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Quantum universal variable-length source coding
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We construct an optimal quantum universal variable-length code that achieves the admissible minimum rate,
i.e., our code is used for any probability distribution of quantum states. Its probability of exceeding the
admissible minimum rate exponentially goes to 0. Our code is optimal in the sense of its exponent. In addition,
its average error asymptotically tends to 0.
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I. INTRODUCTION

As was proven by Schumacher@1# and Jozsa and Schu
macher@2#, we can compress the unknown source state
the lengthnH( r̄p) with a sufficiently small error when the
source state onn quantum systems obeys then-i.i.d. ~inde-
pendently and identically distributed! distribution of the
known probabilityp, wherer̄pª(rp(r)r and H(r) is the
von Neumann entropy2Trr logr. Jozsa and Schumacher
protocol depends on the mixture stater̄p . Concerning the
quantum source coding, there are two settings: blind cod
in which the input is the unknown quantum state, and visi
coding, in which the input is classical information whic
determines the quantum state that we want to send, i.e.
encoder knows the input quantum state. In this paper,
treat only blind coding. In our setting, we allow mixed stat
as input states.

In blind coding, Koashi and Imoto@3# proved that even if
we allow mixed states as input states without trivial redu
dancies, the minimum admissible length isnH( r̄p). Depend-
ing only on the coding lengthnR, Jozsaet al. @4# constructed
a code which is independent of the distribution which t
input obeys. In their protocol, if and only if the minimum
admissible length of the distributionp is less thannR, we
can decode with a sufficiently small error. This kind of co
is called a quantum universal fixed-length source code.

In the classical system, depending on the input state,
encoder can determine the coding length. Such a cod
called a variable-length code. Using this type of code, we
compress any information without error. When we suita
choose a variable-length code for the probability distribut
p of the input, the coding length is less thannH(p), except
for a small enough probability. In particular, Lynch@5# and
Davisson@6# proposed a variable-length code with no err
in which the coding length is less thannH(p) except for a
small enough probability under the distributionp. Such a
code is called a universal variable-length source code. To
their code can be regarded as the following two-stage co
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at the first step, we send the empirical distribution~i.e., the
type! which indicates a subset of data, and in the second s
we send information which indicates every sequence belo
ing to the subset@7#.

This paper deals with quantum data compression in wh
the encoder determines the coding length, according to
input state. In order to make this decision, he must meas
the input quantum system. After this measurement, depe
ing on the data, the encoder compresses the final state o
measurement and sends its data and the compressed
This type of code is called aquantum variable-length sourc
code. However, in general, the encoder knows only that
input state is written as a separable staterx1

^ rx2
^ •••

^ rxn
. Therefore, it is impossible to determine the codi

length without destruction of the input state.
In particular, independently of the probability distributio

p, we construct the code satisfying the following condition
the average error concerning Bures’ distance tends to 0.
probability that the coding length is greater thannH( r̄p)
tends to 0. Such a code is called aquantum universal
variable-length source code. In our construction, similarly to
Keyl and Werner@8#, an essential role is played by the re
resentation theory of the special unitary group and the s
metric group on the tensored space. In our code, the enc
performs a quantum measurement closely related to irred
ible decomposition of the two groups, and its resulting d
can be approximately regarded as a quantum analogu
type. Thus, our code can be regarded as a quantum anal
of Lynch-Davisson code@5,6#. Of course, if we can estimat
the entropyH( r̄p), we can compress the coding rate to t
admissible rateH( r̄p) with a probability close to 1. How-
ever, when we perform a naive measurement for the esti
tion of H( r̄p), the input state is destroyed. Therefore, in o
code, it is the main problem to treat the trade-off between
estimation ofH( r̄p) and the nondemolition of the input stat

One might consider that the universal variable code
be easily realized as follows. First, use thene ~wheree is
small! states for the estimation ofH( r̄p). Second, apply
Jozsaet al. protocol @4# by settingR5H( r̄p)1e, and apply
to n(12e) states. If we consider individual error~24!, this
code successfully compresses the source. However, in
©2002 The American Physical Society11-1
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paper, like Jozsaet al. @4#, we consider the total Bures’ dis
tance~1! between the input state and the output state. In
criterion, ‘‘naive estimate and compress’’ strategy destro
the input state a lot. The details will be discussed in Sec.
@Note also that our criterion~1! is different from Krat-
tenthanler and Slater’s criterion@9# and Schumacher an
Westmoreland’s criterion@10#.#

In this paper, we discuss the universality for the proba
ity family P consisting of predicted probabilities onS(H).
For any probability familyP on S(H), we define universal-
ity of a quantum variable-length source code and evalu
the exponent of the probability that the coding length
greater than the minimum admissible length, which is cal
the overflow probability. However, unfortunately, in our a
proach, it is difficult to construct a quantum univers
variable-length source code whose error exponentially te
to 0 in the blind setting. In the visible coding case, it
possible to construct such a code. This topic will be d
cussed in another paper.

We summarize quantum fixed-length source coding
Sec. II. After this summary, we state our mathematical s
ting and the main results in Sec. III. Our proofs and o
construction of code are given in Secs. V and IV. Moreov
as is demonstrated in Sec. VI, in the two-dimensional cas
naive code destroys the state and is not used as a qua
universal variable-length source code.
.
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II. SUMMARY OF QUANTUM FIXED-LENGTH SOURCE
CODING

Let H be a finite-dimensional Hilbert space that repr
sents the physical system of interest and letS(H) be the set
of density operators onH. Consider a source of quantum
state which produces the staterW nªr1^ r2^ •••^ rn with
probability the i.i.d. distributionpn of the probabilityp on
S(H). In fixed-length source coding, a sequence of statesrW n
is compressed to the state in a smaller Hilbert sp
Hn,H ^ n, whose dimension isenR. Here, the encoder an
the decoder is a trace-preserving completely positive~TP-
CP! map En and Dn, respectively. The average of the tot
error is given by

en,p~En,Dn!ª (
rW nPS(H ^ n)

pn~rW n!b2
„rW n ,Dn+En~rW n!…, ~1!

where Bures’ distance is defined as

b~r,s!ªA12TruArAsu.

Note that the support ofp does not necessarily consist o
pure states. In this setting, we focus the infimum of the r
with which the average error goes to zero. The infimum
called the minimum admissible rateRp of p, and is defined
by
Rpª infH lim sup
1

n
log dimHnU'$~Hn ,En,Dn!%, en,p~En,Dn!→0J .
f

s

The numbernRp is the called minimum admissible length
When the source has no trivial redundancy in the sense
lowing, it is calculated as

Rp5H~ r̄p!ª2Trr̄plog r̄p ,

where r̄pª(rPS(H)p(r)r. The direct part was proven b
Schumacher@1#, and Jozsa and Schumacher@2# and the con-
verse part was proven by Barnumet al. @14# in the pure state
case. In the mixed case, Koashi and Imoto@3# discussed this
problem as follows. Indeed, if the source has trivial redu
dancies, we can compress up to more than the rateH( r̄p).
We consider the source to have trivial redundancy if the s
port S(p) of p satisfies the following. The Hilbert spaceH is
decomposed as Eq.~2! satisfying the conditions~i! and ~ii !:

H5 %

l
HJ,l ^ HK,l . ~2!

~i! Any elementrPS(p) is commutative withPl , where
Pl denotes the projection to the subspaceHJ,l ^ HK,l .

~ii ! The state TrHJ,l
PlrPl /Tr Plr is independent ofr

PS(p).
l-

-

-

Precisely, we should state that the conditions~i! and ~ii !
hold almost everywhere forp. In this case, without loss o
information, we can transformr to ( lTrHK,l

PlrPl . When

the encoder sends the state( lTrHK,l
PlrPl instead ofr, the

decoder can recover the stater from the state
( lTrHK,l

PlrPl . This fact implies that we can compres

up to the rate H@(rp(r)( lTrHK,l
PlrPl #, i.e., Rp

<H@(rp(r)( lTrHK,l
PlrPl #. Koashi and Imoto also proved

the opposite inequality, i.e., proved the equation

Rp5HS (
r

p~r!(
l

TrHK,l
PlrPl D , ~3!

where the right-hand side~RHS! of Eq. ~3! is given by the
finest decomposition satisfying~i! and ~ii !. Following their
proof, we can understand that if limsup(1/n)log dimHn
,Rp ,

lim inf en,p~En,Dn!.0, ~4!
1-2
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which is called the weak converse. When the support op
consists of pure states, if limsup(1/n)log dimHn,Rp

5H( r̄p), we obtain

limen,p~En,Dn!51, ~5!

which is called the strong converse, and was proven by W
ter @15#. A more simple proof was given by Hayashi@16#.
However, the strong converse in the mixed states case i
open problem. Moreover, in the pure states case, the opt
exponent of average error was treated by Hayashi@16#.

III. QUANTUM UNIVERSAL VARIABLE-LENGTH
SOURCE CODING

In the variable-length case, we need to describe a qu
tum measurement with state evolution, by usingan instru-
ment consisting of a decompositionE85$Ev8 %vPV , by CP
maps from S(H) to S(H) under the condition
(vPVTrEv8 (r)51,;rPS(H). When we perform the instru
mentE85$Ev8 %vPV for an initial stater, we get the datav
and the final stateEv8 (r)/TrEv8 (r) with the probability
TrEv8 (r). A quantum variable-length encoderE is given by a
measurement processE8 and encoding processEv9 depend-
ing on the datav, which is a TP-CP map fromS(H) to
S(Hv), where the Hilbert spaceHv depends on the datav,
as

Ev5Ev9 +Ev8 .

Therefore, any quantum variable-length encoderE consists
of a decompositionE5$Ev%vPV , by CP maps fromS(H) to
S(Hv) under the condition(vPVTrEv(r)51,;rPS(H).
For details about instruments, see Ozawa@11–13#.

The decoder is given by a set of TP-CP mapsD
5$Dv%vPV , which presents the decoding process depend
on the datav. A pair of an encoderE5$Ev%vPV and a
decoderD5$Dv%vPV is called aquantum variable-length
source codeon H. The coding length is described b
loguVu1log dimHv , which is a random variable obeying th
02231
-
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n-

g

probability Pr
E(v)ªTrEv(r) when the input state isr. Of

course, any quantum variable-length source code can be
garded as a quantum fixed-length source code whose le
is the maximum of loguVu1log dimHv .

When the staterW n on H ^ n obeys the i.i.d. distributionpn

of the probabilityp on S(H), the error of decoding for a
variable-length code (En,Dn) on H ^ n is evaluated by Bures
distance as

(
vnPVn

TrEvn

n ~rW n!b2S rW n ,Dvn

n S Evn

n ~rW n!

TrEvn

n ~rW n!
D D ,

and the average error is given by

en,p~En,Dn!ª (
rW nPS(H ^ n)

pn~rW n! (
vnPVn

TrEvn

n ~rW n!

3b2S rW n ,Dvn

n S Evn

n ~rW n!

TrEvn

n ~rW n!
D D . ~6!

In this case, the datavn obey the probability

Ppn
En

~vn!ª (
rW nPS(H ^ n)

pn~rW n!TrEvn

n ~rW n!5TrEvn

n ~ r̄p
^ n!.

~7!

A sequence$(En,Dn)% of quantum variable-length sourc
code is calleduniversalfor a probability familyP onS(H) if

en,p~En,Dn!→0

for any probabilitypPP.
As guaranteed by Theorem 1, we can reduce the cod

rate to the admissible rateH( r̄p) with a sufficiently small
error and a probability infinitely close to 1, asymptotical
i.e., there exists a quantum universal variable-length sou
code$(En,Dn)% satisfying that
l

l

lim Ppn
EnH 1

n
~ loguVnu1 log dimHvn

!>H~ r̄p!1eJ 50, ;e.0,;pPP. ~8!

Conversely, if a quantum variable-length source code$(En,Dn)% is universal for a familyP and

lim Ppn
EnH 1

n
~ loguVnu1 log dimHvn

!>RJ 50, ~9!

thenR>Rp because the inequality~9! implies the existence of a fixed-length code with the rateR and an asymptotically smal

error. When two probabilitiesp,qPP satisfy thatr̄p5 r̄q , Eq. ~7! guarantees that Ppn
En

5Pqn
En

. Thus, any quantum universa
variable-length source code$(En,Dn)% satisfies the inequality

infH RU lim Ppn
EnH 1

n
~ loguVnu1 log dimHvn

!>RJ 50J > sup
qPP: r̄p5 r̄q

Rq .

Therefore, the inequalities
1-3
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H~ r̄p!> sup
$(En,Dn)%:univ. for P

infH RU lim Ppn
EnH 1

n
~ loguVnu1 log dimHvn

!>RJ 50J > sup
qPP: r̄p5 r̄q

Rq ~10!

hold. When the support ofp consists of pure states, since the admissible rateRp equalsH( r̄p), the RHS of~10! equalsH( r̄p),
i.e., our code is optimal. However, in the mixed states case, the admissible rateRp of a probabilityp is rarely less thanH( r̄p).
@See Eq.~3!.# In this rare case, our code cannot go up to the admissible rateRp . When for anyrPS(H) there exists a
probabilityqPP such thatr̄q5r andRq5H( r̄q), the RHS of~10! equalsH( r̄p), although the admissible rateRp is less than
H( r̄p). In this case, our code is optimal for any probabilitypPP.

Next, we discuss the exponent of the overflow probability: Ppn
En

$1/n(loguVnu1log dimHvn
)>R%.

Theorem 1.For any familyP, there exists a quantum variable-length source code$(En,Dn)% on H ^ n which satisfies the
condition thaten,p(En,Dn) tends to 0 uniformly forpPP and that

lim
21

n
log Ppn

EnH 1

n
~ loguVnu1 log dimHvn

!>RJ 5 inf
qPP:H( r̄q)>R

min
V:unitary

D~ r̄qiVr̄pV* !, ~11!

whereD(ris) is quantum relative entropy Trr(logr2logs).
Of course, when the setSª$r̄pupPP% is unitary invariant, the RHS equals infqPP:H( r̄q)>RD( r̄qi r̄p). We construct a

quantum variable-length source code satisfying Eq.~11! in Sec. IV. Indeed, as is guaranteed by the following theorem,
code is optimal in the sense of the exponent of the decreasing rate of the overflow probability
infqPP:H( r̄q)>RminV:unitaryD( r̄qiVr̄pV* )5 infqPP:Rq.RD( r̄qi r̄p).

Theorem 2.If a sequence$(En,Dn)% of quantum variable-length source codes onH ^ n is universal for a familyP, then

lim sup
21

n
log Ppn

EnH 1

n
~ loguVnu1 log dimHvn

!>RJ < inf
qPP:Rq.R

D~ r̄qi r̄p!. ~12!

Of course, when the family consists of all probabilities onS(H), the RHS of Eq.~11! and the RHS of~12! coincide, i.e.,
our code is optimal in the sense of the exponent of the overflow probability.
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IV. CONSTRUCTION OF A QUANTUM
VARIABLE-LENGTH SOURCE CODE

First, we construct a universal quantum variable-len
source code that achieves the optimal rate~11! for the family
of all probabilities onS(H). This family is covariant for the
actions of thed-dimensional special unitary group SU(d),
and anyn-i.i.d. distributionpn is invariant for the action of
the nth symmetric groupSn on the tensored spaceH ^ n.
Thus, our code should satisfy the invariance for these act
on H ^ n.

Now, we focus on the irreducible decomposition of t
tensored spaceH ^ n concerning the representations ofSn and
SU(d), and define the Young indexn as

n:5~n1 , . . . ,nd!, (
i 51

d

ni5n,ni>ni 11

and denote the set of Young indicesn by Yn . Young indexn
uniquely corresponds to the irreducible unitary represe
tion of Sn and the one of SU(d). Now, we denote the repre
sentation space of the irreducible unitary representation oSn

@SU(d)# corresponding ton by Vn (Un), respectively. In par-
ticular, regarding a unitary representation of SU(d), Young
indexn gives the highest weight of the corresponding rep
sentation. Then, the tensored spaceH ^ n is decomposed a
02231
h

ns

a-

-

follows; i.e., H ^ n is equivalent with the following direct
sum space under the representation ofSn and SU(d):

H ^ n5 %

n
Wn , WnªUn^ Vn .

For details, see Weyl@18#, Goodman and Wallach@19#, and
Iwahori @20#. The efficiency of this representation metho
was discussed from several viewpoints. Regarding fix
length source coding, it was discussed by Jozsaet al. @4#.
Regarding quantum relative entropy, it was discussed by
yashi@21#. Regarding quantum hypothesis testing, it was d
cussed by Hayashi@22#. Regarding estimation of the spec
trum, it was discussed by Keyl and Werner@8#.

In the following, for an intuitive explanation of our con
struction, we naively construct a good variable-length co
in the caseH5C2. For this construction, we fixed a strictl
increasing sequenceaWª$ai% i 51

l 11 of real numbers such tha
1
2 5a1,a2,•••,al,al 1151. We define the encoderEaW ,n

with the data set$1, . . . ,l % by

H i
aW ,n

ª %

n1 /nP[ai ,ai 11)
Wn , i 51, . . . ,l 21,

H l
aW ,n

ª %
n1 /nP[al ,al 11]

Wn ,
1-4
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Ei
aW ,n~rn!ªPi

aW ,nrnPi
aW ,n , rnPS~H ^ n!

and define the decoderDi
aW ,n as the embedding fromH i

aW ,n to

H ^ n, where we denote the projection toH i
aW ,n by Pi

aW ,n . As-

sume that the larger eigenvalue of the mixturer̄p belongs to
the interval@ai ,ai 11). As is guaranteed by Lemma 5 in Ap
pendix A, if the larger eigenvalue of the mixturer̄p does not
lie on the boundary on the interval@ai ,ai 11), the probability

Trr̄p
^ nPi

aW ,n tends to 1. Thus, we can proveen,p(EaW ,n,DaW ,n)
→0. Its speed depends on the divergence between the p
ability and the boundary. Of course, if we chooseai 112ai to
be sufficiently small, the coding length is close to the entro
H( r̄p) with almost probability 1. However, when the larg
eigenvalue lies on the boundary, the state is demolished,
caused by the same reason of Lemma 2. In this case, s
larly to Lemma 2, we can prove

limen,p~EaW ,n,DaW ,n!.0.

Now, we assume that the intervalai 112ai ( i 52, . . . ,l
21) is dª1/@2(l 21)# and thata22a1 ,al 112al ,d. Then,

our code is uniquely defined by the choice ofa2P( 1
2 , 1

2

1d). For the nondemolition of initial states, we construc

variable-length code, by choosinga2P$k/nuk/nP( 1
2 , 1

2

1d),kPZ% at random. In this protocol, we can expect th
the average error tends to 0 for any probabilityp on S(C2).

Note that the set$k/nuk/nP( 1
2 , 1

2 1d),kPZ%3$1,2, . . . ,l ,l
11% corresponds to the data setVn . In order to achieve the
rate H( r̄p), we need to choose the setVn so that
(1/n)loguVnu→0. It is essential in our code to restricta2 to
this lattice$k/nukPZ%.

Moreover, whend is large for a fixed numbern, the
demolition of initial state seems small and the coding len
seems long. Therefore, roughly speaking, in this code fo
finite numbern, by choosingd, we can treat the trade-of
between the coding length and the nondemolition of the
put state.

Next, we generalize the above code to thed-dimensional
case, and evaluate its average error. In order to satisfy
universality and the condition~11!, we need to choosed
depending onn more carefully. Ford.0, we define a subse
Yd,n of Zd as
02231
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Yd,nªH kPZdU(
i 51

d

ki5n,' nPYnùUk,ndJ ,

and define an operatorM k
d,n for any elementkPYd,n as

M k
d,n

ª

1

C1,d~nd!
Pk

d,n ,

Pk
d,n

ª (
nPYnùUk,nd

Pn ,

Up,dª$qPRduip2qi<d%,

C1,d~x!ªNH kPZdUiki<x,(
i 51

d

ki50J ,

wherePn denotes the projection toWn and N denotes the
member of elements.

The numberN$kPZdùUn,ndu( i 51
d ki5n% is independent

of nPYn and equalsC1,d(nd). Thus, we have the relations

Pn (
kPYd,n

M k
d,nPn5

N$kPYd,nunPYnùUk,nd%

C1,d~nd!
Pn5Pn ,

which implies the condition

(
kPYd,n

M k
d,n5I .

The encoderEd,n whose data set isYd,n is defined by

Hk
d,n

ª %

nPYn :in2ki<nd
Wn,

Ek
d,n~rn!ªAM k

d,nrnAM k
d,n, ;rnPS~H ^ n!,

and the decoderDk
d,n is defined as the embedding fromHk

d,n

to H ^ n.
As is proven in Appendixes B and C, the quantu

variable-length source code (Ed,n,Dd,n) on H ^ n satisfies
en,p~Ed,n,Dd,n!< inf
d1 :0,d1,d

12
C2,d~nd1!

C1,d~nd!
@12~n1d!4dexp„2nC3,d~d2d1!2

…#3/2, ~13!

21

n
log Ppn

Ed,nH 1

n
~ loguYd,nu1 log dimHk

d,n!>RJ >
25d

n
log~n1d!1 inf

qPR1
d,1:H(q)>R2(4d/n)log(n1d) S inf

q8PR1
d,1 :iq2q8i<2d

D~q8ip! D ,

~14!

where
1-5
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C2,d~x!ª min

pPRd:(
i

pi50

NH kPZdUik2pi<x,(
i 51

d

ki50J ,

C3,dª min
q,pPR1

d,1

D~qip!

ip2qi2
, ~15!

R1ª$xPRux>0%, R1
d,1
ªH pPR1

d U(
i

pi51J ,

andpPR1
d,1 denotes the probability (p1 ,p2 , . . . ,pd), wherepi is the eigenvalue ofr̄p andp1>p2>•••>pd . In this paper,

we use an italic letterp to denote a probability onS(H) while we use a bold letterp to denote a probability (p1 , . . . ,pd) on
$1, . . . ,d%. Note that the RHS of~13! is independent ofp. Our main point is simultaneously reducingen,p(Ed,n,Dd,n) and

Ppn
Ed,n

$1/n(loguYd,nu1log dimHk
d,n)>R%. The RHS of~14! decreases asd increases while the relation between the RHS of~13!

andd is not necessarily simple. However, lettingdªn21/4 andd1ªn21/42n21/3, we can check that the RHS of~13! tends to
0, and that the RHS of~14! tends to the RHS of~11!. Thus, we obtain theorem 1 whenP consists of all probabilities onS(H).

If we adopt another criterion,

en,p9 ~En,Dn!ª (
rW nPS(H ^ n)

pn~rW n! (
vnPVn

TrEvn

n ~rW n!H 12FTrUrW nDvnS Evn

n ~rW n!

TrEvn

n ~rW n!
D UG 2J ,

we have the following inequality instead of~13!:

en,p9 ~Ed,n,Dd,n!< inf
d1 :0,d1,d

12
C2,d~nd1!

C1,d~nd!
@12~n1d!4dexp„2nC3,d~d2d1!2

…#2, ~16!

which is proven in Appendix C.
Next, deforming the code (Ed,n,Dd,n), we construct a universal quantum variable-length source code that achieve

optimal rate in the general case with no trivial redundancy. Define the setYd,d1 ,n(S) as

Yd,d1 ,n~S!ªH kPYd,nU' rPS, Ip~r!2
k

nI<d1J ,

wherep(r) consists of eigenvalues ofr such thatp1(r)>•••>pd(r). In particular,p5p( r̄p). Note thatS is defined after
theorem 1, and is different fromS(p). When the datak belong to Yd,d1 ,n(S), we send the stateEk

d,n(rW n)/TrEk
d,n(rW n).

Otherwise, we send only the classical information 0, except forYd,d1 ,n(S). Then, the data set of the encoder

Yd,d1 ,n,1(S)ªYd,d1 ,n(S)ø$0%. The decoder is defined as

Dk
d,d1 ,n,S

ªDk
d,n , ;kPYd,d1 ,n~S!.

As is proven in Appendixes B and C, the quantum variable-length source code (Ed,d1 ,n,SDd,d1 ,n,S) on H ^ n satisfies

en,p~Ed,d1 ,n,S,Dd,d1 ,n,S!<12
C2,d~nd1!

C1,d~nd!
@12~n1d!4dexp„2nC3,d~d2d1!2

…#3/2, ~17!

21

n
log Ppn

Ed,d1 ,n,SH 1

n
@ loguYd,d1 ,n,1~S!u1 log dimHk,n,d#>RJ

>
25d

n
log~n1d!1 min

qPR1
d,1 :H(q)>R2(4d/n)log(n1d)'rPS,iq2p(r)i<d1

S min
q8PR1

d,1 :iq2q8i<2d

D~q8ip! D ~18!

for ;pPP. Note thatD„p(r)ip(s)…5minV:unitaryD(riV* sV). Letting dªn21/4 andd1ªn21/42n21/3, we can show that the
RHS of ~17! tends to 0, and that the RHS of~18! tends to the RHS of~11!.
022311-6



e
as
an

e
w
m

a
o
sh

or
in
in

u

t

er
in
und

r

urce

e

less
se

e

QUANTUM UNIVERSAL VARIABLE-LENGTH . . . PHYSICAL REVIEW A 66, 022311 ~2002!
V. OPTIMALITY OF THE EXPONENT OF THE
OVERFLOW PROBABILITY

Next, we prove Theorem 2. When the support of any
ementp of P consists of pure states, i.e., the pure states c
we can prove Theorem 2 by using the monotonicity of qu
tum relative entropy because the strong converse~5! holds in
quantum fixed-length pure state source coding, as is
plained in Sec. II. However, in the mixed states case,
cannot use this strategy, and we need the following lem
called the strong converse part of quantum Stein’s lemm
quantum hypothesis testing proven by Ogawa and Naga
@23# as an alternative. Its other proof was given by Haya
@22#.

Lemma 1.Let r ands be density operators onH. If any
sequence of operatorsTW 5$Tn% on H ^ n satisfies that 0<Tn
<I and that liminf Trr ^ nTn.0, then the inequality

lim sup
21

n
log Trs ^ nTn<D~ris!

holds.
Since the monotonicity of quantum relative entropy c

responds to the weak converse part of quantum Ste
lemma, the former strategy can be regarded as the comb
tion of the strong converse part~5! of quantum fixed-length
pure state source coding and the weak converse part of q
tum Stein’s lemma, and the latter proof can be regarded
the combination of the weak converse part~4! of quantum
fixed-length source coding and the strong converse par
um

02231
l-
e,
-

x-
e
a
in
ka
i

-
’s
a-

an-
as

of

quantum Stein’s lemma.
First, for the reader’s convenience, we give the form

proof which is simpler than the latter but is applied only
the pure states case. After this proof, we give a more so
proof which can be used in the general case. Letp andq be
an arbitrary elements ofP, andR be an arbitrary real numbe
such thatR is less than the minimum admissible rate ofq,
i.e., R,Rq . In particular, we assume that the support ofq
consists of pure states. For a quantum variable-length so
code$(En,Dn)% for a family P, deforming the code (En,Dn),
we define the fixed-length code (ER,n,DR,n) as follows.
When the datavn satisfy

loguVnu1 log dimHvn
>nR, ~19!

we send classical information which indicates condition~19!.
Otherwise, we send the datavn and the state
Evn

n (rW n)/TrEvn

n (rW n). In the decoding process, if we receiv

the classical information which indicates condition~19!, we
regard a quantum staterR out of the original spaceH ^ n as
the decoded state. Note thatb(rR ,r)<1 for any stater
PS(H ^ n). Otherwise, we perform the operationDvn

n as the

decoding process. Since the maximum of this code is
than nR, we can regard it as a fixed-length code who
length isnR.

From the construction of the fixed-length cod
(ER,n,DR,n), we can easily check that
ition
en,q~ER,n,DR,n!<Pqn
EnH 1

n
~ loguVnu1 log dimHvn

!,RJ en,qS En,DnU 1

n
~ loguVnu1 log dimHvn

!,RD
1Pqn

EnH 1

n
~ loguVnu1 log dimHvn

!>RJ ,

where en,q„E
n,Dnu1/n(loguVnu1log dimHvn

),R… denotes the conditional average of the total error under the cond

1/n(loguVnu1log dimHvn
),R. Thus, we have the inequality

en,q~ER,n,DR,n!2en,q~En,Dn!<Pqn
EnH 1

n
~ loguVnu1 log dimHvn

!>RJ F12en,qS En,DnU 1

n
~ loguVnu1 log dimHvn

!>RD G
<Pqn

EnH 1

n
~ loguVnu1 log dimHvn

!>RJ 5Pr̄
q
^ n

En H 1

n
~ loguVnu1 log dimHvn

!>RJ . ~20!
Since the support ofq consists of pure states andH( r̄q)
5Rq.R, we obtain the relation

en,q~ER,n,DR,n!→1,

which is called the strong converse part of the quant
fixed-length pure state source coding@15#. Since the univer-
sality guarantees the relation

en,q~En,Dn!→0, ~21!

we have
1-7
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Pn,qªPr̄
q
^ n

En H 1

n
~ loguVnu1 log dimHvn

!>RJ→1. ~22!

Using the monotonicity of quantum relative entropy, we ha

nD~ r̄qi r̄p!5D~ r̄q
^ ni r̄p

^ n!

>Pn,qlog
Pn,q

Pn,p
1~12Pn,q!log

12Pn,q

12Pn,p
,

where we define Pn,p similarly to Eq. ~22!. Since 2(1
2Pn,q)log(12Pn,p)>0,

2
log Pn,p

n
<

nD~ r̄qi r̄p!1h~Pn,q!

nPn,q
→D~ r̄qi r̄p!,

whereh(x) is the binary entropy2x logx2(12x)log(12x).
Now, we obtain inequality~12! in the pure states case.

Next, we proceed the general case. It follows from~4! and
the inequalityR,Rq that we have

lim inf en,q~ER,n,DR,n!.0. ~23!

From ~20! and~21!, the relation lim inf Pn,q.0 holds. There
exists a POVM~positive operator valued measure, i.e., a p
tition of the unity I into positive Hermitian matrices! Mn

5$Mvn

n %vn
such that

TrrnMvn

n 5TrEvn

n ~rn!, ;rnPS~H ^ n!.

Letting

Tnª (
vn :1/n(loguVnu1 log dimHvn

)>R
Mvn

n ,

we have Pn,q5Trr̄q
^ nTn and Pn,p5Trr̄p

^ nTn . Thus, Lemma
1 guarantees that

lim sup2
1

n
log Pn,p<D~ r̄qi r̄p!.

Now, the proof is completed.

VI. DISCUSSION

In our code, the nonzero numberd is essential. One may
expect that the quantum variable-length source c
02231
e

-

e

$(E0,n,D0,n)% is universal. However, this code destroys t
input state by a quantum measurement as follows.

Lemma 2.Assume thatd52 and$ue1&,ue2&% is a CONS
of C2. If the support ofp is pure states$ue1&^e1u,ue2&^e2u%,
the average erroren,p(E0,n,D0,n) does not tends to 0.

As is understood from our proof of theorem 1, bound~11!
cannot be achieved unlessd tends to 0. It seems essential
approximate the nonzero numberd.0 to 0.

If we discuss quantum universal coding under another
ror en,p8 (En,Dn) instead ofen,p(En,Dn) @cf. ~6!#,

en,p8 ~En,Dn!ª (
rW nPS(H)

pn~rW n!
1

n (
i 51

n

(
vnPVn

TrEvn

n ~rW n!

3b2
„r i ,Evn

n ~rW n! i…, ~24!

rW n5r1^ •••^ rn ,

Evn

n ~rW n! i5TrH1^ •••^ Hi 21^ Hi 11^ •••^ Hn
Evn

n ~rW n!,

we can use several strategies for quantum universal cod
For example, if we usene states only for the estimation o
H( r̄p), we can reduce the erroren,p8 to zero, asymptotically,
by use of the Jozsaet al. protocol@4#. However, in this strat-
egy, we cannot reduce the erroren,p because the demolition
of the firstne states is crucial for this criterion.

Next, we discuss how rapidly the average erroren,p tends
to 0 in our code. Assume thatd52 and $ue1&,ue2&% is a
CONS ~complete orthonormal system! of C2. Unlessdn.0
satisfiesudnu,1, the coding length always equals 2n. Then,
we can assume thatudnu,1.

Lemma 3. If the support of p is pure states
$ue1&^e1u,ue2&^e2u%, the relation

lim
21

n
logen,p~Edn ,n,Ddn ,n!50 ~25!

holds for any sequence$dn% satisfyingudnu,1.
Therefore, it seems impossible to construct a univer

code whose average erroren,p exponentially tends to 0.
In general, even ifRp5H( r̄p) for ; pPP, the RHS of

~11! does not necessarily coincide with the RHS of~12!. For
example, when

P5$ptutP~0,1/2!%, H~ r̄pt
!5Rpt

,

r̄pt
5S t cos2u~ t !1~12t !sin2u~ t ! ~122t !cosu~ t !sinu~ t !

~122t !cosu~ t !sinu~ t ! ~12t !cos2u~ t !1tsin2u~ t !
D ,
1-8



ty
io
th

ob

in
h

o
d

D

the

n-
m-

QUANTUM UNIVERSAL VARIABLE-LENGTH . . . PHYSICAL REVIEW A 66, 022311 ~2002!
andu is continuous and one-to-one, both sides of~10! coin-
cide with H( r̄pt

) while the RHS of~11! is strictly smaller

than the RHS of~12! as follows. Fort1 ,t0P(0,1/2), we can
calculate as

inf
tP(0,1/2):H( r̄pt

)>h(t1)

min
V:unitary

D~ r̄pt
iVr̄pt0

V* !5d~ t1 ,t0!,

inf
tP(0,1/2):Rpt

.h(t1)
D~ r̄pt

i r̄pt0
!

5cos2„u~ t !2u~ t !…d~ t1 ,t0!1sin2
„u~ t !2u~ t !…

3d~ t1 ,12t0!,

where

h~ t !ª2t log t2~12t !log~12t !,

d~ t,t8!ªt log
t

t8
1~12t !log

12t

12t8
.

Thus, its difference equals sin2
„u(t)2u(t)…@d(t1 ,12t0)

2d(t1 ,t0)#.0. This gap is closely related to the ambigui
of the large deviation-type bounds in quantum estimat
@17#. It seems very hard to match the upper bound and
lower bound concerning the exponent of the overflow pr
ability in the general case.

VII. CONCLUSION

We construct a quantum variable-length code satisfy
Eq. ~11!. This is optimal in the sense of Theorem 2 when t
family P consists of probabilities onS(H) with no trivial
redundancies. However, in our code the average error d
not exponentially vanish. The construction of such a co
seems to be difficult.

ACKNOWLEDGMENTS

The authors wish to thank Professor H. Nagaoka and
A. Winter for useful comments.

APPENDIX A: REPRESENTATION THE THEORETICAL
TYPE METHOD

For our proof, we need the following two lemmas.
Lemma 4.The relation

dimVn<C~n!~n1d!2d

<~n1d!2dexpFnHS n

nD G , ~A1!

N$nunPYn%<~n11!d, ~A2!

dimUn<~n11!d ~A3!

holds, whereC(n) is defined as
02231
n
e
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g
e
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r.

C~n!ª
n!

n1!n2! •••nd!
.

Proof. Inequality~A2! is trivial. Using Young indexn, the
basis ofUn is described by$en8%n8PYn, whereYn is defined as

Yn
ª5 n85$ni8%PZdU(i

ni85(
i

ni ,

(
i 51

m

ns( i )8 <(
i 51

m

ni ,

1<;m<d21,

s is any permutation

6 .

Thus, we obtain~A3!. Note that the correspondencen8 and
en8 depends on the choice of Cartan subalgebra, i.e.,
choice of basis ofH.

According to Weyl@18# and Iwahori@20#, the following
equation holds, and it is evaluated as

dimVn5
n!

~n11d21!! ~n21d22!! •••nd!

3)
j . i

~ni2nj2 i 1 j !

<
n!

n1!n2! •••nd!)j . i
~ni2nj2 i 1 j !

<C~n!~n1d!2d<~n1d!2dexpFnHS n

nD G . j

The following is essentially equivalent to Keyl and Wer
er’s result@8#. For the reader’s convenience, we give a si
pler proof.

Lemma 5.Assume thatp is the spectrum ofr such that
p1>p2>•••>pd . The relations

Tr Pnr
^ n<~n1d!3dexpF2nDS n

n IpD G , ~A4!

(
n/n¹R

Tr Pnr
^ n<~n1d!4dexpF2nmin

q¹R
D~qip!G ~A5!

hold for a subsetR of R1
d,1 .

Proof.Let Un8 be an irreducible representation of SU(d) in
H ^ n, which is equivalent toUn . We denote its projection by
Pn8 . Now, we choose the basis$en8%n8PYn of Un8 depending
on the basis$ei% of H. The baseen8 is the eigenvector ofr ^ n

with the eigenvalue) i 51
d a

i

ni8 . Sincen8 is majorized byn, we
can calculate the operator norm by

iPn8r
^ nPn8i5)

i 51

d

ai
ni , ~A6!

where iXiªsupxPHiXxi . From ~A1!, ~A3!, and ~A6!, the
relations
1-9
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Tr Pnr
^ n5dimVn3Tr Pn8r

^ n<~n1d!3dC~n!)
i 51

d

ai
ni

5~n1d!3dMul~a,n!

hold, where we denote the multinomial distribution ofa by Mul(a,d). Thus, we obtain~A4!. Inequality~A2! guarantees

(
n/n¹R

Tr Pnr
^ n<~n1d!4dexpS 2ninf

q¹R
D~qip! D . j

APPENDIX B: PROOF OF „14… AND „18…

First, we prove inequality~14!. For a sufficiently large integern, the relations

uYd,nu<N$kPZduki>0%<~n11!d

hold. Since dimUn<(n1d)d, for anykPYd,n , we have

loguYd,nu1 log dimHk
d,n<d log~n11!1 max

nPYd,nùUk,nd

log dimUn1 log dimVn<4d log~n1d!1 max
nPYd,nùUk,nd

nHS n

nD .

From ~A5!, we have

TrM k
d,nr̄p

^ n<
uYd,nu

C1,d~nd!
~n1d!3d max

n8PYnùUk,nd

expF2nDS n8

n IpD G<~n1d!4d max
n8PYnùUk,nd

expF2nDS n8

n IpD G
<~n1d!4d max

qPUk/n,dùR1
d,1

exp@2nD~qip!#.

Thus,

Pr̄
p
^ n

En H 1

n
~ loguYd,nu1 log dimHk

d,n!>RJ
< (

kPYd,n : max
nPYnùUk,nd

H(n/n)>R2(4d/n)log(n1d)
TrM k

d,nr̄p
^ n

<uYd,nu~n1d!4d max
nPYn :H(n/n)>R2(4d/n)log(n1d)

F max
n8PYn :in2n8i<2dn

expS 2nDS n8

n IpD D G
<~n1d!5d max

qPR1
d,1 :H(q)>R2(4d/n)log(n1d)F max

q8PR1
d,1 :iq2q8i<2d

exp@2nD~q8ip!#G .
Then, we obtain~14!.

Next, we proceed to~18!. SinceuYd,d1 ,n,1(S)u<uYd,nu, we have

Pr̄
p
^ n

En H 1

n
~ loguYd,d1 ,n,1~S!u1 log dimHk

d,n!>RJ < (
kPYd,d1 ,n,1(S): max

nPYnùUk,nd

H(n/n)>R2(4d/n)log(n1d)
TrM k

d,nr̄p
^ n

<uYd,nu~n1d!4d max
nPYn :H(n/n)>R2(4d/n)log(n1d)

'rPS,i(n/n)2p(r)i<d1

H max
n8PYn :in2n8i<2dn

expF2nDS n8

n IpD G J
<~n1d!5d max

qPR1
d,1 :H(q)>R2(4d/n)log(n1d)

'rPS,iq2p(r)i<d1

S max
q8PR1

d,1 :iq2q8i<2d

exp@2nD~q8ip!# D .

Then, we obtain~18!.
022311-10
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APPENDIX C: PROOF OF „13…, „16…, AND „17…

We can evaluate the average error as

en,p~Ed,n,Dd,n!5 (
rW nPS(H ^ n)

pn~rW n! (
kPYd,n

TrM k
d,nrW nS 12TrUArW nAAM k

d,nrW nAM k
d,n

TrM k
d,nrW n

U D
512 (

rW nPS(H ^ n)

pn~rW n! (
kPYd,n

ATrM k
d,nrW nTrAArW nAM k

d,nrW nAM k
d,nArW n

512 (
rW nPS(H ^ n)

pn~rW n! (
kPYd,n

ATrM k
d,nrW nTrArW nAM k

d,nArW n

512 (
kPYd,n

1

C1,d~nd!
(

rW nPS(H ^ n)

pn~rW n!~Tr Pk
d,nrW n!3/2

<12 (
kPYd,n

1

C1,d~nd! S (
rW nPS(H ^ n)

pn~rW n!Tr Pk
d,nrW nD 3/2

, ~C1!

512 (
kPYd,n

1

C1,d~nd!
~Trr̄p

^ nPk
d,n!3/2, ~C2!

where inequality~C1! follows from Jensen’s inequality concerning the convex functionx°x3/2.
The relations

C2,d~nd1!<N~Yd,nùUnp,nd1
!, 0,d1,d, ~C3!

Pk
d,n> (

nPYnùUnp,n(d2d1)

Pn , ;kPYd,nùUnp,nd1
~C4!

hold. Using Lemma 5 and Eqs.~C4! and ~15!, we have

Tr Pk
d,nr̄p

^ n>12~n1d!4dexp~2n min
q¹Up,d2d1

D~qip!!>12~n1d!4dexp@2nC3,d~d2d1!2#. ~C5!

It follows from ~C3! and ~C5! that

(
kPYd,n

1

C1,d~nd!
~Trr̄p

^ nPk
d,n!3/2>

1

C1,d~nd! (
kPYd,nùUnp,nd1

~Trr̄p
^ nPk

d,n!3/2

>
C2,d~nd1!

C1,d~nd!
$12~n1d!4dexp@2nC3,d~d2d1!2#%3/2. ~C6!

Inequality ~13! follows from ~C2! and ~C6!.
Similarly to ~C2!, we can prove

en,p9 ~Ed,n,Dd,n!<12 (
kPYd,n

1

C1,d~nd!
~Trr̄p

^ nPk
d,n!2,

which implies~16!.
In the general case, similarly to~C2!, we can prove that

en,p~Ed,n,Dd,n!<12 (
kPYd,d1 ,n(S)

1

C1,d~nd!
~Trr̄p

^ nPk
d,n!3/2. ~C7!

SinceYd,d1 ,n,1(S)ùUnp,nd1
5Yd,nùUnp,nd1

, we can prove that
022311-11
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(
kPYd,d1 ,n,1(S)

1

C1,d~nd!
~Trr̄p

^ nPk
d,n!3/2>

1

C1,d~nd! (
kPYd,nùUnp,nd1

~Trr̄p
^ nPk

d,n!3/2

>
C2,d~nd1!

C1,d~nd!
$12~n1d!4dexp@2nC3,d~d2d1!2#%3/2. ~C8!

Inequality ~17! follows from ~C7! and ~C8!.

APPENDIX D: PROOF OF LEMMA 2

In this case, the average error is calculated as

en,p~E0,n,D0,n!512 (
nPYn

(
eWn

p~eWn!~^eWnuPnueWn&!3/2512(
eWn

p~eWn! (
nPYn

~^eWnuPnueWn&!3/2,

whereeWnªei 1
^ ei 2

^ •••^ ei n
PH ^ n. We definen(eWn)ª„n1(eWn),n2(eWn)… by

ni~eWn!ªN$ j P@1,n#uei j
5ei%. ~D1!

Now, we focus a typical elementeWn , i.e., @ni(eWn)/n#>pi . The number satisfying Eq.~D1! is (
n(eWn)

n2(eWn)
), and dimVn8

5@(n
n2(eWn))2(n

n2(eWn)21)#, wheren(eWn)5„n1(eWn),n2(eWn)…PYn . Then,

^eWnuPn(eWn)ueWn&5S n

n2~eWn!
D 21F S n

n2~eWn!
D 2S n

n2~eWn!21D G512
n2~eWn!

n1~eWn!11
5

n1~eWn!

n
1

1

n
2

n2~eWn!

n

n1~eWn!

n
1

1

n

>
p12p2

p1
.

Sincex3/21y3/2<(x1y)3/2 for 0,x,y,1, we can evaluate

(
nPYn

~^eWnuPnueWn&!3/2<S (
nPYn\$n8%

^eWnuPnueWn& D 3/2

1~^eWnuPn8ueWn&!3/2>S 12
p12p2

p1
D 3/2

1S p12p2

p1
D 3/2

5S p2

p1
D 3/2

1S p12p2

p1
D 3/2

,1.

Therefore,

limen,p~E0,n,D0,n!>12F S p2

p1
D 3/2

1S p12p2

p1
D 3/2G.0.

APPENDIX E: PROOF OF LEMMA 3

For anynPYn ,dn.0, we denote„@n12(1/A2)dn#,n2@n12(1/A2)dn#…PYd,n by k(n,dn), where @x# is defined as the
maximum integern satisfyingn<x. The elementk(n,dn) satisfies

n5~n1 ,n2!PUk(n,dn),dn
, ~n111,n221!¹Uk(n,dn),dn

.

For anyd.0, we have
022311-12
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en,p~Ed,n,Dd,n!5(
eWn

pn~eWn!S 12 (
kPYd,n

1

C1,d~nd!
~TrPk

d,nrW n!3/2D
>(

eWn

pn~eWn!S 12 (
kÞk(n,dn)PYd,n

1

C1,d~nd!
~Tr Pk

d,nrW n!2
1

C1,d~nd!
~Tr Pk(n,dn)

d,n rW n!3/2D
5(

eWn

pn~eWn!S 1

C1,d~nd!
~Tr Pk(n,dn)

d,n rW n!2
1

C1,d~nd!
~Tr Pk(n,dn)

d,n rW n!3/2D
5(

eWn

pn~eWn!
1

C1,d~nd!
@Tr Pk(n,dn)

d,n rW n2~Tr Pk(n,dn)
d,n rW n!3/2#

> (
eWn :ni (e

W
n)/n>pi

pn~eWn!
1

C1,d~nd!
@Tr Pk(n,dn)

d,n rW n2~Tr Pk(n,dn)
d,n rW n!3/2#

> (
eWn :

ni (e
W

n)

n >pi

pn~eWn!
1

C1,d~nd! Fp12p2

p1
2S p12p2

p1
D 3/2G

>
1

C1,d~nd! Fp12p2

p1
2S p12p2

p1
D 3/2G> 1

2uYnu Fp12p2

p1
2S p12p2

p1
D 3/2G .

Note that the RHS is independent ofd.0. Thus,

21

n
logen,p~Ed,n,Dd,n!<

21

n H log
1

2uYnu
1 logFp12p2

p1
2S p12p2

p1
D 3/2G J <

1

n H log 2~n11!22 logFp12p2

p1
2S p12p2

p1
D 3/2G J→0.

Therefore, we obtain Eq.~25!.
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