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Quantum learning and universal quantum matching machine
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Suppose that three kinds of quantum systems are given in some unknown statesu f & ^ N, ug1&
^ K, andug2&

^ K,
and we want to decide whichtemplatestateug1& or ug2&, each representing the feature of the pattern classC1

or C2, respectively, is closest to the inputfeaturestateu f &. This is an extension of the pattern matching problem
into the quantum domain. Assuming that these states are knowna priori to belong to a certain parametric
family of pure qubit systems, we derive two kinds of matching strategies. The first one is a semiclassical
strategy that is obtained by the natural extension of conventional matching strategies and consists of a two-
stage procedure: identification~estimation! of the unknown template states to design the classifier~learning
process to train the classifier! and classification of the input system into the appropriate pattern class based on
the estimated results. The other is a fully quantum strategy without any intermediate measurement, which we
might call as theuniversal quantum matching machine. We present the Bayes optimal solutions for both
strategies in the case ofK51, showing that there certainly exists a fully quantum matching procedure that is
strictly superior to the straightforward semiclassical extension of the conventional matching strategy based on
the learning process.

DOI: 10.1103/PhysRevA.66.022303 PACS number~s!: 03.67.2a, 03.65.Ta, 89.70.1c
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I. INTRODUCTION

Distinguishing quantum systems is one of the cen
tasks in quantum information theory. We have a useful f
malism known as quantum detection and estimation the
for dealing with this problem@1–3#. Recent progress in
quantum communication and computation provides moti
tions to generalize this theory and apply it to various n
situations. Depending on our purposes there may be var
scenarios in the problem of distinguishing quantum syste
The systems to be distinguished can be sometimes a s
given quantum states, and sometimes a set of possible q
tum dynamics. These systems are usually generated
quantumsourcethat is expected to have certain characteris
features. If the source generates a completely random
nomena, then it is impossible to extract any meaningful
formation from it and therefore such a case will not com
into our consideration. In a broad sense, we may then es
tially have three possible circumstances:

~1! The source identity, i.e., a set of possible quant
systems and associated probability distribution, is comple
known.

~2! The source identity is unknown, but it belongs to
parametrized family of quantum systems and probability d
tributions.

~3! The source is known to be stationary and ergodic,
no other information is available.

Case~1! has long been a main subject of quantum det
tion and estimation theory. However, the other two cases
becoming of practical importance in quantum informati
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technology. Suppose, for example, we are interested in fi
ing efficient representations of incoming random sequen
of quantum states. If the source identity is completely kno
then we have well-known theorems on the asymptotic av
age length of codewords and efficient coding algorithms
being developed and will be of practical use in the near
ture @4–6#.

Consider then the situation in which the source identity
not completely known, which is indeed the case when de
ing with a realistic quantum source. The obvious way
proceed would be by direct estimation of the source ident
which is then used in the coding algorithm in place of t
unknown information of the source. When the source
known to be a member of a parametric family then the u
known parameters are readily estimated from the incom
training data. With enough data the estimate will be suf
ciently close to the truth and the representation will be nea
optimal. On the other hand, if only a limited number of trai
ing data are available, one has to consider an approp
estimation strategy that would hopefully be not only asym
totically optimal when the length of the training set tends
infinity, but be also optimal for intermediate amounts
training data. This kind of problem is known aslearning
strategy in conventional information theory, particularly
pattern matching theory@7,8#. Reasonable criteria that ar
usually assumed for a good strategy are as follows:

~i! No knowledge of the source is required.
~ii ! The delay due to the learning process is not long.
~iii ! The strategy should be simple and easy to impleme
The purpose of this paper is to develop a formalism

the quantum learning strategy and to apply it to the probl
of distinguishing quantum systems in cases~2! and ~3!. In a
recent paper@9#, the authors considered the problem of qua
tum pattern matching, in which each pattern classCi is rep-
resented by a known quantum stateugi& called a template
©2002 The American Physical Society03-1



ll

-
al
a

te

re
of
b

e

n
la-

i
at
at

r
s
u

th
on

t
a

es

.
in
o
er

s
e

e-

ural
we
n a
sure

for
te

t-
ed

e

-
l

ated

on
e

b-

ng

M

ut-
s,
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state, and the task is to find a template that optima
matches a given unknown quantum stateu f &. Namely, we
have assumed that the input statesu f & are given as quantum
information~i.e., unknown quantum states! whereas the tem
plate stateugi& ’s with known identities are given as classic
information. Our goal was to obtain the best template
classical information~i.e., knowledge of the identity of the
bestugi&) via a suitable matching strategy that is represen
by a probability operator measure~POM!, also referred to as
a positive operator valued measure.

In the present paper we relax the ingredients of our p
vious formulation in the following way. That is, instead
fully knowing the identities of the template states we may
given only some finite number~K! of copies of each templat
~so our original formulation is equivalent toK5`). One
matching strategy would then be to apply state estimatio
the sets ofK copies and proceed as in our original formu
tion with the resulting estimated state identities. But this
unlikely to be an optimal strategy, since any intermedi
measurement process generally degrades the classific
performance, as shown in Ref.@9#. Following the criteria
~i!–~iii !, we should consider a more fully quantum procedu
which, for any inputu f &, identifies the best template clas
without attempting to obtain any further information abo
the identities of the template states themselves.

Unfortunately, however, it seems still difficult to deal wi
this problem in general contexts. Therefore, we mainly c
sider here some tractable cases in order to illustrate how
quantum matching strategy should work in general. In p
ticular, we assume that wea priori know that the input fea-
ture stateu f & and the template statesug1& andug2& belong to
the following parametrized families of pure quantum stat

u f &[
1

A2
~ u↑&1ei f u↓&), ~1!

ug1&[
1

A2
~ u↑&1eig1u↓&), ~2!

ug2&[
1

A2
~ u↑&1eig2u↓&), ~3!

where the parametersf, g1, andg2 are completely unknown
In this model, we will compare the semiclassical match
strategy that is obtained by a natural extension of the c
ventional matching strategy, and its fully quantum count
part that we will identify as theuniversal quantum matching
machine.

II. SEMICLASSICAL MATCHING MACHINE

We are now given only some finite numberK of identical
samples of each templateugi&, which represents the feature
of a classCi(51, . . . ,M ), but whose state identities ar
completely unknown. The input stateu f & is also given as an
unknown quantum state and we haveN identical copies of
u f &. For simplicity we setM52, i.e., we study the problem
02230
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of binary classification. Thus we start with a system d
scribed by the state

uC&[u f & ^ N
^ ug1&

^ K
^ ug2&

^ K. ~4!

We first analyze a semiclassical strategy that is a nat
extension of conventional matching strategies. That is,
first apply state estimation to the template states, desig
classifier based on the results, and then apply this to mea
and classify the input feature state.~see Fig. 1!. This strategy
is represented by two kinds of POMs; the first one is
estimating the identities of the given unknown templa
states from the sets ofK samplesĝ1

^ K
^ ĝ2

^ K (ĝi is under-
stood asugi&^gi u). This POM is indexed by the possible ou
comes$g18 ,g28% about the template identities and is denot

by $m̂(g18 ,g28)%. The other is for classifying the input featur

state withN samplesf̂ ^ N. This POM consists of two ele
ments $V̂1(g18 ,g28),V̂2(g18 ,g28)% and should be the optima

matching strategy for theestimated templates $ĝ18 ,ĝ28%,
which was already given in our previous paper@9#. In this
way each classifier POM element depends on the estim
parameters$g18 ,g28%.

The problem here is then to find the optimal estimati
strategy$m̂(g18 ,g28)%. Such a strategy should maximize th
following average score:

S̄SC[ (
(g18 ,g28)

(
j 51

2 S 1

2p D 3E E E
0

2p

dg1dg2d f

3Tr@V̂ j~g18 ,g28! f̂ ^ N#

3Tr@m̂~g18 ,g28!ĝ1
^ K

^ ĝ2
^ K#3u^ f ugj&u2. ~5!

The second trace term in Eq.~5! is the conditional probabil-
ity of having the outcomes$g18 ,g28% for the template states

$ĝ1
^ K ,ĝ2

^ K%. The first trace term is then the conditional pro

ability that the input statef̂ is classified into thej th class
when an appropriate matching strategy is applied to theN

identical input samplesf̂ ^ N, and u^ f ugj&u2 is the conditional
score.

Using the conventional terminology of pattern matchi
theory, the POM$m̂(g18 ,g28)% corresponds to thelearning

process to train the classifier$V̂ j (g18 ,g28)% with given train-

FIG. 1. The semiclassical matching strategy. The PO

$m̂(g18 ,g28)% is for estimating the unknown template states. The o
put $g18 ,g28% is used to design the classifier POM. In other word

using the training dataĝ1
^ K

^ ĝ2
^ K , we fix the classifier to learn the

appropriate template parameters.
3-2
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ing samples$ĝ1
^ K ,ĝ2

^ K%. A well-known method is the adap
tive learning algorithm in which one first measures each p
of the training samples$ĝ1 ,ĝ2% and then updates the class
fier parameters step by step forK iterations under some ap
propriate updating rules. In contrast, the optimal learn
strategy is expected to be a POM$m̂(g18 ,g28)% acting collec-

tively on the stateĝ1
^ K

^ ĝ2
^ K , i.e., fully exploiting the power

of quantum entanglement.
The main purpose of this section is to develop a Bayes

formulation for the optimal learning strategy. First, we intr
duce the score operators

Ŵ~gj ![
1

2pE0

2p

d f f̂ ^ Nu^ f ugj&u2, ~6!

just as in our previous paper, and rewrite Eq.~5! as

S̄SC5 (
(g18 ,g28)

S 1

2p D 2E E
0

2p

dg1dg2

3Tr@m̂~g18 ,g28!ĝ1
^ K

^ ĝ2
^ K#

3(
j 51

2

Tr@V̂ j~g18 ,g28!Ŵ~gj !#. ~7!

We then further introducea learning score operator

Ĝ~g18 ,g28![S 1

2p D 2E E
0

2p

dg1dg2ĝ1
^ K

^ ĝ2
^ K(

j 51

2

Tr@V̂ j~g18 ,g28!Ŵ~gj !#, ~8!

and rewrite Eq.~7! as

S̄SC5 (
(g18 ,g28)

Tr@m̂~g18 ,g28!Ĝ~g18 ,g28!#. ~9!

Thus the problem of finding the optimal learning strate
reduces to the estimation problem of the classifier parame
g18 andg28 through the learning score operatorĜ(g18 ,g28).

Let us now proceed with the explicit calculation. We fir
need to evaluate( j 51

2 Tr@V̂ j (g18 ,g28)Ŵ(gj )#. If the score op-

erator Ŵ(gj ) were replaced byŴ(gj8), then this quantity
would be nothing but the average score appearing in
quantum template matching problem discussed in our pr
ous paper@9#. In our previous work, the set$V̂1 ,V̂2% was
designed for thea priori known parametersg1 andg2 of the
template states. On the other hand, the PO

$V̂1(g18 ,g28),V̂2(g18 ,g28)% here should be designed for the e
timated parameters$g18 ,g28%, while the score operators corre

spond to the unknown template statesĝ1 or ĝ2.
By definition, the POM$V̂1(g18 ,g28),V̂2(g18 ,g28)% should

maximize the average score forŴ(gj8) instead ofŴ(gj ), i.e.,
we should maximiize
02230
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S̄85(
j 51

2

Tr@Ŵ~gj8!V̂ j~g18 ,g28!#

5
1

2
1Tr$@Ŵ~g18!2Ŵ~g28!#%V̂1~g18 ,g28!%, ~10!

where the resolution of the identity V̂1(g18 ,g28)

1V̂2(g18 ,g28)5 Î was used in the second equality. The PO

element V̂1(g18 ,g28) should then be taken to maximiz

Tr$@Ŵ(g18)2Ŵ(g28)#V̂(g18 ,g28)%, that is, it should be the pro
jection onto the subspace corresponding to the positive
genvalues of the operatorŴ(g18)2Ŵ(g28). The score opera-
tors are built from the tensor product ofN identical copies of
the input system,u f & ^ N, and they are most appropriately d
scribed on the (N11)-dimensional totally symmetric
bosonic subspaceof H ^ N, HB . Namely, the score operator
can then be written in the form

Ŵ~gj8!5
1

2N11 F (
n50

N

2un&^nu1 (
n50

N21 AS N

n D S N

n11D
3~eig j8un11&^nu1e2 ig j8un&^n11u!G , ~11!

where$un&% is the occupation number basis for the↓ com-
ponent. Therefore

Ŵ~g18!2Ŵ~g28!5
sinu

2N11 (
n50

N21 AS N

n D S N

n11D
3~ei (Q1p/2)un11&^nu

1e2 i (Q1p/2)un&^n11u!, ~12!

where we have introducedQ[(g181g28)/2 and u[(g18
2g28)/2. Equation~12! can also be rewritten as

DŴS Q1
p

2
,u D[Ŵ~g18!2Ŵ~g28!

5V̂S Q1
p

2 DDŴ~0,u!V̂†S Q1
p

2 D , ~13!

where

V̂~Q![ (
n50

N

einQun&^nu ~14!

and

DŴ~0,u![
sinu

2N11 (
n50

N21 AS N

n D S N

n11D ~ un11&^nu

1un&^n11u!. ~15!
3-3
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Let the spectral decomposition ofDŴ(0,u) be

DŴ~0,u!5 (
n50

N

lnuln&^lnu, ~16!

and introduce the POM

L̂15 (
ln>0

uln&^lnu, L̂25 (
ln,0

uln&^lnu. ~17!

Note that the$uln&%, and hence the$L̂ j%, do not depend onu
while the eigenvaluesln do, just being proportional to sinu.
The optimal strategy for maximizingS̄8 @Eq. ~10!# is then
expressed by the POM

V̂ j~g18 ,g28![V̂ j~Q!5V̂S Q1
p

2 D L̂ j V̂
†S Q1

p

2 D . ~18!

The parameterQ represents the relative position of the pa
of the estimated statesĝ18 and ĝ28 from the ŝx axis in the
Bloch sphere. This is the only parameter needed to spe
the classifier, that is, the one to be learned from the train
samples$ĝ1

^ K ,ĝ2
^ K%. The angleu betweenĝ18 and ĝ28 in the

Bloch sphere, on the other hand, is irrelevant for the des
of the classifier. The state configuration is depicted in Fig
Using Eq.~18! we then obtain

(
j 51

2

Tr@V̂ j~g18 ,g28!Ŵ~gj !#

5(
j 51

2

Tr@V̂ j~Q!Ŵ~gj !#

5
1

2
1TrF L̂1DŴS g11g2

2
2Q,

g12g2

2 D G
5

1

2
1@sin~g12Q!2sin~g22Q!#RN , ~19!

where

R2N[
1

2N11 (
n50

N21 AS N

n D S N

n11D ^nuL̂1un11&. ~20!

FIG. 2. The configuration of the template states in the Blo
sphere representation. The input feature state and the template

lie on the great circle including theŝx and ŝy axes in the Bloch
sphere.
02230
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Therefore the learning score operator in Eq.~8! can be also
rewritten as

Ĝ~Q!5S 1

2p D 2E E
0

2p

dg1dg2ĝ1
^ K

^ ĝ2
^ K

3H 1

2
1@sin~g12Q!2sin~g22Q!#RNJ . ~21!

Then the average score of Eq.~9! finally reads

S̄SC5(
Q

Tr@m̂~Q!Ĝ~Q!#. ~22!

After the integration ofg1 andg2, the learning score op
eratorĜ(Q) is represented by

Ĝ~Q!5
1

2
Ĉ^ Ĉ1

RN

2
@D̂~Q! ^ Ĉ2Ĉ^ D̂~Q!#, ~23!

where

Ĉ[
1

2K (
k50

K S K

k D uk&^ku, ~24!

D̂~Q![
i

2K (
k50

K21 AS K

k D S K

k11D
3~eiQuk11&^ku2e2 iQuk&^k11u!. ~25!

The basis$uk&% is the symmetric bosonic basis for the syste
of K identical copies of the template statesĝ1

K or ĝ2
K .

A. Optimal learning strategy for KÄ1

We have not succeeded yet in deriving the optimal PO

$m̂(Q)% maximizing the above scoreS̄ for generalK. Here
we consider the case ofK51 and present the three differen
kinds of optimal learning strategies in order to show how
method works.

The first one is the group covariant continuous POM. F
observe that the spectral decomposition ofĜ(Q) is as fol-
lows:

Ĝ~Q!5
~112RN!

8
ua1~Q!&^a1~Q!u

1
1

8
uT&^Tu1

1

8
ua0~Q!&^a0~Q!u

1
~122RN!

8
ua2~Q!&^a2~Q!u, ~26!

where we have introduced

ua1~Q!&[
1

2
~2e2 i [Q1(p/2)]u↑↑&1A2uS&1ei [Q1(p/2)]u↓↓&),

~27!

h
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ua2~Q!&[
1

2
~e2 i [Q1(p/2)]u↑↑&1A2uS&2ei [Q1(p/2)]u↓↓&),

~28!

ua0~Q!&[
1

A2
~e2 i [Q1(p/2)]u↑↑&1ei [Q1(p/2)]u↓↓&),

~29!

uT&[
1

A2
~ u↑↓&1u↓↑&), ~30!

uS&[
1

A2
~ u↑↓&2u↓↑&). ~31!

If we symbolically denote

Ĝ~Q!5
1

8
G̃~Q! %

1

8
uT&^Tu, ~32!

the optimal POM can be written as

m̂~Q!5m̃~Q! % uT&^Tu, ~33!

and the average score is given by

S̄SC5
1

8
1

1

8
TrG̃, ~34!

where

G̃[
1

2pE0

2p

dQm̃~Q!G̃~Q!. ~35!

So we would like to find the POMm̃(Q) maximizing TrG̃.
We can see that the square-root measurement based o
maximum eigenvalue stateua1(Q)& is actually the optimal
POM. In fact, using

â5
1

2pE0

2p

dQua1~Q!&^a1~Q!u

5
1

4
u↑↑&^↑↑u1

1

2
uS&^Su1

1

4
u↓↓&^↓↓u, ~36!

the square-root measurement is constructed by

m̃~Q!5um̃~Q!&^m̃~Q!u, ~37!

um̃~Q!&[â21/2ua1~Q!&

52e2 i [Q1(p/2)]u↑↑&1uS&1ei [Q1(p/2)]u↓↓&.

~38!

We then have
02230
the

G̃5~11A2RN!u↑↑&^↑↑u1~112A2RN!uS&^Su

1~11A2RN!u↓↓&^↓↓u. ~39!

It is almost straightforward to prove the optimality cond
tions @1,2,10,11#, that is, G̃2G̃(Q)>0 ~i.e., by seeing that
the eigenvalues are 3, 1, and 0!, and @G̃2G̃(Q)#m̃(Q)50.
Thus the POM of Eq.~37! is optimal, and the maximum
average score is

S̄max
SC 5

1

2
1

RN

A2
. ~40!

The POM in Eq.~38! is group covariant as specified by

um̃~Q!&5V̂~Q!um̃~0!&, ~41!

V̂~Q!5e2 iQu↑↑&^↑↑u1uS&^Su1eiQu↓↓&^↓↓u. ~42!

The second optimal learning strategy is the discrete v
sion of the above strategy. Actually there are many equi
lent discrete POMs attaining the same maximum aver
scoreS̄max

SC . The strategy requiring the minimum number
outputs is most appreciated practically. This can be dire
read from Eq.~37! as$m̃(0),m̃(2p/3),m̃(4p/3)%. These two
strategies are group covariant POM, which are commo
sought in quantum estimation theory by taking the symme
of the operatorĜ(Q) into account.

On the other hand, we may also derive another solut
from intuitive considerations in the following way. Since th
parametersg1 andg2 specifying the template states are com
pletely unknown, the two template states are independ
i.e., there is noa priori correlation between them, and the
are just described by the product stateug1& ^ ug2&. It might
then be sensible to expect that there should exist an opt
learning strategy based on the separate measurement on
template state. Yet the relative direction between the t
measurements onug1& andug2& might be correlated for us to
be able to choose the appropriate classifier$V1(Q),V2(Q)%.
We may then apply a von Neumann measurement on e
template to know about the state identity. Let us define
two von Neumann measurements

uA6&[
1

A2
~ u↑&6u↓&), ~43!

uB6&[
1

A2
~ u↑&6 i u↓&). ~44!

We can then show that the four output POMs with the c
responding guesses forQ,

um~Q0!&5uA1& ^ uB1&, Q0523p/4,

um~Q1!&5uA1& ^ uB2&, Q152p/4,

um~Q2!&5uA2& ^ uB1&, Q253p/4,

um~Q3!&5uA2& ^ uB2&, Q35p/4, ~45!
3-5
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are also an optimal learning strategy. Actually, it can be s
that ( i 50

3 Tr@ um(Q i)&^m(Q i)uĜ(Q i)# is just the maximum

average scoreS̄max
SC @Eq. ~40!#. Note that in this case, how

ever, the POM of Eq.~45! is no longer group covariant.

B. Separable learning strategy for generalK

For generalK, it seems complicated to find the optim
learning strategy. Here we study a simple strategy compo
of the separate estimation of each template state. For
families of template states considered here, the optimal e
mation strategy usingK identical samples can be found
Ref. @12#.

The optimal estimation strategy for the template st
ug1&

^ K is represented by the discrete and rank-one P
$uAj 1

&^Aj 1
u% with

uAj 1
&[

1

AJ
(
k50

K

expS i
2p j 1

J
kD uk&, j 150,1, . . . ,J21.

~46!

The number of elementsJ can be arbitrarily larger than
K11. For the template stateug2&

^ K, we may apply
$uBj 2

&^Bj 2
u% with

uBj 2
&[

1

AJ
(
l 50

K

expF S i
2p j 2

J
1f D l u l &G , j 250,1, . . . ,J21.

~47!

Here the relative anglef between the setsuAj 1
& anduBj 2

& is
introduced and this will be determined so as to maximize
matching score. The learning strategy can be represente

m̂~Q j 1 j 2
!5uAj 1

&^Aj 1
u ^ uBj 2

&^Bj 2
u. ~48!

The assignment of the classifier parameterQ j 1 j 2
from the

estimation outcomes (j 1 , j 2) is also determined to maximiz
the matching score.

The average score is written as

S̄SC5 (
j 150

J21

(
j 250

J21

Tr@m̂~Q j 1 j 2
!Ĝ~Q j 1 j 2

!#

5
1

2
1

RNQK

J2 (
j 150

J21

(
j 250

J21 F2 sinS Q j 1 j 2
2

2p j 1

J D
1 sinS Q j 1 j 2

2
2p j 2

J
2f D G , ~49!

where

Q2K[
1

2K (
k50

K21 AS K

k D S K

k11D , ~50!

andRN is given by Eq.~20!. The term inside the bracket o
the right-hand side of Eq.~49! attains the maximum value
2usin@p(j12j2)/J2f/2#u when Q j 1 j 2

is chosen to satisfy the
condition
02230
n

ed
he
ti-

e

e
as

2usin@p~ j 12 j 2!/J2f/2#usin~Q j 1 j 2
!

52cos~2p j 1 /J!1cos@~2p j 2 /J!1f#,

2usin@p~ j 12 j 2!/J2f/2#ucos~Q j 1 j 2
!

5sin~2p j 1 /J!2sin@~2p j 2 /J!1f#. ~51!

For theseQ j 1 j 2
’s, we then have

S̄SC5
1

2
12

RNQK

J2 (
j 150

J21

(
j 250

J21

usin@p~ j 12 j 2!/J2f/2#u.

~52!

As for f, it is enough to consider the region 0<f<2p/J.
Then the summation of the above equation can be car
out, and results in

S̄SC5
1

2
1RNQK

2 cos@~p/2J!2~f/2!#

J sin~p/2J!
. ~53!

To maximize the score we should takef5p/J. The score is
then monotonically decreasing with respect toJ. ThereforeJ
should be taken as the minimum valueJ5K11, although
each$uAj 1

&^Aj 1
u% or $uBj 2

&^Bj 2
u% itself is optimal for anyJ

>K11 as the estimation strategy ofug1&
^ K or ug2&

^ K, re-
spectively. The average score finally reads

S̄SC5
1

2
1RNQK

2

~K11!sin@p/2~K11!#
. ~54!

This score is plotted in Fig. 3.
By numerical test, we have seen that this separable le

ing strategy$m̂(Q j 1 j 2
)% does not satisfy the Bayes optimalit

condition except for the caseK51. For K51, this strategy
is nothing but the third one in the preceding section. Thus
K>2, it is an open problem whether the optimal learni
strategy can be found in other types of separable strategie
only found in a collective type of strategy, and what it loo
like.

FIG. 3. The average score by separable learning strategy,
function of the numbers of the input feature~N! and the template
~K! samples.
3-6
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III. UNIVERSAL QUANTUM MATCHING MACHINE

The strategies described in the preceding section woul
good and practical matching strategies. But this is not o
mal and there is a more fully quantum procedure that
tracts only the required information, i.e., the classical inf
mation on which class is best matched withu f &, without
attempting to obtain any further information about the ide
tities of the template states themselves. The total system
our hand is now represented by the state

uC&[u f & ^ N
^ ug1&

^ K
^ •••^ ugM& ^ K. ~55!

The optimal strategy can then be defined by a straight
ward extension of the Bayesian formulation given in o
previous work@9#, with the score operators now defined b

Ŵi[S 1

2p D ME dg1•••E dgME d f uC&^Cu

3u^ f ugi&u2P~ f̂ !, ~56!

where P( f̂ ) is the a priori probability distribution of the
input feature parameter~taken here as uniform, i.e.,P( f̂ )
51/2p). The new ingredients in the present formulation a
just the additional integrations over the unknown parame
for the template states. The fully quantum optimal strateg
obtained as a POM$P̂ i% that maximizes the following aver
age score:

S̄QM5(
i 51

M

Tr~ŴiP̂ i !. ~57!

Once parametrized families of input and template states
specified, the obtained solution is expected to work equ
well for any state belonging to such families by its definitio
In this sense we might call this optimal POM as a univer
quantum matching machine.

A. Example: Two-state system withMÄ2 and KÄ1

Although the definition of the universal quantum matc
ing machine is straightforward, it is in general a difficult ta
to derive an explicit expression for the corresponding PO
Here we present an illustrative example to demonstrate
the universal quantum matching machine works and attai
performance that cannot be reached by any other con
tional ~semiclassical! matching strategy.

As usual by now, the full input systemu f & ^ N is most
appropriately described on the (N11)- dimensional totally
symmetric bosonic subspaceHB as

u f & ^ N5 (
n50

N A 1

2NS N

n D ein f un&, ~58!

where$un&% is the occupation number basis of the↓ compo-
nent. In the case of a binary matching problem (M52) we
have the two-score operators
02230
be
i-
-
-

-
at

r-
r

e
rs
is

re
ly
.
l

-

.
w
a
n-

Ŵ15
1

2N1212K

3F2(
n50

N

(
k50

K

(
l 50

K S N

n D S K

k D S K

l D un,k,l &^n,k,l u

1 (
n50

N21 AS N

n D S N

n11D (
k50

K21

(
l 50

K S K

l DAS K

k D S K

k11D
3~ un11,k,l &^n,k11,l u1un,k11,l &^n11,k,l u!G ,

~59!

Ŵ25
1

2N1212K

3F2(
n50

N

(
k50

K

(
l 50

K S N

n D S K

k D S K

l D un,k,l &^n,k,l u

1 (
n50

N21 AS N

n D S N

n11D (
k50

K

(
l 50

K21 S K

k DAS K

l D S K

l 11D
3~ un11,k,l &^n,k,l 11u1un,k,l 11&^n11,k,l u!G ,

~60!

whereun,k,l &[un& ^ uk& ^ u l &, and$un&%, $uk&%, and$u l &% are
the occupation number basis of the↓ component foru f & ^ N,
ug1&

^ K, and ug2&
^ K, respectively. We are to maximize th

following quantity

S̄QM5
1

2
1Tr@~Ŵ12Ŵ2!P̂1#. ~61!

As already explained in Sec. II below Eq.~10!, the problem
reduces to finding the subspace corresponding to the pos
eigenvalues of the operatorŴ12Ŵ2. From Eqs.~59! and
~60! we have in the case ofK51,

Ŵ12Ŵ25
A2

2N14 (
n50

N21 AS N

n D S N

n11D
3@2un11,00&^n,Su2un,S&^n11,00u

1un11,S&^n,11u1un,11&^n11,Su#, ~62!

where the stateun11,00& is understood asun11& ^ u0&
^ u0&, and uS&[(u01&2u10&)/A25(u↑↓&2u↓↑&)/A2. The
operatorŴ12Ŵ2 can be finally arranged into a direct sum

Ŵ12Ŵ25 %

n50

N

DŴn , ~63!

where
3-7
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DŴn[
A2

2N14
AS N

n D F2AS N

n11D ~ un11,00&^n,Su1un,S&^n11,00u!

1AS N

n21D ~ un,S&^n21,11u1un21,11&^n,Su!G , ~1<n<N21!, ~64!

DŴ0[
A2N

2N14
~2u1,00&^0,Su2u0,S&^1,00u!, ~65!

and

DŴN[
A2N

2N14~ uN,S&^N21,11u1uN21,11&^N,Su!. ~66!

Subsequently, theDŴn’s are diagonalized as

DŴn[
A2

2N14
AS N

n DAS N

n11D 1S N

n21D ~ un&1 1^nu2un&2 2^nu!, ~1<n<N21!, ~67!

DŴ0[
A2N

2N14
~ u1&1 1^1u2u1&2 2^1u!, ~68!

and

DŴN[
A2N

2N14
~ uN11&1 1^N11u2uN11&2 2^N11u!, ~69!

where

un&6[

7AS N

n11D un11,00&1AS N

n11D 1S N

n21D un,S&6AS N

n21D un21,11&

A2AS N

n11D 1S N

n21D
, ~70!
de

h-

ning
d of

re by
f
ical
n by
al-

not

in
for 1<n<N21,

u1&6[
1

A2
~7u1,00&1u0,S&), ~71!

and

uN11&6[
1

A2
~ uN,S&6uN21,11&), ~72!

respectively. Therefore the optimal matching strategy is
scribed by the POM,

P̂15 (
n51

N11

un&1 1^nu, P̂25 (
n51

N11

un&2 2^nu, ~73!

and the optimal attainable average score is given by
02230
-

S̄QM5
1

2
1

A2

2N14

3S 2AN1 (
n51

N21 AS N

n DAS N

n11D 1S N

n21D D . ~74!

This scoreS̄QM obtained by the universal quantum matc
ing machine should be compared with the optimal scoreS̄SC

of the semiclassical matching strategy based on the lear
process. Figure 4 shows the average score by the two kin
matching strategies as a function ofN, the number of input
feature samples. The big dots represent the average sco
the universal quantum matching machine in the case oK
51. This is larger than the one by the optimal semiclass
matching strategy based on the learning process, show
the big circle. AsK increases, we expect larger score
though the values cannot be plotted because we have
succeeded yet in deriving the optimal solution for generalK.
For K5`, we have derived the maximum attainable score
3-8
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Ref. @9#, which is shown by the solid line in Fig. 4. Th
dashed line is for the semiclassical matching by majo
voting.

IV. CONCLUDING REMARKS

We have considered a full quantum extension of the
nary quantum pattern matching problem that was addre
in the recent paper@9#. In such a problem, given unknow
template statesug1&

^ K andug2&
^ K, and an input feature stat

u f & ^ N, we are to decide to which template the input featu
state is closest in the sense of the fidelity criterion. We h
presented two kinds of matching strategies, that is, a se
classical matching strategy based on learning and a unive
quantum matching strategy. In particular, we have explic
derived the Bayes optimal learning strategy for the semic
sical matching and the optimal universal quantum match
strategy in the case of one copy,K51, for the template
states, and an arbitrary numberN of copies of the input state
Our previous results in Ref.@9# correspond to the case o
K5`.

For generalK>2, the Bayes optimal solutions for bot
the semiclassical learning strategy and the universal quan
matching strategy are still not known. Concerning the op
mal learning strategy used in the semiclassical match
problem, one of the interesting questions would be whet
there exists an optimal separable strategy. The strategy
scribed in Eq.~48! does not satisfy the Bayes optimali
condition except for the caseK51. What would then the
optimal learning strategy look like in this case? Of cour
there should be a group covariant POM that is generally
entangled measurement on the two templates. Is such a
tangled measurement the only optimal learning strategy
so, it would be surprising because the two templates hav
a priori correlation. Or are there other kinds of separa
measurements? As for the universal quantum matching
chine, the problem would just reduce to finding the approp
ate division of the Hilbert space, but for largerK this be-
comes a tedious task. It would be worth mentioning
recent progress on finding the Bayes optimal POM. Je
et al. provided an efficient method for numerical determin
tion of optimal POM based on the theory of semidefin
programming @13#. Application of this algorithm to the
present case and may be more practical cases as well w
be an interesting future problem.

The reader might feel that the model used in this pape
in some respect artificial. In fact, this model is still far aw
from practically encountered situations. However, we m
say that an important aspect of quantum pattern match
problem is already seen. Namely, there certainly exists a
quantum matching procedure as the universal quan
matching machine, which is strictly superior to the straig
forward extension of the conventional matching strate
based on the learning process of the classifier with the tr
ing template samples. The derived universal quantum ma
ing machine, i.e., the POM in Eq.~73!, provides a typical
matching model for extracting the meaningful informati
about the best template class without attempting to ob
any further information about the identities of the templa
02230
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states themselves, excluding any intermediate measure
process. In a similar way, it is worth mentioning the rece
work on the comparison of two unknown quantum pu
states@14#, where the quantum optimal comparing strateg
are derived for several criteria. Concerning practical pro
lems of quantum pattern matching, Trugenberger addres
the problem of an associative~content-addressible! quantum
memory@15,16#. Typical address-oriented memories, such
conventional random access memories, cannot recogniz
complete or noisy information. Quantum memories su
gested by Trugenberger can, however, recognize an inc
plete input state, and can output the state that resem
~overlaps! most with the input state. Moreover, the stora
capacity of such quantum memories can be exponentia
the number of qubits in contrast to that the storage capa
remains linear in the number of nodes, such as neurons
classical associative memories. The retrieving algorithm p
posed in Trugenberger’s work can be regarded as a kin
realization of quantum matching POM.

In practical applications, the input and the template s
tems will be more complicated, and possibly associated w
secondary features that are not relevant to the pattern cl
fication. So, as already pointed out in Ref.@9#, it would be of
practical concern how to enhance the features of interest
to quarry the essential components~subspaces! of the quan-
tum system for the pattern classification. In the scena
where the input and template identities are completely
known, we might rely on a two-stage procedure. First, e
mate the input and template identities to extract import
features by using some set of aymptotically vanishing m
sure of the given samples; then discard redundant parts o
input and the template systems, and cut an effective subs
out of the original quantum Hilbert space; finally, after th
feature enhancement process, carry out a fully quantum
tern classification procedure in the smaller space. Thus,
sense, we see that the quantum pattern matching prob

FIG. 4. The average score as a function of the number of in
feature systems. The big dots and circles represent the attain
scores by the universal quantum matching machine and the opt
semiclassical matching strategy based on the learning process
spectively, in the caseK51. The solid and dashed lines are th
scores in the case ofK5` derived in our previous paper.
3-9



ta
ro
d
lso
m
pl

in
ill
a

th
in

m-
he
al
to

ose
e-

is-
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naturally involves aspects of both state estimation and s
discrimination. The former is necessary for the learning p
cess and the feature enhancement, while the latter is use
the pattern classification. In this direction, it would be a
interesting to study effective quantum matching algorith
that are simple enough in structure and easy to be im
mented, although not necessarily the Bayes optimal.

Similar to the case of the conventional pattern match
problem, the quantum matching algorithm complexity w
be an important future problem. It is, in fact, believed th
the complexity in some image recognition problems is in
NP complete class. How can the quantum pattern match
ry

m

02230
te
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for

s
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problem be treated from the point of view of quantum co
putational complexity? If there will be some progress in t
synthesis of a quantum network for the obtained optim
POM in the Bayesian approach, then it will be possible
search near optimal quantum matching algorithms wh
complexity might be eventually lower than that of the corr
sponding conventional semiclassical approaches.
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