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Relativistic coherent states and charge structure of the coordinate and momentum operators
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We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional require-
ments:~i! the expected values of the standard coordinate and momentum operators are uniquely related to the
real and imaginary parts of the coherent state parametera; ~ii ! these states contain only one charge component.
Three cases are considered: free particle, relativistic rotator, and particle in a constant homogeneous magnetic
field. For the rotational motion of the two latter cases, such a description leads to the appearance of the
so-called nonlinear coherent states.
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I. INTRODUCTION

Coherent states are currently very interesting in mod
quantum physics and in quantum technologies. They ha
long history and a very wide field of application. It wa
Schrödinger who first considered these states for the h
monic oscillator in the early years of quantum mechanics@1#.
These states minimize the uncertainty relations and on
their important properties is temporal stability. It means t
time evolution can be described, in this case, by changing
parameter of the coherent states

a°a exp~2 ivt !. ~1!

These states are eigenstates of the annihilation opera

â5
1

A2
S q̂

s
1 i

s

\
p̂D , ~2!

wheres5A\/mv is a characteristic oscillator length, wit
eigenvaluesa,

âua&5aua&. ~3!

Another significant property of the coherent states is
resolution of unity@2,3#. It means the existence of an integr
measuredm(a) such that the following condition is satis
fied:

E ua&dm~a!^au51. ~4!
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For the standard coherent states determined by Eq.~3! this
measure has a simple form:

dm~a!5
da8da9

p
, ~5!

where a8 and a9 are the real and imaginary parts of th
parametera.

These coherent states~we denote them as the standa
coherent states here! can be used not only for a harmon
oscillator but for a wide enough class of the quantum s
tems. However, the property of the temporal stability is
trinsic to the systems which are unitarily equivalent to t
harmonic oscillator. This property can be conserved by
redefinition of the coherent states@4,5#.

A lot of different generalizations of the coherent states
well known today. We note only one of them that will appe
in our consideration from an unexpected side. In@6# the au-
thors have shown that trapped electron can be describe
means of coherent states which are eigenstates of the
formed annihilation operatorâf expressed in terms of th
usual annihilation and creation operators in the followi
way:

âf5â f ~ â†â!, ~6!

wheref is a certain function. Mathematical properties and
physical sense of these states have been considered in
in @7#. The authors call these states nonlinear~or f ) coherent
states. Analogous states that satisfy the condition of temp
stability have been presented in@4,5#.

The description of a relativistic quantum system by mea
of the coherent states meets certain difficulties. First of al
should be noticed that relativistic quantum theory can
developed in a consistent way with the second quantiza
method only. It is possible to consider the one-particle sec
of the theory under conditions when particle pair creation
impossible~free particle and particle in a constant magne

y,
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field!. However, even in this case the coordinate~and, gen-
erally speaking, the momentum! operator is not well defined
@8–10#. This reveals itself in the fact that eigenstates of t
operator contain states with different signs of charge. The
fore, the coherent states defined by Eq.~3! contain eigen-
states of the Hamiltonian with different signs of charge
well. The existence of such kind of states is prohibited by
charge superselection rule@11#.

Coherent states for relativistic spin-0 and spin-1/2 p
ticles in a constant homogeneous magnetic field have b
introduced in@12#. These states are expanded in eigensta
of the Hamiltonian with one sign of charge only. Howev
these states are not eigenstates of the annihilation oper
and furthermore, expected values of coordinate and mom
tum for these states are nota8A2s and a9A2\/s, respec-
tively.

The coherent states for charged spin-0 particles, which
consider in this work in detail, have been presented in@13#.
These states satisfy two additional conditions.

~1! The coherent state parametera is expressed in term
of the mean value of the standard~not Newton-Wigner! co-
ordinate and momentum in the usual way,

a5
1

A2
S q̄

s
1 i

s

\
p̄D . ~7!

~2! These states are expanded in eigenstates of the Ha
tonian with one sign of charge only.

The coherent states, which can be constructed by u
Eq. ~3!, satisfy condition~1! but do not satisfy condition~2!;
the coherent states presented in@12#, in contrast, satisfy con
dition ~2! but do not satisfy condition~1!.

In this work we consider a spin-0 charged particle in
constant homogeneous magnetic field and two more sim
examples: free particle and relativistic rotator. These syst
can be described in the one-particle sector of the theory
cause particle pair creation is absent there. However,
nontrivial charge structure of the coordinate and momen
operators leads to the appearance of some peculiarities i
evident form of the relativistic coherent states and in
expected values of some observables.

II. STATEMENT OF THE PROBLEM AND CHARGE
STRUCTURE OF OPERATORS

Consider a scalar charged particle in a constant homo
neous magnetic field. Such a particle is described by
Klein–Gordon equation:

2\2] t
2c5$c2@ p̂2eA~ r̂ !#21m2c4%c. ~8!

This is a second-order equation in time. Hence, in the pre
form, one cannot interpret it as a Schro¨dinger equation. This
problem can be resolved, if by means of changing

c5
1

A2
~w1x!, ~9!
02211
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i\] tc5
mc2

A2
~w2x! ~10!

one comes to the two-component wave function

C5S w

x
D . ~11!

Now, Eq. ~8! can be written as the Schro¨dinger equation

i\] tC5Ĥm fC, ~12!

where the HamiltonianĤm f has the following form:

Ĥm f5~t31 i t2!
@ p̂2eA~ r̂ !#2

2m
1t3mc2. ~13!

In this expressiont i are the 232 matrices

t15S 0 1

1 0D , i t25S 0 1

21 0D , t35S 1 0

0 21D .

~14!

Corresponding formalism has been presented by Fesh
and Villars in Ref.@10#.

Choose the vector potential in the form

A~r !5
1

2
@B3r #, ~15!

whereB has only az component

B5S 0

0

B
D . ~16!

In this case the Hamiltonian~13! can be written as follows:

Ĥm f5~t31 i t2!F p̂z
2

2m
1\vS n̂1

1

2D G1t3mc2, ~17!

where

n̂5
1

\v
S p̂2

2m
1

mv2

2
q̂2D 2

1

2
. ~18!

Herev5eB/m is the cyclotron frequency.p̂ and q̂ are mo-
mentum and coordinate after a standard linear transforma
@14#,

q̂5
1

A2
S ŷ1

p̂x

mv
D ,

p̂5
1

A2
~ p̂y2mv x̂!. ~19!

Their physical sense is coordinates of a particle in a fra
connected with the center of the rotational motion~it is clear
5-2
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that momentum should be redefined in the correspond
units for such interpretation!. One more degree of freedom
vanishes in the Hamiltonian after linear transformation. T
physical sense of the corresponding momentum and coo
nate

Q̂5
1

A2
S ŷ2

p̂x

mv
D ,

P̂5
1

A2
~ p̂y1mv x̂! ~20!

is of coordinates of the gyration center.
First of all, consider briefly the well-known example of

one-dimensional free particle. The Hamiltonian of this s
tem has the following form:

Ĥ f p5~t31 i t2!
p̂2

2m
1t3mc2. ~21!

It is difficult to outline an evident physical meaning for ea
of the components of the wave function in this representa
~we denote it asthe standard representation!. However, the
matrix of the Hamiltonian~21! can be diagonalized to th
form

Ĥ f p5t3E~ p̂!, ~22!

where

E~p!5Am2c41c2p2. ~23!

One can provide the transformation in this representa
~the Feshbach-Villars representation! using the following
transform matrix:

Û~ p̂!5
1

2Amc2E~ p̂!
$@E~ p̂!1mc2#

1@E~ p̂!2mc2#t1%. ~24!

The components of the wave function have a sense of
solutions with positive and negative energies in t
Feshbach-Villars representation.

The coordinate operator in the Feshbach-Villars repres
tation has the even and odd~diagonal and nondiagonal! parts
@8–10#, and can be written in the following form:

q̂5 i\]p2 i
\c2p

2E2~p!
t1 . ~25!

Such a complicated form of the operator we refer to here
the nontrivial charge structure of the coordinate operator

Consider this question closely. It is clear that in our ca
all operators are 232 operator-valued matrices. In th
Feshbach-Villars representation relevant indices corresp
to different signs of charge~particle or antiparticle!. Opera-
tors with a nontrivial charge structure~including operator of
02211
g

e
i-

-

n

n

e

n-

s

e
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coordinate! are not observables from the point of the char
superselection rule. Indeed, the measurement of such an
erator shall result in a charge-violating state. However, i
impossible to build the modern physical theory without su
operators. Most probably the measurement procedure
these provides a system from a single-particle state t
many-particle one~i.e., it results in the creation of particl
pairs!.

On the other hand, the state before measurement
single-particle one and is not a superposition of states w
different signs of charge. Hence, the mean of any oper
depends on its even part only~diagonal matrix elements in
the charge space!. Therefore, only the even part of the op
erator is observable. Detailed consideration of this ques
has been presented in the work@15#.

One can write the even part of the coordinate operato
follows:

@ q̂#5 i\]p . ~26!

It is very important that in this case the even part of t
coordinate operator coincides with the Newton-Wigner po
tion operatorĵ, i.e.,

@ q̂#5 ĵ. ~27!

The momentum operator in the Feshbach-Villars represe
tion can be written in the very simple form

p̂52 i\]j . ~28!

Now, consider another, more complicated, example—
relativistic rotator, i.e., a particle in a constant homogene
magnetic field without translational motion along thez axis.
In this case, one can write the Hamiltonian as follows:

Ĥr5\v~t31 i t2!S n̂1
1

2D1t3mc2. ~29!

This Hamiltonian can be written in the Feshbach-Villars re
resentation~see@10# and Table I!, where it has a nontrivial
charge structure. We use here another representation@16#,
where the Hamiltonian~29! has a diagonal form. One ca
write the transform matrix in this representation as follow

Û~ n̂!5
1

2Amc2E~ n̂!
$@E~ n̂!1mc2#

1@E~ n̂!2mc2#t1%, ~30!

whereE(n) is the modulus of the Hamiltonian~29! eigen-
value

E~n!5mc2A112l2S n1
1

2D , ~31!

andl5lc /s is the ratio of the Compton wavelength and t
oscillator length. The Hamiltonian~29! in this representation
can be written as follows:
5-3
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TABLE I. The operators for a relativistic rotator in the different representations. The symbolsĵ andb̂ correspond to the Newton-Wigne
and related annihilation operators in the column ‘‘Feshbach-Villars representation,’’ and to coordinate and annihilation operato
nonlocal theory in the column ‘‘Representation of nonlocal theory.’’ Furthermore, the additional symbols used here are as

S( p̂,n̂,p̂)5U( p̂)R†(n̂)U21( p̂), S«( p̂,n̂,p̂)5U( p̂)«(n̂)R†(n̂)U21( p̂), Q(n̂,p̂,n̂)5U(n̂) i @\c2p̂/2E2( p̂)#t1U21(n̂).

Feshbach-Villars Representation of
Standard representation representation nonlocal theory

Hamiltonian of
relativistic rotator

(t31 i t2)\v(n̂1
1
2 )

1mc2t3

t3E( p̂)1
(mvc)2

2
(t31 i t2)

3E21/2( p̂) ĵ2E21/2( p̂)
E(n̂)t3

Standard operator
of coordinate

q i\]p2 i
\c2p

2E2(p)
t1

1
2ĵ@R~n̂!1R~n̂11!#

1
is2

2\
p̂@R~n̂!2R~n̂11!#

Newton-Wigner
position operator i\]p1 i

\c2p

2E2(p)
t1

i\]p

1
2ĵ@R~n̂!1R~n̂11!#

1
is2

2\
p̂@R~n̂!2R~n̂11!#

1Q~n̂,p̂,n̂!

Annihilation
operator of
nonlocal theory

âR†(n̂) Fb̂2
i\c2p̂

2A2sE2~ p̂!
t1GS~ p̂,n̂,p̂! b̂

Even part of
standard
annihilation
operator

â«(n̂)R†(n̂) Fb̂2
i\c2p̂

2A2sE2~ p̂!
t1GS«~ p̂,n̂,p̂! b̂«(n̂)
n
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Ĥr5t3E~ n̂!. ~32!

In this case~under conditions when electric and nonstatio
ary fields are absent! the Hamiltonian~32! coincides with the
Hamiltonian of the nonlocal theory@17#. The term ‘‘nonlo-
cal’’ has various meanings in contemporary quantum ph
ics. In this work we use it to note the fact that the Ham
tonian contains derivatives up to an infinite order. Therefo
this representation we refer to asthe representation of the
nonlocal theory.

The momentum and coordinate in the operatorn̂ of the
expression~32! differ from the standard operatorsp̂ and q̂.
We call them momentum and coordinate operators (p̂ andĵ)
of the nonlocal theory. These operators with correspond
annihilation and creation operators

b̂5
1

A2
S ĵ

s
1 i

s

\
p̂ D , ~33!

b̂†5
1

A2
S ĵ

s
2 i

s

\
p̂ D ~34!

have a trivial charge structure.
It is easy to find the evident form of the standard anni

lation operator in the representation of the nonlocal theo

â5b̂R~ n̂!. ~35!

Here we have introduced the following operator:
02211
-

-

,

g

-
:

R~ n̂!5U~ n̂21!U21~ n̂!5«~ n̂!1x~ n̂!t1 . ~36!

This operator contains both even and odd parts, and the f
tions «(n̂) andx(n̂) (« andx factors! are expressed via th
energy spectrum~31!:

«~n!5
E~n21!1E~n!

2AE~n21!E~n!
, ~37!

x~n!5
E~n21!2E~n!

2AE~n21!E~n!
. ~38!

Hence, the even part of the annihilation operator can
written in the following form:

@ â#5b̂«~ n̂!. ~39!

It should be noticed that, unlike the case of a free partic
the even part of the standard coordinate~annihilation! opera-
tor does not coincide with the corresponding operator of
nonlocal theory. Furthermore, the even part of the annih
tion operator is a deformed annihilation operator of the n
local theory@similar to Eq. ~6!#, where the« factor is the
deforming function.

Similar to @8–10# and taking into account the above di
cussion, the even part of the standard coordinate and
mentum~creation and annihilation! operators play the role o
‘‘mean positions,’’ and are a deformed canonical pair he
Their commutator can be written in the following form:
5-4
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†@ â#,@ â#†
‡5«2~ n̂11!~ n̂11!2«2~ n̂!n̂. ~40!

The reason for this deformation is the interaction of a part
with the vacuum. Though particle pair creation is abs
here, a particle feels the vacuum structure, and this is
scribed by the« factor.

This peculiarity leads to one more unexpected featu
Consider even parts of the coordinate operatorsx̂ and ŷ of
the usual configuration space. Using Eqs.~19! and ~20! one
can obtain the relevant commutation relation:

†@ x̂#,@ ŷ#‡5
is2

2
@«2~ n̂11!~ n̂11!2«2~ n̂!n̂21#, ~41!

wheres is the oscillator length. Hence, the ‘‘mean position
operators for the standard configuration space do not c
mute with each other. This fact distinguishes between
relativistic theory and the nonrelativistic~and nonlocal! one
and is a consequence of the vacuum influence as well. N
that the nature of this noncommutativity differs from o
presented in the works@18,19#.

The last example that we consider here is the particle
constant homogeneous magnetic field, i.e., the relativistic
tator with translational motion along thez axis. This system
is described by the Hamiltonian~17!. The modulus of an
eigenvalue has the following form:

E~n,pz!5mc2A112l2S n1
1

2D1
pz

2

m2c2
. ~42!

In this case, the standard operators in the representatio
the nonlocal theory can be written as follows:

ẑ5 i\]pz
2 i

\c2pz

2E2~ n̂,pz!
t1 , ~43!

â5b̂R~ n̂,pz!, ~44!

where the operatorR(n̂,pz), with « andx factors determined
similarly to the expressions~36!, ~37!, ~38!. Therefore, the
even parts of these operators have the following form:

@ ẑ#5 i\]pz
, ~45!

@ â#5b̂«~ n̂,pz!. ~46!

A specific peculiarity of these expressions is the fact that
mean positions operators of the rotational and translatio
motions do not commute with each other. The correspond
commutator is written as follows:

†@ ẑ#,@ â#‡5 ipzb̂
\m2c6

2

E~ n̂,pz!2E~ n̂21,pz!

@E~ n̂,pz!E~ n̂21,pz!#
5/2

. ~47!

It means that not only the configuration space of the ro
tional motion is noncommutative, but thez mean position
does not commute with those degrees of freedom due to
properties of the vacuum.
02211
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The coherent states that satisfy both conditions prese
in the Introduction can be constructed as eigenstates of
even part of the annihilation operator. The properties of s
states are considered in the following sections.

III. COHERENT STATES FOR A FREE PARTICLE

According to Eqs.~27! and ~28!, the even part of the
annihilation operator is the annihilation operator of the no
local theory in the case of a free particle:

@ â#5b̂5
1

A2
S ĵ

s
1 i

s

\
p̂D . ~48!

It is clear thats is not the oscillator length but an arbitrar
parameter. Hence, the coherent state of a relativistic free
ticle is the standard coherent state with one componen
charge. In the Feshbach-Villars representation this state
be written in the following form:

Ca,6~p!5
1

2p1/4S 161

171D expS 2
1

2
~p2A2a9!22 iA2a8pD .

~49!

Here we have used the dimensionless units, where the
mentum is measured in units of\/s and the coordinate is
measured in units ofs.

The trajectory of the wave packet in this case is the sa
as in the nonlocal theory. The mean velocity~in the speed of
light units! can be written as the following integral:

v̄5
l

Ap
E

2`

1` p

A11l2p2
exp@2~p2A2a9!2#dp. ~50!

This expression can be rewritten in the form of the pow
series:

v̄5
lA2a9

Ap
(
n50

`

~A2a9l!2n

3 (
k50

`

l2k C21/2
n1k C2(n1k)11

2k GS k1
1

2D . ~51!

The parameterl that describes the localization of the wav
packet is the independent relativistic parameter along w
mean momentum. In Fig. 1 we plot the dependence of
mean velocity on the mean momentum for different values
l and for the classical~nonquantum! case.

From this plot one can see that for small values of
momentum, this dependence is a nonrelativistic one but w
larger mass. Indeed, writing the power series~51! with terms
n50 only, one can obtain the following expression~in the
dimensional units!:

v̄5
p̄

m*
, ~52!

where we have introduced the effective mass as follows:
5-5
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m* 5
m

2

Ap
(
n50

`

l2nC21/2
n GS n1

3

2D . ~53!

The difference between the standard and nonlocal theo
can be verified on the expected values of observables, w
contain second and higher powers of the coordinate. We c
sider it on the example of the dispersion of coordinate.

The second moment of the coordinate~25! contains both
the standard and additional terms. The reason for this is
fact that the square of an odd operator is an even oper
Hence, the square of the dispersion for the coherent s
~49! can be written~in dimensionless units! as follows:

Dq25
1

2
2

l4

4Ap
E

2`

1` p2

~11l2p2!2

3exp@2~p2A2a9!2#dp. ~54!

In Fig. 2 we plot the dependence of the coordinate disp
sion on the momentum dispersion for coherent states w
different mean momenta. It should be noticed that there
ists a formal violation of the uncertainty relation for all the
states, especially for the large dispersion of momentum.
the very localized states, the square of dispersion even ca
negative. This is a specific feature of the spin-0 partic
which are described by the Klein-Gordon equation. The r
son for it is the indefinite metric of the Hilbert space
states. This fact makes for difficulties in the probability i
terpretation of these particles.

These peculiarities, which lead from the nontrivial char
structure of the coordinate operator, vanish for the stro
localized states with a large mean momentum. It means
in this case, the approximation of the nonlocal theory can
used for a description of scalar charge particles. Never
less, for strongly localized states with a small mean mom
tum these peculiarities manifest themselves.

FIG. 1. Dependence of the mean velocity on the mean mom
tum for the coherent states of a free particle with different value
the parameterl and for the classical~nonquantum! case. Momen-
tum is given inmc units; velocity is given in the speed of ligh
units.
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IV. COHERENT STATES FOR RELATIVISTIC ROTATOR

The even part~39! of the standard annihilation operator
a deformed annihilation operator of the nonlocal theory
the case of a relativistic rotator. Hence, the correspond
coherent states are the so-called nonlinear coherent s
@6,7# with the « factor as a deforming function:

ua,6&5N 21/2~ uau2! (
n50

`
an

An! @«~n!#!
un& ^ u6&. ~55!

Here u6& is the charge part of the quantum state. The fu
tional factorial and the normalization factor are determin
in the usual way:

@«~n!#! 5H 1 if n50,

)
k51

n

«~k! if n51, . . . ,̀ ,
~56!

N~ uau2!5 (
n50

` uau2n

n! @«2~n!#!
. ~57!

The « factor is the difference between the coherent sta
in the standard and nonlocal theories. It results in the f
that not only the dispersions of coordinate and moment
have some peculiarities, but the expected value of the c
dinate and momentum as well.

Consider briefly the properties of the function@«(n)#!.
From the definition~37!, the« factor

«~n!511
5l413

128l4

1

n2
1OS 1

n3D , ~58!

for large n. Therefore the quantity@«(n)#! converges to a
nonzero, finite factor asn→`. For example, it is possible to
find nonzero numbersa andb such that

n-
f

FIG. 2. Dependence of the coordinate dispersion on the mom
tum dispersion for coherent states of a free particle with differ
values of the mean momentum̂p&5A2a9l. Dispersion of the co-
ordinate is given inlc5\/mc units; dispersion of the momentum
and mean momentum are given inmc units. For comparison, the
curveDq51/(2Dp) for the coherent states in the nonlocal theory
given.
5-6
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expS a

n2D ,«~n!,expS b

n2D ~59!

holds for alln.0. In this case

expS p2a

6 D, lim
n→`

@«~n!#! ,expS p2b

6 D . ~60!

Hence this case has the property that the terms with the l
n are effectively of the canonical form whereAn! is the
controlling factor. From this fact we would be certainly in
clined to believe that«-factor influences on the particle be
havior are very low.

Consider this fact on the example of the expected val
of the coordinate and momentum time evolution. T
Heisenberg equation in the representation of the nonlo
theory has the following form:

] t@ â#52
i

\
t3@E~ n̂11!2E~ n̂!#@ â#, ~61!

] t$â%5
i

\
t3@E~ n̂11!1E~ n̂!#$â%, ~62!

where@ â# and$â% are the even and odd parts of the stand
annihilation operator. Their solution can be written as f
lows:

@ â#~ t !5expS 2
i

\
t3@E~ n̂11!2E~ n̂!#t D @ â#, ~63!

$â%~ t !5expS i

\
t3@E~ n̂11!1E~ n̂!#t D $â%. ~64!

The expected value of this operator in the coherent state~55!
is

ā~ t !56aN 21~ uau2! (
n50

` uau2n

n! @«2~n!#!

3expS 7
i

\
@E~n11!2E~n!#t D . ~65!

In the first relativistic correction, the dependence on th«
factor vanishes and this expected value can be calcul
analytically @13#:

ā~ t !56a expF22UaU2sin2S l2vt

2 D G
3exp$7 i @~12l2!vt2uau2sin~l2vt !#%. ~66!

Along with the cyclotron frequency, there exists the low fr
quency

V5l2v,v ~67!
02211
ge
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d
-

ed

-

that modulates the rotational motion. However, due to
bremsstrahlung, it can be regarded as an additional dam
rather than a low-frequency modulation in the real physi
systems.

In Fig. 3 we plot the results of numerical calculations f
the time evolution of the mean gyration radius. First of al
should be noticed that dependence on the« factor is very
small. Only in the case wherel is large enough and the
initial radius small, one can distinguish between the stand
and nonlocal theories. This difference is very insignifica
Also, we note that the low frequency is intrinsic to all cas
However, in real physical systems this effect should be v
suppressed by the bremsstrahlung.

Similar to the case of a free particle, the more significa
difference between the standard and nonlocal theories ca
exhibited in the second moments. Consider the square o
gyration radius

R̂252n̂11. ~68!

Note that this observable is an integral of motion. Then, o
can find the dispersion of the gyration radius as follows:

DR2512R̄2S 12N 21~R̄2/2!

3 (
n50

`
R̄2n

2nn! @«2~n11!#!
D , ~69!

whereR̄252uau2.
The results of the numerical calculations for the dep

dence of the gyration radius dispersion on the cyclotron
quency are given in Fig. 4. Unlike the case of a free partic
the peculiarities resulting from the nontrivial charge structu
of the coordinate and momentum operators are more evi
for the coherent states with large parametera ~mean gyration
radius!. The case ofa50 corresponds to the eigenstate
the Hamiltonian withn50. All peculiarities are absent here

V. COHERENT STATES FOR A PARTICLE IN A
CONSTANT HOMOGENEOUS MAGNETIC FIELD

The consideration of a particle in a constant homogene
magnetic field combines the two previous cases. Howeve
is impossible to construct coherent states that satisfy our c
ditions for both the translational and rotational degrees
freedom simultaneously, because the even parts of the co
sponding annihilation operators do not commutate with e
other@see Eq.~47!#. Therefore we will define coherent state
for each degree of freedom separately.

The coherent state for the translational motion has
following form:

un,az ,6&5un& ^ uaz& ^ u6&, ~70!

where uaz& is the standard coherent state for thez axis and
un& is the eigenstate of the rotator. The coherent state for
rotational motion can be written as follows:
5-7
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FIG. 3. The time evolution of the mean gyration radius of a relativistic rotator in classical and quantum relativistic~standard and

nonlocal! theories. The radius is given in dimensionless units; time is given in 1/v units. ~a! l50.1, q̄50.5, p̄50.5. This case can be

calculated analytically.~b! l550, q̄50.5, p̄50.5. In this case one can distinguish between the standard and nonlocal theories.~c! l

50.1, q̄52, p̄52. ~d! l550, q̄52, p̄52. In all the cases~not only with smalll) the low-frequency harmonic exists.
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ua r ,pz ,6&5N 21/2~ ua r u2,pz!

3 (
n50

` a r
n

An! @«~n,pz!#!
un& ^ upz& ^ u6&,

~71!

whereupz& is the eigenstate of thez component of momen
tum and the normalization factor is determined in the for

N~ ua r u2,pz!5 (
n50

` ua r u2n

n! @«2~n,pz!#!
. ~72!

It should be noticed that in the present form the coher
state~71! includes an eigenstate of thez component of mo-
mentum. Hence, it is normalized on thed function

^6,pz8 ,a r ua r ,pz ,6&56d~pz2pz8!. ~73!

Generally speaking, the states~70! and ~71! are direct
products of coherent states on the one degree of freedom
part of the Hamiltonian eigenstates on another one. Th
states can be redefined in such a way to be the coherent s
02211
:

t

nd
se
tes

FIG. 4. Dependence of the gyration radius dispersion on
cyclotron frequency for coherent states of a relativistic rotator w
different values of the mean gyration radius^R&. The cyclotron
frequency is given inmc2/\ units; the dispersion of gyration radiu
and mean radius are given inlc5\/mc units. Casê R&50 coin-
cides with a curve for a coherent state in the nonlocal theory.
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for both degrees of freedom. However, they will not satis
condition ~1! from the Introduction for one of them.

Summing the states~70! on n with e2uar u
2/2a r

n/An!, one
can obtain the coherent states of the nonlocal theory
sented in@12#,

ua r ,az ,6&5ua r& ^ uaz& ^ u6&, ~74!

where ua r& is a standard coherent state for the rotatio
degree of freedom. For the rotational motion these state
not satisfy condition~1! from the Introduction.

Now, integrating the states~71! with Caz
(pz) ~the stan-

dard coherent states in the momentum representation!, one
can obtain the following coherent states:

ua r ,az ,6&5 (
n50

` E
2`

`

dpzCaz
~pz!N 21/2~ ua r u2,pz!

3
a r

n

An! @«~n,pz!#!
un& ^ upz& ^ u6&. ~75!

These coherent states do not satisfy condition~1! for the
translational motion along the field@13#. Nevertheless, they
are eigenstates of the even part of the annihilation oper
~46!, and describe the rotational motion taking into accoun
finite localization along thez axis.

In the approximation of the nonlocal theory and for t
first relativistic correction of the standard theory, the sta
~74! and ~75! are the same. Hence, one can find the ti
evolution of the first moments of the rotational motion in th
case as follows:

ar̄~ t !56a r

1

A4 11
lz

4v2t2

4

3expF 22Ua rU 2sin2S l r
2vt

2
D 2

az9
2lz

4v2t2

21
lz

4v2t2

2
G

3expH 7 iF ~12l r
2!vt2Ua rU 2sin~l r

2vt !

2
az9

2lz
2v2t2

11
lz

4v2t2

4

1
1

2
arctanS lz

4v2t2

4
D G J . ~76!

Therefore, from the comparison of this equation and
~66!, one can conclude that the localization along thez axis
leads to the peculiarities of the rotational motion for the tim
02211
e-

l
do

or
a

s
e

.

t.
1

lzv
. ~77!

For the mean velocity of the translational motion alongz
axis we have the following:

v̄z5 p̄zF 1

m*
2

\v

m2c2 S Ua rU21
1

2D G . ~78!

The second term in this equation is the same in the class
~nonquantum! theory. Hence, the peculiarities of the trans
tional motion result only from the localization along th
degree of freedom in such approximation.

VI. COHERENT STATES IN THE WIGNER
REPRESENTATION

The localization peculiarities, which have been describ
in the preceding sections, can be illustrated by means of
relativistic Wigner function for charge-invariant observabl
@20,21#. The nontrivial charge structure of the coordinate a
momentum operators is taken into account in this repres
tation.

Utilizing the definition of the Wigner function from@20#,
one can obtain for the coherent state of a free particle~49!
~for determination, we consider only positive charge!:

W[ 1],a~p,q!5
1

p3/2
exp@2~p2A2a9!2#

3E
2`

1`S 11l2~p1x!2

11l2~p2x!2D 1/4

3exp~2x2!cos@2~q2A2a8!x#dx.

~79!

Due to the negative square of the coordinate dispers
for strong localized states, there exists the supposition
such states are impossible. In Fig. 5 we plot the Wig
function for such a state. One can see that negative sq
dispersion is the consequence of the ‘‘vacuum perturbatio
on the size near the Compton wavelength in the dom
around the origin of coordinates. However, this state is loc
ized very well. The perturbations do not influence the e
pected values of observables when the mean moment is a
from 0.

The Wigner function for the coherent state~55! of the
relativistic rotator can be written as the following expressi
@21#:
5-9
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W[ 1],a~p,q!5
1

p
exp~2q22p2!exp~2uau2! (

m,n50

`
«~m,n!

@«~m!#! @«~n!#!
@A2~q1 ip !ā#m@A2~q2 ip !a#n

3 (
k50

min(m,n)
1

@22~q21p2!#k~m2k!! ~n2k!!k!
, ~80!
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where«(n,m) is the« factor of two variables:

«~n,m!5
E~n!1E~m!

2AE~n!E~m!
. ~81!

The plot of this Wigner function is presented in Fig. 6. U
like the case of a free particle, ‘‘vacuum perturbations’’ i
crease asa→` here. They may be seen as the large nega
domain near the origin of coordinates.

VII. RESOLUTION OF UNITY

The resolution of unity is one of the key properties of t
coherent states. In this section we consider it for the rela

FIG. 5. The Wigner function~a! and its contours~b! for the
coherent state of a free particle. The ratio of the Compton wa
length and character wave-packet length isl58. The mean mo-
mentum is 8mc. In this plot momentum is given inmc and the
coordinate inlc5\/mc units.
02211
e

-

istic case presented here. Note, that for a free particle, wh
these states are the standard coherent states, the meas
determined by Eq.~5!. Hence we consider more complicate
cases of a relativistic rotator.

It is known ~see, for example,@7#!, that the integral mea-
sure in Eq.~4! for the coherent states~55! can be written in
the form

dm~a!5N~ uau2!W~ uau2!
da8da9

p
, ~82!

where the weight functionW(x) is determined from the fol-
lowing integral equation:

E
0

1`

xnW~x!dx5n! @«2~n!#!. ~83!

The resolution of unity for the states given in Eq.~75! is
rather more complicated than usual. We do not develop
resolution of unity in this paper, but we hope to return to th
question in a subsequent article.

-

FIG. 6. The contours of the Wigner function for the cohere
state of a relativistic rotator. The ratio of the Compton wavelen
and oscillator length isl58. The mean momentum and coordina
are 16mc and 1/4lc, respectively. The coordinate is given inlc

units; the momentum is given inmc units~absolute!. The domain of
the negative values is marked in black.
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VIII. CONCLUSIONS

In this paper we have considered the relativistic coher
state taking into account the fact that eigenfunctions of
standard coordinate and momentum operators have
charge components. However, the coherent states pres
here contain only one charge component and in that case
real and imaginary parts of the parametera are uniquely
related to the expected values of the standard coordinate
momentum. We obtained this result through the determ
tion of the coherent states as eigenstates of the even pa
the annihilation operator. Indeed, these coherent states d
satisfy the property of temporal stability, and time evoluti
of the mean position and momentum is, generally speakin
nontrivial question.

In order to obtain the even part of the annihilation ope
tor, one needs to change the standard coordinate to
Newton-Wigner position for the case of a free partic
Hence, the average coordinate and momentum have no
culiarities here. Nevertheless, the second moments~disper-
sion! differ from ones in the nonlocal theory and nonrelat
istic quantum mechanics, especially for very localized sta

Both the coordinate and momentum have a nontriv
charge structure in the case of a relativistic rotator. Furth
more, the even parts of these operators do not satisfy
commutation relations of the usual Heisenberg-Weyl alge
‘‘Mean positions’’ have the property of a deformed algebra
this case. Therefore, the coherent states have some pecu
-
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ties and are the so-called nonlinear coherent states. This
formation is the consequence of the interaction with
vacuum. In fact it is very small, and leads to insignifica
differences for the mean trajectory, but it leads to essen
peculiarities for the second moments.

A specific peculiarity for the case of a particle in a co
stant homogeneous magnetic field is the fact that the ‘‘m
positions’’ of the translational and rotational motions do n
commutate with each other. Hence, we cannot construct
coherent states that satisfy our conditions here. However
have presented states which, first of all, satisfy condition~2!
from the Introduction and, second, satisfy condition~1! only
for one degree of freedom.

Furthermore, it should be noticed that relativistic quantu
motion has other peculiarities, which are not consequen
of the nontrivial charge structure of the coordinate and m
mentum operators. These properties result from the Ehren
theorem because the relativistic Hamiltonian is effectiv
nonquadratic. For a free particle it leads to the effective
crease of the mass~effective mass can be presented her!.
For the rotational motion it leads to the low-frequency flu
tuations of the gyration radius.
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