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Suppose that three kinds of quantum systems are given in some unknowr fStatesg,; ) ®X, and|g,)®X,
and we want to decide whidemplatestate|g,) or |g,), each representing the feature of the pattern afass
or C,, respectively, is closest to the indetiturestate|f). This is an extension of the pattern matching problem
into the quantum domain. Assuming that these states are k@opniori to belong to a certain parametric
family of pure qubit systems, we derive two kinds of matching strategies. The first one is a semiclassical
strategy that is obtained by the natural extension of conventional matching strategies and consists of a two-
stage procedure: identificatigestimation of the unknown template states to design the clasdiféarning
process to train the classifjeand classification of the input system into the appropriate pattern class based on
the estimated results. The other is a fully quantum strategy without any intermediate measurement, which we
might call as theuniversal quantum matching machind/e present the Bayes optimal solutions for both
strategies in the case &= 1, showing that there certainly exists a fully quantum matching procedure that is
strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on
the learning process.
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[. INTRODUCTION technology. Suppose, for example, we are interested in find-
ing efficient representations of incoming random sequences

Distinguishing quantum systems is one of the centraPf quantum states. If the source identity is completely known
tasks in quantum information theory. We have a useful forthen we have well-known theorems on the asymptotic aver-
malism known as quantum detection and estimation theorgg_e length of codeword_s and eff|C|en_t codlng_algorlthms are
for dealing with this problem[1-3]. Recent progress in tue,;gw?4de(3\]/eloped and will be of practical use in the near fu-
quantum communication and computation provides motiva- Consider then the situation in which the source identity is

tions to generalize this theory and apply it to various NEW ot completely known, which is indeed the case when deal-

situations. Depending on our purposes there may be varioqﬁg with a realistic quantum source. The obvious way to

scenarios in the problem of distinguishing quantum systems,,o-eeq would be by direct estimation of the source identity,
The systems to be distinguished can be sometimes a set Qkich is then used in the coding algorithm in place of the
given quantum states, and sometimes a set of possible quaisknown information of the source. When the source is
tum dynamics. These systems are usually generated by i&own to be a member of a parametric family then the un-
quantumsourcethat is expected to have certain characteristicknown parameters are readily estimated from the incoming
features. If the source generates a completely random phegaining data. With enough data the estimate will be suffi-
nomena, then it is impossible to extract any meaningful inciently close to the truth and the representation will be nearly
formation from it and therefore such a case will not comeoptimal. On the other hand, if only a limited number of train-
into our consideration. In a broad sense, we may then esseimg data are available, one has to consider an appropriate
tially have three possible circumstances: estimation strategy that would hopefully be not only asymp-

(1) The source identity, i.e., a set of possible quantumtotically optimal when the length of the training set tends to
systems and associated probability distribution, is completelynfinity, but be also optimal for intermediate amounts of
known. training data. This kind of problem is known &sarning

(2) The source identity is unknown, but it belongs to astrategy in conventional information theory, particularly in
parametrized family of quantum systems and probability dispattern matching theor/7,8]. Reasonable criteria that are

tributions. usually assumed for a good strategy are as follows:
(3) The source is known to be stationary and ergodic, but (i) No knowledge of the source is required.
no other information is available. (i) The delay due to the learning process is not long.

Case(1) has long been a main subject of quantum detec- (i) The strategy should be simple and easy to implement.
tion and estimation theory. However, the other two cases are The purpose of this paper is to develop a formalism for
becoming of practical importance in quantum informationthe quantum learning strategy and to apply it to the problem

of distinguishing quantum systems in ca¢2sand(3). In a

recent papel9], the authors considered the problem of quan-
*Electronic address: psasaki@crl.go.jp tum pattern matching, in which each pattern cléss rep-
"Electronic address: carlini@qci.jst.go.jp resented by a known quantum statg) called a template
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state, and the task is to find a template that optimally N wi=1
matches a given unknown quantum stite. Namely, we IneN —~ \j =9
have assumed that the input statBsare given as quantum

information(i.e., unknown quantum stateshereas the tem- oK — ﬂ
plate statég;)’s with known identities are given as classical l92)®% = o,
information. Our goal was to obtain the best template as YOK =— (91,92)
classical information(i.e., knowledge of the identity of the B
best|g;)) via a suitable matching strategy that is represented

by a probability operator measufBOM), also referred to as {,&(gi,gé)} is for estimating the unknown template states. The out-

a positive operator valued measure. . . put{g;,g,} is used to design the classifier POM. In other words,
In the present paper we relax the ingredients of our pre-

vious formulation in the following way. That is, instead of USind the training datg;“©g; *, we fix the classifier to learn the
fully knowing the identities of the template states we may pePPropriate template parameters.
given only some finite numbéK) of copies of each template
(so our original formulation is equivalent ti=«). One
matching strategy would then be to apply state estimation t
the se_ts oK copies and proceed as in our o.r|.g|nal formqu— 1P)y=|1)*N|g,) K@ |g,) OK. (4)
tion with the resulting estimated state identities. But this is
unlikely to be an optimal strategy, since any intermediate \\e first analyze a semiclassical strategy that is a natural
measurement process generally degrades the classificatigRtension of conventional matching strategies. That is, we
performance, as shown in RdP]. Following the criteria  first apply state estimation to the template states, design a
(i)—(iii ), we should consider a more fully quantum procedurec|assifier based on the results, and then apply this to measure
which, for any input|f), identifies the best template class and classify the input feature statsee Fig. 1 This strategy
without attempting to obtain any further information aboutis represented by two kinds of POMs; the first one is for
the identities of the template states themselves. _estimating the identities of the given unknown template
Unfortunately, however, it seems still difficult to deal with ¢iotas from the sets d¢ samples@f"(@é]?*( (§; is under-

this problem in general contexts. Therefore, we mainly CONt00d adg;)(g;]). This POM is indexed by the possible out-

sider here some tractable cases in order to illustrate how th@omes{gi,gé} about the template identities and is denoted

quantum matching strategy should work in general. In par- = %%~ ) o i
ticular, we assume that we priori know that the input fea- PY {#(91.92)}. The other is for classifying the input feature

ture statdf) and the template statég;) and|g,) belong to  state withN samplesf®N. This POM consists of two ele-

the following parametrized families of pure quantum StateSZments{()l(gi,gé),f)2(g1,g§)} and should be the optimal

matching strategy for theestimated templates {g;,g5},

which was already given in our previous pagét. In this

way each classifier POM element depends on the estimated

parameter§g; ,g,}-

1 The problem here is then to find the optimal estimation

lg)=—=(|1)+€9])), (2)  strategy{m(9;,94)}. Such a strategy should maximize the
V2 following average score:

|92

FIG. 1. The semiclassical matching strategy. The POM

of binary classification. Thus we start with a system de-
gcribed by the state

1 )
|f>zﬁm>+éfll>), (1)

2 3
1 . — 1 2
l92)=—=(I1)+€%[1)), @ =3 3 (Z) J ], dstat
V2 (97.05) 171 0
where the parametefsg;, andg, are completely unknown. xTr[Qj(gi,gé)fm‘]
In this model, we will compare the semiclassical matching R R R
strategy that is obtained by a natural extension of the con- XTr[M(gi,gé)gf’Kébg?K]x|<f|gj>|2. (5)

ventional matching strategy, and its fully quantum counter- _ _ - _
part that we will identify as theniversal quantum matching The second trace term in E€p) is the conditional probabil-
machine ity of having the outcome$g;,g;} for the template states
{97,095}, The first trace term is then the conditional prob-
[l. SEMICLASSICAL MATCHING MACHINE ability that the input statd is classified into theth class
when an appropriate matching strategy is applied toNhe

We are now given only some finite numberof identical | L - . .
g y identical input sample$®", and|(f|g;)|? is the conditional

samples of each templatg;), which represents the features

of a classCi(=1,... M), but whose state identities are Score. . . .
completely unknown. The input stal®) is also given as an Using the conventional terminology of pattern matching

unknown quantum state and we haNeidentical copies of theory, the POM{(g;,g5)} corresponds to théearning
|f). For simplicity we seM =2, i.e., we study the problem process to train the classifigf);(g1,95)} with given train-
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ing sampleggy¥,95%}. A well-known method is the adap- _ o
tive learning algorithm in which one first measures each pair S :le TrTW(9;)Q;(91,92)]
of the training sample$g;,g,} and then updates the classi-

fier parameters step by step fidriterations under some ap- _ a A
propriate updating rules. In contrast, the optimal learning =5 TTHIW(g1) —W(g2) [}21(91,02)1, (10

strategy is expected to be a quy?l(gi,gé)} acting collec-
tively on the statg?“®g5 ", i.e., fully exploiting the power where the resolution of the identity (g ,95)

of quantum entanglement. _
The main purpose of this section is to develop a BayeS|an 2(91’92) I was used in the second equality. The POM

formulation for the optimal learning strategy. First, we intro- element (24(g;,9;) should then be taken to maximize

duce the score operators Tr{[W(gl) W(gz)]Q(gl g;)}, that is, it should be the pro-
jection onto the subspace corresponding to the positive ei-
W(gj)z ijzwdf?®'\‘|<f|gj)|2, (6) genvalues .of the operatW(gi)—W(gé).. The_ score opera-
0 tors are built from the tensor product Nfidentical copies of
. _ _ _ the input system|f)®N, and they are most appropriately de-
just as in our previous paper, and rewrite £%). as scribed on the N+1)-dimensional totally symmetric
, bosonic subspacef H ®N, Hg. Namely, the score operators
= ” can then be written in the form
=3 5] [ [ once e
1 [ N \/W
X T u(9},95)05 © 85 "] Wegh=grez| 2 2mnl+ 2 V4
2
ijl T Q;(91,92)W(g))]- () X (69 |n+1)(n|+e % |n)(n+1|) (1)

We then further introduce learning score operator _ _ _
where{|n)} is the occupation number basis for thecom-

R 1\2 2m R ponent. Therefore
’ ’ ®K
G(91,92)= > . dg:dg,9;

siné '\ N N
W(gy) —W(gy) = 2N+12 L

X (@72 n+1)(n|

®92K2 T Q;(97,99)W(g)], (8

and rewrite Eq(7) as +e 1@ ™2 ny(n+ 1)), (12)
SC= > Tiu(g),95)6(9).90)]. (99 where we have introduce®=(g;+g;)/2 and 6#=(g;
(91.95) —g5)/2. Equation(12) can also be rewritten as
Thus the problem of finding the optimal learning strategy . T A
reduces to the estimation problem of the classifier paramete&W| © + 7,0 |=W(g1) ~W(gp)

g; andgj through the learning score operat®tg; ,g5).
Let us now proceed with the explicit calculation. We first

need to evaluat&?_, Tr[{); (gi,gé)\?V(g,)] If the score op-
eratorW(gJ) were replaced byN(g ), then this quantity

would be nothing but the average score appearing in thwhere
guantum template matching problem discussed in our previ-

N “ N
ous papelf9]. In our previous work, the sdt();,{Q,} was Y — in®
designed for the priori known parameterg:{andgz %)f the V(®)_n§=:o e Inxnl 14
template states. On the other hand, the POM

{04(91,95).Q2(g1,95)} here should be designed for the es- gnq

timated parametery; ,gs5}, while the score operators corre-

spond to the unknown template statgsor g,.

o X A R sing s N N
By definition, the POM{Q,(g}.95).Q,(g;.95)} should AW(0,0)= Zxr 2 2 M g [(In+ )]

maximize the average score Mi(g;) instead oW(g;), i.e.,
we should maximiize +In}{(n+1]). (15

®+

V| 0+ )AW(O oVt (13
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5—y Ther_efore the learning score operator in E&). can be also
~ rewritten as
92 / 2 oK
0 G(®) ( ) fJ do:dg.07“©g;
A6 ~
91 1 .
A T X5 +Isin(gy—O)—sin(gp—©)]Ry(. (2D

_ ) _ Then the average score of H) finally reads
FIG. 2. The configuration of the template states in the Bloch

sphere representation. The input feature state and the template states — . .
lie on the great circle including the, and o, axes in the Bloch S :% T u(0)G(0)]. (22
sphere.

After the integration ofy; andg,, the learning score op-

Let the spectral decomposition aW(0,0) be eratorG(0) is represented by

A — . 1. . Ry . A A A
AW(0,6)= 2, NalAn){(Nal, (16) 6(0)=2Cat+—D(©)aC-Cab(©)], (23
and introduce the POM where
a ~ K
A= N Nnl,  Ar= No){ N\l 1 .1
= 2 Al A= 3 R @7 e- i3 ( )Wk' o
Note that the{|\,)}, and hence thgA ;}, do not depend on 1
while the eigenvaluek,, do, just beingproportional to sih B(@)= i /( K K
The optimal strategy for maximizin§' [Eq. (10)] is then - 2KED k/\k+1

expressed by the POM . .
X (€'9k+1)(k|—e "®|k)(k+1]). (25

A~ a ~ o

04(91,92)=Q(0)=V| 0+ 5 (18)  The basig|k)} is the symmetric bosonic basis for the system
of K identical copies of the template sta@ or g5 .

The paramete® represents the relative position of the pair

of the estimated stateg, and g, from the o, axis in the A. Optimal learning strategy for K=1

Bloch sphere. This is the only parameter needed to specify

A A m
AJVT<®+§

We have not succeeded yet in derlvmg the optimal POM

?,u(.)} maximizing the above scor® for generalK. Here
we consider the case #f=1 and present the three different
Rinds of optimal learning strategies in order to show how the
method works.

The first one is the group covariant continuous POM. First

observe that the spectral decompositionG(f®) is as fol-

samples|g7*,g5¥}. The angled betweeng; andg, in the
Bloch sphere, on the other hand, is irrelevant for the desig
of the classifier. The state configuration is depicted in Fig. 2
Using Eq.(18) we then obtain

Z i(91.95)W(g))] lows:
. (1+2Ry)
- G(0)=——45—la(®))a.(®)
=3, T10,(0)(g))] g 12 (9)@: (@)
1 1
it AlAW(gl 92_,91—92” + 51 TUTI+ glao(©)){(an(©)]
2 2 2
(1—2Ry)
1 | t g la@)a (), (@8
=5 +[sin(g;—©) —sin(g,~®)Ry, (19

where we have introduced

e 25 NN Vi ine . 20 |a+(®>>z%(—e‘”@””’2”|ﬁ>+ﬁ|8>+e‘“‘”<”’2”|u>),
- :2N+l “ nlin+1 <n| l|n+ > ( ) (27)
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|a7<®>>z%(e‘”@““/z”lﬁwﬁ|8>—e‘““’+<”/2>llu>),
(28)

1
|ao(®>>zﬁ(e—”@*(“’zﬂlm+e‘[®+<”’2>1|u>),

(29)
T) - T+ (30)
= — —+ ,
V2
9=—=d11-111) @
Sy=—=TH =111 31
V2
If we symbolically denote
R 1. 1
G(0)=5G(®)® g|TX(TI, (32
the optimal POM can be written as
#(0)=p(0)a|T)(T], (33
and the average score is given by
—n 1l 1
SC_— ,
S —8+8TrF, (39
where
~ 1 (27 ~
F=%JO dOu(0)G(0). (35

So we would like to find the POM:(®) maximizing Ti.

PHYSICAL REVIEW A 66, 022303 (2002

T'=(1+V2RY[11){1 1]+ (1+2v2Ry)|S)(S
+(1H V2R [LIN(LLL

It is almost straightforward to prove the optimality condi-
tions [1,2,10,11, that is,T —G(©)=0 (i.e., by seeing that
the eigenvalues are 3, 1, anyl @nd[T —G(®)]x(0)=0.
Thus the POM of Eq(37) is optimal, and the maximum
average score is

(39

Shhax %+ % (40

The POM in Eq.(38) is group covariant as specified by
[1(0))=V(0)[u(0)), (42)

V(©)=e 1 1)(11[+[S)(SI+e LI (42

The second optimal learning strategy is the discrete ver-
sion of the above strategy. Actually there are many equiva-
lent discrete POMs attaining the same maximum average

scoregsmgx. The strategy requiring the minimum number of
outputs is most appreciated practically. This can be directly

read from Eq(37) as{u(0),u(27/3),m(4/3)}. These two
strategies are group covariant POM, which are commonly
sought in quantum estimation theory by taking the symmetry

of the operatoiG(®) into account.

On the other hand, we may also derive another solution
from intuitive considerations in the following way. Since the
parameterg); andg, specifying the template states are com-
pletely unknown, the two template states are independent,
i.e., there is na priori correlation between them, and they
are just described by the product stége)®|g,). It might
then be sensible to expect that there should exist an optimal
learning strategy based on the separate measurement on each
template state. Yet the relative direction between the two
measurements dig,) and|g,) might be correlated for us to

We can see that the square-root measurement based on $¢ able to choose the appropriate classffief(®),Q,(0)}.

maximum eigenvalue statea (©)) is actually the optimal
POM. In fact, using

.1 (2n
a= 5| Td0la.(@))(a, (@)

1 1 1
= 21T T+ SI9(SI+ Z [ (36)
the square-root measurement is constructed by
1(0)=|1(0))p(0)|, (37

[m(0)=a"*a,(0))
_ _e_i[®+(17/2)]|TT>+ |S>+ei[®+(w/2)]|ll>.
(38

We then have

We may then apply a von Neumann measurement on each
template to know about the state identity. Let us define the
two von Neumann measurements

1
A= AD=). (43
- (44)

|B.)= \/§(|T>ii|l))-

We can then show that the four output POMs with the cor-
responding guesses f@r,

|1(00))=|A,)®[B.), ©o=—3l/4,
|n(®@1))=|As)®[B_), ©,=—ml4,
|w(0,))=|A_)®|B,), ©,=37/4,
|n(@3))=|A_)®[B_), O3z=ml4, (45)
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are also an optimal learning strategy. Actually, it can be seen
that =2 Tr | w(0))(x(0,)|G(0))] is just the maximum
average scor§n‘gx [Eq. (40)]. Note that in this case, how- SN
ever, the POM of Eq(45) is no longer group covariant. m o ‘.“i“‘:“‘“‘“““‘\‘ﬁ‘l

B. Separable learning strategy for generakK

For generalK, it seems complicated to find the optimal
learning strategy. Here we study a simple strategy composed
of the separate estimation of each template state. For the
families of template states considered here, the optimal esti-
mation strategy usingK identical samples can be found in
Ref.[12].

The optimal estimation strategy for the template state
|g.)®K is represented by the discrete and rank-one POM,,

FIG. 3. The average score by separable learning strategy, as a
ction of the numbers of the input featufid) and the template

{|Aj1><Aj1|} with (K) samples.
. 1 < _27Tj1 . . . . .
|AJ-1>=ﬁk§=)0 expi—5—k|lk), j1=01,...)-1 2|sin{ (j1—j2)/3— pl2]|siN(O); ;)
(46) =—cog2mj,/J)+cod (2mj,1d)+ ¢],
The number of elementd can be arbitrarily larger than . .
K+1. For the template statég,)®¥, we may apply 2lsinlm(j1=2)/3= pl2][cos©,;,)

{B},)(Bj, [} with —sin2mj, /) —sin(2m),/d)+ b]. (51

K .
1 2 ;
|sz>5ﬁ2 exr{ i 7;12+¢ |||>}, j,=01,...J—1. Forthesed; ;'s, we then have
I=0
J-1 J-1
T sl Ry [sir{ m(j1—j2)/3— /2]].
Here the relative anglep between the sef#\; ) and|B; ) is 2 J? ji=o0jz=0

introduced and this will be determined so as to maximize the (52)

matching score. The learning strategy can be represented as o ) _
As for ¢, it is enough to consider the region<Qp<27/J.

[L(®jlj2)=|Aj1>(AJ—1|®|BJ-2>(BJ-2|. (48)  Then the summation of the above equation can be carried
out, and results in
The assignment of the classifier parameﬁ)quj2 from the

o S . o —n 1 2 12]) — (/2
estimation outcomesj{,j,) is also determined to maximize SSC== + RyQk Coi(t )~ ($/2)] (53
the matching score. 2 Jsin(/2J)

The average score is written as

To maximize the score we should talke= 7w/J. The score is

—sc M . A then monotonically decreasing with respectit@herefore]
S :J.E:O J.Zto T u(0;,,)G(0;;,)] should be taken as the minimum valdeK+ 1, although
v each{|A; )(A; |} or {|B; )(B, |} itself is optimal for anyJ
B £+ RyQk o E:l e - 27, =K+1 as the estimation strategy g,)®X or |g,) €K, re-
=5 7 %% P spectively. The average score finally reads
. 2mj; et 2
+sin 0,;,~ T_‘f’”' (49 STE S PR kT s a2k Y
where This score is plotted in Fig. 3.
K1 By numerical test, we have seen that this separable learn-
Q-K= i /( K K (50) ing strategy{,&(G)jlj ,)} does not satisfy the Bayes optimality
2% &o k/\k+1)’ condition except for the cag€é=1. ForK =1, this strategy

is nothing but the third one in the preceding section. Thus for
andRy is given by Eq.(20). The term inside the bracket on k=2 it is an open problem whether the optimal learning
the right-hand side of Eq(49) attains the maximum value strategy can be found in other types of separable strategies or
2|sin(7(j;—j2)3— ¢/2]| when®; ;. is chosen to satisfy the only found in a collective type of strategy, and what it looks
condition like.
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IIl. UNIVERSAL QUANTUM MATCHING MACHINE 1

W =-NTTIOR
The strategies described in the preceding section would be LooNFerK

good and practical matching strategies. But this is not opti-
mal and there is a more fully quantum procedure that ex-

% ﬁ S N\ (K [K
tracts only the required information, i.e., the classical infor- %2 n/\k/\1 [k I(n.k |
mation on which class is best matched wijtty, without

attempting to obtain any further information about the iden- &' /[NY/ N 2_: EK: Ky /(K[ K
tities of the template states themselves. The total system at +n=0 ni\n+1) & i5h\ 1 kI k+1

our hand is now represented by the state

[W)y=|F)*Ne|g) - - @ |gw)©K. (55) X (In+1k1(n,k+ 11+ |nk+ 1 {n+1k,I]) |,
The optimal strategy can then be defined by a straightfor- (59)
ward extension of the Bayesian formulation given in our
previous work{9], with the score operators now defined by 1
Wy =oNT272k
- 1\M
W= z) [ dov--- [ dgu [ atfwyw) Nk
x|2> > 2( )( )( )|n,k,|><n,k,||
2 =0 k=0 I=
x[(flan2P(h), (56) e 1

"SEOINYN L E SR [KY K
where P(f) is the a priori probability distribution of the +n:0 n/\n+1 kzo “h \ k [\ 1+1

input feature parameteftaken here as uniform, i.eP(f)
=1/27). The new ingredients in the present formulation are
just the additional integrations over the unknown parameters
for the template states. The fully quantum optimal strategy is

obtained as a PONII;} that maximizes the following aver-
age score:

X (In+ 1k, ){n,k,I+1]+|nk,I+1){n+1k,l])|,

(60)

where|n,k,1)=|n)®|k)®[l), and{|n)}, {|k)}, and{|I)} are
M the occupation number basis of thecomponent forf f)©N,
2 F(WIT)). 57 190°", and|g,)®", respectively. We are to maximize the
= following quantity

Once parametrized families of input and template states are
specified, the obtained solution is expected to work equally
well for any state belonging to such families by its definition.

In this sense we might cgll this optimal POM as a unlversalAS already explained in Sec. Il below E@0), the problem
guantum matching machine.

reduces to finding the subspace corresponding to the positive
eigenvalues of the operataV¥; —W,. From Egs.(59) and
(60) we have in the case ¢€=1,

§QM=%+Tr[(\7V1—\7V2)fI1]. (61)

A. Example: Two-state system withM=2 and K=1
Although the definition of the universal quantum match-

ing machine is straightforward, it is in general a difficult task R R \/E N-1 N N
to derive an explicit expression for the corresponding POM. W;—Wo=—— E ( N

N+4
Here we present an illustrative example to demonstrate how 2 n=0 N+l

the universal quantum matching machine works and attains a X[—|n+1,00¢(n,S - |n,S)(n+1,0q
performance that cannot be reached by any other conven-

tional (semiclassicalmatching strategy. +|n+1,5¢(n,11+|n,1(n+ 18], (62

As usual by now, the full input systenf)®N is most
appropriately described on thél¢1)- dimensional totally \yhere the statgn+ 1,00 is understood agn+1)®|0)
symmetric bosonic subspate; as ®[0), and [S)=(|0D~|10)/v2=(|11)~[L1))/\2. The

N 17N operatoiW,; — W, can be finally arranged into a direct sum as
H)N=2> \/5n )e‘”f|n>, (58)
n=0 2%\ n N
\7V1—\7V2= D AWn, (63)
where{|n)} is the occupation number basis of theeompo- n=0
nent. In the case of a binary matching problekt2) we
have the two-score operators where
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AW—\/E N \/ +1,00(n,S/+|n,S)(n+1,0
N
+ no1 (In,S}{n—=1,11+|n—-1,11¢(n,S|)|, (1sns=N-1), (64)
- V2N
AWoszM(—|1.00><0,S|—|0,S><1,OQ), (65)
and
. V2N
AWN= 4[N S)(N= 1,11 +[N—1,11(N, S)). (66)
Subsequently, thaW,,'s are diagonalized as
) J2 N \/ N
A=V o) Vlnea | #laeg [Im ctnl=Im-caD, - (1=n=n-1), (67
A V2N
AW052N+4(|1>++<1|—|1>——<1|), (68)
and
. V2N
AWNEZN+4(|N+1)++<N+1|—|N+1)__<N+1), (69)
where
/[ N \/ N /[ N
¥ + + + + -
TN /IR0 N g [ H - [IMS= Vg fIn= 12D
In).= , (70)
\/5\/ N N
+
n+1 n—1
|
for Isn<sN-1,
sl 2
2 2N+4
1
|1).=-—=(%|1,00+]0,5)), (71) N-1 N N N
V2 X + \/ +
2JN nzl n n+1 n-1//° (74
and _
This scoreS®M obtained by the universal quantum Tatch-
1 ing machine should be compared with the optimal s@®te
IN+1).=—(|N,S)=|N—-1,11)), (72)  of the semiclassical matching strategy based on the learning

V2

process. Figure 4 shows the average score by the two kind of
matching strategies as a function lf the number of input

respectively. Therefore the optimal matching strategy is defeature samples. The big dots represent the average score by

scribed by the POM,

N+1 N+1
lez |n>+ +<n|1 HZZE |n>**<n|!
n=1 n=1

and the optimal attainable average score is given by

(73

the universal quantum matching machine in the cas& of
=1. This is larger than the one by the optimal semiclassical
matching strategy based on the learning process, shown by
the big circle. AsK increases, we expect larger score al-
though the values cannot be plotted because we have not
succeeded yet in deriving the optimal solution for gen&tral

For K=, we have derived the maximum attainable score in

022303-8



QUANTUM LEARNING AND UNIVERSAL QUANTUM . .. PHYSICAL REVIEW A 66, 022303 (2002

Ref. [9], which is shown by the solid line in Fig. 4. The S -
dashed line is for the semiclassical matching by majority 0.80 -
voting. L
(1%} -
= 0.75 N : o ]
IV. CONCLUDING REMARKS 8 1 --- o--- Semiclassical matching by majority voting (K=00) ]
[5) -+ —s=— Quantum optimal matching (K=00)
We have considered a full quantum extension of the bi- &, 070_1_ O Semiclassical matching by learning (K=1) _
nary quantum pattern matching problem that was addresse & Y'Y7]] @ Quantum optimalmatching (K=1)
in the recent papei9]. In such a problem, given unknown 2
template stately;)®X and|g,)®X, and an input feature state <% 0.65
[N, we are to decide to which template the input feature '
state is closest in the sense of the fidelity criterion. We have B L b it bl i et i
presented two kinds of matching strategies, that is, a semi g g JiACoSPeooPeoeoRRROdRIRaRRRRAPRR R FR2 Y Y
classical matching strategy based on learning and a univers: 0 20 40 60 80
guantum matching strategy. In particular, we have explicitly N

derived the Bayes optimal learning strategy for the semiclas-
sical matching and the optimal universal quantum matching FIG. 4. The average score as a function of the number of input
strategy in the case of one cop,=1, for the template feature systems. The big dots and circles represent the attainable
states, and an arbitrary numbéiof copies of the input state. scores by the universal quantum matching machine and the optimal
Our previous results in Ref9] correspond to the case of semiclassical matching strategy based on the learning process, re-
K=o, spectively, in the cas&=1. The solid and dashed lines are the
For generalk=2, the Bayes optimal solutions for both Scores in the case ¢&f=c derived in our previous paper.
the semiclassical learning strategy and the universal quantum
matching strategy are still not known. Concerning the opti-states themselves, excluding any intermediate measurement
mal learning strategy used in the semiclassical matchingrocess. In a similar way, it is worth mentioning the recent
problem, one of the interesting questions would be whethework on the comparison of two unknown quantum pure
there exists an optimal separable strategy. The strategy dstateq14], where the quantum optimal comparing strategies
scribed in EQ.(48) does not satisfy the Bayes optimality are derived for several criteria. Concerning practical prob-
condition except for the cask=1. What would then the lems of quantum pattern matching, Trugenberger addressed
optimal learning strategy look like in this case? Of coursethe problem of an associatieontent-addressiblejuantum
there should be a group covariant POM that is generally amemory[15,16]. Typical address-oriented memories, such as
entangled measurement on the two templates. Is such an etenventional random access memories, cannot recognize in-
tangled measurement the only optimal learning strategy? Ifomplete or noisy information. Quantum memories sug-
so, it would be surprising because the two templates have ngested by Trugenberger can, however, recognize an incom-
a priori correlation. Or are there other kinds of separableplete input state, and can output the state that resembles
measurements? As for the universal quantum matching mdeverlaps most with the input state. Moreover, the storage
chine, the problem would just reduce to finding the appropricapacity of such quantum memories can be exponential in
ate division of the Hilbert space, but for largkrthis be- the number of qubits in contrast to that the storage capacity
comes a tedious task. It would be worth mentioning theremains linear in the number of nodes, such as neurons, in
recent progress on finding the Bayes optimal POM. Jezeklassical associative memories. The retrieving algorithm pro-
et al. provided an efficient method for numerical determina-posed in Trugenberger’'s work can be regarded as a kind of
tion of optimal POM based on the theory of semidefiniterealization of quantum matching POM.

programming [13]. Application of this algorithm to the In practical applications, the input and the template sys-
present case and may be more practical cases as well woulems will be more complicated, and possibly associated with
be an interesting future problem. secondary features that are not relevant to the pattern classi-

The reader might feel that the model used in this paper ification. So, as already pointed out in R], it would be of
in some respect artificial. In fact, this model is still far away practical concern how to enhance the features of interest and
from practically encountered situations. However, we mayto quarry the essential componeifssibspacesof the quan-
say that an important aspect of quantum pattern matchinum system for the pattern classification. In the scenario
problem is already seen. Namely, there certainly exists a fulvhere the input and template identities are completely un-
qguantum matching procedure as the universal quanturknown, we might rely on a two-stage procedure. First, esti-
matching machine, which is strictly superior to the straight-mate the input and template identities to extract important
forward extension of the conventional matching strategyfeatures by using some set of aymptotically vanishing mea-
based on the learning process of the classifier with the trainsure of the given samples; then discard redundant parts of the
ing template samples. The derived universal quantum matchrput and the template systems, and cut an effective subspace
ing machine, i.e., the POM in Eq73), provides a typical out of the original quantum Hilbert space; finally, after the
matching model for extracting the meaningful information feature enhancement process, carry out a fully quantum pat-
about the best template class without attempting to obtaitern classification procedure in the smaller space. Thus, in a
any further information about the identities of the templatesense, we see that the quantum pattern matching problem
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naturally involves aspects of both state estimation and statgroblem be treated from the point of view of quantum com-
discrimination. The former is necessary for the learning projputational complexity? If there will be some progress in the
cess and the feature enhancement, while the latter is used feynthesis of a quantum network for the obtained optimal
the pattern classification. In this direction, it would be alsoPOM in the Bayesian approach, then it will be possible to
interesting to study effective quantum matching algorithmssearch near optimal quantum matching algorithms whose
that are simple enough in structure and easy to be implecomplexity might be eventually lower than that of the corre-

mented, although not necessarily the Bayes optimal. sponding conventional semiclassical approaches.
Similar to the case of the conventional pattern matching
problem, the quantum matching algorithm complexity will ACKNOWLEDGMENT

be an important future problem. It is, in fact, believed that
the complexity in some image recognition problems is in the The authors would like to thank R. Jozsa for helpful dis-
NP complete class. How can the quantum pattern matchingussions.
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