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For the understanding of irreversibility at the quantum level, the formation and decay of transistatble
states play a fundamental role. If the system is treated within Hermitian quantum mechanics, the resulting
energy distribution of the resonance state, whose Fourier transform yields the time-dependent probability of
decay,P(t), is real. The physical constraint of the lower bound in the energy spectrum introduces “memory,”
and causes nonexponential de¢dlED) to set in aftert> 7, wherer is the lifetime defined by exponential
decay. The closer to threshold the decaying state is, the earlier NED appears. Apart from the condfraint of
=0, the constraint of=0 must be accounted for at the same time. It results from the discontinuityGabf
the solution of the time-dependent Sotlimger equation, which breaks the unitarity associated withShe
matrix and gives rise to a complex energy distribution, as a manifestation of the non-Hermitian property of the
decaying states. For a narrow isolated resonance state, for which the self-energy is essentially energy-
independent, analytic results fBRgp(t) obtained from semiclassical path-integral calculations agree with the
guantum-mechanical ones when both physical constr&nt® andt>0 are taken into account. As an ex-
ample of the difference in the magnitude of #Rggp(t) when using a real and a complex energy distribution,
application is made to the decay of the unstabIQZHéEg ground molecular state.
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I. RESONANCES AS DECAYING STATES principles of theP(t) of nonstationary states in real atomic
systemg4] has brought to my attention three papers on time-
Resonances that appear during a large variety of reactiordependent properties of decaying stdf®s7]. The first two
and excitations of quantum systems can be interpreted 45,6] refer explicitly to earlier work by Nicolaides and Beck
being caused by intermediate transient states in the cour$8,9]. The third[7], having as title Asymmetric Quantum
between reactants at=—c (stationary statgsand final Mechanics’ defines resonance states in terms of “rigged
products at =+« (stationary statgs These transient states Hilbert spaces” and discusses their connection to the discon-
are formed at, sayt=0, as localized wave packetd,. tinuity of the TDSE att=0, an issue which also concerned
They exist on the average much longer than the excitatiothe work of[8,9].
time and then decay irreversibly into a purely continuous The present contribution was written in view of these ar-
spectrum of the total Hamiltonian. Although the bulk of the ticles and of the continuing interest in the fundamental prop-
published literature on such resonances has looked at thegities of decaying states. Its purpose is to emphasize that in
from a time-independent point of view, giving emphasis onthe rigorous treatment of the issue of the time dependence of
observations that measure energy-dependent quar(gtigs decaying states, which is described, as usual, by the nonde-
cross sectionsit is also significant to analyze them from a cay (surviva) probability P(t), and of their role in micro-
time-dependent point of view. This means use of the timescopic irreversibility, two physical constraints must be ac-
dependent Schdinger equatioNf TDSE) when the formal- counted for simultaneously, regardless of the degree of
ism employs wave functions and Hamiltoniates in this energy dependence of the “self-energy” of the unstable state.
work), or of the Liouville—von Newmann equation when sta- These constraints are that the energy integrations must be in
tistical ensembles are involved. the range G<E<x, rather than—»<E<®, and that the
Atreatise on the quantum mechanics of resonddeeay- relevant quantities must correspond onlyt*0. Both of the
ing) states within both time-independent and time-dependerabove constraints have consequences as regards the appear-
frameworks is the book of Goldberger and Watgdah In  ance and magnitude &f(t) in the regime of very long times,
developing the arguments of this paper, | will refer to theirwhere exponential deca§D) formally changes into nonex-
results. Samples of volumes dedicated to the issues of responential decay(NED), with probability denoted here by
nance states and irreversibility are the proceedings of a saRygp(t— ).
ellite Nobel symposium entitled Resonances and Micro- The fact that the continuous spectrum is bounded from
scopic Irreversibility” edited by Brandas [2], and the below (0<E<<) may have an effect on the evolution of
collection of articles edited by Prigogine and R[&, under = quantum systems when passing through a reson@eoay-
the title “Resonances, Instability and Irreversibility ing) state. Its manifestation is the formal appearance of
Our recent work on the theory and calculation from first Pyep(t— ), regardless of whether the energy distribution is
real or compleX8-10], a property that is connected to the
nature of quantum-mechanical irreversibilitsee below.
*Email address: can@eie.gr The second constraint>0, is a consequence of the fact
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that there is a singularity in the solution of the TDSEtat mination of basic properties of attosecond dynanic.
=0 when considering a decaying state. This singularity The constant™ above is the rate of exponential decay, or
breaks unitarity, and theory must select only one of the twdl/r, where 7 is the corresponding lifetime. In the rare case
complex eigenfunctions(eigenvaluep resulting from it, that NED becomes physically significant, a different concept
namely the decayin¢and not the “growing” state. The cor- of lifetime must be considered, and computed as
responding energy distribution is now complex, whereas the= [ tP(t)dt/[,P(t)dt [4].
real energy distribution, here denoted @§E), is the result Apart from the formal analysis on the deviations from
of the unitary structure o&-matrix quantum mechanics, via ED, such as the ones discussed in this paper, the existence of
which the formalism incorporates the contribution of time- quantum-mechanical NED is confirmed by numerical com-
reversed states. putation. For example, the essential phenomenology was ob-

The above remarks raise the issue of the nature of th&ained decades ago via the direct numerical solution of the
energy distribution in the description of irreversibility at the TDSE with a model one-dimensional potentia¥]. On the
guantum level, and its possible manifestation. In this paper ibther hand, for states of real systems treated in terms of
is emphasized that, although the ED parPgf), in terms of  many-particle wave functions, thab initio calculation of
which the normal definition of unstable states is made, canP(t) for decaying states has been achieved only recently, via
not distinguish the effect ofj(E) from that of the corre- the transformation of the TDSE into a large system of
sponding complex energy distribution, the NED parfgt) coupled integrodifferential equations which are solved nu-
does so. The arguments are supported by analytic results oferically[4]. A number of results were obtained, pertaining
two different types of treatment: Application of the formal to the ED and to thé~0 and long-time NED regimes. The
theory of decaying states and application of the semiclassicaIDSE for the calculations if4,14] did not include the
theory of path integrals to model potentials appropriate fors-function inhomogeneity imposed by the singularity tat
the description of tunneling phenomena, suchagsarticle =0 [see Eq(10)].
emission and autodissociation of extraordinary molecular The bulk of the numerous papers on the subject have em-
ground statege.g., He?* 125). ployed the Fourier-Laplace transform relation between the
energy and the time domains, using assumptions and models
for the choice of the energy distribution. Such approaches to
the calculation ofPygp(t—0o0) deal with phenomenology,
and can be divided into two categories.

In the first, the calculation has proceededdssuminga

The general description of the dynamics of irreversibleform for the realg(E) with a pole structuree.g.,[10,15—
decay is characterized by the law of EM(t)=e 't  20]), from which G(t)=(W¥,|¥(t)) is obtained via Fourier
(h=1), whereP(t) is defined byP(t)=|(¥,W(t))|]>. ¥(t) transformation[see Eq.(1) below]. The case in which the
is the solution of the appropriate TDSE aWg [= ¥(0)] is self-energy is energy-independent, as is reasonable to expect
a many-particldin general localized wave packet represent- for narrow isolated resonanceg(E) is derived to be the
ing the nonstationary state &t 0. It is worth stressing that Lorentzian(e.g.,[9] and belowy.
the assumption of existence and the possibility of accurate In the second, which, as | will argue, is more appropriate,
computation of¥", as a square-integrable wave function, re-the calculation starts by connecting the decay amplitude for
gardless of whether it can be interpreted as corresponding t6>0 to the corresponding Green's functioG,..(E+i0),
a “Feshbach” or a “shape” resonance, is fundamental to thegiven by the diagonal matrix element of the resolvent opera-
theory of decaying states. It is usually introduced formally agor, R(z)=(z—H) . R(2) is a bisectionally analytic func-
an eigenfunction of a zero-order operak, where the in-  tion above and below the real energy axis of the continuous
teraction causing the decay has been excluded. Howevespectrum, whose discontinuity f&=0 is g(E). This con-
when the Hamiltonian is nonseparable, the explicit form of ahection leads to the construction of a Fourier integral of a
local operatoH, is impossible, since the decay-causing in-complex energy distribution, which, for the case of an iso-
teraction is part of an interparticle operaterg., Coulomb, ~ lated resonance, has a complex pole below the real axis
unless it is caused by the application of an external field[1,8,9. When this integral is truncated so as to account for
Therefore, the construction df, for real many-particle sys- the lower bound of the continuous spectrum, the result for
tems, such as atoms, molecules, or nuclei, must engage aBnep(t—) contains the effect cE=0 as well as ot=0
vanced theory and special methods, since interparticle corré8,9] and herein.
lations may be strong and at the same time the state lies in

II. REMARK ON THE CATEGORIES OF THEORIES
AND COMPUTATIONS OF THE P(t)
OF DECAYING STATES

the continuous spectrum with an ener@=(WolH[Wo),  THE REAL ENERGY DISTRIBUTION g(E) AND ITS
that is only a local minimum with respect to variations of ;s FOR THE CALCULATION OF THE SURVIVAL
linear or nonlinear parameters in the trial wave function. In AMPLITUDE, G(t)

atomic physics, this problem has been solved in the frame-

work of thestate-specifitheory(e.g.,[11,12 and references The concept of a decaying state starts with the formation
therein, whereby the polyelectronic wave functions areatt=0 inside the continuous spectrum of a square-integrable
made up of suitably chosen and optimized function space¥, which is not a discrete stationary state of the total Hamil-
that are compact as well as physically transparent, and can benianH. For a time-independert, the formal solution of
used in rather complex calculations, such as the recent detehe TDSE isW(t) =exd (—i/h)Ht]Wy) with t>0 or t<O.
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Assuming loss of memory of the excitation mechanism, The second comment has to do with the choice of the

something which is acceptable when the lifetime of the statéorm for g(E). For an isolated resonance stajé€Ek) is char-

associated withV' is much longer than the duration of ex- acteristic of W and of its interaction with the continuous

citation, the survival amplitud&(t) can be written as#  spectrum. Fano’s theory of the mixing of discrete with scat-

=1) (see, however, the discussion that follgws tering state$21] or the formal theory of decaying states, e.g.,
[9], shows that

G(t)=(Wo|¥(t))

1 I'(E
= (Wl expt ~iHU) [ Wo) 9(E)IE= 5 ©

e _ [E—Eo—A(E)]*+ L
=f dE g(E)e E!, (1) 4
0

where the energy-dependent functidiE) (the width and
g(E) is the energy distribution of the resonance state, giver (E) (the energy shift front,) are given in terms of matrix
by the real and positive functidW (E)|Wo)|?, and| ¥ (E))  elements(¥,|H|¢(E)), ¢(E) being the scattering wave
are the exact scattering stationary states of the continuodanctions of the continuum in the absence of the effective
spectrum with Dirac normalizatiod\W (E")| W (E))= S(E’ bound-discrete interaction, that are mixed with to form
—E). An elegant formalism for the calculation d8f (E) in ~ W(E). On the other hand, the theory of decaying stiteg]
the presence of resonances, in the framework of the Hermitalso leads to an alternative equation §E), expressing its
ian, standing-wave properties of the reactign matrix, has  relation to Hermitian quantum mechanics, where unitarity is
been presented by Fafi®l] in his analysis of photoabsorp- preserved and information from time-reversed states is in-
tion in regions where autoionizing states exist. The last terngluded. The derivation is based on the analytic properties of
of Eg. (1) results from the insertion of the unit operator the resolvent operatoR(z)=(z—H) %, and leads to
= [dE|W(E)){¥(E)|, which is Hermitian. The lower limit
of the continuous spectrum is set at zero. g(E)=(1/271)[G_(E—i0)—G-(E+i0)] (33

It is very difficult to compute accuratelg(E) for real
systems, the level of difficulty depending on the degree of .
complexity of the Hamiltonian and of the related many-body =+ (UmImG(E=i0)=(V8(E—H)[¥o), (3b)
problem.[A calculation of theg(E) of a polyelectronic au-
toionizing state was produced [d(c)], by first computing where
¥, and ¥ (t).] Instead, as already mentioned, in the over-
whelming majority of the publications 0G(t), g(E) is in- G(2)=(V(|R(2)|¥,) and G(z*)=[G(2)]",
troduced byassumingan analytic form. Hence, the results
are necessarily phenomenological. For example, the Lorent- .
zian form, which is the example adopted here, has been used z=E+i0. (39)
in [6,8—-10,1% for the study of aspects of NED. Different
forms, such as those chosen[it6-19, have been used for zis a complex variable with units of energy] G(z)]" is the
discussions on unstable states of nuclear and particle physiesljoint of G(z).
and on the so-called “Zeno” effect. A generalized Lorentzian  The functionsG(E=*i0) are the diagonal matrix elements
was used recently in connection with random matrix modelg W | (E—H +i0)|¥,) and the symbols> or < are added to
[20]. label the contribution t@s(t) for t>0 and fort<O0, respec-

In all such cases, it becomes clear t@t) is determined tively, when the Fourier transform is evaluated. Equation
not only by the pole structure @i(E), which provides the (3b) shows explicitly thaig(E) represents the discontinuity
celebrated exponential decay, but also by the modelof (¥|R(z)|¥,) on the real axis of the continuous spec-
independent behavior o¥(t) for t~0 [via the first-order trum. The significance of E¢3) for the present issue will be
expansion of the evolution operator, expdt)~1—iHt], by  discussed in the next section. Suffice it to add here that the
the possible energy dependenceggE) beyond the Lorent- reality of g(E) is secured by both forms, Eg&) and (3).
zian, and by the energy lower bound B&0, where the However, it becomes immediately obvious from E2p) that
continuous spectrum starts, features that cause NED. if only one of the Green’s functions is kept, s&- (E

I now make two comments regardiggE) and NED. The  +i0), which corresponds to the decaying statetfef, then
first is that, as Khalfif10] first demonstrated by applying a the energy distribution becomes complSec. I\V). | recall
theorem of functional analysis, SIng¢E) is real and posi- that the analytic continuation through the cut to the second
tive, the existence of the lower bound forbids the satisfactiorRiemann sheet below the real axis reveals one complex pole
of ED for all t. A simple mathematical proof of the same close toE,, which is the complex eigenvalue of the decay-
argument was given if8]. The degree of violation of ED for ing state, whose eigenfunction is not square-integrable.
long times, i.e., the comparative magnitudes Ryfep(t Equation(2) suggests immediately that the approximation
—) and ofe” !, depends on the proximity of the energy of of I'(E)~I'(Eq)=I", A(E)~A(E,)=A, which is very rea-
the decaying state to the threshold of the continuous spesonable for narrow resonances, leads to the Lorentzian
trum, regardless of the form @f(E) [8,9,4]. (Breit-Wignep form
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1 I'(E) IV. THE SINGULARITY AT t=0, COMPLEX ENERGY
g'—(E)dE=E (E )dE. (4) DISTRIBUTION, AND Pygp (t— )
0

[E—Eo—A(Ep)]*+

4 The use of realg(E) is in accordance with Hermitian
structures and has characterized most of the calculations of
G(t). Its origin lies in the use of the unit operator
The constantd’ and A can also be evaluated B, where =g E|W(E))(¥(E)|, an expansion that is part of the foun-
E,=Eo+A(E,) is the exact position of the resonance state dations of the quantum mechanics of stationary states and of
However, the corresponding very small difference as regardgnitarity.
the present discussion is totally irrelevant. The integral1) overg(E) can be done either for reBlor
It is the Lorentzian that was adopted by Khalft0] to  in the complex energy plar{d.,6,8—10,15—2p This is evi-
obtain an expression f@(t) in the NED regimdEq.(3.20  dent from the structure of Eq§2)—(4). When this is done,
of [10]], which he obtained under the assumption 0fij  the term of ED emerges from the pole below the real axis. In
(EZ+T?)Y2>1 [his Eq.(3.17)]. It was also adopted by Sluis addition, either the participation of both directions along the
and Gislason(6] [their Eq. (23)], who used the formulas imaginary axis or the contribution of two poleg, and its
given in[9] for the evaluation of the integral) [Eq. (8.37)  conjugatez} , corresponding to the adjoint Green’s functions
of [9] as compared with Eq19) of [6]]. It was shown if9]  G_(E+i0) andG_(E—i0), gives rise to NEO1,9,10. If
[Eq. (8.54), corrected here for a mispriptthat the use of the approximation of energy-independent self-energy is
g“(E) in Eq. (1), derived from the pole approximation to made, the Fourier integral that must be evaluated is the sum
9(E) of Eqg. (3a), produces the analytic result f@®yep(t  of contributions from 1/£—z) and from 1/¢—z%) and in-
—) of tegration must go from O tee. The integration can be done
exactly in terms of exponential integralshown to be valid
5212 for complex variables as wellnd retention of the leading
5. (5)  term. The result foPygp(t—=) is Eq.(5) [9].
Am (Er+T/4)%t The theory and calculations §8,9] argued that in order
for the arrow of time to be accounted for together with the

o . . _basic characteristic of the energy spectrum, the rigorous
This is the result that corresponds to the amplitude denve? :
by Khalfin [Eq. (3.20) of [10]]. reatment ofP(t) must account for both constraint§ =0

1 was cemonstated explty (9], pp. 94—as trax §19L-0, The fmer constant ntecuces memon i
Eq. (5) is the result of two conditions o& and ont, within P » 1€9 9y

the simple pole approximation of energy-independémind distribution, _and eventuglly causes a slowing _down of the
A. It is obtained for the case representedgbyE) and Eq decay from its exponentlal forrsee t_hg .Append.lx i4b).

(1‘) namelyE=0 ande>t>—c, as well as for the syrﬁ- The latter constraint expresses the initial conditiongstdp
métric case oft=0 andm>E>’—oo represented by the function) thet=_0 singularity, Wh_ich is caused t_)y t_he mo-
choice of only (1/2mi) G- (E+i0) ’in Eq. (3a). The first mentary formation of the nonstationary state. This singularity

s th h “molicitly by Khalfaol. si of the solution of the TDSE breaks, in principle, a basic
;IE:ZZdIf/ staeteodneth(za ?:ge(nE;njgc'gS{mg diffearl;ﬁntiziiceswgt\e/v:gn feature of Hermitian quantum mechanics, namely unitarity,
positive and negative timegp. 492 of[9]). The second case by separating the decaying state: 0, from its adjoint,t

! . <0. As a result, instead of(E), the energy distribution
IS the one correspc_mdmg to the treatmen{bf where the associated with irreversibility at the microscopic level is
crucial expression is their E¢400d) on p. 434,

complex. In[8,9], the use of the approximation of the

energy-independent self-enerdg\A — (i/2)I'] allowed the
o derivation of analytic results foPygp(t—022), both in terms

‘I’(t)=(1/277i)f dE & —iEt)GT(E)X, (6)  of GH(E) (real function and in terms of the corresponding
o (unnormalized complex Green'’s function,

Pnep(t— )~

[Eq. (400) of [1], p. 434. The functionsG*(E)=G.(E LBy —[E_ ; -1 _ -

+i0) andX,=%¥,. As Goldberger and Watson stdfe 434 G(B)~-[E-E+({/T], E>0=0, E<O. @)

of [1]), “The wave functionW(t) contains a complete de-

scription of the system far>0.” However, Eq.(6) does not

consider the fact that the continuous spectrum has a lower The arguments and calculations [&,9] aimed at intro-
bound. The integration for the corresponding survival ampli-ducing and demonstrating two main ideas.

tude G~ (t) was done if1] via the contour of Fig. 8.3 on p. (i) The association of a resonance state with a simple pole
447. This contour shows that the contribution to NED comesand with the concomitant ED is a function of the rap/T .

from integration for negative imaginary values along twoGiven the lower bound aE=0, as this ratio approaches
directions, from—i« to 0 and from O to—io. Thus, the O(1) while threshold is reached, the violation of ED at long
integral of Eq.(108 on p. 448 of[1] is equivalent to the times is enhanced, since the effects of memory are accumu-
integral 8.30 of[9] (case oft=0,,~>E>—»), and to the lated faster. Therefore, the search for the discovery of non-
integral 8.39 of9] (case ofE=0 andw>t> —x). stationary states where NED is observable should focus on
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exceptional cases, i.e., on resonance states very close to the . 0
threshold(see alsd4(b) and 4c)]). Riemann sheet\\
(i) For the rigorous treatment of irreversible decay, both
the E=0 and thet=0 restrictions must be considered. The
latter implies that the real functiog(E) should be replaced
by the complex functionG.(E+i0) of Eq. (338, which,
upon continuation through the cut of the real energy axis into
the second sheet, reveals the decaying state patg=ak,
+A—(i/12)T.
Conditions(ii) above imply that only one pole,, and its S heat
corresponding complex eigenfunction are used for the de-
scription of the physics of decay. For energy-independent
[A—(i/2)T'], the result forG-(t) is [8,9] :
) FIG. 1. Contour of integration chosen[i8,9] for the evaluation
G.(t)= i exp(—izt) dz of the survival amplitude of an isolated decaying state with energy-
= 2 i Z— 27, independent self-energy. It accounts for the physical constraints of
E=0 andt=0. The contour on the ar€, is zero asz—«. The
pole z, is put on the second Riemann sheet.

Imz

1
:exq_iZot) 1_ﬁEl(_IZOt) y (8)

symmetric square well and a Coulomb repulsion, led exactly
whereE, (x) is the exponential integral. The first term is due 0 Ed-(9) [Eq. (29 of [22]]. In the path-integral formulation,

to the pole. The second originates from the contour integrall® direction &;,t1)—(x2,tz), tz>t;, comes in naturally,
tion along the imaginary axis in one direction only. By taking @"d therefore the corresponding propaga@ft), t=t,

the first term of the asymptotic form @, (x) and by omit- ~ —t1, must incorporate only the>0 contribution. Actually,
ting the interference terms, the result fBrep(t—x) is  USing th_e path-lntegral formallsm for the determination of
[8,9] the semiclassical Green’s functioBs{E), and the subse-
quent evaluation o6 (t) via a truncated Fourier transform,
%2 Douvropoulos and the authf23] have shown that the same

Pnep(t—)~ 9 results hold as well for even more realistic model potentials
with a local minimum supporting nonstationary states.
G¢d{E) consists of a summation over the complex poles cor-
responding to the resonance states that the potential can sup-
port, multiplied by quantities that can be calculated semiclas-
sically. The complex eigenvalue of interest appears with a
V. ANALYSIS AND DISCUSSION negative imaginary part, thereby contributingtte0 decay

only.

In conclusion, the “memory” introduced into the decay of
an unstable state by the existence of the lower limit of the
continuous spectrum breaks the Markovian nature of time
evolution and results in NED, regardless of the type of en-
rgy distribution[10,9]. However, there is a difference of
undamental importance when the arrow of time introduced
by the singularity in the solution of the TDSE &t0 is
considered. In this case, the energy distribution driving the
decay is complex. The use of a real energy distribution im-

Am?(EZ+T2/4)t2

Equation(9) has the same dependencet@s Eq.(5), but the
coefficients are different.

Sluis and Gislasoh6] commented on the results [#,9],
suggesting, as Druger and Sam[f] did before them, that
the evaluation ofG(t) was done improperly, and that the
result of Eq.(9) is incorrect. The objections ¢6,6] seem to
have missed the point made(i®,9] and here. The result8)
and(9) were obtained under physical constraints that accoun
for time asymmetry as well as for the spectral lower bound
In order to produce them, the Fourier integration oveE1l/(
—2,) can be done for red from 0 to. (See the numerical
results of[ 8,9] and Appendix B of9].) Of course, it can also ; L S Sl
be donei[in Jche corz?)lex energty]glane. The correspondin lies the contribution tdG(t) from “adjoint time-reversed

contour of integration chosen j8,9], and criticized in5], is rt]ates” asfwell(p._ 684 of[8], p. 492 o.f[hg]). In (_)t.her words,
shown in Fig. 1. It does not enclose the positive real axis i€ Use Ofg(E) is in accordance with Hermitian guantum

both directions from O tee. This means that use is not made mechanics, but the problem of decaying states is intrinsically

of the unit operatofEq. (1)] over the stationary states of Non-Hermitian. The conclusion is that, together wik0,
Hermitian quantum mechanics. Instead, it deals directly witf€ calculation must express the I’G_S“L_lllt of the replacement of
G-(E+i0) of Eq.(3a and goes along only one direction of (€ time-évolution operatoff (t)=e" "™, Y‘fm‘:h IS unitary
the imaginary energy axis, accounting for the lower bound irPVer the domain £ = <t<+o), by #(t)e ", whereo(t)
the energy spectrum and expressing the fact that the systeffy the step_function fort>0. The corresponding time-
becomes non-Hermitian owing to the imposed boundary con@Symmetric TDSE is thefEq. (3.4) of [9]]
ditions of the time arrow at the singularitls=0. (ig—H)T(t) =i &(1). (10)

In fact, subsequent results of Holst¢22] on theP(t) of
a-particle decay, obtained via semiclassical path-integral calAlthough there are no first-principles computations on real
culations with a model potential consisting of a sphericallysystems based on EL0), it follows from the equivalent
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results of the integral formulation that although the inhomo-existence of vibrational levels as shape resonances. Viewed
geneity does not change the lifetime in the regime of expofrom a different angle, this system, as well as similar mo-
nential decay, it does affeBtgp(t— ), as demonstrated by lecular ground statg®25,26¢], can store large amounts of en-
the difference between Eq&) and(9). In this context, one ergy that can be easily released as kinetic energy of He
might object that the result) and (9) are specific to the +He". The crucial element in such a consideration is the
approximation of energy-independdhandA. Nevertheless, d_eg.ree of stapility of the vibrational levels toward aqtodisso-
it is the fact that they are different in magnitude that hasciation (tunneling [25]. The energy of the =0 vibrational
value regarding the understanding of the violation oflevel of the He?" log 'S state is about 1.3 eV below the
quantum-mechanical time symmetry caused by the formatiofPP of the barrier and about 8.9 eV above the energy of the
of resonance states. If, in the future, it becomes possible tgissociated product, HerHe". Using semiclassical WKB
measure with great accuracy the NED of an isolated unstabf@rmulas for tunneling, its lifetime was calculated to be
state, for which accurate calculations of the same quantitfbout 220 min[25]. Semiclassical results of such widths
could also exist within the two frameworks discussed in thisvere subsequently confirmed by quantum-mechanical calcu-
paper(real and complex energy distributionsignificant in-  lations[27,28. -
formation as to the physical relevance of long-time NED The analysis of23] has ghown that the tunneling vibra-
should emerge. A proposal for an experiment in atomic phystional levels of the HE* 107 '3 | state can be subjected to
ics is presented ifé(a)]. the NED treatment discussed here. In general, when the level
is not near the top of the tunneling barrier, in which case the

VI. APPLICATION TO THE He ,2* 105 12; MOLECULAR width i.s.broad and may be energy—depenc(amart from the
AUTODISSOCIATING STATE possibility of resonance overlgpPyep(t— ) is given ex-
actly by Eq.(9). Therefore, the quantum theory of decaying
Because of the smallness of the possible quantumabout the nature of the energy distribution and the limits of
mechanical effects in the regime of long-time NED, when itintegration in the calculation oP(t) (t=0,E=0) is con-
comes to computation or measurement it is preferable to corfirmed again using path integrals, where the arrow of time is
sider well-defined isolated states with unperturbed decajntrinsic to the formalism.
channels. Such cases, involving polyelectronic atomic reso- Finally, it is instructive to see the result of the application
nance states, were studied 4 via the numerical solution of  of formulas(5) and (9) to the lowest vibrational resonance
the TDSE from first principles. level of He*" 103 'S, when the energy and the width
Another type of physical situation where there is a nar-cajculated in[25] are used. A significant difference is ob-
row, well-defined initially localized nonstationary state de-served, even though the magnitudeRyzp(t— ) relative
caying into a single open channel of free particles is repretg e~I't js too small for this system, since the rafip/T" is
sented by the extraordinary ground state of the,fle |arge and the level is far from threshdlél,9]. Specifically,
molecule, the ilré '3, . The fact that this state exists in a when the result from the use of the real energy distribution is
local potential-energy minimum inside the continuous specapplied [Eq. (5)], NED starts dominating after about 193
trum of He"+He" was first discovered and interpreted by exponential lifetimes. When Eq9) is applied, NED domi-
Pauling in 193324]. The form of this potential implies the nates after about 102 exponential lifetimes.
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