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Optimal parameter estimation of a depolarizing channel
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We investigate strategies for estimating a depolarizing channel for a finite dimensional system. Our analysis
addresses the double optimization problem of selecting the best input probe state and the measurement strategy
that minimizes the Bayes cost of a quadratic function. In the qubit case, we derive the Bayes optimal strategy
for any finite number of input probe particles when bipartite entanglement can be formed in the probe particles.
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I. INTRODUCTION

In order to design a reliable communication system o
requiresa priori knowledge of the property of a channe
Precise knowledge of the channel allows us to devise ap
priate coding, modulation, and filtering schemes. In gene
the channel property is not stationary, so one should
acquire and then track the optimal operating point of e
device by monitoring the condition of the channel. It is im
portant, therefore, to know how to estimate the channel pr
erty in an efficient way, that is, as precisely as possible w
minimum resources.

A reasonable assumption is that we know that the chan
belongs to a certain parametrized family, and only the val
of the parameters are not known. To know them one m
input a probe system in an appropriate state into the cha
and make a measurement on the output state. Only whe
infinite amount of input resource is available, one can de
mine the channel parameters with perfect accuracy. In
quantum domain, however, the resource is often restric
for various reasons. For example, when one is to monito
fast quantum dymanics at cryogenic temperatures, the in
probe power should be kept as low as possible so as to
vent the system from heating up while obtaining meaning
data in a short time. This restricts the available amoun
probe particles. Furthermore, preparing the probe in an
propriate quantum state is usually an elaborate process.
to find the efficient estimation strategy relying only on
restricted amount of input resource is of practical imp
tance.

In estimating a quantum channel parameter, given a fi
amount of input resource, both the input probe state and
measurement of the output state need to be optimized.
double maximization problem has been studied in the c
text of estimation of SU(d) unitary operation@1#. Estimating
a noisy quantum channel has been discussed in the litera
@2–4#. In Ref. @2#, the locally optimal strategy, which
achieves the Crame´r-Rao bound at a local point of the pa
rameter space, was derived for the depolarizing channel f
qubit system. Such a measurement is usually used to ge

*Electronic address: psasaki@crl.go.jp
1050-2947/2002/66~2!/022308~8!/$20.00 66 0223
e

o-
l,

st
h

p-
h

el
s
y
el
an
r-
e
d
a
ut
re-
l
f

p-
us

-

te
he
is
-

re

a
the

final estimate around the most likely value of the parame
obtained by some preliminary estimation using a part of
probe particles. By this two stage estimation, one can at
the optimal asymptotic rate at which the estimation accur
grows with the number of probe particles@5–7#. References
@3,4# focus on several noisy qubit channels. They study so
reasonable, although not optimal, strategies based on
maximum likelihood estimator, and derive the asympto
behavior of the cost as a function of the number of inp
probe qubits.

In contrast, we are concerned here with the Bayes opti
strategy which minimizes theaveragecost. The scenario we
have in mind is that one has no particular knowledge ab
thea priori parameter distribution, and the available numb
of probe particles is strictly limited. We then take into a
count the possibility of rather large errors. We seek the st
egy that works equally well for all possible values of th
parameter on average, that is, the strategy which is m
universal for various possible situations.

It seems difficult for us to study this problem for the mo
general probe state. In this paper we deal with the depo
izing channel by assuming that we dispose ofM pairs of
probe particles and only bipartite entanglement can
formed in each pair. This might be a practically sensib
assumption from the view point of optical implementatio
given current technology. Our problem is to find the be
estimation strategy to minimize the average cost. We c
sider the quadratic of a cost function.

The paper is organized as follows. In Sec. II we analy
the qubit case with a pair of probe particles and derive
optimal estimation strategy. In Sec. III we extend our ana
sis to thed-dimensional case restricting the probe state to
the maximally entangled pairs instead of arbitrary bipar
entanglement pairs or the completely separable state. Fin
in Sec. IV we summarize the results and discuss some ph
cal interpretations of them.

II. QUBIT CASE

Let r̂ be a density operator in the two-dimensional Hilbe
spaceH2. The depolarizing channelLu maps a density op-
eratorr̂ to a density operator which is a mixture ofr̂ and the
maximally mixed state,
©2002 The American Physical Society08-1
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Lur̂5ur̂1
12u

2
Î . ~1!

The parameteru represents the degree of randomization
polarization. For the mapLu to be completely positive, the
parameteru must lie in the interval2 1

3 <u<1.
Let us start with two qubit systems as the input probe.

simplicity we only consider a pure state family of the pro
Ĉ5uC&^Cu. This may be represented in the Schmidt d
composition

uC&5Axu0& ^ ue0&1A12xu1& ^ ue1&, ~2!

where $u0&,u1&% and $ue0&,ue1&% are orthonormal basis se
for the first and second probe particle, respectively. Wha
the best way to use this state? There are two possibilitie
consider:

~a! input one qubit of the pair into the channel keeping t
other untouched leading to the output state

Ĉ1~u![~Lu ^ Î !uC&^Cu, ~3!

~b! input both qubits into the channel and have the out
state

Ĉ2~u![~Lu ^ Lu!uC&^Cu. ~4!

A measurement is described by a probability operator m
sure~POM! P̂(u) @8,9#, also referred to as a positive oper
tor valued measure~POVM! @10#. The average cost for th
quadratic cost function is given by

C̄i~x!5E
2(1/3)

1

dũE
2(1/3)

1

du~ũ2u!2z~u!Tr@P̂~ ũ !Ĉ i~u!#,

~5!

wherez(u) is thea priori probability distribution ofu, and
*2(1/3)

1 dũP̂( ũ)5 Î . It is assumed that we have noa priori
knowledge aboutu, that is,z(u)5 3

4 . Given the channelLu ,
we are to find the optimal probeuC& and the POMP̂(u)
minimizing the average costC̄(x).

It is convenient to introduce therisk operator

Ŵ~u!5
3

4E2(1/3)

1

du8~u2u8!2Ĉ i~u8! ~6!

5Ŵ(2)22uŴ(1)1u2Ŵ(0), ~7!

whereŴ(k)[ 3
4 *2(1/3)

1 duukĈ i(u). The average cost is then

C̄~x!5Tr Ĝ, Ĝ[E
2(1/3)

1

duP̂~u!Ŵ~u!. ~8!

For a fixed probe stateuC&, the optimal POMP̂(u) is de-
rived from the necessary and sufficient conditions to m
mize the average cost@11,12#:

~i! Ĝ5Ĝ†, and@Ŵ(u)2Ĝ#P̂(u)50 for all u,
~ii ! Ŵ(u)2Ĝ>0 for all u.
02230
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The optimal solution for a single parameter estimation wit
quadratic cost is well known@13,8#. The optimal POM is
constructed by finding the eigenstateuu& of the minimizing

operatorQ̂ which is defined by

Q̂Ŵ(0)1Ŵ(0)Q̂52Ŵ(1), ~9!

that is,P̂(u)5uu&^uu so thatQ̂uu&5uuu&. We then haveĜ
5Ŵ(2)2Q̂Ŵ(0)Q̂ from which the conditions~i! and ~ii ! are
easily verified.

For a discrete system, one can find the optimal POM w
finite elements. Let the spectral decomposition ofŴ(0) for
our two-qubit system be

Ŵ(0)5(
i 51

4

v i uv i&^v i u. ~10!

Then the minimizing operator is

Q̂5 (
i , j 51

4
2

v i1v j
uv i&^v i uŴ(1)uv j&^v j u. ~11!

Let the spectral decomposition ofQ̂ be

Q̂5(
i 51

4

u i uu i&^u i u. ~12!

The optimal POM is then given by

P̂~u!5(
i 51

4

d~u2u i !uu i&^u i u. ~13!

This implies that the measurement has four outputs at m
and we then estimate the channel parameter as one of
u i ’s. Before going on to derive the optimal strategies, let
define some notations. As seen below the output st
Ĉ i(u)’s can be written as a direct sum

Ĉ i~u!5ĉ i~u! % f̂ i~u!, ~14!

where ĉ i(u) is in the subspaceHc spanned byum1&[u0&
^ ue0& and um2&[u1& ^ ue1&, and f̂ i(u) in the subspaceHf
spanned byun1&[u0& ^ ue1& and un2&[u1& ^ ue0&. In the fol-
lowing all 232 matrices represent density operators inHc

with um1&5(0
1) and um2&5(1

0).

A. Case„a…

The output stateĈ1(u) is given by

ĉ1~u!5
1

2 F ~11u!x 2uAx~12x!

2uAx~12x! ~11u!~12x!
G , ~15!

f̂1~u!5
12u

2
@~12x!un1&^n1u1xun2&^n2u#. ~16!

The elements of the risk operator are
8-2
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Ŵ(0)5
1

3 S F 2x Ax~12x!

Ax~12x! 2~12x!
G % ŵ1D , ~17!

Ŵ(1)5
1

27S F 8x 7Ax~12x!

7Ax~12x! 8~12x!
G % ŵ1D , ~18!

Ŵ(2)5
1

27S F 6x 5Ax~12x!

5Ax~12x! 6~12x!
G % ŵ1D , ~19!

where ŵ15(12x)un1&^n1u1xun2&^n2u. After a lengthy but
straightforward calculation~see Appendix A! we have

Q̂5
2

9 F 11x 2Ax~12x!

2Ax~12x! 22x
G %

1

9
Î f . ~20!

To diagonalizeQ we introducer 5A1112x(12x) and

cosg5Ar 2112x

2r
, sing5Ar 1122x

2r
. ~21!

The eigenstates and eigenvalues are then

uu1&5cosgum1&1singum2&, u15~31r !/9,

uu2&52singum1&1cosgum2&, u25~32r !/9, ~22!

uu3&5un1&, u351/9,

uu4&5un2&, u451/9.

The average cost finally reads

C̄1~x!5Tr~Ŵ(2)2QŴ(0)Q!5
8

81F11S x2
1

2D 2G . ~23!

This is minimized by the maximally entangled state inpu

uC&5
1

A2
~ u0& ^ ue0&1u1& ^ ue1&), ~24!

for which u15 5
9 andu25u35u45 1

9 . Therefore the optima
measurement is actually constructed by the two projecto

P̂15uC&^Cu, P̂25 Î 2uC&^Cu, ~25!

with the associated guessesu15 5
9 and u25 1

9 , respectively.
The minimum average cost isC̄1 min5

8
81.

B. Case„b…

The output stateĈ2(u)5ĉ2(u) % f̂2(u) is given by

ĉ2~u!5F 1

4
2S 1

2
2xD u1u2 u2Ax~12x!

u2Ax~12x!
1

4
1S 1

2
2xD u1u2

G ,

~26!
02230
:

f̂2~u!5
12u2

4
Î f . ~27!

The elements of the risk operator are

Ŵ(0)5
1

27F 419x 7Ax~12x!

7Ax~12x! 1329x
G %

5

27
Î f , ~28!

Ŵ(1)5
1

27F 7x 5Ax~12x!

5Ax~12x! 7~12x!
G %

1

27
Î f , ~29!

Ŵ(2)5
1

405F 4175x 61Ax~12x!

61Ax~12x! 79275x
G %

11

405
Î f .

~30!

The minimizing operator is~see Appendix B!

Q̂5
1

17@1318x~12x!# Fa c

c bG %
1

5
Î f , ~31!

where

a57x~35220x12x2!,

b57x~17116x12x2!, ~32!

c59@922x~12x!#Ax~12x!.

To diagonalize it we user 5A(a2b)214c2 and

cosg5Ar 1a2b

2r
, sing5Ar 2a1b

2r
. ~33!

We then have the similar eigenstates to Eq.~22! and the
eigenvaluesu15u1 , u25u2 , andu35u45 1

5 with

u65
119@112x~12x!#6r

34@1318x~12x!#
. ~34!

The average cost is then

C̄2~x!5
8@3911606x~12x!210x2~12x!2#

2295@1318x~12x!#
. ~35!

This is an upward convex function, symmetric with respe
to x5 1

2 . The minimum is attained atx50,1, that is, by sepa-
rable input states. This readsC̄2min5

184
1755.

The average costs for cases~a! and~b! are shown in Fig.
1: C̄1(x) ~solid line! and C̄2(x) ~dashed line!. We see that

FIG. 1. The average costs as a function ofx.
8-3
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C̄1min,C̄2min so that the optimal estimation strategy, usi
two probe qubits, is to prepare them as a maximally
tangled pair and to input one qubit of the pair into the ch
nel keeping the other untouched. The estimation is then
tained by applying the two element POM, Eq.~25!, as
described in case~a!. This strategy is represented schema
cally in Fig. 2.

WhenM maximally entangled pairsuC& ^ M are available,
it is best to use them so as to have the output@(Lu

^ Î )uC&^Cu# ^ M. The optimal measurement for this can
derived straightforwardly. This is discussed in the next s
tion as a part of an arbitrary finite dimensional case.

III. d-DIMENSIONAL CASE

The action of the depolarizing channel on ad-dimensional
system is described by

Lur̂5ur̂1
12u

d
Î . ~36!

Complete positivity then implies2 1/(d221) <u<1. For
d>3, we have not succeeded in finding the optimal pro
state, even when we restrict ourselves to a pure state. In
section we focus on the most plausible input state, that is,
maximally entangled state, and consider the estimation u
M entangled pairs. Only ford52, is the optimality ensured

It might be interesting to compare the three cases sp
fied by the three different outputs.

~a! M product states of the pair

Ĉ1~u!5~Lu ^ Î !uC&^Cu5uuC&^Cu1
12u

d2
Î ^ Î , ~37!

whereuC& is the maximally entangled state.
~b! M product states of the pair

Ĉ2~u!5~Lu ^ Lu!uC&^Cu5u2uC&^Cu1
12u2

d2
Î ^ Î .

~38!

~c! 2M product states of

ĉ~u!5Luu0&^0u5uu0&^0u1
12u

d
Î . ~39!

@The input state in case~c! can be any pure state in th
d-dimensional space.# Let us first consider the case~a!. We
denote Eq.~37! as

FIG. 2. The optimal estimation strategy using two probe qub
uC& is the maximally entangled state. The output state is projec

onto $P̂1 , P̂2%. We guess the channel parameter asu5
5
9 for the

outcomeP̂1 andu5
1
9 otherwise.
02230
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Ĉ~u!5 f 0~u!â01 f 1~u!â1 , ~40!

where

â0[uC&^Cu, â1[ Î 2uC&^Cu, ~41!

and

f 0~u!5u1
12u

d2
, f 1~u!5

12u

d2
. ~42!

The output state can then be represented as

Ĉ~u! ^ M5 (
m50

M

f 0~u!M2mf 1~u!mÂm , ~43!

where

Âm5 (
( i 11••• i M5m)

âi 1
^ •••^ âi M

~44!

is the projector onto the symmetric subspace. The risk op
tor is

Ŵ~u!5 (
m50

M

@vm
(2)22uvm

(1)1u2vm
(0)#Âm , ~45!

where vm
(k)[*2(1/3)

1 duukf 0(u)M2mf 1(u)m. The optimal
POM is

P̂~u!5 (
m50

M

d~u2um!Âm , ~46!

where

um[
vm

(1)

vm
(0)

. ~47!

We then note that

Ŵ~u!2Ĝ5 (
m50

M

~u2um!2vm
(0)Âm>0, ~48!

from which it can easily be seen that the conditions~i! and
~ii ! hold. The minimum average cost is

C̄1~M !5 (
m50

M Fvm
(2)2

~vm
(1)!2

vm
(0) G S M

mD ~d221!m. ~49!

The other cases can be dealt with in a similar manner. In c
~b!, we just put

f 0~u!5u21
12u2

d2
, f 1~u!5

12u2

d2
. ~50!

The minimum average costC̄2(M ) is then given by the same
expression as Eq.~49! with vm

(k)’s defined by f 0(u) and
f 1(u) of Eq. ~50!.

.
d

8-4
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In case~c! we use

â0[u0&^0u, â1[ Î 2u0&^0u, ~51!

and

f 0~u!5u1
12u

d
, f 1~u!5

12u

d
. ~52!

The minimum average cost is

C̄SEP~M !5 (
m50

2M Fvm
(2)2

~vm
(1)!2

vm
(0) G S 2M

m D ~d21!m. ~53!

The three costsC̄1(M ), C̄2(M ), andC̄SEP(M ) are plotted in
Fig. 3 (d52), Fig. 4 (d53), and Fig. 5 (d510). In the
figures another average costC̄ML(M ) is also plotted. This
cost is by the strategy belonging to case~c!, but unlike the
one attainingC̄SEP(M ), the estimator is made by the max
mum likelihood principle for which

um5
md

2M ~d21!
, ~54!

instead of Eq.~47!, and leads to the analytic expression

FIG. 3. The average costs as a function of the number of pa

FIG. 4. The average costs as a function of the number of pa
02230
C̄ML~M !5
1

2M

d5~d13!

6~d221!3
. ~55!

It is this strategy that was used in Ref.@4# for the case ofd
52.

Ford>3, the minimum average cost is always attained
a separable probe state. Only in the two-dimensional cas
it the bipartite entangled probe that attains the minimum
erage cost. It is worth mentioning the depolarizing chan
with the narrower parameter region 0<u<1, which is a
more commonly used model with a well-defined interpre
tion of randomizedprobability of u. We found that the bes
probe in this model is always a separable state. In this se
a separable state is generally an adequate probe state fo
depolarizing channel estimation as far as the compari
with a bipartite entangled probe state is concerned.

IV. DISCUSSION

We have considered an estimation problem of the de
larizing channel on ad-dimensional system in a scenar
where we have a finite number of probe particles, 2M , at our
disposal and we can prepare them inM pairs of the maxi-
mally entangled states if necessary. The depolarizing p
rameteru is assumed to be in a full range,21/(d221)<u
<1, allowed by the complete positivity of the channel a
tion.

For d>3, the best way is to input the probe particles
the separable state, then to apply the binary measurem

$â0 ,â1% @Eq. ~51!# on each output particle separately, a
finally to establish the estimate as one of the 2M11 candi-
dates$um% corresponding to the symmetric subspace span
by $â0 ,â1%. Thus any bipartite entanglement is not nece
sary.

In contrast, ford52, the best way is to prepare theM
maximally entangled pairs,uC&^Cu ^ M, to input one qubit of
each pair into the channel keeping the other untouched,
to apply the binary measurement$uC&^Cu, Î 2uC&^Cu% on
each pair separately. The estimate consists of theM11 can-
didates $um% corresponding to the symmetric subspa
spanned by$uC&^Cu, Î 2uC&^Cu%. In conjunction with the
analysis in Sec. II, we can show that this is the optim

s.

s.

FIG. 5. The average costs as a function of the number of pa
8-5
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estimation strategy for double optimization with respect
an input state and a measurement. If the channel parame
restricted to the narrower region 0<u<1 for which the in-
terpretation of randomizedprobability of u applies, the bes
probe state is again the separable state.

Thus an entanglement is useful only in the case of qub
Even in this case, the amount of the cost reduction obtai
by replacing the separable input probe with the entang
probe is rather small. As seen in Figs. 3–5, for higher dim
sion d, the strategies with the entangled probes become
effective ~black circles and triangles! compared with the
other separable probe strategies. In this sense an enta
ment is not necessary for the estimation of the depolariz
channel. This is also the case for other decoherence chan
such as an amplitude damping channel and a depha
channel. For an amplitude damping channel, for exampl
probe particle in its ground state is insensitive to the dam
ing, and the best probe state is the most highly excited s
An entangled probe is wasteful for the same reason, tha
this includes the state components which are less sensitiv
the damping.

For the depolarizing channel, things may be more com
cated. The superiority of the separable probe strategies to
entangled probe ones may be due to the fact that the for
can take more estimate points in the parameter space tha
latter. Given 2M probe particles at our disposal, the sep
rable probe strategies have 2M11 outcomes while the en
tangled probe strategies haveM11 outcomes. More esti
mate points simply result in higher accuracy. The minimu
required number of estimates is basically determined by
dimensionality of the particle. It is well known that in est
mating unknown quantum states of a finite dimensional s
tem, increasing the number of POM elements beyond a
tain critical number never helps to increase the estima
accuracy, and this criterion increases as the dimensionali
the system. This means that for a higher dimensional sys
a POM with more elements is preferable. Therefore the se
rable probe strategies are generally better in higher dim
sional cases. For a lower dimentional system, the quan
nature of polarization dominates, and the minimum num
of estimates becomes smaller while the ambiguity of estim
tion increases. For the qubit case, the difference in the n
ber of outcomes between the separable and entangled p
is not a primary factor, but the other aspect influences
estimation accuracy. It should be noted that the param
can take the negative value in2 1

3 <u<0 in the case where
the entangled probe is best. Negative values ofu have a
different physical meaning to positive values. For negat
values the Bloch vector of an input state shrinks reversing
direction, that is, the output state is more likely the oppos
spin, while for positive values the Bloch vetcor shrinks in t
same direction. If we are to discriminate the possibleu in-
cluding all these cases, then in the optimal strategy, one q
of the entangled probe pair that is not input into the chan
can be a good reference for the spin flipping action, while
the other strategies@case~b! in Sec. II# where both qubits
udergo the depolarizing channel, the ability to detect the s
flipping is weaker. This is why the optimal strategy for th
channel with the parameter region2 1

3 <u<1 is to use the
02230
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maximally entangled pairs with one qubit of each pair u
touched to the channel and why the optimal strategy for
channel with the narrower region 0<u<1 is the separable
probe strategy.

It is worth noting that the collective measurement onM
identical output pairs or 2M identical output particles is no
necessary. The action of the depolarizing channel on a m
mally entangled state always results in a statistical mixt
between the input state and its orthogonal complement@Eq.
~40!#. Estimating the channel parameter is nothing but de
mining this mixing ratio, which is aclassical distribution.
Therefore the optimal measurement is realized by a separ
type constructed by the binary orthogonal projectors$â0 ,â1%
according to Eq.~44!. In the case where the output sta
includes the channel parameter as a quantum distribut
that is, the parameter appears in the off diagonal compon
in the density matrix, the optimal measurement would b
collective measurement. Such channels include a uni
channel. It might then be desirable to apply a single mu
qubit state as the probe and the bestcollectivemeasurement
on the whole system. Channel estimation for such cases
future problem.

Finally it might also be interesting to study the multip
rameter case, such as the Pauli channel estimation. We
then ask how to optimize~in Bayesian sense! the simulta-
neous measurement on the noncommuting observable
well as searching for appropriate probe states.
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APPENDIX A: DERIVATION OF EQ. „20…

For obtaining the minimizing operatorQ in Eq. ~20!, we
first diagonalizeŴ(0) by Û05û0% Î f where

û05Fcosg0 2sing0

sing0 cosg0
G , ~A1!

with r 05A123x(12x) and

cosg05Ar 02112x

2r 0
, sing05Ar 01122x

2r 0
.

~A2!

The spectral decomposition

Ŵ(0)5(
i 51

4

v i uv i&^v i u ~A3!

is given by
8-6
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uv1&5û0um1&, v15~11r 0!/3,

uv2&5û0um2&, v25~12r 0!/3,
~A4!

uv3&5un1&, v35~12x!/3,

uv4&5un2&, v45x/3.

We then calculate

Q̃5 (
i , j 51

4
2

v i1v j
u i &^v i uŴ(1)uv j&^ j u, ~A5!

where
ys

02230
u1&5um1&,

u2&5um2&,
~A6!

u3&5un1&,

u4&5un2&.

This gives

Q̃5Q̃c %
1

9
Î f , ~A7!

where
Q̃c5
1

9F 4r 0~11r 0!13x~12x!

r 0~11r 0!
2

3~122x!Ax~12x!

r 0

2
3~122x!Ax~12x!

r 0

4r 0~12r 0!23x~12x!

r 0~12r 0!

G . ~A8!
The minimizing operator is given byQ̂5Û0Q̃Û0
† which re-

sults in Eq.~20!.

APPENDIX B: DERIVATION OF EQ. „31…

The unitary operator for diagonalizingŴ(0) in Eq. ~28! is
Û05û0% Î f where

û05Fcosg0 2sing0

sing0 cosg0
G , ~B1!

with r 05A812128x(12x) and

cosg05Ar 029~122x!

2r 0
, sing05Ar 019~122x!

2r 0
.

~B2!

The spectral decomposition

Ŵ(0)5(
i 51

4

v i uv i&^v i u ~B3!

is given by
uv1&5û0um1&, v15~171r 0!/54,

uv2&5û0um2&, v25~172r 0!/54,
~B4!

uv3&5un1&, v355/27,

uv4&5un2&, v455/27.

We then have

Q̃5Q̃c %
1

5
Î f , ~B5!

where

Q̃c5F 7@r 019216x~12x!#

r 0~171r 0!

8~122x!Ax~12x!

17r 0

8~122x!Ax~12x!

17r 0

7@r 029116x~12x!#

r 0~172r 0!

G .

~B6!

Substituting this toQ̂5Û0Q̃Û0
† , we have Eq.~31!.
.
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