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Quantization of the nonintegrable Hamiltonian by Lyapunov analysis
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The classical Hamiltonian for which the dynamics is represented by trajectories in a multidimensional phase
(cosej space is quantized via Lyapunov analysis. A system of one electron in four sites and the vibration of
H,O with Fermi resonance is studied. The quantization condition is that the average Lyapunov exponents show
local minima as a function of the classical energy. This means that it requests the least global chaoticity. This
quantization algorithm leads to results consistent with those obtained by the quantal models.
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I. INTRODUCTION [8,12]. Furthermore, by choosing the appropriate coordinates
which will be denoted asq,p;) of the coset space, Hamil-
The quantization of a classical system was introduced byonian equations of motion can be written down in terms of
Bohr and then extended by Sommerfgld. This was for a  these coordinates as
Hamiltonian system in which the coordinates are cyclic vari-
ables; the integral of each canonical momentum with respect ~ dH(q,p)/dp;=dq; /dt,dH(q,p)/dq;=—dp; /dt.
to its coordinate over a cycle of its motion must be an inte-
gral multiple of the Planck constant. Then, the Einstein, Bril- Here,q and p stand for 1,095, ---) and Q,p2,---),
louin, and Keller quantization condition for integrable sys-respectivelyg; andp; form a pair of conjugate variables. For
tems was given with the introduction of the Maslov index forthe aforementioned motion of one electron in the four-site
more general situationg2]. However, a general rule for systemj=1, 2, 3, the coset space is six dimensional. For the
quantization of nonintegrable systems has not been obtainesystem of HO, i=1, 2, i.e., the coset space is four dimen-
since the remaining of quantum mechanics. Today, we knowional. In summary, in this coset formulation, both the elec-
that chaotic motion is embedded in the nonintegrability of atronic motion and the vibrational motion are described by the
dynamical system and this is related to the quantization ofrajectories in a multidimensional coset space. The coset
chaotic dynamic§3]. Recently, an approach to this topic has space is the phase space for the dynamics. The dynamics are
been developing based on the periodic orbits which form thelassical and nonlinear. Therefore, many ideas in the nonlin-
invariant skeleton of the phase space. Gutzwjlidhas been ear field [13] such as localization, fractal, chaos, and the
successful in giving a trace formula which relates the quantyapunov exponeritl4] can find their places in this analysis.
tum density of states in the semiclassical limit to a sum over Albeit fruitful information can be drawn from the coset-
isolated periodic orbits. However, there are fundamental difrepresentedt(q,p) for our systems of electronic motion and
ficulties associated with convergence of Gutzwiller’'s formulamolecular vibration, one serious drawback is that it cannot
[4]. offer the quantized energy levels since the framework is clas-
It is now known, as noted in the literatuf®—8], that via  sical. Our systems of electronic motion and molecular vibra-
the coset-represented algebraic Hamiltonian, a classicalon are nonintegrable. It is the intention of this paper that via
Hamiltonian can be obtained. This is a very convenienthe analysis of the Lyapunov exponent, quantized levels can
Hamiltonian by which much dynamical information of the be resolved. One point that needs emphasis in our Lyapunov
motion of one electron in the system of multisites and theanalysis is that for the elucidation of quantized levels, quan-
highly excited molecular vibration can be retrieved. tization is through the minimization of the average Lyapunov
The algorithm to obtain the coset-represented Hamilexponent which is obtained from randomly sampled trajec-
tonian is via the employment of the representatives of theories in the phase space. What we require is the global mini-
coset space formed by the associated Lie group and its sulmization of chaoticity. This is different from Gutzwiller’'s
group[9,10]. This means that the dynamical motion is de-idea based on periodic orbits, although unstable periodic or-
scribed in the coset space which possesses a geometridats can possess nonzero Lyapunov exponents.
structure. For instance, for the three-coupled vibrational Before reaching the central topic, a brief introduction to
modes of HO: the two stretches and one bend with 1:1the Lyapunov exponent is necessary. This is shown in the
resonance between the two stretches and the Fermi resonanmxt section.
among the bend and the stretches, the Lie algebra {8)SU
and the coset space is the three-dimensional sphief&l$
The motion of one electron in the system of four sites can be
described by the SW4) algebra and the coset space 5 S The Lyapunov exponentl4] is defined as the average
exponential rate of divergence of two nearby trajectories. It
is an important parameter which characterizes the chaoticity
*Corresponding author. of a trajectory and, hence, the system. For a chaotic system,

II. LYAPUNOV EXPONENT
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020,00 08:83 0%3-03 Here,|1000 represents the reference state that there is one
0123 1 2 102 electron on the zeroth site and none in the rest siigss the
s1 S2 S3 complex numberN can be elucidated by the normalization

of Q. N is obtained as
FIG. 1. Three structures for the four-site model. They are la-

beled asS1, S2, andS3, respectively. The numbers designate the
sites. 1+ | 7j0l%.

initially, the separation may be too small for one to distin-|; is noteable tha{Q} is overcomplete. In other words, we

guish two nearby points, i.e., the resolution is not highcan represent thalgebraic Hamiltonian in terms of2 in a
enough. As time elapses, the separation will grow, and f"diagonal form. We have

nally, one may be able to tell the difference. In other words,

information is being created. This is connected with a fa-

mous relation that states the sum of the positive Lyapunov .
exponents is equal to the entrofize so-called Kolmogorov N
entropy for a closed systemil5]. The Lyapunov exponent,

therefore, describes the essence of a chaotic system.

The number of the Lyapunov exponents equals the dimen- + Z TioTjoVij +C.C.[.
sionality of the space where the trajectory resides. However, )
for a Hamiltonian system, the Lyapunov exponents show up-
in pairs. For the system of one electron in four sites, the
phase space is six dimensional. Conservation of energy re-
duces the dimension of the trajectories to five and only two
exponents are independent. Fortunately, for these two expo-

(g;+ip;) /

eo‘l‘z elej0|2) + 1/22 TjOVOj

or simplicity, rewriterjo=7; (j=1,2,3) and express them

12

nents, one is much largéup to 1G—10° orden and only the 1-, g?+p?
larger one needs our calculation. Likewise, for thgOHvi-
brational system, the _phase space is four dymensmnal a 7j is in an ¢ sphere. Then we have the coset-represented
only one exponent is independent. The algorithm for calcuy e

. . | ) Hamiltonian as
lating the maximal Lyapunov exponent will be adopted in the
following analysis. Its details have been shown in our previ-
ous reports and will not be reviewed here for breyity—

18]. €o

3 3 3
1—; (af+pd) +i§1 ei(g?+ p?)+i§1 Voidi

IIl. QUANTIZATION OF THE SYSTEM OF ONE X
ELECTRON IN FOUR SITES

112
1-> (Qi2+pi2)} ﬂ%o Vij(gig;+pip;)-

A. Coset-represented Hamiltonian of one electron in four sites To conform to the Huckel model, only the nearest-
Three structures of four sitdd2] will be considered as neighbor interaction will be considered. The action on site
shown in Fig. 1. They are labeled &, S2, andS3, for  ni(i=1,2,3) is GZ+p?), on site 0,ng, it is 1— 37 ,(q?
convenience. +p?). Since there is but one electron in the system, the
_ The Hamiltonian analogous to the Huckel molecular or-congitions 7+ p?) <1 and=(g?+p?)<1 have to be met.
bital model(HMO) [19] can be written algebraically as The phase angled,=tan *(—p,/q;) shows the relative
phase between the actions on site 0 arithis can be related
to the signs of the eigencoefficien®,, C; of the Huckel
> ea'a+1/2Y Vya, g orbitals. If C, andC; are of comparative magnitudes and if
they are of the same or opposite sign, th&s0 or ,
respectively. IfC; is zero, thené,==/2. If C; is positive
with e; the energy at théth site (atomic orbital andV,/2is  (suppose gis positive and very small, ther; is less than
the interaction between tHeand| sites.e; andV,/2 corre-  but very close tar/2. Similarly, if C; is negative and close to
spond toe and g values in HMO.a; anda;” are the destruc- zero thend; is close to but slightly larger tham/2. Jn; is
tion and creation operatoréFor convenience, sites are la- equivalent to|C;|. These interpretations have been well es-

beled as 0 to 3. tablished in our previous worKL2]. In our numerical calcu-
For this system, the coset representati{eare lation, the site energy is set as8.1x 10* cm ™! andV;; is
—1.4x<10 cm™ L.

H(q,p) offers us a continuous energy range &y, p;
running through the whole space under the constraints. It is
N-Y2 14 2 Tjoaj+a0 11000. interesting to notg that the lowest and highest eigenenergies
j=1,2,3 of the Huckel orbitals correspond to the lowest- and highest-
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6.9 T — — minima. Indeed, for each graph in Fig. 3, there are exactly
$1 - — four minima( except that for th&2 structure, there are three
92 L _ . due to degeneragyThe quantized levels are shown in Fig. 2.
87— — — They are quite consistent with those by the quantal HMO
s2 :E - model. The quant@zation by minimizing the ITyapunov expo-
S g5 L _ . nent shares the idea by Bohr and Gutzwiller that only a
I o— — — standing wave or periodic orbital can be stable and persistent
s3 o _ _ in a quantal system. Classically, they correspond to the most
stable trajectories and the least Lyapunov exponents. How-
(f’ég — — — ever, the algorithm adopted here does not rely on finding the
Ho ’ - - periodic orbitals. Instead, those chaotic trajectories in the
2 phase space that possess larger exponents contribute more to
0.78L — — (N\). Hence, the proposed quantization condition calls for the

b

c

leastglobal chaoticity throughout the whole phase space. We
) . also note that the precision of the identification of the quan-
FIG. 2. Classical energy range B¥(q,p) (a) the quantized ;e |evels can be improved numerically by making finer
levels (b) and those by Lyapunov analysis) for S1, S2, andS3 5 itions on the classical energy rangeHbig, p).
structures and §0. S1, S2, andS3 (b) is by HMO. H,0 (b) is by The quantized level energies by the Lyapunov analysis are
the algebraic Hamiltonian.
then employed to calculateg{,p1,92,pP2,03,P3) and then
(61,60,,03) and (hg,nq,n5,Nn3). They span a range and the
maximal values are chosen for comparison with those by
HMO. Listed in Table | are the eigencoefficients by HMO,
their signs as interpreted from 6{,6,,65) and
(\ng, VN1, n,,\/ng). It is seen that the signs predicted are
consistent with those by HMO. Indeed, small eigencoeffi-
Numerically, the classical energy range offeredHbfq, cients do correspond t@ very closely tow/2 and is shown
p) for various structures as shown in Fig. 2 are partitionedas zero in the column of the predicted signspfin Table I.
into 100 subdivisions. For the energy value at the center ofhe relative magnitudes ofin,’s are also consistent with
each subdivision, there are numerous correspondinghose ofC;’s though not so exactly. We note that minor dis-
(91.P1,02.P2,03,P3) points. Two hundred randomly chosen crepancies are also evident: sign@f and v/n,, \/n; of the
(d1,P1.,92,P2,093,P3) points are employed to calculate the third level of S3.
Lyapunov exponents. The exponents span a range and their
average, denoted d3), is assigned formally to the corre-
sponding energy level. For various structurgs) is plotted
against the system energy as shown in Fig. 3. We propose
that quantized energy levels are associated withldicel

energy values by (qg,p). The elucidation of the quantized
levels fromH(q,p) is our goal.

B. Quantization by minimizing the average Lyapunov
exponent

IV. QUANTIZATION OF THE VIBRATIONAL SYSTEM
OF H,0

The algebraic Hamiltonian of 40 can be written as the
sum of two parts

Ho= ws(Nst N+ 1)+ wp(Ny+ 1/2) + XJ (ng+ 1/2)2+ (N,

+1/2) 2]+ Xpp(Np+ 1/2) 2+ X g+ 1/2) (N + 1/2)

=6
S2 2 4 M +XstNs+ N +1)(Np+1/2),
()
25
212 ' ' ' ' ' '| ' H' =Kgada+H.c)+Kgfal a,a,+a; asa,+H.c.).
37 3| | j .
4 Here, subscripts, t, andb stand for the two equivalent
e — stretching and bending modes, respectivelydenotes the
18 ' action. w, X are the harmonic and anharmonic coefficients.
16 ' H, is that part due to three nonlinear Morse oscillatéts.
H,O 14 ' andKg, are the coupling strengths of the 1:1 resonance be-
12 . tween the two stretches and Fermi resonance among the two

20 40 60 80 100 stretches and the bends, respectively. These values are tabu-
Level lated in Ref.[20]. These coefficients were elucidated from
the fit of the eigenenergies of the algebraic Hamiltonian with
FIG. 3. Plot of the average Lyapunov exponék} against the the experimental spectraP=ngs+n;+ny/2, called the
system energy foB1, S2, andS3 structures and §0. The arrows ~ polyad number is preserved, though not individnal n;,
show the local minima of\). See text for details. andny.

-
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TABLE 1. The eigencoefficients, their signs as interpreted from the phases and the mag(smydes
root) of the actions by the coset space algorithm &I, S2, and S3 structures and $D. Levels are
designated as L. See text for details.

Structure Level EigencoefficientsiIMO) By the coset space algorithm
predicted signs of
Co, C1, G, G Vg, ng, g, Jng
CO! cl! C21 Q’>
S1 L1 +0.37,+0.60,+0.60,+0.37 +, +, +, + 0.37, 0.60, 0.59, 0.37
L2 +0.60,+0.37,-0.37-0.60 +,+,0,— 0.51, 0.48, 0.48, 0.51
L3 +0.60,-0.37,-0.37,+0.60 +,—,—,+ 0.51, 0.48, 0.48, 0.51
L4 +0.37,-0.60+0.60-0.37 +,—,+,— 0.37, 0.59, 0.59, 0.37
S2 L1 +0.50,+0.50,+0.50,+0.50 +, +, +, + 0.50, 0.50, 0.49, 0.50
L2/L3 +0.71,0,-0.71,0 +,0,—,0 0.50, 0.49, 0.49, 0.49
0,+0.71,0-0.71
L4 +0.50,-0.50;+0.50~0.50 +,—,+,— 0.49, 0.50, 0.49, 0.50
S3 L1 +0.52,+0.52,+0.61+0.28 +, +, +, + 0.52, 0.52, 0.60, 0.28
L2 +0.37,+0.37-0.25-0.82 +,+,0,— 0.49, 0.48, 0.47, 0.53
L3 +0.71-0.71,0,0 +,—,—,~0 0.51, 0.51, 0.52, 0.44
L4 +0.30,+0.30,-0.75;+0.51 +,4+,—,+ 0.32, 0.32, 0.73, 0.50
Cn Cop o, Cu Cop o, g Vg, Vg

H,O L1 +0.04,+0.04, +0.99 +, +, + 0.08, 0.08, 0.99

L2 +0.71+0.71-0.06 +, +,0 0.72, 0.57, 0.35

L3 +0.71-0.71,0 +,—,0 0.72, 0.64, 0.17

Very similar to the electronic system, this boson Hamil-C;’s, as offered by quantal HMO. For the vibrational system
tonian can be cast into the four-dimensional coset spacef H,O, the Lyapunov analysis also leads to consistent re-
[7,8,11,2Q with the replacements,= (q+p?)/2, n,=(gz  sults with those by the quantal method. These two simple
+pd)/2, n&=P-n—ny/2 for Hy and Kg(2ny)*%,  systems, one fermionic and the other bosonic, are chosen for

+ Ko V(92— p2) + [0:(q2— p2) + 2papPs]/+/2} for H’.  the trial of the proposed algorithm. Other cases of one elec-
(0. P;.0p.Pp) are the coordinates of the® coset sphere. tron in three and two sites have also been tried and all show

The constraints are nice consistency with the quantal HMO. For the vibrational
system of HO asP increases, the number of levels increases
(af+pd)<2P, (gp+pp)<4P. drastically and the calculation becomes lengthy. For these

cases, accurate determination of Lyapunov exponents could

For a sample calculatiof® is set as one. Shown in Fig. 2 be crucial for the success of this algorithm.
are the classical energy range HYq’p) (a) and the quan- The success in the level quantization by m|n|m|Z|ng the
tized levels(b) by the algebraic Hamiltonian for #0. As ~ average Lyapunov exponent deserves attention. In our algo-
before, the classical energy range is partitioned into 100 subfithm, all the trajectories in the phase space with the same
divisions. Thereby, the average Lyapunov expondits  €nergy were adopted without dlscrlmlna_tlon and their
were calculated as shown in Fig. 3 in which three quantizedYapunov exponents were averaged to obtaip The more
levels can be identified if they are required to possess minichaotic trajectories with larger exponents contribute more to
mal (), locally. Shown in Fig. 2 are also these levels. The{}). What we require is the least global chaoticity through-
consistency with the quantal model is apparent. out the whole phase space. The problems then are: What

The signs of the eigencoefficients and their magnitudedrajectories indeed play the most essential role in this
are found to be quite consistent with those predicted by théyapunov gquantizaiton algorithm and what causes the least

coset space algorithm. They are shown in Table I. global chaoticity. Though our work is on the coset-
represented Hamiltonian, it is highly speculated that this

gquantization idea for the chaotic system can be prevailing. Its

application to the general nonintegrable systems are there-
It is demonstrated that discrete levels can be elucidatetpre highly recommended. These deserve our further explo-

for the system of one electron in multisites by the semiclasration.

sical quantization of the classical coset-represented Hamil-

tonian through Lyapunov analysis. Thereby, action and angle

can also be determined. Action and angle are relat¢@ {8

and the relative signs amortg)’ s. The results show consis- This work was supported by Grant No. 29973018 from

tent signs and magnituddat least in proportionalifywith ~ the National Natural Science Foundation of China.

V. CONCLUDING REMARKS
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