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Optimal parameter estimation of a depolarizing channel
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We investigate strategies for estimating a depolarizing channel for a finite dimensional system. Our analysis
addresses the double optimization problem of selecting the best input probe state and the measurement strategy
that minimizes the Bayes cost of a quadratic function. In the qubit case, we derive the Bayes optimal strategy
for any finite number of input probe particles when bipartite entanglement can be formed in the probe particles.
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[. INTRODUCTION final estimate around the most likely value of the parameter
obtained by some preliminary estimation using a part of the
In order to design a reliable communication system ongrobe particles. By this two stage estimation, one can attain
requiresa priori knowledge of the property of a channel. the optimal asymptotic rate at which the estimation accuracy
Precise knowledge of the channel allows us to devise apprd@rows with the number of probe particlgs-7]. References
priate coding, modulation, and filtering schemes. In general,3.4] focus on several noisy qubit channels. They study some
the channel property is not stationary, so one should firskeasonable, although not optimal, strategies based on the
acquire and then track the optimal operating point of eactimaximum likelihood estimator, and derive the asymptotic
device by monitoring the condition of the channel. It is im- behavior of the cost as a function of the number of input
portant, therefore, to know how to estimate the channel propProbe qubits.
erty in an efficient way, that is, as precisely as possible with In contrast, we are concerned here with the Bayes optimal
minimum resources. strategy which minimizes thaveragecost. The scenario we
A reasonable assumption is that we know that the channdlave in mind is that one has no particular knowledge about
belongs to a certain parametrized family, and only the value$he a priori parameter distribution, and the available number
of the parameters are not known. To know them one mayf probe particles is strictly limited. We then take into ac-
input a probe system in an appropriate state into the channépunt the possibility of rather large errors. We seek the strat-
and make a measurement on the output state. Only when &gy that works equally well for all possible values of the
infinite amount of input resource is available, one can deterparameter on average, that is, the strategy which is more
mine the channel parameters with perfect accuracy. In thgniversal for various possible situations.
quantum domain, however, the resource is often restricted It seems difficult for us to study this problem for the most
for various reasons. For example, when one is to monitor general probe state. In this paper we deal with the depolar-
fast quantum dymanics at cryogenic temperatures, the inpi&ing channel by assuming that we disposeMfpairs of
probe power should be kept as low as possible so as to pr@robe particles and only bipartite entanglement can be
vent the system from heating up while obtaining meaningfuformed in each pair. This might be a practically sensible
data in a short time. This restricts the available amount ofissumption from the view point of optical implementation
probe particles. Furthermore, preparing the probe in an agiven current technology. Our problem is to find the best
propriate quantum state is usually an elaborate process. Th@stimation strategy to minimize the average cost. We con-
to find the efficient estimation strategy relying only on asider the quadratic of a cost function.
restricted amount of input resource is of practical impor- The paper is organized as follows. In Sec. Il we analyze
tance. the qubit case with a pair of probe particles and derive the
In estimating a quantum channel parameter, given a finit@ptimal estimation strategy. In Sec. Ill we extend our analy-
amount of input resource, both the input probe state and th&is to thed-dimensional case restricting the probe state to be
measurement of the output state need to be optimized. Thife maximally entangled pairs instead of arbitrary bipartite
double maximization problem has been studied in the conentanglement pairs or the completely separable state. Finally
text of estimation of SU{) unitary operatio1]. Estimating in Sec. IV we summarize the results and discuss some physi-
a noisy quantum channel has been discussed in the literatué@l interpretations of them.
[2—4]. In Ref. [2], the locally optimal strategy, which
achieves the CraméRao bound at a local point of the pa- Il. QUBIT CASE
rameter space, was derived for the depolarizing channel for a .
qubit system. Such a measurement is usually used to get the L€t p be a density operator in the two-dimensional Hilbert
spaceH,. The depolarizing channel, maps a density op-
eratorp to a density operator which is a mixture @fnd the
*Electronic address: psasaki@crl.go.jp maximally mixed state,
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. 1-0. The optimal solution for a single parameter estimation with a
Lop=0p+——1. (1) quadratic cost is well knowf13,8. The optimal POM is
constructed by finding the eigensta® of the minimizing
The parametep represents the degree of randomization ofoperato which is defined by
polarization. For the mag, to be completely positive, the
paramete must lie in the interval- 3<6<1. OWO + WO =2WD), 9
Let us start with two qubit systems as the input probe. For A R .
simplicity we only consider a pure state family of the probethat is, T1(8) =|6){ | so that®|8)=6|6). We then havd’
W=|W)(WP|. This may be represented in the Schmidt de-=W®@—®W®@ from which the conditionsi) and (ii) are
composition easily verified.
For a discrete system, one can find the optimal POM with
W)= \/§|0>®|e0)+ Vi-x[1)@ley), 2 finite elements. Let the spectral decompositionVdf) for

where{|0),|1)} and{|e,),|e;)} are orthonormal basis sets 4" two-qubit system be

for the first and second probe particle, respectively. What is 4
the best way to use this state? There are two possibilities to W) = 2 wi| o wi|. (10)
consider: =1
(a) input one qubit of the pair into the channel keeping the o ]
other untouched leading to the output state Then the minimizing operator is

4

0=2>

ij=1 (1)i+(1)]'

Vi (0)=(L,eD)|T) (¥, 3)

| i) i WO w;){wj]. (11

(b) input both qubits into the channel and have the output
state Let the spectral decomposition 6f be
Wo(0)=(Ly@ L) W)(V]. 4 2

| | N 0=2 66,)(6l. (12)
A measurement is described by a probability operator mea- i=1
sure(POM) T1(6) [8,9], also referred to as a positive opera-
tor valued measuréPOVM) [10]. The average cost for the
quadratic cost function is given by

The optimal POM is then given by

4
ﬂ<a>=i§l 80— 6,)]6,)(6i|. (13)

_ 1 _ [ - R
Ci(x)zf dﬁf do(6—6)’z(0) T II()W(6)],
13) This implies that the measurement has four outputs at most

—(1/3)
®) and we then estimate the channel parameter as one of four
wherez(6) is thea priori probability distribution ofg, and  ¢i’s- Before going on to derive the optimal strategies, let us
f£(1/3)dpﬁ(p)zi' It is assumed that we have mopriori qeflne' some notgtlons. As §een below the output states
knowledge aboud, that is,z(¢) = 2. Given the channet,,  Vi(6)'s can be written as a direct sum
W('-',' grg .to find the opnmal_problelf) and the POMII(6) V.(0)=(0)® Bi(0), (14)
minimizing the average co€i(x).
It is convenient to introduce thiésk operator where #;(6) is in the subspacéfd, spanned byl u;)=|0)
. 3 (1 . ®|eg) and|u,)=[1)®|e;), and ¢;(6) in the subspaceét,
W(6)= Zj de’'(6—0")2¥,(6") (6)  spanned byr,)=|0)®|e;) and|v,)=|1)®|ey). In the fol-
-(13) lowing all 2x 2 matrices represent density operatorsHy)

- - < with =% and|u,)=(2).
=W® —2 oW + 02W(°), @) |,U«1> (o) |,U«2> (1)

whereW® =24t ;,dg6“¥;(6). The average cost is then ) A. Case(a)
The output statel’,(6) is given by

_ N 1 L
C(x)=Trl, sz_(m)dan(a)ww). (8) 1] (1+6)x 26x(1—x)

: MO 2 20k area-xn) P
For a fixed probe statgl'), the optimal POMII(6) is de-
rived from the necessary and sufficient conditions to mini- R 1-0
mize the average coft1,12: $h1(0)= T[(l—x)| vival +x|v)(val].  (16)
(i) =TT, and[W(6)—T]1I(6) =0 for all 6,
(i) W(6) —T'=0 for all . The elements of the risk operator are
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WO 1 2X VX(1—X) o an g 0.13 g by
=3 , 0.12f°— =i
sl k@) 21-x ) % g 21N T,
& oLl \
- (] =R\
) 1 8x TIX(1=x)| . 3: 010Gy
W=7 73x(1—x)  8(1-x) ). (18 00 025 05 075 10
’ X
W(Z):i 6x S Vx(l—x)_ P (19 FIG. 1. The average costs as a functiorxof
27\|5yx(1—x) 6(1-%) | ) 2
,\ 1-6-.
where 1= (1—X)|v1){(vq| +X| v2)(v,|. After a lengthy but baO)=—7 4 (27)

straightforward calculatioisee Appendix Awe have
The elements of the risk operator are

.2 1+x 2yX(1=x)| 1. .
®—§ Zm 2 x 69§|¢. (20 W(O):i 44 9x 7IX(1—X) 5. 28

27

&y,
7Yx(1-x) 13-9x | 27°¢

7x 5Jx(1-x)| 1.
s 7(1-x |“a7e @

To diagonalize® we introducer =+/1+12x(1—x) and
1

\/m _ \/m . W=
cosy= EECTEEE siny= o (22

The eigenstates and eigenvalues are then A (2):i A+ 61Vx(1=x) ® E‘ )
. 405 61\x(1—x) 79— 75 405 ¢
|601)=cosy|u1)+sinyluz),  6,=(3+1)/9, (30
|6,) = —siny|uq) +cosy|u,),  6,=(3—r)/9, (220  The minimizing operator igsee Appendix B
|03)=|v1), 65=119, 6 — 1 a ¢ L
O= 13rex(1-x]|c b/¥5 ¢ (3Y)
|62)=|v2), 64=1/9.
where
The average cost finally reads
a=7x(35—20x + 2x?),
— . - 8 1\?
C1(0)=Tr(WE-OW0) = =2 14| x— 5) - (29 b=T7x(17+ 16x+2x?), (32
This is minimized by the maximally entangled state input €c=9[9-2X(1—X)]VX(1=X).
1 To diagonalize it we use=\/(a—b)?+4c? and
W)= —=(l0)®|eg) +|1)®[e1)), (24)

V2

for which #,=3 and 6,= ;= 6,= 5. Therefore the optimal
measurement is actually constructed by the two projectors:

r+a—»b ) r—a+b
cosy= o siny= o (33

We then have the similar eigenstates to E2R) and the

i .= eigenvalue®),= 6, , 6,=60_, and 6= 6,= = with
My=[w)(w|, Tp=T-[w)(V], 25 €9 1=0., 0, 3= 0,=¢

1191+2x(1—x)]=xr
with the associated guessés=23 and 6,= 3, respectively. 0.= ! ( )] . (34

. — - 34 13+8x(1—x
The minimum average cost B, min=5. sl ( )]

The average cost is then

B. Case(b)
R R R o — 8[ 391+ 606x(1—x) — 10x%(1—x)?]
The output statel,( ) = y,(0) @ ¢,(6) is given by Co(x)= 520513+ 8x(1—X] (39
1_ Z x| o+ 62 62\/x(1—X) This is an upward convex function, symmetric with respect
5.(6)= 4 12 to x= 1. The minimum is attained at=0,1, that is, by sepa-
2 - , ; ; e 184
1 /1 rable input states. This rea@ in= 175z
2 — - 2 min— 1755 ) )
0°yx(1=x) 2713 X) o+0 The average costs for cas@s and (b) are shown in Fig.

(26)  1: C4(X) (solid line) and C,(x) (dashed ling We see that
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<i f=lwyw] —»0=3 W(0)=fo(0)ao+f1(0)ay, (40)
I'I2—I [W){(W|—=> g = % where
FIG. 2. The optimal estimation strategy using two probe qubits. ap=[W)(¥[, a;=I-[¥)¥], (4D
|T) is the maX|maIIy entangled state. The output state is projected dd
onto {Hl, 2} We guess the channel parameter@a*s9 for the
outcomell; and 9= § otherwise. 1—6 1—
fo(0)= 0+ 2 f1(¢9)=? (42
C1min<Comin SO that the optimal estimation strategy, using
two probe qubits, is to prepare them as a maximally enThe output state can then be represented as
tangled pair and to input one qubit of the pair into the chan-
nel keeping the other untouched. The estimation is then ob- M
tained by applying the two element POM, E(®5), as ()M = E fo(O)M ™ 1(6)"A, (43
described in caséa). This strategy is represented schemati-
cally in Fig. 2. where
WhenM maximally entangled pairgl )®™ are available,
it is best to use them so as to have the outp(f, " - -
- M . . Am: 2 q; Q- - ®a; (44)
@ 1)|¥){(P|1*M. The optimal measurement for this can be (it Ty=m) 1 M
derived straightforwardly. This is discussed in the next sec-
tion as a part of an arbitrary finite dimensional case. is the projector onto the symmetric subspace. The risk opera-
tor is
Ill. d-DIMENSIONAL CASE M
The action of the depolarizing ch | od-dli ional W(o)= > [0 =200R+ oA, (45)
polarizing channel od-dimensiona ey Lm m m 15m

system is described by

1-6, :
Lop= 0p+T| (3¢) POMis

M

Complete positivity then implies- 1/(d?—1) <6#<1. For ()=, 8(6—6,)An,

d=3, we have not succeeded in finding the optimal probe m=0

state, even when we restrict ourselves to a pure state. In thig o e

section we focus on the most plausible input state, that is, the

maximally entangled state, and consider the estimation using o®

M entangled pairs. Only fad=2, is the optimality ensured. On= T
It might be interesting to compare the three cases speci-

fied by the three different outputs.
(a) M product states of the pair

o
We then note that

M
1—-6. . A = _ 2 0OA =
Ty(0)= (L, DWW = o w)(¥]+ el (@7 W) —T'= 22 (0= 6w 0 An=0,

where o{=/1 ;5d06 ()M ™f1(6)™. The optimal

(46)

(7

(48)

from which it can easily be seen that the conditigisand

where| V) is the maximally entangled state. (ii) hold. The minimum average cost is
(b) M product states of the pair
Cam= S, | o (@i
. 1-6% . Ci(M)= -
Wo(0)=(Ly® L) | WWV|= 62| W) (V| + = [ . 1(M) mo| " O

( )(Ol2 DT (49

(39 The other cases can be dealt with in a similar manner. In case

(c) 2M product states of (b), we just put

2 2

- 1-6. —p2 _
I(6)=L£,/0)(0]= 60)(0] + —1. (39 fol)= 6"+ = T(6)=

(50

[The input state in cas@&) can be any pure state in the The minimum average co§t2(M) is then given by the same
d-dimensional spackLet us first consider the caga). We  expression as Eq49) with »(¥'s defined byfy(6) and

denote Eq(37) as f1(6) of Eq. (50).
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FIG. 3. The average costs as a function of the number of pairs. FIG. 5. The average costs as a function of the number of pairs.

In case(c) we use 1 d>d+3)

. A EML(M):miz_ 3 (55)
a,=[0)(0], a,=1—]0)0], (51) 6(d"~1)

and It is this strategy that was used in Rf4] for the case ofl
=2.

Ford=3, the minimum average cost is always attained by
a separable probe state. Only in the two-dimensional case is
it the bipartite entangled probe that attains the minimum av-
erage cost. It is worth mentioning the depolarizing channel
The minimum average cost is with the narrower parameter region<®<1, which is a

more commonly used model with a well-defined interpreta-

1—6 1—-6
fo(0)=0+——, fl(e):T

d (52

o 2M (02 tion of randomizedprobability of 4. We found that the best
CsedlM)= D, | 0@ - % ( )(d—l)m. (53  probe in this model is always a separable state. In this sense
m=0 W m a separable state is generally an adequate probe state for the

depolarizing channel estimation as far as the comparison
The three cost€,(M), C,(M), andCsz{ M) are plotted in ~ With a bipartite entangled probe state is concerned.
Fig. 3 (d=2), Fig. 4 d=3), and Fig. 5 =10). In the
figures another average ca8f, (M) is also plotted. This IV. DISCUSSION
cost is b.y.the_strategy belonging to .ca(séz but unlike the ) We have considered an estimation problem of the depo-
one attainingCsg/ M), the estimator is made by the maxi- |arizing channel on a-dimensional system in a scenario

mum likelihood principle for which where we have a finite number of probe particlel,, 2t our
disposal and we can prepare themMnpairs of the maxi-

0. = md (54) mally entangled states if necessary. The depolarizing pap-
mo2M(d—-1)’ rameterd is assumed to be in a full range,1/(d>—1)<#¢

=<1, allowed by the complete positivity of the channel ac-

instead of Eq(47), and leads to the analytic expression tion.
For d=3, the best way is to input the probe particles in

0.08 x r r r the separable state, then to apply the binary measurement
;\\ ‘\\ d=3 —e— C,(M {ay,a;} [Eq. (51)] on each output particle separately, and
S ool Wb - —v— M) | finally to establish the estimate as one of tHd 21 candi-
S \é y —o— C (M) dates| 6,,} corresponding to the symmetric subspace spanned
Y Va - ~ ~ . . .
2 — \v\_- e = Cm(M): by {ag,a,}. Thus any bipartite entanglement is not neces-
3 0.04 A W % sary.
& N b In contrast, ford=2, the best way is to prepare tié
g : LS maximally entangled pair$¥ )(¥|®M, to input one qubit of
0.02 e v 7 i
< B TN hae each pair into the channel keeping the other untouched, and
- e *ﬁ* FEEEEY to apply the binary measure_rneﬁt\lf)(\lf|_,f—|\P><\If|} on
0.00 i — each pair separately. The estimate consists ofvthel can-
o 5 10 }‘54 20 23 30 didates {6,,} corresponding to the symmetric subspace

spanned by{|W)(¥|,1—|¥)(¥|}. In conjunction with the
FIG. 4. The average costs as a function of the number of pairsanalysis in Sec. Il, we can show that this is the optimal
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estimation strategy for double optimization with respect tomaximally entangled pairs with one qubit of each pair un-
an input state and a measurement. If the channel parametert@ched to the channel and why the optimal strategy for the
restricted to the narrower region<09<1 for which the in- channel with the narrower region<0<1 is the separable
terpretation of randomizegrobability of ¢ applies, the best probe strategy.
probe state is again the separable state. It is worth noting that the collective measurement n
Thus an entanglement is useful only in the case of qubitddentical output pairs or | identical output particles is not
Even in this case, the amount of the cost reduction obtaineBecessary. The action of the depolarizing channel on a maxi-
by replacing the separable input probe with the entangleé“a”y entangled state always results in a statistical mixture
probe is rather small. As seen in Figs. 35, for higher dimenbetween the input state and its orthogonal complerfiggt
siond, the strategies with the entangled probes become led40]. Estimating the channel parameter is nothing but deter-
effective (black circles and triangl¢scompared with the mining this mixing ratio, which is alassical distribution.
other separable probe strategies. In this sense an entangiElerefore the optimal measurement is realized by a separable
ment is not necessary for the estimation of the depolarizingype constructed by the binary orthogonal projectars,a, }
channel. This is also the case for other decoherence channetg;cording to Eq.44). In the case where the output state
such as an amplitude damping channel and a dephasingcludes the channel parameter as a quantum distribution,
channel. For an amplitude damping channel, for example, that is, the parameter appears in the off diagonal components
probe particle in its ground state is insensitive to the dampin the density matrix, the optimal measurement would be a
ing, and the best probe state is the most highly excited stateollective measurement. Such channels include a unitary
An entangled probe is wasteful for the same reason, that ighannel. It might then be desirable to apply a single multi-
this includes the state components which are less sensitive tubit state as the probe and the besllectivemeasurement
the damping. on the whole system. Channel estimation for such cases is a
For the depolarizing channel, things may be more complifuture problem.
cated. The superiority of the separable probe strategies to the Finally it might also be interesting to study the multipa-
entangled probe ones may be due to the fact that the formeameter case, such as the Pauli channel estimation. We may
can take more estimate points in the parameter space than ttteen ask how to optimizéin Bayesian sengehe simulta-
latter. Given M probe particles at our disposal, the sepa-neous measurement on the noncommuting observables as
rable probe strategies havévi2- 1 outcomes while the en- well as searching for appropriate probe states.
tangled probe strategies hak+1 outcomes. More esti-
mate points simply result in higher accuracy. The minimum
required number of estimates is basically determined by the
dimensionality of the particle. It is well known that in esti-  We are grateful to K. Usami, Dr. Y. Tsuda, and Dr. K.
mating unknown quantum states of a finite dimensional sysMatsumoto for helpful discussions. This work was sup-
tem, increasing the number of POM elements beyond a ceported, in part, by the British Council, the Royal Society of
tain critical number never helps to increase the estimatioredinburgh, and by the Scottish Executive Education and
accuracy, and this criterion increases as the dimensionality dfifelong Learning Department.
the system. This means that for a higher dimensional system,
a POM with more elements is preferable. Therefore the sepa-
rable probe strategies are generally better in higher dimen-
sional cases. For a lower dimentional system, the quantum For obtaining the minimizing operat® in Eq. (20), we
naturg of polarization domlnates,_and the minimum n”mbefirst diagonalizeV® by 00:a0®i¢ where
of estimates becomes smaller while the ambiguity of estima-
tion increases. For the qubit case, the difference in the num-
ber of outcomes between the separable and entangled probes Un=
is not a primary factor, but the other aspect influences the 0
estimation accuracy. It should be noted that the parameter

can take the negative value ing=<¢<0 in the case where \ith ro=+1—3x(1—x) and
the entangled probe is best. Negative valuesfdfave a

different physical meaning to positive values. For negative 14 ox 1 ox
values the Bloch vector of an input state shrinks reversing its COSYp= |0 SiNyo= /20 _
direction, that is, the output state is more likely the opposite 2rg 7 2rg

spin, while for positive values the Bloch vetcor shrinks in the (A2)
same direction. If we are to discriminate the possibla-

cluding all these cases, then in the optimal strategy, one qubithe spectral decomposition

of the entangled probe pair that is not input into the channel

can be a good reference for the spin flipping action, while in 4

the other strategiefcase(b) in Sec. I where both qubits WO=> |0 (A3)
udergo the depolarizing channel, the ability to detect the spin =1

flipping is weaker. This is why the optimal strategy for the

channel with the parameter regiens<6<1 is to use the is given by

ACKNOWLEDGMENTS

APPENDIX A: DERIVATION OF EQ. (20

COSyy —Siny,

. : (A1)
siny,  cosy,
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1) =Uolpy), @1=(1+10)/3, |1)=]pa),
|w2>:a0|,u2>, w2=(1—l’0)/3, |2>:|IU/2>’
(Ad) (A6)
|0)3>:|V1>, (,L)3:(1_X)/3, |3>:|V1>,
lwg)=va), w4=x/3. |4)=]v).
We then calculate This gives
L2 1
B= Vo WDl o )i =00
6= S lelWle)il @) 68,0l (A7)
where where
Aro(l+rg)+3x(1—x) 3(1-2x)Vyx(1—x)
~ 1 ro(1+rp) lo
0,=3 (A8)
9 3(1-2x)yx(1—x) 4ro(1—rg)—3x(1—x)
o ro(1—rop)
|
The minimizing operator is given b§=U,0 U] which re- lwy)=Uo| 1),  @y=(17+10)/54,

sults in Eq.(20).
lwo) =Uoluz), @p=(17-r,)/54,
APPENDIX B: DERIVATION OF EQ. (31 (B4)
. . R0 : |wg)=|v1), w3=5/27,
The unitary operator for diagonalizing® in Eq. (28) is

00=GO®T¢ where lway=|v2), @,=5/27.
. |cosyy —sinyg We then have
UOZ . ’ (Bl)
sSin Yo COS’)/O 1
with 1= 81— 128(1—x) and 0=0,05l,, (B5)
ro—9(1—2x) ) rg+9(1—2x) where
COSyg= BT SiNyg= TS
° ° B2 Tro+9-16x(1-x)]  8(1—2x)VXx(1—x)
. - ro(17+ry) 17rg
The spectral decomposition ® =
) VI o8(1-2x)Yx(1—x)  7[ro—9+16xX(1—X)]
WO=3" o] w;){wi| (B3) 1o fo(17= o)
=1 (BG)
is given by Substituting this td®=0,00], we have Eq(31).
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