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Majorization arrow in quantum-algorithm design
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We apply majorization theory to study the quantum algorithms known so far and find that there is a
majorization principle underlying the way they operate. Grover’s algorithm is a neat instance of this principle
where majorization works step by step until the optimal target state is found. Extensions of this situation are
also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation
algorithms, including Shor’s algorithm. We state that in quantum algorithms the time arrow is a majorization
arrow.
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. INTRODUCTION by < on vectors inRY. We need to fix notations by introduc-

o . ~ing some basic definitions.
Majorization is the natural ordering on probability distri-  Definition 1 Forx,ye RY,

butions. One probability distribution is more uneven than

another one when the former majorizes the latter. Further- k k

more, majorization implies an entropy decrease, thus the or- > X[ilgE yi, k=1,...d-1,
dering concept introduced by majorization is more restrictive . i=1 i=1

and powerful than the one associated to the Shanon’s en- X<y iff d d @)
tropy. The goal of this work is to show that all known effi- 2 Xi1=2 Vil »

cient quantum algorithms obey a majorization principle, in a =1 =1

way to be made precise later.

The classical theory of majorization was first introducedwhere [z};- - - z;q/]:=S0rt(z) denotes the descendingly
by Muirhead[1] and later developed by Hardy, Littlewood, sorted(nonincreasingordering ofze RY. An immediate con-
and Pdya in their study of symmetric meanig]. Majoriza-  sequence is that majorization is a partial order for sorted
tion was studied by economists in the beginning of the twenvectors inRY.
tieth century in order to formalize the concept of unevenness Definition 2 If it exists, the least elemenj (greatest el-
in the distribution of income. In 1905, Lorenz pointed outementx,) of a partial order like majorization is defined by
that one distribution can be said to be more uneven thathe conditionx;<x,Vxe R (x<x4,Vxe RY).
another precisely when it majorizes the oth@}. Likewise, In this paper we address the following basic problem of
Dalton in 1920 stated higrinciple of transfersshowing that  elucidating what is the role, if any, played by majorization in
a distribution is less uneven than another if it can be obtaine¢he way quantum algorithms operate. We find, indeed, that
from the other by transferring some income from a richer tothere is a majorization principle underlying the way quantum
a poorer income-receiver. Moreover, majorization has foundilgorithms work that we shall now state more precisely. Let
many applications in classical computer science like stochasts denote byW ,,) the pure state representing the state of the
tic scheduling, optimal Huffman coding, greedy algorithms,register in a quantum computer at an operating stage labeled
etc. by m=0,1,... M—1, whereM is the total number of steps

In quantum information theory, majorization characterizesof the algorithm. We can associate naturally a set of sorted
when two quantum bipartite pure states can be connected Viﬂobabilities[p[x]],x=0,1, ...,2—1 to this quantum state
local operations and classical communicatidtb]. This re-  of n qubits in the following way: decompose the register
sult shows that this connection is indeed possible when therg o i the computational basis, i-¢‘-1’m>==25n=610x|x>
exists majorization between the vectors of eigenvalues . on_1q ) ) .
(weight9 of the partial von Neumann entropies associated tdVith {[X):=|XoX1- - -Xn_1)};=o" denoting the baS'Sjtate_S n
each bipartite state. A further application of majorization indigital or binary notation, respgct!vely, and:EE‘:OijJ.
guantum information theory corresponds to the problem off he sorted vectors to which majorization theory applies are
Hamiltonian simulatior{6]. There, strong restrictions based Precisely[ pq1:=[|c(|?]. Thus in quantum algorithms we
on majorization theory limit the possibility to simulate a pro- shall be dealing with probability densities defined & ,
posed quantum evolution from a different given Hamiltonianwith d=2". With these ingredients, our main result can be
complemented with local unitary transformations. Majoriza-stated as follows: in the quantum algorithms known so far,
tion is also present in quantum measurement theory and ithe set of sorted probabilitie[sp[‘;]] associated to the quan-
the separability problem. tum register at each step are majorized by the correspond-

Majorization is often defined as a binary relation denotedng probabilities of the next step,
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" Y m=01,...M—2, where cog9=1-2/N. Starting from the symmetric state
m m
[Pral=[Pia 1| 01 . 2-1. @ 1
o . o 9'=|= \1-%/ (7)
This is a strong result for it means that majorization works JIN N
locally in quantum algorithms, i.e., step by step, and not just o
globally (for the initial and final statesOur starting pointis M applications of the kernel lead to
the majorization analysis of Grover’s algoritHmi. 1 I
—cogm#)— \/1— =sin(mo)
Il. GROVER’S ALGORITHM \/ﬁ N
KM s)= (8)
This quantum algorithm solves efficiently the problem of 1 . 1
finding a target item in a large database. The algorithm is \/_NS'”("WH \ 1 - eosme)

based on a kernel that acts symmetrically on the subspace

orthogonal to the solution. This is clear from its constructionThe projection onto the upper component corresponds to the
probability amplitude which, thus, evolves monotonically
until it reaches a maximum.
Returning to the original problem, we can now check that
Us=2s)(s|—1, Uy :=1-2[yo)(Vol, (3 all probabilities evolve in such a way that majorization
works smoothly:

K ==U3Uy0,

where|s):=1/\NZ,|x) and|y,) is the searched item.

Theorem.The set of probabilities to obtain any of tin P<p’,
possible states in a database is majorized step by step along ,
the evolution of Grover’s algorithm when starting from a (N—2)p+1s (N—-2)p'+1 9)
symmetric state until the maximum probability of success is N—-1 N—-1 ’
reached.
Proof. To prove this result we writ¢p(,;] as the set of
sorted probabilities of finding the state) when performing
a measurement. We cdib(,; | the set of sorted probabilities (N=-m—=1)p+m - (N=m—=1)p'+m
after one single application of Grover’s kernel. The theorem N—1 N—1
is equivalent to prove theﬂp[xl]<[p[’x]] until p;, the prob- ,
ability of finding the correct solution, reaches its maximum Thus[p1<[pp4] and Eq.(2) holds true. u
value. Majorization works in a simple way in Grover’s algo-

The hypothesis of symmetry imposes that the probabi”.l’ithm. Nevertheless, the proof does not hold when the initial
ties of finding each of th&l outputs at some point during the distribution of probabilities is not symmetric in the subspace

implementation of Grover’s algorithm can be ordered in theorthogonal to the solution. It is indeed easy to find numerical
list counterexamples to the majorization principle in absence of

symmetry. We realize that this corresponds to starting with a
quantum stat¢s) whose set of probabilities is tHeast ele-

) 4 mentof the majorization we have introduced to study quan-
tum algorithms. We shall see that this fact also happens in

wherep is the one associated to the correct output. After ondhe rest of the algorithms below.

further action of the kernel these probabilities will be

1-p’ 1-p’
N—1'""""T"N-1/

-p 1-p
1 UN-1L

. QUANTUM ADIABATIC EVOLUTION ALGORITHMS

1_ !
p’, P , (5) Grover’s algorithm can be mapped onto the evolution of
N-1 the homogeneous stae) into the solution|0) driven by a

We first need to prove that Grover’s algorithm increases theSlmple Hamiltoniar}8]. Farhiet al. have proposed to use the

robability of success monotonically, thatpé>p, until it adiabatic evolution to guarantee that the system remains in
P y Y P, he fundamental state and reaches the target solution in the

frehailchesrta frr:ﬁxmrumf ?nl? therr: t(fi]ecfrea}[stis tatlﬁo én:)r:/ot:)nllca[é/nd [11]. More precisely, the idea consists of setting up a
S part ot tne proot relies on the fact that the LoTover algo-y ijonian of the form

rithm can be described in a reduced two-dimensional space

[8,9], which follows from the symmetry of the subspace or- t t t
thogonal tgy,). In this case, the dynamics can be reduced to H o ( 1- T) Ho+fH1, (10
a two-state systemj|yo),|yo)}. Grover’s kernel on this
space acts as a rotatigh0] such thats) is the ground state dfl, and|0) is the ground
: state ofH,. For large enougf, the evolution will be adia-
_ ( cosd —sma) (6  batic and the system will remain in the ground state all along
sing cosf |’ the flow. The adiabatic theorem dictates thanust scale as
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1 probability one, while a largem smooths this evolution.

Once the maximum is attained, the probabilities oscillate and
majorization is obviously lost.

It is worth mentioning that a combination &f, andH 4
chosen as above but mixed with no time dependence leads to
a Hamiltonian that rotates the ground state in the manner of
the previous theorem. Then, the solution is obtained’ in
= (r/2)2"? with probability 1. This is precisely the scaling
law found in Grover’s algorithm.

A more refined test for the majorization principle corre-
sponds to the Hamiltonian evolution proposed by Fathl.
as a natural starting point for any adiabatic evolutja].

Let us consider the following choice:

FIG. 1. Evolution of the probability of finding the target state
(bold) and other state&lashegl for n=6. H0=.21 (1— O'x)(i)- (14)
1=1n
the inverse squared of the minimum gap of the system. The
guestion we address here is whether this evolution respecthis Hamiltonian acts as an eraser of information and has the
majorization. state|s) as its ground state. Furthermore, it allows for a
Although the system contaimsqubits, 2' possible states, decomposition of the Hilbert space inte- 1 symmetric sub-
the adiabatic evolution can be computed using a subspacespaces. Finding the target instan@ amounts to solving

sufficient symmetry is present. The simplest example is tahe dynamical evolution in thisn(+ 1)-dimensional Hilbert

consider the Hamiltonian space. Let us denote Hg the symmetric space withqubits
. . . in the statd1) and the rest in0). The Hamiltonian becomes
H($ =—|S><S|(1—$)—|0><0|$ (1) N
H0=§I —N, (15

and the initial statés). In this particular case, the evolution

More precisely
. (NG DD =Vin=(=1)8i11; - (16)

|s)= \/En(|0>+ V2"-1[0%)). (12) A numerical solution of the evolution is now easy to per-
form. For T>7xX2", the system indeed evolves along the
Then the Hamiltonian written in the bagif0),|0*} reads ground state and majorization holds for the set &f1 prob-

abilities, as shown in Fig. 2. Shorter evolutions perform

1 2"—1 poorly and fail to verify the majorization principle. We con-
t t on Ton t{1 0 clude that quantum algorithms based on adiabatic evolution

H(—) :_< __> __( ) naturally fulfill a majorization principle provided that the
T T 2"-1  2"-1 Ti0 0 Hamiltonians and initial state are chosen with sufficient sym-

2" 2" metry and the evolution is slow enough.
(13

. . . . IV. QUANTUM PHASE-ESTIMATION ALGORITHMS
It is possible to verify numerically that wheh~4Xx 2" the Q

probability follows the graphic shown in Fig. 1. An argument  These represent a large family of quantum algorithms that
similar to the previous theorem indicates that symmetry im-include as particular instances the order-finding problem,
poses majorization for the complete set of probabilities.Shor’s algorithm{12], discrete logarithms, et13]. The ba-
ShorterT lead to evolutions that do not hit the solution with sic problem is: given an arbitrary unitary operatband one

1 1

FIG. 2. Curves forpy, p:
+p,, and p;+p,+ps for n=4.
Y, pi > pi The failure of majorization

(monotonicity for fast evolution,

T=4%2", in the upper curves

goes away for slower evolution,
0 T=7x2".

0 t/T 1 0 T 1
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10y + e=272°|1) | L. @ FIG. 4. Lorenz diagrangpartial probability sumsfor the quan-
i P tum phase-estimation algorithm with=0.2 andn=23 qubits as in
: P Fig. 3. It shows how majorization works along the time arr@w
b)) 5 L o —0—=0—=A.

t3 tel’u t3z  ta3 tel,|4 tel.|5 ty
As the action of these gates only introduces phases locally in

FIG. 3. () Quantum circuit implementing the phase-estimationthe computational states, then we obtain again the uniform
algorithm constructed from Hadamard gatés,, controlledt dIStrIbutIOI’lS[p[ 1=[27"],¥x,m=0,1, ... n.
X

gates acting af0)(0|®1+|1){1|® U, and the QFT. Dashed lines Part (ii). Although the local phases ||n1’n> do not play

represent time steps for majorization testirig) An e.xample of any role in majorization, so far, they become relevant when

QFT decomposition into elementary gates fior 3 qubits. combined with the application of the QFT on the first regis-
ter, due to interference of quantum amplitudes. The state af-

eigenvectorjv), estimate the phas¢ of the corresponding ter time stept,,,; (Fig. 3 is

eigenvalueU|v):=e 2" ?|v), <[ 0,1), with n bits of accu-

racy. The efficient quantum solution of this problem can be 2"-1

encoded in the quantum circuit shown in Fig. 3, and we shall |y ):=(Ur®1)|¥)=2"" E e 2mix(¢— y/2”)|y>| ).
always refer to this circuit when performing the majorization x,y=0

analysis stepwise. The algorithm clearly has two pdts: (18)

application of Hadamard gatés$, and controlledd’ gates,
j=0,1,...n—1; and(ii) application of the quantum Fou- Now, pf,j*=|27"s21 te~27X(#=¥2)|2 majorizes the least
rier transform(QFT) Ur. element distribution at stepn=n. Interestingly enough,
Part (i). The whole quantum register is made up of firstthere is a stronger majorization working stepwise when the
and second registers. The initialization stage is such that th@FT is applied by means of its canonical decomposition in
quantum computer is in the stgdt&;,):=|00- - -0)|v), where  terms ofn Hadamard anah(n—1)/2 controlled-phase gates
the first register has been prepared at the $ttdor short, [14]. For concreteness, we show such decomposition in Fig.
and the second holds the eigenvectotofin what follows,  3(b) for n=3 qubits and with the corresponding time slices
we denote by p[X]] the sorted probab|l|t|es distributions of (majorization checkpoinjsThe proof of this result relies on
the first register, at time stepm=0,1,...n+1 that we the recursive application of the following inequalities
show in Fig. 3 as time slices.

Clearly, the probability distribution df¥";,) is the greatest 2

i(lieZﬂ'ia:()’Kl’))

element of the majorization. However, an application of the =1,

Hadamard gates yields a lowest element as in Grover's

algorithm. Thus our starting point for majorization is

Woy=(Ug @ 1) W)p=2""252"x)[v). Then, [p}] {(ay e[05][3.1) a-clz3D), 19

=[27"],¥x. _

Next, a series of controlled? gates encompassing time
steps front; to t,, (Fig. 3) are applied. The outcome of these
steps is the factorized state

where, at each stegy.. depends ory,¢ in a computable
way [15]. To illustrate this fact, we show in Figt a numeri-

cal plot for n=3 qubits in the form of a Lorenz diagram:
partial probability sums v, for each time step. Therefore,
as a consequence of our analysis we find that the majoriza-
tion principle is working locally in algorithms like order-

_o5-n/2 —2mi2" 1 —27i20
[Wo)=2""|0)+e""" /1)) [|0)+e 2™ 9(1)] findinga'=1 mod N, where the unitary operator is given

N1 by U|x):=|ax mod N) and ¢=1/r; Shor’s algorithm,
:an/zz efzwix¢|x>|v>. (17) where order-finding is used combined with controllgd-
x=0 gates implementing the modular exponentiation; Chuang’s
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algorithm for quantum clock synchronization, wheté  may say that majorization is a sort of driving force for such

:=U ¢nolJ 1o cnot @nd Ugp is the so-called Ticking Qubit algorithms. Learning to tame majorization may be useful for
Protocol[16]; etc. devising quantum-algorithm design. When majorization is
not at work, the quantum algorithm is neither efficient nor

V. CONCLUSIONS successful.
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