in Appendix B by using standard techniques
convex set theory. There we show how to construct a so
tion involving at most four termspkTk for s,sH8uH , and at
most three terms for optimal simulation, that is, whens
5sH8uH .

VI. CONCLUSIONS

In this paper we have studied Hamiltonian simulation u
der the broader scope of LOCC protocols. We have focu
on infinitesimal-time simulations, for which we have show
that LOCC protocols are equivalent to LU1anc. protocols,
also that LU1anc. protocols are in general inequivalent
LU protocols ~two-qubit Hamiltonians being an exception!.
For two-qubit Hamiltonians we have rederived and extend
the results of Ref.@4#, to finally provide the optimal solution
using LOCC.

Thus, the problem of simulating Hamiltonian evolution
has received a complete answer for infinitesimal times
using LOCC, for the simplest case of two-qubit system
Several interesting questions remain open. On the one h
the generalization of these results to systems other than
qubits appears challenging. On the other hand,
asymptotic scenario for Hamiltonian simulation, whereH is
used to simulateH8 many times on different systems, ce
tainly deserves a lot of attention.

Finally, we note that entangled ancillary systems ha
been recently shown to be of interest in nonlocal Ham
tonian simulation@20#. In particular, entanglement can act
a catalyst for simulations, both in the infinitesimal-time a
finite-time regimes, in that in the presence of entanglem
better time efficiencies can be obtained, although the
tanglement is not used up during the simulation but is fu
recovered after the manipulations.
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APPENDIX A: EXTREME POINTS OF THE SET
NONLOCAL HAMILTONIAN SIMULATIONS

ACHIEVABLE BY LU ¿anc.

In this appendix we show that in LU1anc. simulations
any Hamiltonian of the form
5-10
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H85^0A80B8uU ^ V~H ^ I A8B8!U
†

^ V†u0A80B8& ~A1!

can be efficiently simulated byH, for any pair of unitary
operationsU and V acting onAA8 and BB8. The result is
valid also for more than two systems after a straightforw
generalization of the following proof.

Notice that we can always writeU and V using product
basis$u i Aj A8&% and$u i Bj B8&% as

U5 (
i 50

dA21

(
j 50

dA821

u i Aj A8&^f i j u, ~A2!

V5 (
i 50

dB21

(
j 50

dB821

u i Bj B8&^c i j u, ~A3!

where $uf i j &% and $uc i j &% are other orthonormal bases
systemsAA8 andBB8, respectively, anddk denotes the di-
mension of systemk.

To perform this simulation, we need to make the outpu
the ancilla be the stateu0A80B8&, unentangled with the sys
temsAB. This cannot be achieved by performing just tran
formations U and V, but by considering also a series
local unitary operations$Ua^ Vb%, aP$0,•••,dA821%, b
P$0,•••,dB821%,

Ua[I ^ S (
l 50

dA821

ei2p(al/dA8)u l A8&^ l A8u DU, ~A4!

Vb[I ^ S (
l 50

dB821

ei2p(bl/dB8)u l B8&^ l B8u DV, ~A5!

and a uniform probability distribution $pab%, pab

51/(dA8dB8). Then we have thatUa
†u0A8&5U†u0A8&, and

that (aUa5dA8u0A8&^0A8uU, and similarly forVb , so that
we obtain

(
ab

pabUa^ Vb~H ^ I A8B8!Ua
†

^ Vb
†u0A80B8&

5u0A80B8&^0A80B8uU ^ V~H ^ I A8B8!U
†

^ V†u0A80B8&.

~A6!

Therefore Eq.~A6! defines a protocol that simulates th
Hamiltonian of Eq.~A1! with unit time efficiency.

APPENDIX B: EXPLICIT TWO-QUBIT LU SIMULATION
PROTOCOLS

In this appendix we show how to find a probability dist
bution $pk% and permutations$Pk% such that

mW 5(
k

pkPklW , ~B1!

for any two given four-dimensional, real vectorslW and mW

(mW 5slW 8 in Sec. V B! such that mW alW , where ( i 51
4 l i

5( i 51
4 m i50.
02231
d

f

-

We first note two facts that will allow us to use standa
techniques of convex set theory:~i! the setS[$tW utWalW % is
convex, and~ii ! $PklW % i 51

24 are the extreme points ofS, as it
follows from Birkhoff’s theorem@15#. We can then proceed
as follows.

~a! We check whethermW 5PilW for any i 51, . . .,24. If we
find one such permutation we are done. Otherwise we m
to step~b!.

~b! Facts~i! and ~ii ! guarantee that there is at least o
permutationPk , that we callQ1, and a positivee.0 such
that

mW 5eQ1lW 1~12e!tW , ~B2!

wheretW also belongs toS, and therefore satisfiestWalW . In
other words, we have to search until we find a permutat
Q1 such that

~mW 2eQ1lW !/~12e!alW , ~B3!

for some e.0. Once we have found it we only need
increasee to its maximal value compatible with Eq.~B3!.
Let q1 be this maximal value ofe. Then we can write

mW 5q1Q1lW 1~12q1!mW 2 , ~B4!

wheremW 2alW is on one of the surfaces ofS—otherwise we
could have taken a greaterq1.

Such a surface is, again, a~lower dimensional! convex
set, whose extreme points are some of thePklW ’s, and whose
elementstW fulfill tWalW but with one of the majorization in-
equalities replaced with an equality. This allows us to rep
points ~a! and ~b!, but now aiming to decomposemW 2 as a
convex sum of vectorsPklW . That is, first we check whethe
mW 2 corresponds toPklW for somek. And, if not, we search
until we find a permutationPk , let us call itQ2, such that,
again,

~mW 22eQ2lW !/~12e!alW . ~B5!

The maximum value ofe compatible with this equation, sa
q, leads to a second termq2Q2 @q25(12q1)q# for the de-
composition ofmW ,

mW 5~q1Q11q2Q2!lW 1~12q12q2!mW 3 , ~B6!

and to a newmW 3 that lies on a surface of yet lower dimen
sionality of the original convex setS. We iterate the proce-
dure until the remaining vectormW l lies on a convex surface o
S of dimension zero, which means that the surface conta
only one element,mW l . In this way we obtain the desire
decomposition,

mW 5 (
k51

l

qkQklW . ~B7!

What is the minimal value ofl? For nonoptimal simulation
5-11
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the interior ofS, which is a three-dimensional set. Therefo
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the minimal decomposition contains at mostl 54 terms. For
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