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Quantization of the nonintegrable Hamiltonian by Lyapunov analysis

Peijie Wang and Guozhen Wu*
Department of Physics, Molecular and Nano Sciences Laboratory, Tsinghua University, Beijing 100084, China

~Received 22 January 2002; published 27 August 2002!

The classical Hamiltonian for which the dynamics is represented by trajectories in a multidimensional phase
~coset! space is quantized via Lyapunov analysis. A system of one electron in four sites and the vibration of
H2O with Fermi resonance is studied. The quantization condition is that the average Lyapunov exponents show
local minima as a function of the classical energy. This means that it requests the least global chaoticity. This
quantization algorithm leads to results consistent with those obtained by the quantal models.
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I. INTRODUCTION

The quantization of a classical system was introduced
Bohr and then extended by Sommerfeld@1#. This was for a
Hamiltonian system in which the coordinates are cyclic va
ables; the integral of each canonical momentum with resp
to its coordinate over a cycle of its motion must be an in
gral multiple of the Planck constant. Then, the Einstein, B
louin, and Keller quantization condition for integrable sy
tems was given with the introduction of the Maslov index f
more general situations@2#. However, a general rule fo
quantization of nonintegrable systems has not been obta
since the remaining of quantum mechanics. Today, we kn
that chaotic motion is embedded in the nonintegrability o
dynamical system and this is related to the quantization
chaotic dynamics@3#. Recently, an approach to this topic h
been developing based on the periodic orbits which form
invariant skeleton of the phase space. Gutzwiller@3# has been
successful in giving a trace formula which relates the qu
tum density of states in the semiclassical limit to a sum o
isolated periodic orbits. However, there are fundamental
ficulties associated with convergence of Gutzwiller’s formu
@4#.

It is now known, as noted in the literature@5–8#, that via
the coset-represented algebraic Hamiltonian, a class
Hamiltonian can be obtained. This is a very conveni
Hamiltonian by which much dynamical information of th
motion of one electron in the system of multisites and
highly excited molecular vibration can be retrieved.

The algorithm to obtain the coset-represented Ham
tonian is via the employment of the representatives of
coset space formed by the associated Lie group and its
group @9,10#. This means that the dynamical motion is d
scribed in the coset space which possesses a geome
structure. For instance, for the three-coupled vibratio
modes of H2O: the two stretches and one bend with 1
resonance between the two stretches and the Fermi reson
among the bend and the stretches, the Lie algebra is S~3!
and the coset space is the three-dimensional sphere S3 @11#.
The motion of one electron in the system of four sites can
described by the SU~4! algebra and the coset space is4
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@8,12#. Furthermore, by choosing the appropriate coordina
which will be denoted as (qi ,pi) of the coset space, Hamil
tonian equations of motion can be written down in terms
these coordinates as

]H~q,p!/]pi5dqi /dt,]H~q,p!/]qi52dpi /dt.

Here, q and p stand for (q1 ,q2 ,•••) and (p1 ,p2 ,•••),
respectively.qi andpi form a pair of conjugate variables. Fo
the aforementioned motion of one electron in the four-s
system,i 51, 2, 3, the coset space is six dimensional. For
system of H2O, i 51, 2, i.e., the coset space is four dime
sional. In summary, in this coset formulation, both the ele
tronic motion and the vibrational motion are described by
trajectories in a multidimensional coset space. The co
space is the phase space for the dynamics. The dynamic
classical and nonlinear. Therefore, many ideas in the non
ear field @13# such as localization, fractal, chaos, and t
Lyapunov exponent@14# can find their places in this analysis

Albeit fruitful information can be drawn from the cose
representedH(q,p) for our systems of electronic motion an
molecular vibration, one serious drawback is that it can
offer the quantized energy levels since the framework is c
sical. Our systems of electronic motion and molecular vib
tion are nonintegrable. It is the intention of this paper that
the analysis of the Lyapunov exponent, quantized levels
be resolved. One point that needs emphasis in our Lyapu
analysis is that for the elucidation of quantized levels, qu
tization is through the minimization of the average Lyapun
exponent which is obtained from randomly sampled traj
tories in the phase space. What we require is the global m
mization of chaoticity. This is different from Gutzwiller’s
idea based on periodic orbits, although unstable periodic
bits can possess nonzero Lyapunov exponents.

Before reaching the central topic, a brief introduction
the Lyapunov exponent is necessary. This is shown in
next section.

II. LYAPUNOV EXPONENT

The Lyapunov exponent@14# is defined as the averag
exponential rate of divergence of two nearby trajectories
is an important parameter which characterizes the chaot
of a trajectory and, hence, the system. For a chaotic sys
©2002 The American Physical Society16-1
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initially, the separation may be too small for one to dist
guish two nearby points, i.e., the resolution is not hi
enough. As time elapses, the separation will grow, and
nally, one may be able to tell the difference. In other wor
information is being created. This is connected with a
mous relation that states the sum of the positive Lyapu
exponents is equal to the entropy~the so-called Kolmogorov
entropy! for a closed system@15#. The Lyapunov exponent
therefore, describes the essence of a chaotic system.

The number of the Lyapunov exponents equals the dim
sionality of the space where the trajectory resides. Howe
for a Hamiltonian system, the Lyapunov exponents show
in pairs. For the system of one electron in four sites,
phase space is six dimensional. Conservation of energy
duces the dimension of the trajectories to five and only t
exponents are independent. Fortunately, for these two e
nents, one is much larger~up to 102–103 order! and only the
larger one needs our calculation. Likewise, for the H2O vi-
brational system, the phase space is four dimensional
only one exponent is independent. The algorithm for cal
lating the maximal Lyapunov exponent will be adopted in t
following analysis. Its details have been shown in our pre
ous reports and will not be reviewed here for brevity@16–
18#.

III. QUANTIZATION OF THE SYSTEM OF ONE
ELECTRON IN FOUR SITES

A. Coset-represented Hamiltonian of one electron in four sites

Three structures of four sites@12# will be considered as
shown in Fig. 1. They are labeled asS1, S2, andS3, for
convenience.

The Hamiltonian analogous to the Huckel molecular
bital model~HMO! @19# can be written algebraically as

( eiai
1ai11/2( Vklak

1al

with ei the energy at thei th site~atomic orbital! andVkl/2 is
the interaction between thek and l sites.ei andVkl/2 corre-
spond toa andb values in HMO.ai andai

1 are the destruc-
tion and creation operators.~For convenience, sites are la
beled as 0 to 3.!

For this system, the coset representativesV are

N21/2S 11 (
j 51,2,3

t j 0aj
1a0D u1000&.

FIG. 1. Three structures for the four-site model. They are
beled asS1, S2, andS3, respectively. The numbers designate t
sites.
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Here, u1000& represents the reference state that there is
electron on the zeroth site and none in the rest sites.t j 0 is the
complex number.N can be elucidated by the normalizatio
of V. N is obtained as

11( ut j 0u2.

It is noteable that$V% is overcomplete. In other words, w
can represent thealgebraicHamiltonian in terms ofV in a
diagonal form. We have

N21F S e01( ej ut j 0u2D11/2( t j 0V0 j

1(
i , j

t i0* t j 0Vi j 1c.c.G .
For simplicity, rewritet j 05t j ( j 51,2,3) and express them
as

~qj1 ip j !Y S 12( qi
21pi

2D 1/2

,

(t j is in an S4 sphere!. Then we have the coset-represent
Hamiltonian as

e0F12(
i 51

3

~qi
21pi

2!G1(
i 51

3

ei~qi
21pi

2!1(
i 51

3

V0iqi

3F12( ~qi
21pi

2!G1/2

1 (
iÞ j Þ0

Vi j ~qiqj1pipj !.

To conform to the Huckel model, only the neares
neighbor interaction will be considered. The action on sitei,

ni( i 51,2,3) is (qi
21pi

2), on site 0,n0, it is 12( i 51
3 (qi

2

1pi
2). Since there is but one electron in the system,

conditions (qi
21pi

2)<1 and((qi
21pi

2)<1 have to be met.
The phase angleu i5tan21(2pi /qi) shows the relative
phase between the actions on site 0 andi. This can be related
to the signs of the eigencoefficientsC0 , Ci of the Huckel
orbitals. If C0 andCi are of comparative magnitudes and
they are of the same or opposite sign, thenu i50 or p,
respectively. IfCi is zero, thenu i5p/2. If Ci is positive
~suppose C0 is positive! and very small, thenu i is less than
but very close top/2. Similarly, if Ci is negative and close to
zero thenu i is close to but slightly larger thanp/2. Ani is
equivalent touCi u. These interpretations have been well e
tablished in our previous work@12#. In our numerical calcu-
lation, the site energy is set as28.13104 cm21 andVi j is
21.43104 cm21.

H(q,p) offers us a continuous energy range byqi , pi
running through the whole space under the constraints.
interesting to note that the lowest and highest eigenener
of the Huckel orbitals correspond to the lowest- and highe

-
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energy values byH(q,p). The elucidation of the quantize
levels fromH(q,p) is our goal.

B. Quantization by minimizing the average Lyapunov
exponent

Numerically, the classical energy range offered byH(q,
p) for various structures as shown in Fig. 2 are partition
into 100 subdivisions. For the energy value at the cente
each subdivision, there are numerous correspond
(q1 ,p1 ,q2 ,p2 ,q3 ,p3) points. Two hundred randomly chose
(q1 ,p1 ,q2 ,p2 ,q3 ,p3) points are employed to calculate th
Lyapunov exponents. The exponents span a range and
average, denoted as^l&, is assigned formally to the corre
sponding energy level. For various structures,^l& is plotted
against the system energy as shown in Fig. 3. We prop
that quantized energy levels are associated with thelocal

FIG. 2. Classical energy range byH(q,p) ~a! the quantized
levels ~b! and those by Lyapunov analysis~c! for S1, S2, andS3
structures and H2O. S1, S2, andS3 ~b! is by HMO. H2O ~b! is by
the algebraic Hamiltonian.

FIG. 3. Plot of the average Lyapunov exponent^l& against the
system energy forS1, S2, andS3 structures and H2O. The arrows
show the local minima of̂l&. See text for details.
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minima. Indeed, for each graph in Fig. 3, there are exa
four minima~ except that for theS2 structure, there are thre
due to degeneracy!. The quantized levels are shown in Fig.
They are quite consistent with those by the quantal HM
model. The quantization by minimizing the Lyapunov exp
nent shares the idea by Bohr and Gutzwiller that only
standing wave or periodic orbital can be stable and persis
in a quantal system. Classically, they correspond to the m
stable trajectories and the least Lyapunov exponents. H
ever, the algorithm adopted here does not rely on finding
periodic orbitals. Instead, those chaotic trajectories in
phase space that possess larger exponents contribute m
^l&. Hence, the proposed quantization condition calls for
leastglobal chaoticity throughout the whole phase space.
also note that the precision of the identification of the qu
tized levels can be improved numerically by making fin
partitions on the classical energy range byH(q, p).

The quantized level energies by the Lyapunov analysis
then employed to calculate (q1 ,p1 ,q2 ,p2 ,q3 ,p3) and then
(u1 ,u2 ,u3) and (n0 ,n1 ,n2 ,n3). They span a range and th
maximal values are chosen for comparison with those
HMO. Listed in Table I are the eigencoefficients by HMO
their signs as interpreted from (u1 ,u2 ,u3) and
(An0,An1,An2,An3). It is seen that the signs predicted a
consistent with those by HMO. Indeed, small eigencoe
cients do correspond tou i very closely top/2 and is shown
as zero in the column of the predicted signs ofCi in Table I.
The relative magnitudes ofAni ’s are also consistent with
those ofCi ’s though not so exactly. We note that minor di
crepancies are also evident: sign ofC2 andAn2, An3 of the
third level of S3.

IV. QUANTIZATION OF THE VIBRATIONAL SYSTEM
OF H2O

The algebraic Hamiltonian of H2O can be written as the
sum of two parts

H05vs~ns1nt11!1vb~nb11/2!1Xss@~ns11/2!21~nt

11/2!2#1Xbb~nb11/2!21Xst~ns11/2!~nt11/2!

1Xsb~ns1nt11!~nb11/2!,

H85Kst~as
1at1H.c.!1Ksb~as

1abab1at
1abab1H.c.!.

Here, subscriptss, t, andb stand for the two equivalen
stretching and bending modes, respectively.n denotes the
action.v, X are the harmonic and anharmonic coefficien
H0 is that part due to three nonlinear Morse oscillators.Kst
andKsb are the coupling strengths of the 1:1 resonance
tween the two stretches and Fermi resonance among the
stretches and the bends, respectively. These values are
lated in Ref.@20#. These coefficients were elucidated fro
the fit of the eigenenergies of the algebraic Hamiltonian w
the experimental spectra.P5ns1nt1nb/2, called the
polyad number is preserved, though not individualns , nt ,
andnb .
6-3
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TABLE I. The eigencoefficients, their signs as interpreted from the phases and the magnitudes~square
root! of the actions by the coset space algorithm forS1, S2, and S3 structures and H2O. Levels are
designated as L. See text for details.

Structure Level Eigencoefficients~HMO! By the coset space algorithm
predicted signs of

C0 , C1 , C2 , C3 An0,An1,An2,An3

C0 , C1 , C2 , C3

S1 L1 10.37,10.60,10.60,10.37 1, 1, 1, 1 0.37, 0.60, 0.59, 0.37
L2 10.60,10.37,20.37,20.60 1,1,0,2 0.51, 0.48, 0.48, 0.51
L3 10.60,20.37,20.37,10.60 1,2,2,1 0.51, 0.48, 0.48, 0.51
L4 10.37,20.60,10.60,20.37 1,2,1,2 0.37, 0.59, 0.59, 0.37

S2 L1 10.50,10.50,10.50,10.50 1, 1, 1, 1 0.50, 0.50, 0.49, 0.50
L2/L3 10.71,0,20.71,0 1,0,2,0 0.50, 0.49, 0.49, 0.49

0,10.71,0,20.71
L4 10.50,20.50,10.50,20.50 1,2,1,2 0.49, 0.50, 0.49, 0.50

S3 L1 10.52,10.52,10.61,10.28 1, 1, 1, 1 0.52, 0.52, 0.60, 0.28
L2 10.37,10.37,20.25,20.82 1,1,0,2 0.49, 0.48, 0.47, 0.53
L3 10.71,20.71,0,0 1,2,2,;0 0.51, 0.51, 0.52, 0.44
L4 10.30,10.30,20.75,10.51 1,1,2,1 0.32, 0.32, 0.73, 0.50

Cns
, Cnt

, Cnb
Cns

, Cnt
, Cnb

Ans,Ant,Anb

H2O L1 10.04,10.04,10.99 1, 1, 1 0.08, 0.08, 0.99
L2 10.71,10.71,20.06 1, 1, 0 0.72, 0.57, 0.35
L3 10.71,20.71,0 1,2,0 0.72, 0.64, 0.17
il
a

.

2

u

ze
in
he

de
th

te
as
m
g

-

m
re-
ple
n for
lec-
ow
al
es
ese
ould

he
lgo-
me
eir

to
h-
hat

his
ast
t-
his
. Its
ere-
plo-

m

Very similar to the electronic system, this boson Ham
tonian can be cast into the four-dimensional coset sp
@7,8,11,20# with the replacementsnt5(qt

21pt
2)/2, nb5(qb

2

1pb
2)/2, ns5P2nt2nb/2 for H0 and Kst(2ns)

1/2qt

1Ksb$Ans(qb
22pb

2)1@qt(qb
22pb

2)12ptqbpb#/A2% for H8.
(qt ,pt ,qb ,pb) are the coordinates of theS3 coset sphere
The constraints are

~qt
21pt

2!<2P, ~qb
21pb

2!<4P.

For a sample calculation,P is set as one. Shown in Fig.
are the classical energy range byH(q,p) ~a! and the quan-
tized levels~b! by the algebraic Hamiltonian for H2O. As
before, the classical energy range is partitioned into 100 s
divisions. Thereby, the average Lyapunov exponents^l&
were calculated as shown in Fig. 3 in which three quanti
levels can be identified if they are required to possess m
mal ^l&, locally. Shown in Fig. 2 are also these levels. T
consistency with the quantal model is apparent.

The signs of the eigencoefficients and their magnitu
are found to be quite consistent with those predicted by
coset space algorithm. They are shown in Table I.

V. CONCLUDING REMARKS

It is demonstrated that discrete levels can be elucida
for the system of one electron in multisites by the semicl
sical quantization of the classical coset-represented Ha
tonian through Lyapunov analysis. Thereby, action and an
can also be determined. Action and angle are related touCi u2
and the relative signs amongCi ’ s. The results show consis
tent signs and magnitudes~at least in proportionality! with
02211
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Ci ’s, as offered by quantal HMO. For the vibrational syste
of H2O, the Lyapunov analysis also leads to consistent
sults with those by the quantal method. These two sim
systems, one fermionic and the other bosonic, are chose
the trial of the proposed algorithm. Other cases of one e
tron in three and two sites have also been tried and all sh
nice consistency with the quantal HMO. For the vibration
system of H2O asP increases, the number of levels increas
drastically and the calculation becomes lengthy. For th
cases, accurate determination of Lyapunov exponents c
be crucial for the success of this algorithm.

The success in the level quantization by minimizing t
average Lyapunov exponent deserves attention. In our a
rithm, all the trajectories in the phase space with the sa
energy were adopted without discrimination and th
Lyapunov exponents were averaged to obtain^l&. The more
chaotic trajectories with larger exponents contribute more
^l&. What we require is the least global chaoticity throug
out the whole phase space. The problems then are: W
trajectories indeed play the most essential role in t
Lyapunov quantizaiton algorithm and what causes the le
global chaoticity. Though our work is on the cose
represented Hamiltonian, it is highly speculated that t
quantization idea for the chaotic system can be prevailing
application to the general nonintegrable systems are th
fore highly recommended. These deserve our further ex
ration.
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