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Quantum universal variable-length source coding
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We construct an optimal quantum universal variable-length code that achieves the admissible minimum rate,
i.e., our code is used for any probability distribution of quantum states. Its probability of exceeding the
admissible minimum rate exponentially goes to 0. Our code is optimal in the sense of its exponent. In addition,
its average error asymptotically tends to O.
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[. INTRODUCTION at the first step, we send the empirical distributiae., the

type) which indicates a subset of data, and in the second step,

As was proven by Schumachgt] and Jozsa and Schu- we send information which indicates every sequence belong-
macher{2], we can compress the unknown source state intang to the subseft7].

the lengthnH(p,) with a sufficiently small error when the  This paper deals with quantum data compression in which

source state on quantum systems obeys the.i.d. (inde- the encoder determines the coding length, according to the

pendently and identically distributecdistribution of the input state. In order to make this d.ECISIOI’l, he must measure

known probabilityp, wherep,:=3,p(p)p andH(p) is the the input quantum system. After this measurement, depend-

. ing on the data, the encoder compresses the final state of this
von Neumann entropy-Trp log p. Jozsa and Schumacher's measurement and sends its data and the compressed state.

protocol depends on the mixture stagig. Concerning the s tyne of code is called quantum variable-length source
quantum source coding, there are two settings: blind coding,oge However, in general, the encoder knows only that the
in wh|ch _the input is thg unkr)own quantum state,.and V'S,'bl‘?nput state is written as a separable stale®p, ®- - -
coding, in which the input is classical information which o . 1 2 :
determines the quantum state that we want to send, i.e., thePxy- Therefore, Itis ?mpossmle_ to determine the coding
encoder knows the input quantum state. In this paper, wtngth without destruction of the input state.
treat only blind coding. In our setting, we allow mixed states [ particular, independently of the probability distribution
as input states. p, we construct the code satisfying the following conditions:

In blind coding, Koashi and Imotf8] proved that even if ~the average error concerning Bures’ distance tends to 0. The
we allow mixed states as input states without trivial redun-probability that the coding length is greater thahi(p,)

dancies, the minimum admissible lengtmid(p,,). Depend-  tends to 0. Such a code is called quantum universal

ing 0n|y on the Coding |ength R, Jozsaet al. [4] constructed Varlable-length source codén our construction, Slmllarly to

a code which is independent of the distribution which theKeyl and Wernei[8], an essential role is played by the rep-

input obeys. In their protocol, if and only if the minimum resentation theory of the special unitary group and the sym-

admissible length of the distributiop is less thamR, we ~ Metric group on the tensored space. In our code, the encoder

can decode with a sufficiently small error. This kind of codePerforms a quantum measurement closely related to irreduc-

is called a quantum universal fixed-length source code.  ible decomposition of the two groups, and its resulting data
In the classical system, depending on the input state, thé&n be approximately regarded as a quantum analogue of

encoder can determine the coding length. Such a code R/P€. Thus, our code can be regarded as a quantum analogue

called a variable-length code. Using this type of code, we caRf Lynch-Davisson codg5,6]. Of course, if we can estimate

compress any information without error. When we suitablythe entropyH(p,), we can compress the coding rate to the

choose a variable-length code for the probability distributionggmissible rateH (p,) with a probability close to 1. How-

p of the input, the coding length is less thaki(p), except  ever, when we perform a naive measurement for the estima-

for a small enough probability. In particular, Lyn¢B] and o of H(p,), the input state is destroyed. Therefore, in our
Davisson|6] proposed a variable-length code with no error, code, it is the main problem to treat the trade-off between the

in which the coding length is less tharH(p) except for a L — . .
iy o estimation oH(p,,) and the nondemolition of the input state.
small enough probability under the distributign Such a One might consider that the universal variable code can

code is called a universal variable-length source code. Today, . . . .
their code can be regarded as the following two-stage code*® easily realized as follows. First, use the (wheree is
smal) states for the estimation dfi(p,). Second, apply
Jozsaet al. protocol[4] by settingR=H(p,) + €, and apply
*Electronic address: masahito@brain.riken.go.jp to n(1—e) states. If we consider individual err¢24), this
"Electronic address: keiji@qci.jst.go.jp code successfully compresses the source. However, in our
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paper, like Jozsat al.[4], we consider the total Bures’ dis- 1l. SUMMARY OF QUANTUM FIXED-LENGTH SOURCE
tance(1) between the input state and the output state. In this CODING

criterion, “naive estimate and compress” strategy destroys
the input state a lot. The details will be discussed in Sec. VI
[Note also that our criterion(1) is different from Krat-

tenthanler and Slater’s criteriof®] and Schumacher and ; > .
Westmoreland’s criteriofil0].] state which produces the stgig:=p;®p,® - - - ®p, with

In this paper, we discuss the universality for the probabil-pmbablllty the i.i.d. distributiorp™ of the probabilityp on

ity family P consisting of predicted probabilities a%(H). fS(H)' In fixed-length source coc_jmgt sequence Of statpg

For any probability family? on S(H), we define universal- IS C°m§§essed to 'the S.tate. ;’; a smaller Hilbert space
ity of a quantum variable-length source code and evaluat%:r‘cdH dwh_ose Ehmensmn & Here, Ithtelencod_e_;;nd
the exponent of the probability that the coding length is S) r:;p())E?‘ralﬁ daD”ra;:ees:g(rei?iigllygTr?gn;l\D/:r;gi %?stlge t;)tal
greater than the minimum admissible length, which is calle rror is given by ' '

the overflow probability. However, unfortunately, in our ap-

proach, it is difficult to construct a quantum universal
variable-length source code whose error exponentially tends
to 0 in the blind setting. In the visible coding case, it is
possible to construct such a code. This topic will be dis-where Bures' distance is defined as
cussed in another paper.

Let H be a finite-dimensional Hilbert space that repre-
sents the physical system of interest andJgk() be the set
of density operators oft{. Consider a source of quantum

€np(E"DM:= X p(pn)b(p,,DE"(py)), (1)
pneS(H ")

We summarize quantum fixed-length source coding in b(p o)::w/l—Tr| \/;\/;|_
Sec. Il. After this summary, we state our mathematical set-
ting and the main results in Sec. lll. Our proofs and ourNote that the support op does not necessarily consist of

construction of code are given in Secs. V and IV. Moreoverpyre states. In this setting, we focus the infimum of the rate
as is demonstrated in Sec. VI, in the two-dimensional case, @ith which the average error goes to zero. The infimum is
naive code destroys the state and is not used as a quantwalled the minimum admissible rai, of p, and is defined
universal variable-length source code. by

1
Ry:=inf{ lim sup—~ logdimH,| 3{(H,,E"D")},  €,,(E",D")—0;.

The numbemR,; is the called minimum admissible length.  Precisely, we should state that the conditiénsand (ii)
When the source has no trivial redundancy in the sense fokRold almost everywhere fqu. In this case, without loss of

lowing, it is calculated as information, we can transformp to 2\ Try, PipPy. When
_ . the encoder sends the stateTry, PipP instead ofp, the
Rp=H(pp):=—Trpplogpp, decoder can recover the statp from the state

_ 2Ty, PipPy. This fact implies that we can compress
where p,:=2, _ sP(p)p- The direct part was proven by «

Schumachef1], and Jozsa and Schumach2} and the con- up to the rate H[E’)p(p)z'Tr_HK'P'pP']' e, Ry
verse part was proven by Barnwehal.[14] in the pure state = L =pP(P)ZiTr, PipPy]. Koashi and Imoto also proved
case. In the mixed case, Koashi and Im@pdiscussed this the opposite inequality, i.e., proved the equation

problem as follows. Indeed, if the source has trivial redun-

dancies, we can compress up to more than the I-ﬂaﬁ).
We consider the source to have trivial redundancy if the sup- R.=H Tr., P.oP 3
portS(p) of p satisfies the following. The Hilbert spagéis P ; p(p)El T 1PEL @
decomposed as E) satisfying the conditiong) and ii):

H=®H;y,®Hg, - (2 where the right-hand sideRHS) of Eq. (3) is given by the
! finest decomposition satisfying) and (ii). Following their

] ) ) ] proof, we can understand that if limsup@llogdim*,
(i) Any elementp e S(p) is commutative withP,, where <Ry,

P, denotes the projection to the subspatg ® H | .
(i) The state T#, PipP) /TrP,p is independent ofp

e S(p). liminf e, ,(E",D")>0, (4)
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which is called the weak converse. When thg supporm of probability Ff(w) :=TrE,(p) when the input state ip. Of
consists of pure states, if limsup@logdim™,<R,  course, any quantum variable-length source code can be re-
=H(pp), we obtain garded as a quantum fixed-length source code whose length
is the maximum of loff)|+log dim*,, .

When the state,, onH " obeys the i.i.d. distributiop”
which is called the strong converse, and was proven by Winof the probabilityp on S(H), the error of decoding for a
ter [15]. A more simple proof was given by Hayaghig].  variable-length code",D") onH “" is evaluated by Bures’
However, the strong converse in the mixed states case is &istance as
open problem. Moreover, in the pure states case, the optimal -
exponent of average error was treated by Hayps8i. R R E. (Pn)

2 TrE} (pn)b?| pn D, :

TrES, (pn)

limen o(E",D"M =1, (5)

. QUANTUM UNIVERSAL VARIABLE-LENGTH o

SOURCE CODING L
and the average error is given by

In the variable-length case, we need to describe a quan-

tum measurement with state evolution, by usarg instru- n . ne > no>
mentconsisting of a decompositioB’ ={E.}, ., by CP énp(E%D ).—’;neg_l@n) P (p”)wnggn TrE,, (pn)
maps from S(H) to S(H) wunder the condition

Y weaTrEL(p) =1,V pe S(H). When we perform the instru- ) E" (pn)
mentE’'={E/},.q for an initial statep, we get the data sz( Pn 2,”< %) ) : (6)
and the final stateE! (p)/TrE.(p) with the probability TrE,, (pn)

TrE, (p). A quantum variable-length encodeéris given by a
measurement proce&s and encoding proceds; depend-
ing on the dataw, which is a TP-CP map fron®(H) to . o
S(H,,), where the Hilbert spac#,, depends on the data, Poa(on)= >, p”(ﬁn)TrEZ,n(ﬁn)=TrEgn(p§’“).

p
()

as pneS(H )

A sequence{(E",D"} of quantum variable-length source
Therefore, any quantum variable-length encoBleconsists  code is callediniversalfor a probability family? on S(*) if
of a decompositioE={E_},.q, by CP maps fron&(H) to
S(H,) under the conditions,_oTrE,(p)=1,Ype S(H). €np(E",D")—0
For details about instruments, see Ozdwha-13.

The decoder is given by a set of TP-CP maps for any probabilityp e P.

:{Dw}weﬂi which presents the decoding process depending As guaranteed by TheoreLn 1, we can reduce the COding
on the dataw. A pair of an encodeE={E,},.q and a rate to the admissible ratd(p,) with a sufficiently small
decoderD={D,},.q is called aguantum variable-length error and a probability infinitely close to 1, asymptotically,
source codeon H. The coding length is described by i.e., there exists a quantum universal variable-length source
log|Q|+log dim¥,, , which is a random variable obeying the code{(E",D")} satisfying that

In this case, the data, obey the probability

E,=E/°E..

n[ 1 _
lim Pgn(ﬁ(log|ﬂn| +logdimH,, )=H(p,) + e] =0, Ve>0VpeP. (8)
Conversely, if a quantum variable-length source cpd€",D")} is universal for a familyP and
n[ 1
lim P§n|ﬁ(log|ﬂn| +log dimen)BR] =0, 9

thenR=R,, because the inequalit®) implies the existence of a fixed-length code with the Rnd an asymptotically small

error. When two probabilitiep,q e P satisfy thatFp=;q, Eq. (7) guarantees thatEﬁE PCE]: Thus, any quantum universal
variable-length source codéE",D")} satisfies the inequality

a1
inf[R‘limP'sn[ﬁ(log|(2n|+Iogdimen)>R]=O]> sup Ry.
qep;;p:;q

Therefore, the inequalities
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_ a1
H(pp)= sup inf[R‘IimPﬁn[ﬁ(logmnh—Iogdimen)BR]=0]> sup Ry (10)

{(E",DM}:univ. for P ae Pipp=pq

hold. When the support gf consists of pure states, since the admissibleRgtequalsH(;p), the RHS of(10) equalsH (;p),

i.e., our code is optimal. However, in the mixed states case, the admissibR,rate probabilityp is rarely less thaiti (;p).
[See Eq.(3).] In this rare case, our code cannot go up to the admissibleRigtewhen for anyp e S(H) there exists a

prc@abilityq e P such thai;;q:p andR,=H(p,), the RHS of(10) equaIsH(;p), although the admissible rakg, is less than
H(pp). In this case, our code is optimal for any probability: P.
Next, we discuss the exponent of the overflow probabili&]:{lP/n(log|Qn|+Iog dimen)BR}.

Theorem 1For any familyP, there exists a quantum variable-length source d¢&&,D")} on H ®" which satisfies the
condition thate, ,(E",D") tends to 0 uniformly fop e P and that

lim—log P, ~ (log] Q| +log dim?, )>R}: inf  min D(pg|VppV*), (11
n Pn " — - alVPp
qeP:H(pg)=R V:unitary

whereD(pl|o) is quantum relative entropy Pi(log p—log o).

Of course, when the sef:={p,|pe P} is unitary invariant, the RHS equals &rgfp:H(;q);RD(aH;p). We construct a
guantum variable-length source code satisfying @@) in Sec. IV. Indeed, as is guaranteed by the following theorem, our
code is optimal in the sense of the exponent of the decreasing rate of the overflow probability when
infqeP:H(;q)>RminV:unitaryD(PqHVPpV*):infqu:Rq>RD(Pq”Pp)-

Theorem 2If a sequencg(E",D")} of quantum variable-length source codesfi" is universal for a familyP, then

-1 n[ 1 _
lim sup—TIog Pgn —(log|Qp|+logdimH,, )=Ri< inf  D(pgllpp)- (12
n n " qu:Rq>R

Of course, when the family consists of all probabilities&(), the RHS of Eq(11) and the RHS of12) coincide, i.e.,
our code is optimal in the sense of the exponent of the overflow probability.

IV. CONSTRUCTION OF A QUANTUM follows; i.e., H®" is equivalent with the following direct
VARIABLE-LENGTH SOURCE CODE sum space under the representatiorspand SU):
First, we construct a universal quantum variable-length HEN=
’ . . . =dW,, Whi=U® V), .
source code that achieves the optimal 4t for the family N neeneen

of all probabilities onS(#). This family is covariant for the
actions of thed-dimensional special unitary group Sdl)(  For details, see Weyl18], Goodman and WallacfL9], and
and anyn-i.i.d. distribution p” is invariant for the action of Iwahori [20]. The efficiency of this representation method
the nth symmetric groupS, on the tensored spack ®".  was discussed from several viewpoints. Regarding fixed-
Thus, our code should satisfy the invariance for these actionength source coding, it was discussed by Joesal. [4].
onH®", Regarding quantum relative entropy, it was discussed by Ha-

Now, we focus on the irreducible decomposition of theyashi[21]. Regarding quantum hypothesis testing, it was dis-
tensored spack " concerning the representations$fand  cussed by Hayasl22]. Regarding estimation of the spec-
SuU(d), and define the Young index as trum, it was discussed by Keyl and Werrié&i.

In the following, for an intuitive explanation of our con-

_ d struction, we naively construct a good variable-length code
n:=(ng, ....Nq), 21 Ni=n,ni=nN;sy in the caseH = (2. For this construction, we fixed a strictly
I+1

increasing sequencézz{ai}i:l of real numbers such that
and denote the set of Young indicedy Y,,. Young indexn  1—5 <ga,<...<a<a,,=1. We define the encod&®"
uniquely corresponds to the irreducible unitary representayjith the data sef1, . .. |} by
tion of S, and the one of SW). Now, we denote the repre- i
sentation space of the irreducible unitary representatic) of HEM= ® Wi, i=1,...]—1,
[SU(d)] corresponding ta by V), (U,,), respectively. In par- ny/nela;.aj )
ticular, regarding a unitary representation of 8)(Young A
indexn gives the highest weight of the corresponding repre- H = ) Wi,
sentation. Then, the tensored spé¢é" is decomposed as ny/nelay ay ]
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d

EF"(pn) ==PP"p PR, ppe S(H M)
i n i PnF n El ki=n,3 neY,NUy 51,

Ysn ==[ ke 78
and define the decod®?" as the embedding fror({" to
H®", where we denote the projection 67" by P{"". As-  and define an operatdd 2" for any elemenk e Y, , as
sume that the larger eigenvalue of the mixtﬁ,ebelongs to

the interval[a; ,a;. ;). As is guaranteed by Lemma 5 in Ap- N 1 pon

pendix A, if the larger eigenvalue of the mixtupg does not kK ""Cyg(ne) K 7

lie on the boundary on the intervigd, ,a; 1), the probability

Tr?f”Pi""'“ tends to 1. Thus, we can prowg ,(E*",D*") pon. 3 b

—0. Its speed depends on the divergence between the prob- ey A U

ability and the boundary. Of course, if we cho@se, —a; to ’
be sufficiently small, the coding length is close to the entropy
H(;p) with almost probability 1. However, when the larger
eigenvalue lies on the boundary, the state is demolished, as is

caused by the same reason of Lemma 2. In this case, simi- Cra(x) =M ke 7
larly to Lemma 2, we can prove

Ups:={aeR[lp—q[=< 4},

d
IKi=<x, 3, ki=o},

lime, o(E*",D*")>0. where P, denotes the projection tb, and A denotes the
member of elements.

The numbetVk e ZNU nM|Eid: ,k;=n} is independent
of ne Y, and equal$C; 4(nd). Thus, we have the relations

Now, we assume that the interval,;—a; (i=2,...]
—1)isé:=112(I-1)] and thata,—a;,a,,1—a, <§. Then,
our code is uniquely defined by the choice @fe (3,3
+ 6). For the nondemolition of initial states, we construct a 5 MKeYsalne YanUy pst
variable-length code, by choosing,e{k/n|k/ne (3,3 Pnsz M "P,= C no) —Py=Py,
+ 8),ke 7} at random. In this protocol, we can expect that on 1
the average error tends to O for any probabifitpn S(C?).

Note that the sefk/n|k/ne(3,53+6),keZ}x{1,2,...],l
+1} corresponds to the data $@f,. In order to achieve the

rate H(pp), we need to choose the sé?, so that
(1/n)log|Q),|—0. It is essential in our code to restria} to
this lattice{k/n|k e Z}.

Moreover, whend is large for a fixed numben, the
demolition of initial state seems small and the coding length
seems long. Therefore, roughly speaking, in this code for a
finite numbern, by choosings, we can treat the trade-off
between the coding length and the nondemolition of the in-
put state. ’ ’ Efvn(Pn) = Mg,nanMS,n’ Ypne S(H®"),

Next, we generalize the above code to thdimensional
case, and evaluate its average error. In order to satisfy thend the decoded" is defined as the embedding frok{"
universality and the conditiof11), we need to choos@  to H ®".
depending om more carefully. Forw>0, we define a subset As is proven in Appendixes B and C, the quantum
Y5, of 29 as variable-length source cod&{",D?") on H ®" satisfies

which implies the condition

> MP"=1.

kEY(s'n
The encodeE®" whose data set i¥ s, is defined by

HeM= e W,

neYy:n—kj<ns

enp(E?"D?M=  inf 1 S2a(nd)
61:0<6,<8 Cl,d(n(s)

[1—(n+d)*exp(—nCsq4(5—51)9)]* (13

_1 s,n 1 ) sn _5d . .
Tlog PEn ﬁ(log|Y5,n|+Iogd|mHk' =R >T|Og(ﬂ+d)+ inf inf D(d'[p)\,
qe]R‘i‘l:H(q)zR—(4d/n)Iog(n+d) q’eRi‘l:Hq—q'Hs&S

(14)

where
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d
Cod(X):= min N{ keZ9|lk—pl<x,> ki:o}’
=1

pe Hd:E pj=0
i

D(alp)

Csgi= min > (15
qpertliP—d
R, :={xeR|x=0}, R‘ilzzr peRY| D pi=1],
I
andpe R‘i‘l denotes the probabilityp ,p, - . . ,pg), Wwherep; is the eigenvalue ofp andp;=p,=---=py. In this paper,
we use an italic lettep to denote a probability o5(7#) while we use a bold lettgy to denote a probabilityg;, . . . ,pg) ONn

{1, ... d}. Note that the RHS 0of13) is independent op. Our main point is simultaneously reducirg ,(E*",D*") and

Pr'f:'n{l/n(log|Y5,n|+Iog dimef'”); R}. The RHS of(14) decreases a8 increases while the relation between the RH$1®
andé is not necessarily simple. However, letting=n~* and 8;:=n"*—n~'% we can check that the RHS ¢f3) tends to
0, and that the RHS dfL4) tends to the RHS ofL1). Thus, we obtain theorem 1 whéhconsists of all probabilities o8(H).

If we adopt another criterion,
- 2
- Eg)n(pn)
D(l) - L)
Pl TED (o)

6ﬁ,p(En’D”)::é E pﬂ(’;n) E TrEgn(ﬁn)[l_

Tr
anS(H ®|"I) wnEQn
we have the following inequality instead ¢f3):
C,q4(néd
enp(EX"D*M=< inf 1 Ll)[l—(ner)“dexp(—nC&d(é— 51917, (16)

51:0<8,<6 C14(nd)

which is proven in Appendix C.
Next, deforming the codeE®",D?"), we construct a universal quantum variable-length source code that achieves the
optimal rate in the general case with no trivial redundancy. Define th¥,§%pn(5) as

k
Yé,cﬁl,n(s)’:(kEYﬁ,n 3 pes, ‘ pp)— <51]:
wherep(p) consists of eigenvalues @f such thatp,(p)=---=py(p). In particular,p=p(;p). Note thatS is defined after
theorem 1, and is different fron$(p). When the dat&k belong tOYﬁ,él,n(S): we send the statEf’”(ﬁn)/TrEf'”(ﬁn).
Otherwise, we send only the classical information 0, except Yfgvrglvn(S). Then, the data set of the encoder is

Ys.6,.n,+(8)=Ys5 n(S)U{0}. The decoder is defined as
D[f'él’n’S::le’nv VkEY(‘;,,Sl,n(S)'

As is proven in Appendixes B and C, the quantum variable-length source &Sde {D?%1:"5) on H ®" satisfies

_ Co4(néy)

5,01.n.8 po.o1 NSy <1 _ 24T
np(ETIEDTEIN=ATE o)

[1-(n+d)*exp(—nCau(6— 81)2)]% (17

-1 sons| 1 )
—og B [10g]Y 5.5, 0,4 (S)| + log dim i, 5] =R

q'eRY:g—q’ <26

—5d
=——log(n+d)+ min ( min D(q’[p) (18
qe]R‘i‘l:H(q)?Rf(4d/n)|og(n+d)§|peS,qup(p)Hgé‘l

for Vp e P. Note thatD (p(p) [ p(o)) = Miny.ynitan@ (p| V* aV). Letting 8:=n~1* and §;:=n~1*—n"13 we can show that the
RHS of (17) tends to 0, and that the RHS (@8) tends to the RHS ofl11).
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V. OPTIMALITY OF THE EXPONENT OF THE quantum Stein’s lemma.
OVERFLOW PROBABILITY First, for the reader’'s convenience, we give the former
proof which is simpler than the latter but is applied only in
Next, we prove Theorem 2. When the support of any el the pure states case. After this proof, we give a more sound

ementp of P consists of pure states, i.e., the pure states Cas%roof which can be used in the general case.Landq be
we can prove Theorem 2 by using the monotonicity of quan- )

tum relative entropy because the strong convéasbolds in an arbitrary elements @?, andR be an arbitrary real number
; Py 9 . . such thatR is less than the minimum admissible rate pf

guantum fixed-length pure state source coding, as is X R<R.. In particular we assume that the su orteof

plained in Sec. Il. However, in the mixed states case, we " o NP i PP

cannot use this strategy, and we need the following Iemmgonssts of pure states. For a quantum variable-length source

n n H H n n
called the strong converse part of quantum Stein’s lemma iﬁOded{(fl.E ’th]} f(;_r aéalm”ytﬁ’ deggg%!?%tgf codel;( I,ID ),
guantum hypothesis testing proven by Ogawa and Nagao € define the fixed-ength co ' ) as follows.
[23] as an alternative. Its other proof was given by Hayashi hen the datas, satisfy
[22].

Lemma 1Let p ando be density operators oH. If any log|Q,| +log dimH,, =nR, (19
sequence of operatofis={T,} on H ®" satisfies that & T, "
<| and that liminf Tp®"T,>0, then the inequality
we send classical information which indicates conditib®).
Otherwise, we send the dataw, and the state
E'j,n(;;n)/TrEZ,n(;;n). In the decoding process, if we receive
holds. the classical information which indicates conditim%,nwe
Since the monotonicity of quantum relative entropy cor-'€9ard a quantum stajg, out of the original spacét °" as
responds to the weak converse part of quantum Steind'® deggded state. Note tha(pr,p)<1 for any statep
lemma, the former strategy can be regarded as the combin&S(* “"). Otherwise, we perform the operati@j, as the
tion of the strong converse pai) of quantum fixed-length decoding process. Since the maximum of this code is less
pure state source coding and the weak converse part of quathan nR, we can regard it as a fixed-length code whose
tum Stein’s lemma, and the latter proof can be regarded dength isnR.
the combination of the weak converse p@tt of quantum From the construction of the fixed-length code
fixed-length source coding and the strong converse part fER",DR"), we can easily check that

-1
lim supTlog Tro®"T,<D(p|lo)

1
E(Iog|Qn| +logdim*, )<R

R,n (RN <PE” 1 : n RN
€nq(EX", D) <P E(Iog|Qn|+Iogd|men)<R €ngq| E".D

n
+Phn

1
ﬁ(log|Qn| +logdim#,, )= R} ,

where ¢, 4(E",D"|1/n(log|Q,|+log dimH,, )<R) denotes the conditional average of the total error under the condition
1/n(log|Q,|+log dim™,, ) <R. Thus, we have the inequality

n| 1 1
€ng(ER",DRM) — €, o(E",D")< qn(ﬁ(loglﬂnHIogdimen)BR] 1—en,q(E”,Dn ﬁ(loglﬂnl+logdimen)>R”
o[ 1 , N ,
< qn{ﬁ(log|Qn|+Iogd|men)>R]=P§®n(ﬁ(log|ﬂn|+log dImen)ZR]. (20
q

Since the support of| consists of pure states arbdi(a) fixgd—length pure state source codirigp]. Since the univer-
=R,>R, we obtain the relation sality guarantees the relation

En’q(ER'n,DR'n)—)l, en,q(EnaDn)_)o1 (21)

which is called the strong converse part of the quantunwe have
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n (1 . {(E®",D®M} is universal. However, this code destroys the
F’n,q’:':’,%n ﬁ(|°9|Qn|+|°9 dimH, )=Ri—1. (22 jnput state by a quantum measurement as follows.
Lemma 2Assume thad=2 and{|e;),|e,)} is a CONS
Using the monotonicity of quantum relative entropy, we haveof €2, If the support ofp is pure stateg|e;)(e,|,|e,)(e,|},
the average erroe, ,(E°",D%") does not tends to 0.
As is understood from our proof of theorem 1, boudi)

T — ®n| _®n . .
nD(qupp)—D(pq ”Pp ) cannot be achieved unlessends to 0. It seems essential to
=) 1-p approximate the nonzero numb&r0 to 0.
Bpn,q|09¥ +(1- P“vq)logl——F:m’ If we discuss quantum universal coding under another er-
n,p n

ror €, ,(E",D") instead ofe, ,(E",D") [cf. (6)],

where we define P, similarly to Eq. (22). Since —(1
—Pn,g)l0g(1-P, ) =0,

n

enp(ENDN:= X pYp)= 2 X TrE] (py)

pneS(H) ni=1 wnep

1

_logPy, _ nD(pgllpp) +h(Po,q)
n NPy q

—D(pglep), X b(p; ,EL, (o)), (24)

whereh(x) is the binary entropy-x logx—(1—x)log(1—Xx). -
Now, we obtain inequality12) in the pure states case. Pn=p1® - Qpp,
Next, we proceed the general case. It follows fr@ghand

the inequalityR<R, that we have - -
! Egn(pn)i =The. . on_,0H, 6 ~®HnEZ)n(pn)a

lim inf en,q(ER'”,DR'“)>O. (23
we can use several strategies for quantum universal coding.
From (20) and(21), the relation lim infR ;>0 holds. There For example, if we usee states only for the estimation of
exists a POVM(positive operator valued measure, i.e., a parH(pp), we can reduce the errtmf],p to zero, asymptotically,
tition of the unity | into positive Hermitian matricesM" by use of the Jozset al. protocol[4]. However, in this strat-
={M" }, such that egy, we cannot reduce the errgy, because the demolition
o of the firstne states is crucial for this criterion.
Next, we discuss how rapidly the average ewgy, tends

TrpaMG, =TrEG (pn),  Vpre S(H®M). to 0 in our code. Assume that=2 and{|e,),|e,)} is a

CONS (complete orthonormal systénof 2. Unlessé,>0

satisfies 8,/ <1, the coding length always equals.ZThen,

Lettin
9 we can assume théb,|<1.
Lemma 3. If the support of p is pure states
,_ n {ler)(edl,lex)(e,l}, the relation
" o in(log @, FTog dim#,, )=R “n’
_ _ -1
we have R,=Trp;"T, and R, ,=Trp,"T,. Thus, Lemma lim——log €np(E", D% ") =0 (25)

1 guarantees that

holds for any sequendes,} satisfying|s,|<1.

Therefore, it seems impossible to construct a universal
code whose average erref , exponentially tends to 0.

In general, even iR,=H(pp) for V. peP, the RHS of
(11) does not necessarily coincide with the RHS12). For
example, when

_ 1 -
lim sup— ﬁlog Pn.o=<D(p4llpp)-
Now, the proof is completed.

VI. DISCUSSION

In our code, the nonzero numbéris essential. One may

expect that the quantum variable-length source code P={pdt=(0,112)},  H(pp) =Ry,

— t cofo(t)+(1—t)sirfa(t)  (1—2t)cosh(t)sina(t)
Poc™| (1-2t)cosO(t)sing(t)  (1—t)co2a(t)+tsirPat) ]’

022311-8
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and @ is continuous and one-to-one, both sidegid) coin-
cide with H(ppt) while the RHS of(11) is strictly smaller

than the RHS of12) as follows. Fort,,tye (0,1/2), we can
calculate as

inf. min D(pp[Vpp, V*)=d(ty,t0),
te(O,l/Z):H(pp!)>h(tl) V:unitary 0

inf D(ppt”ppt )
te(0,1/2)Ry >h(ty) 0

=cog(6(t)— 6(1))d(ty,to) +SirP(6(t) — 6(1))
Xd(ty,1—tg),
where

h(t):=—tlogt—(1-t)log(1—1),

t 1-t
d(t,t’):=t Iogt—,+(1—t)logn.

Thus, its difference equals Si@(t)— 6(t))[d(t;,1—to)

PHYSICAL REVIEW A 66, 022311 (2002

n!

C(n)=:n1! nyl---ng!’

Proof. Inequality (A2) is trivial. Using Young index, the
basis ofif, is described bye, }, . yn, whereY" is defined as

( )

Yn:: n'={ni'}ezd ) né(|)$2 niy

| sis any permutation

Thus, we obtainA3). Note that the correspondennoé and
e, depends on the choice of Cartan subalgebra, i.e., the
choice of basis of+.

According to Weyl[18] and Iwahori[20], the following
equation holds, and it is evaluated as

n!
(ny+d=21)!(n,+d=2)!---ny!

dimV,=

—d(t;,tg)]>0. This gap is closely related to the ambiguity

of the large deviation-type bounds in quantum estimation
[17]. It seems very hard to match the upper bound and the
lower bound concerning the exponent of the overflow prob- n!
ability in the general case.

XIT (mi—nj=i+})

j>i

11 (ni—nj—i+j)

P
n1!n2! e nd!j>i

Vil CONCLUSION sC(n)(n+d)st(n+d)2dexr{nH(2)}. [ |
We construct a quantum variable-length code satisfying
Eq. (11). This is optimal in the sense of Theorem 2 when the  The following is essentially equivalent to Keyl and Wern-

family P consists of probabilities o&(7) with no trivial

er’s result[8]. For the reader’s convenience, we give a sim-

redundancies. However, in our code the average error dogsier proof.
not exponentially vanish. The construction of such a code | emma 5Assume thap is the spectrum op such that

seems to be difficult.
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APPENDIX A: REPRESENTATION THE THEORETICAL
TYPE METHOD

For our proof, we need the following two lemmas.
Lemma 4The relation

dimV,<C(n)(n+d)?

s(n+d)2dexp{nH(E”, (A1)
MnlneY}<(n+1)9 (A2)
dimif,<(n+1)¢ (A3)

holds, whereC(n) is defined as

p1=p,=---=pqy. The relations

n
Tr Pnp®”$(n+d)3dex;{—nD(ﬁHp”, (A4)

> TrPp®"<(n+ d)4dex;{ - nminD(qu)} (AB)
nngR q¢R

hold for a subseR of R4,

Proof. Let4, be an irreducible representation of S1)(n
‘H ®", which is equivalent té{,. We denote its projection by
P/ . Now, we choose the bas{&, }, .yn Of U, depending
on the basige;} of H. The base, is the eigenvector g5*"

with the eigenvaluélid:laini . Sincen’ is majorized byn, we
can calculate the operator norm by
d
IPaprPrl=11 a, (A6)

where || X||:=sup,. #/|Xx||. From (A1), (A3), and (A6), the
relations
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d
TrPp®"=dimV, X TrP/p®"<(n+d)¥c(n)[] a”
=1

=(n+d)%Mul(a,n)

hold, where we denote the multinomial distributionaoby Mul(a,®). Thus, we obtair{A4). Inequality(A2) guarantees

> Tr Pnp®”s(n+d)4dexp(—ninfD(q||p) . [
nneR qeR

APPENDIX B: PROOF OF (14) AND (18)

First, we prove inequality14). For a sufficiently large integer, the relations
Y s.nl<Mk e 29k =0}<(n+1)¢

hold. Since dini/,<(n+d)¢, for anykeY;,, we have

n
log|Y s ol +logdimHy"<dlog(n+1)+ max logdimi,+logdimV,<4dlog(n+d)+  max nH(—).
neYsnNUgns neYsnUgns 1

dl

d

From (A5), we have

_ Ysnl n’
s _wn | o.n 3d _ _
TrM " pp, Cl‘d(né)(nde) max exp{ nD( =

nl
<(n+d)* max ex;{—nD(—

n
n'eYnﬂUk’m; n,EYnﬂUk'r@

<(n+d)*  max exg—nD(qllp)].
qeUgn, sNRE

Thus,

n |1
PEW ﬁ(log|Y5,n| +logdimH") = R]
p

< > M p, "
keYsn: max  H(n/n)=R-(4d/n)log(n+d)
"oneY NUy s
n/
<|Ysnl(n+d)4d max max exp(—nD(— p))
ne Yy :H(n/n)=R—(4d/n)log(n+d)| ' ¢y, :[n—n’[<25n n

<(n+d)> max
geRY:H(q)=R~ (4d/n)log(n+d)

max exr[—nD(q’Ilp)]}-
' eRY:g—q’ <26

Then, we obtain(14).
Next, we proceed t618). Since|Y; 5 n+(S)|<|Ysql, we have

n (1 X
PE@m _(loleﬁﬁ n+(8)|+|ogd|mH|§n)>R]$ E Ter(znp?n
72" ,01.0, keYss na(S:  max — H(n/n)=R—(4d/n)log(n+d)
B nEYnﬂUkln(g
n/
<|Y4l(n+d)* max max eXF{_nD(_ p”
ne Y, :H(n/n)=R—(4d/mlog(n+d) | n’ cy, :|n—n’'|<26n n
pe S| (n/n)—p(p)l<sy
<(n+d)> max max exd —nD(a'[p)]1}.
aeR%1iH(@) =R~ (4dim)og(n+d)| o’ RY*Ja-q'l|<25

peS|a-pp)ll=s;

Then, we obtain(18).

022311-10
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APPENDIX C: PROOF OF (13), (16), AND (17)

We can evaluate the average error as

\/p— Mk Pn\/M_ )

Ter pn

enp(EPNDM = > p"py) X Ter’“ﬁn(l Tr

pneS(H®n) keYsn

1= 3w 3 NPTy

5n€5(H®n) keYsn
=1 3w 3 T T M,
pneS(H M keYsn
1
=1- > ——— X pp)(TrPI"p,)%?
keVsn C1a(NO) 5 5i0em)
1 ) UREC
<1- > —— X pUp)TrPI"pu|

keYsn C14(N6) pre S(H M)

1 —
=1- ———(Trp,"P2™3?
kezYayn Cl,d(”5)( pp i)

where inequality(C1) follows from Jensen’s inequality concerning the convex functienx®?.

The relations

Coa(N)<MYs5nNUnpns),  0<8<6,

én
Pon= > Pn.  VkeYsnNUnpns,
neYnNUnpn(s-s,)

hold. Using Lemma 5 and Eq8C4) and (15), we have

TrP,f”p®”>1 (n+d)*exp(—n  min D(q|p))=1—(n+d)*dexd —nCs4(6— 61)?].

QeUps—s;
It follows from (C3) and (C5) that
E 1 (Tr ®nP5n)3/2> 1 2 (Tr;®npé,n)3/2
kéVsn C14(N6) k C1d(N8) ke Y57 Unp ns, Pk

Cp4(Néy)

m{l— (n+d)*exfd —nCyq( 56— 6;)2]}%2

Inequality (13) follows from (C2) and (C6).
Similarly to (C2), we can prove

e (EPNDM<1— >

1 —
Tr ®nP5,n 21
keYﬁ‘n Clyd(nﬁ)( pp k )

which implies(16).
In the general case, similarly {€2), we can prove that

€np(E*", DM <1~ Come (TP PP,

kng n(S) Cl (na
SinceYs s, n,+(S)NUnpns, = YsnNUnpns,, We can prove that
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T (Trp®"p&m3i=> Tro2"pon) 32
keYss,n,+(S) Cl,d(n5)( Po Pic) C14(N) ke¥5aTUnpns, (Trep P
Ca4(néy)
= m{l—(mrd)mexq— NCsyq(5— 5,)21%2, 8

Inequality (17) follows from (C7) and (C8).

APPENDIX D: PROOF OF LEMMA 2

In this case, the average error is calculated as

€np(EO" DO =1— > > p(e)({€y|Pre))¥2=1-2 p(én>n2Y ((€nlPalen)¥2,

neYn e, en

wheree,:=¢; @e; ®---®e eH °". We definen(e,) :=(ny(€,),nz(€y)) by

ni(en):=Mje[Ln]le; =e}. (oD

nZ(én)

Now, we focus a typical elemerﬁn, ie., [ni(én)/n]spi. The number satisfying Eq(D1) is (n(é)

— [ — (Y] wheren(8,) = (ny(6,),n5(8,)) € Y, . Then,

), and dimy,,

ni(en) 1 nye)

- +
n n _ nye,) N n n  Pi—=p2
(nz )_< ”_1 B '

B, . n |\t
<en| Pn(én)|en>= ( nz(én)>

(€)) \nye)-1/]" " né)+1  ne) 1 P
n 'n
Sincex®?+y%?< (x+y)¥?2 for 0<x,y<1, we can evaluate
32 3R 32
- - - - S P1—P2 P1—P2
2 (<en|Pn|en>)3/2$ 2 <en|Pn|en> +(<en|Pn|en>)3/25(1_—> +(—)
neY, neYn\{n’} pl pl
32 A\ 32
[y
P1 P1

Therefore,

3/2 _ 3/2
e {27252 o
Y P1 P1

APPENDIX E: PROOF OF LEMMA 3
For anyneY,,8,>0, we denote([n; —(1/y2)8,],n—[ny—(1/1/2)8,]) e Y5, by k(n,8,), where[x] is defined as the
maximum integen satisfyingn<x. The elemenk(n, §,) satisfies

n=(Ny,n2) €Ukns).5, (MTLNa—1)&Uyns).s -

For any6>0, we have
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1 -
1- X —(TrPi'“pnP’Z)
k

€ E‘S‘n,D‘S‘n — n é’
n,p( ) ezn p ( n) eY&n Cle(né)

- N 1 N
1- ———(TrP"pp) —=——=(Tr P 3’2)
. ( k#k(n%)eY&n Cl,d(n5)( <o) Cl,d(n5)( (n.5)Pn)

- 1 - 1 -
=2 p“(ero(mm Pitn.apP) ~ &g (T szﬂ,gnwn)?'“)

€n

- 1 - -
=2 Py LT PinagPn = (TP 5P ]
€ |

- 1 - -
= 2 g T Pitn.syPa (TP appn) ™)

én :ni(én)/nzpi

- 1 P1—P2 <p1_p2>3/2}
= (e —
. ni(Ee‘n) P n)Cl,d(n5) P1 P1
eni T  =Pi
_ 1 pl_pz_(pl_pz)3/2}> 1 {pl_pZ_(pl_pz)SIZ}
Cig(nd)| p1 P1 2]Y,| P1 P1 '

Note that the RHS is independent & 0. Thus,

-1 -1 _ _ 3/2 1 _ _ 312
—Ilog e, n(E>", DM < —[ log +log Pi—P2_ ( P pz) <—{log2(n+1)%2—log Pi_P2_ (PP —0.

n n 2|, P1 P1 n P1 P1
Therefore, we obtain Eq25).
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