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Relativistic coherent states and charge structure of the coordinate and momentum operators
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We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional require-
ments:(i) the expected values of the standard coordinate and momentum operators are uniquely related to the
real and imaginary parts of the coherent state parametér) these states contain only one charge component.
Three cases are considered: free particle, relativistic rotator, and particle in a constant homogeneous magnetic
field. For the rotational motion of the two latter cases, such a description leads to the appearance of the
so-called nonlinear coherent states.
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[. INTRODUCTION For the standard coherent states determined by(Ecthis
measure has a simple form:

Coherent states are currently very interesting in modern
quantum physics and in quantum technologies. They have a da'da”
long history and a very wide field of application. It was dp(a)=—]—, ®)
Schralinger who first considered these states for the har-
monic oscillator in the early years of quantum mechafids where @’ and «” are the real and imaginary parts of the
These states minimize the uncertainty relations and one gfarameter.
their important properties is temporal stability. It means that These coherent statéwe denote them as the standard
time evolution can be described, in this case, by changing theoherent states herean be used not only for a harmonic

parameter of the coherent states oscillator but for a wide enough class of the quantum sys-
. tems. However, the property of the temporal stability is in-
a—>aexp —iot). (1) trinsic to the systems which are unitarily equivalent to the

harmonic oscillator. This property can be conserved by a

These states are eigenstates of the annihilation operaton.qqefinition of the coherent staths 5].

- A lot of different generalizations of the coherent states are
1 9 .9 well known today. We note only one of them that will appear
a= +i , (2 . . ; .
Jo\lo R in our consideration from an unexpected side[8hthe au-

thors have shown that trapped electron can be described by
where o= \/mw is a characteristic oscillator length, with means of coherent states which are eigenstates of the de-

eigenvaluesy, formed annihilation operatoa; expressed in terms of the
) usual annihilation and creation operators in the following
ala)=ala). 3  way:
Another significant property of the coherent states is the af:fif(a’fa), (6)

resolution of unity2,3]. It means the existence of an integral
measuredu(«) such that the following condition is satis- wheref is a certain function. Mathematical properties and a
fied: physical sense of these states have been considered in detalil
in [7]. The authors call these states nonlingarf) coherent
states. Analogous states that satisfy the condition of temporal
stability have been presented[ih,5].

The description of a relativistic quantum system by means
of the coherent states meets certain difficulties. First of all, it
*Also at Physics Department, Taras Shevchenko Kiev Universityshould be noticed that relativistic quantum theory can be
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field). However, even in this case the coordinéded, gen-

erally speaking, the momentuyraperator is not well defined iho = m—(go—)() (10
[8—10. This reveals itself in the fact that eigenstates of this V2

operator contain states with different signs of charge. There- .

fore, the coherent states defined by E8). contain eigen- one comes to the two-component wave function
states of the Hamiltonian with different signs of charge as @

well. The existence of such kind of states is prohibited by the = ) . (11)
charge superselection rul&1]. X

Coherent states for relativistic spin-0 and spin-1/2 Par\ow Eq.(8) can be written as the Schtinger equation
ticles in a constant homogeneous magnetic field have been™ " —™
introduced in[12]. These states are expanded in eigenstates P50 = [mhy (12)
of the Hamiltonian with one sign of charge only. However, t '
these states are not eigenstates of the annihilation operatQfi o the Hamiltonia™ has the following form:
and furthermore, expected values of coordinate and momen-
tum for these states are nat \2o and a”\2#/ o, respec- i [p—eA()]?
tively. H™ = (r3+i7p) > +
The coherent states for charged spin-0 particles, which we m
consider in this work in detail, have been presentefllBl. |, this expression; are the 22 matrices
These states satisfy two additional conditions.
(1) The coherent state parametelis expressed in terms (0 1) _ ( 0 1) (1 0 )
1= y | To= y T3 .

TaME. (13

of the mean value of the standambt Newton-Wigner co-

ordinate and momentum in the usual way, 1o -1 0 0 -1 (14)
1 a o Corresponding formalism has been presented by Feshbach
= E PR (7)  and Villars in Ref.[10].

Choose the vector potential in the form

(2) These states are expanded in eigenstates of the Hamil- 1
tonian with one sign of charge only. A(r)= §[er]v (15
The coherent states, which can be constructed by using
Eqg. (3), satisfy condition(1) but do not satisfy conditio(2);  whereB has only az component
the coherent states presentedi], in contrast, satisfy con-
dition (2) but do not satisfy conditioil). 0
In this work we consider a spin-0 charged patrticle in a B=| 0. (16)
constant homogeneous magnetic field and two more simple B
examples: free particle and relativistic rotator. These systems

can be described in the one-particle sector of the theory by, s case the HamiltoniafL3) can be written as follows:
cause particle pair creation is absent there. However, the

nontrivial charge structure of the coordinate and momentum A p2 1
operators leads to the appearance of some peculiarities in the H™ = (73+i7p) —~Ztholn+= ||+ mc, (17
evident form of the relativistic coherent states and in the 2m 2
expected values of some observables. where
Il. STATEMENT OF THE PROBLEM AND CHARGE .~ 1 (p? mwzn2 1
STRUCTURE OF OPERATORS n=—losmt 39/ 3 (18)

Consider a scalar charged particle in a constant homoge-
neous magnetic field. Such a particle is described by th
Klein—Gordon equation:

erew=eB/m is the cyclotron frequency andq are mo-
mentum and coordinate after a standard linear transformation

[14],
— 127 y={c’[p—eA(r)]*+m*c*y. ®) . 1. B
. o _ =z me
This is a second-order equation in time. Hence, in the present
form, one cannot interpret it as a Sctinger equation. This 1
problem can be resolved, if by means of changing p= 7(f)y—mw§<). (19)

Their physical sense is coordinates of a particle in a frame
connected with the center of the rotational motidns clear

1
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that momentum should be redefined in the correspondingoordinatg are not observables from the point of the charge
units for such interpretation One more degree of freedom superselection rule. Indeed, the measurement of such an op-
vanishes in the Hamiltonian after linear transformation. Theerator shall result in a charge-violating state. However, it is
physical sense of the corresponding momentum and coordimpossible to build the modern physical theory without such

nate operators. Most probably the measurement procedure for
R these provides a system from a single-particle state to a
~ 1/~ px many-particle ondi.e., it results in the creation of particle
=B e pairs.

On the other hand, the state before measurement is a
1 single-particle one and is not a superposition of states with
p— _(6y+ MwX) (20) different sign_s of charge. Hen(_:e, the mean of any operator
\/E depends on its even part onfgiagonal matrix elements in
_ _ _ the charge spageTherefore, only the even part of the op-
is of coordinates of the gyration center. erator is observable. Detailed consideration of this question
First of all, consider briefly the well-known example of a has been presented in the wqds].
one-dimensional free particle. The Hamiltonian of this sys- One can write the even part of the coordinate operator as
tem has the following form: follows:

~y .
I:|fp=(r3+i72);—m+r3mc2. (21 La]=1#dp. 9

It is very important that in this case the even part of the
It is difficult to outline an evident physical meaning for each coordinate operator coincides with the Newton-Wigner posi-
of the components of the wave function in this representatiomion operatoré, i.e.,

(we denote it athe standard representatipnHowever, the

matrix of the Hamiltonian(21) can be diagonalized to the [a]:%. (27)
form The momentum operator in the Feshbach-Villars representa-
AfP=7,E(p), (22)  tion can be written in the very simple form
where p=—ihd,. (28)
E(p)= \/mchczpz. (23 Now, consider another, more complicated, example—a

relativistic rotator, i.e., a particle in a constant homogeneous
One can provide the transformation in this representatiomagnetic field without translational motion along thexis.
(the Feshbach-Villars representatiprusing the following  |n this case, one can write the Hamiltonian as follows:
transform matrix:

A ~ 1
1 Hr:ﬁa)(73+i7'2) n+§ +T3m02. (29)
0(p)= ——=1{[E(p)+m]
2VmcE(p) This Hamiltonian can be written in the Feshbach-Villars rep-
- resentationsee[10] and Table ), where it has a nontrivial
+[E(p)—mc]ri}. (24) charge structure. We use here another representftidn

. where the Hamiltoniari29) has a diagonal form. One can
The components of the wave function have a sense of the . AN . ]

. . o : : . write the transform matrix in this representation as follows:
solutions with positive and negative energies in the

Feshbach-Villars representation.

The coordinate operator in the Feshbach-Villars represen- 0(n)= L {[E(ﬁ) +mc?]
tation has the even and oddiagonal and nondiagongbarts > /mczE(ﬁ)
[8-10], and can be written in the following form:
heZp +[E(n)—mcZ] 7y}, (30
q=itd,—i ———r. (25) . e :
P 2E2(p) whereE(n) is the modulus of the Hamiltoniaf29) eigen-
value
Such a complicated form of the operator we refer to here as
the nontrivial charge structure of the coordinate operator. _ / 2 1
Consider this question closely. It is clear that in our case E(m=mc/1+2\%| n+ 2/ (3D

all operators are 2 operator-valued matrices. In the

Feshbach-Villars representation relevant indices corresporand\ =\./o is the ratio of the Compton wavelength and the
to different signs of chargéparticle or antiparticle Opera-  oscillator length. The Hamiltonia(29) in this representation
tors with a nontrivial charge structufancluding operator of can be written as follows:
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TABLE I. The operators for a relativistic rotator in the different representations. The syr%lamidﬁ correspond to the Newton-Wigner
and related annihilation operators in the column “Feshbach-Villars representation,” and to coordinate and annihilation operators of the
nonlocal theory in the column “Representation of nonlocal theory.” Furthermore, the additional symbols used here are as follows:

S(p,n,p)=U(P)R" (MU *(p), S,(P,n,p)=U(P)e(NR'(NU~*(p), Q(N,p,n) =U(n)i[#c’p/2E*(p)]7,U " *(n).

Feshbach-Villars Representation of
Standard representation representation nonlocal theory
on . — L (mwc)?
Hamiltonian of (r3+im)ho(n+3) mE(p) + (r3+iTy) .
relativistic rotator +mcr, P %2 P E(n)7s
XE""(p)€°E"(p)
1he A -
s R(N)+R(N+1)]
Standard operator q hc?p 2

of coordinate I dp=i 2E%(p) "t

2. . R
+ RN =RA+1)]

FRM)+RM+1)]
Newton-Wigner 2 . i, ..
position operator ihdp+i 2—p71 ifidp +Eﬂ{R(n)—R(n+1)]
2E%(p)
+Q(n,p,n)
Annihilation . o
. . ifnc?p . n a
operator of aR(n) b———r }S{p,n,p) b
nonlocal theory 2\20E2(p)
Even part of A
standard A Al pon R inc’p A A
annihilation ae(N)R'(n) b— 220E%(h) 71[Se(P.n,p) bz (n)
operator
H'=75E(n). (32) R(N)=U(n—1)U Y(n)=e(n)+x(n)ry.  (36)

In this case(under conditions when electric and nonstation-This operator contains both even and odd parts, and the func-
ary flleldsl are absenthe Hamiltonian(32) coincides with the tiOﬂSS(ﬁ) andx(ﬁ) (s and y factorg are expressed via the
Hamiltonian of the nonlocal theorjl7]. The term “nonlo- energy spectruni3l):

cal” has various meanings in contemporary quantum phys-

ics. In this work we use it to note the fact that the Hamil- E(n—1)+E(n)
tonian contains derivatives up to an infinite order. Therefore, e(N)= ————, (37
this representation we refer to #se representation of the 2JE(n—1)E(n)
nonlocal theory

The momentum and coordinate in the operatoof the (n)= E(n—1)—E(n) 38)
expression32) differ from the standard operatofsandc}. X 2VE(n—=1)E(n) '

We call them momentum and coordinate operatézraﬁd%) o
of the nonlocal theory. These operators with corresponding Hence, the even part of .the annihilation operator can be
annihilation and creation operators written in the following form:

o1 (%#aﬂ) - [a]=be(n). (39
=—|=+i-7/,
V2lo h It should be noticed that, unlike the case of a free particle,
R the even part of the standard coordin@anihilation opera-
fr 1(¢ o-. tor does not coincide with the corresponding operator of the
b _ﬁ o 5T (34 honlocal theory. Furthermore, the even part of the annihila-

tion operator is a deformed annihilation operator of the non-
have a trivial charge structure. local theory[similar to Eq.(6)], where thee factor is the

It is easy to find the evident form of the standard annihi-deforming function.

lation operator in the representation of the nonlocal theory: ~ Similar to[8-10] and taking into account the above dis-
cussion, the even part of the standard coordinate and mo-

a=DbR(n). (35) mentum(creation and annihilatigroperators play the role of
“mean positions,” and are a deformed canonical pair here.
Here we have introduced the following operator: Their commutator can be written in the following form:
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[[a],[a]']=e4(h+1)(n+1)—e2(N)n. (40) _ The coherenfc states that satisfy both con<_jitions presented
in the Introduction can be constructed as eigenstates of the
The reason for this deformation is the interaction of a particleeven part of the annihilation operator. The properties of such
with the vacuum. Though particle pair creation is absenstates are considered in the following sections.
here, a particle feels the vacuum structure, and this is de-
scribed by thes factor. IIl. COHERENT STATES FOR A FREE PARTICLE
This peculiarity leads to one more unexpected feature.
Consider even parts of the coordinate operaioendy of
the usual configuration space. Using E(9) and(20) one
can obtain the relevant commutation relation:

According to Egs.(27) and (28), the even part of the
annihilation operator is the annihilation operator of the non-
local theory in the case of a free particle:

io? oo~ 1 [E& o.
[X1.[911= 5-[e2(R+ 1)(A+ 1)~ e2(R)h—1], (4D [a]:b—ﬁ(;“%p)- “3

whereg is the oscillator length. Hence, the “mean position” It is clear thato is not the oscillator length but an arbitrary
operators for the standard configuration space do not conparameter. Hence, the coherent state of a relativistic free par-
mute with each other. This fact distinguishes between thécle is the standard coherent state with one component of
relativistic theory and the nonrelativistiand nonlocalone  charge. In the Feshbach-Villars representation this state can
and is a consequence of the vacuum influence as well. Notee written in the following form:

that the nature of this nhoncommutativity differs from one

presented in the workg8,19. 1 (11 s
The last example that we consider here is the particle in gI’a,:(p)— 2 14\ 151 ex E(p V2a)?=i\2a P
constant homogeneous magnetic field, i.e., the relativistic ro- (49)

tator with translational motion along tteaxis. This system
is described by the Hamiltonia(l7). The modulus of an Here we have used the dimensionless units, where the mo-

eigenvalue has the following form: mentum is measured in units éfo and the coordinate is
measured in units of.
5 1 p§ The trajectory of the wave packet in this case is the same
E(n,p)=mc\/1+2\% n+ 1 Caey (42 asin the nonlocal theory. The mean velodity the speed of

light units) can be written as the following integral:
In this case, the standard operators in the representation of

the nonlocal theory can be written as follows: — N (= P "2
v="=| ——==exd—(p—y2a")’ldp. (50
V)= 1+ 2\%p?
. _ hc?p, P
z=ihdp,~ 2E%(P.p,) 1 (43 This expression can be rewritten in the form of the power
e series:
é:BR(ﬁypz)! (44) o 7\\/5&” *
] _ , = > (V2a"\)?
where the operatdR(n,p,), with ¢ and y factors determined Jm =0

similarly to the expression&36), (37), (38). Therefore, the
even parts of these operators have the following form:

kl
"2

X kZO N C S CEG gl : (51)
[2]=ihdy, (45)
The parametek that describes the localization of the wave
[é]zﬁs(ﬁ,pz). (46) packet is the independgnt relativistic parameter along with
mean momentum. In Fig. 1 we plot the dependence of the
A specific peculiarity of these expressions is the fact that thénean velocity on the mean momentum for different values of
mean positions operators of the rotational and translational and for the classicalnonquantumcase.
motions do not commute with each other. The corresponding From this plot one can see that for small values of the

commutator is written as follows: momentum, this dependence is a nonrelativistic one but with
larger mass. Indeed, writing the power selig$) with terms
Am?c® E(n,p,)—E(n—1,p,) n=0 only, one can obtain the following expressitn the

[[z].[all=ip,b 5 (47)  dimensional units

[E(n,p)E(n—1p,)1%%

It means that not only the configuration space of the rota- — b (52)
tional motion is noncommutative, but themean position m*’

does not commute with those degrees of freedom due to the

properties of the vacuum. where we have introduced the effective mass as follows:
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FIG. 2. Dependence of the coordinate dispersion on the momen-

FIG. 1. Dependence of the mean velocity on the mean momertum dispersion for coherent states of a free particle with different
tum for the coherent states of a free particle with different values ofalues of the mean momentufp)= \/2a"\. Dispersion of the co-
the parametek and for the classicalnonquantumcase. Momen-  ordinate is given il.=#%/mc units; dispersion of the momentum
tum is given inmc units; velocity is given in the speed of light and mean momentum are giventmc units. For comparison, the

units. curveAqg=1/(2Ap) for the coherent states in the nonlocal theory is
given.
m* = — m . (53 IV. COHERENT STATES FOR RELATIVISTIC ROTATOR
— > ac" 1/2F( n+ —) The even part39) of the standard annihilation operator is
\r i=o 2 a deformed annihilation operator of the nonlocal theory in

the case of a relativistic rotator. Hence, the corresponding

The difference between the standard and nonlocal theoriegnerent states are the so-called nonlinear coherent states
can be verified on the expected values of observables, whigls 7] with the & factor as a deforming function:

contain second and higher powers of the coordinate. We con-

sider it on the example of the dispersion of coordinate. * "
The second moment of the coordind®s) contains both la, £)=N"Y|al?) D, ————|n)®|*). (55
the standard and additional terms. The reason for this is the n=0 \/H[S(”)]!

ere| =) is the charge part of the quantum state. The func-
ional factorial and the normalization factor are determined
in the usual way:

Hence, the square of the dispersion for the coherent sta

fact that the square of an odd operator is an even operatia
(49) can be written(in dimensionless unijsas follows:

A—i- N B 1 if n=0,
2 Cw 212)2
4\ - (1+22p?) [e(n)]! = ﬁ co i net g OO
xexd —(p—+2a")?]dp. (54) 5 A
In Fig. 2 we plot the dependence of the coordinate disper- * ||
sion on the momentum dispersion for coherent states with Nal?) = E 5 . (57)
different mean momenta. It should be noticed that there ex- n=0 n!fe“(n)]!

ists a formal violation of the uncertainty relation for all these
states, especially for the large dispersion of momentum. For
the very localized states, the square of dispersion even can . . :
negative. This is a specific feature of the spin-0 particlesthat not only the _d|:_sper3|ons of coordinate and momentum
which are described by the Klein-Gordon equation. The reabf”“’e some peculiarities, but the expected value of the coor-
son for it is the indefinite metric of the Hilbert space of dinate a_nd momentum as weII._ .
states. This fact makes for difficulties in the probability in- Consider pr!gfly the properties of the functiga(n)]!.
terpretation of these particles. From the definition(37), the ¢ factor

These peculiarities, which lead from the nontrivial charge 4
structure of the coordinate operator, vanish for the strong e(n)=1+ S\T+3 £+ (i) (58)
localized states with a large mean momentum. It means that, 128\% n? nd/’
in this case, the approximation of the nonlocal theory can be
used for a description of scalar charge particles. Neverthdor large n. Therefore the quantitye(n)]! converges to a
less, for strongly localized states with a small mean momennonzero, finite factor as—o. For example, it is possible to
tum these peculiarities manifest themselves. find nonzero numbera andb such that

The ¢ factor is the difference between the coherent states
the standard and nonlocal theories. It results in the fact
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a that modulates the rotational motion. However, due to the

exp(—2 (59 bremsstrahlung, it can be regarded as an additional damping

n rather than a low-frequency modulation in the real physical

systems.

holds for alln>0. In this case In Fig. 3 we plot the results of numerical calculations for

2 % tr;]e tilr(r;ebevolutior:j ofh thedmeandgyration rar(]jgs. First of all it

mal o should be noticed that dependence on ¢héactor is very

exy{ 6 <r![rl[s(n)]!<exr( 6 ) (60 small. Only in the case wherk is large enough and the

initial radius small, one can distinguish between the standard

Hence this case has the property that the terms with the larg&d nonlocal theories. This difference is very insignificant.

n are effectively of the canonical form wherén! is the Also, we n_ote that the'low frequency'ls intrinsic to all cases.

controlling factor. From this fact we would be certainly in- However, in real physical systems this effect should be very

clined to believe that-factor influences on the particle be- supp_re_ssed by the bremsstrahlung._ —

havior are very low. _ Similar to the case of a free particle, the more S|gn|f|cant
Consider this fact on the example of the expected valuedifference between the standard and nonlocal theories can be

of the coordinate and momentum time evolution. Theexhib.ited in 'the second moments. Consider the square of the

Heisenberg equation in the representation of the nonlocdlyration radius

theory has the following form:

R2=2n+1. (68)

- i - A
alal=— 7 E(n+1)—E(n)][a], (61)  Note that this observable is an integral of motion. Then, one
can find the dispersion of the gyration radius as follows:

A= B TEMNE, (62

AR?=1-R?| 1-N"LR%2)

where[é] and{é} are the even and odd parts of the standard o R2"
annihilation operator. Their solution can be written as fol-

lows: & 2"i[e2(n+ 1)) 69

whereR?=2|a/|?.

The results of the numerical calculations for the depen-
dence of the gyration radius dispersion on the cyclotron fre-
. quency are given in Fig. 4. Unlike the case of a free patrticle,
{a}. (64)  the peculiarities resulting from the nontrivial charge structure
of the coordinate and momentum operators are more evident
for the coherent states with large parametémean gyration
radiug. The case ofa=0 corresponds to the eigenstate of

[a], (63

[é](t)=exp( - ;i—rg[E(ﬁ+1)— E(n)]t

{a}(t)= ex;{;i—rg,[E(ﬁ-F 1)+E(n)Jt

The expected value of this operator in the coherent $&ge

IS the Hamiltonian withn=0. All peculiarities are absent here.
o * |a|2n
a(t)=+aN Y(|a]?) > — V. COHERENT STATES FOR A PARTICLE IN A
=on![e*(n)]! CONSTANT HOMOGENEOUS MAGNETIC FIELD

i The consideration of a particle in a constant homogeneous
XexF{ +%[E(n+ - E(n)]t>- (65) magnetic field combines the two previous cases. However, it
is impossible to construct coherent states that satisfy our con-
In the first relativistic correction, the dependence onghe ditions for both the translational and rotational degrees of
factor vanishes and this expected value can be calculatieedom simultaneously, because the even parts of the corre-
analytically[13]: sponding annihilation operators do not commutate with each
other[see Eq(47)]. Therefore we will define coherent states
for each degree of freedom separately.
The coherent state for the translational motion has the
following form:

o

2
Zsinz()\ wt)

2

E(t)=taex;{—2

xXexp{Fi[(1- A\ wt—|a|?sin(\2wt)]}. (66)

|n,az,i>=|n>®|az>®|i>, (70)
Along with the cyclotron frequency, there exists the low fre-
quency where|a,) is the standard coherent state for thaxis and
In) is the eigenstate of the rotator. The coherent state for the
Q=\Nw<w (67) rotational motion can be written as follows:
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FIG. 3. The time evolution of the mean gyration radius of a relativistic rotator in classical and quantum relaftésiadard and
nonloca) theories. The radius is given in dimensionless units; time is givendnuhbits. (a) A=0.1, a=0.5, E=O.5. This case can be
calculated analytically(b) A =50, a=0.5, E=O.5. In this case one can distinguish between the standard and nonlocal th@mries.
=0.1,q=2, p=2. (d) =50, q=2, p=2. In all the casegnot only with small\) the low-frequency harmonic exists.

a0, =) =N (| e |%,p,)

% n

o . .
2 Fro e melpel)

(71)

where|p,) is the eigenstate of thecomponent of momen-
tum and the normalization factor is determined in the form:
AR 2t
/\f(lalzp)=§ _lad® (72
TR Ao ni[e2(n,p) ]t

It should be noticed that in the present form the coherent
state(71) includes an eigenstate of tkecomponent of mo-

mentum. Hence, it is normalized on tldefunction 00 G - i 15 3

! !
(.0 arlar,pz, =)=+ 8(p,=p,)- (73 FIG. 4. Dependence of the gyration radius dispersion on the
cyclotron frequency for coherent states of a relativistic rotator with
Generally speaking, the stat¢80) and (71) are direct ifferent values of the mean gyration radi(8). The cyclotron
products of coherent states on the one degree of freedom af@quency is given imc?/% units; the dispersion of gyration radius
part of the Hamiltonian eigenstates on another one. Thesgnd mean radius are given lp,=%/mc units. CasgR)=0 coin-
states can be redefined in such a way to be the coherent statgges with a curve for a coherent state in the nonlocal theory.

022115-8



RELATIVISTIC COHERENT STATES AND CHARGE . . . PHYSICAL REVIEW A 66, 022115 (2002

for both degrees of freedom. However, they will not satisfy 1

condition (1) from the Introduction for one of them. t>
Summing the state€70) on n with e"“r‘z’za?/\/m, one

can obtain the coherent states of the nonlocal theory pre-

sented in12],

(77

o

For the mean velocity of the translational motion alang
axis we have the following:

|ar,az,i>=|ar>®|az>®|i>, (74)
where |a;) is a standard coherent state for the rotational — —|1 ho , 1
degree of freedom. For the rotational motion these states do vz=P; ) ap|“+ ) (78

not satisfy condition(1) from the Introduction.
Now, integrating the state&1) with ¥, (p,) (the stan-

dard coherent states in the momentum represenjatiore

. . The second term in this equation is the same in the classical
can obtain the following coherent states:

(nonquantumtheory. Hence, the peculiarities of the transla-
tional motion result only from the localization along this

. 7a2’i>:nzo fjc dpz‘I’aZ(pz)N_llz(lar|2,pz) degree of freedom in such approximation.

o VI. COHERENT STATES IN THE WIGNER
X = [M&[p)e[x). (75 REPRESENTATION
Vnife(n,p,)]!

) ) The localization peculiarities, which have been described
These coherent states do not satisfy conditidhfor the j, the preceding sections, can be illustrated by means of the

translational motion along the field3]. Nevertheless, they (q|ativistic Wigner function for charge-invariant observables
are eigenstates of the even part of the annihilation operatqbq 51 The nontrivial charge structure of the coordinate and
(46), and describe the rotational motion taking into account omentum operators is taken into account in this represen-
finite localization along the axis. tation

In the approximation of the nonlocal theory and for the S - , .
first relativistic correction of the standard theory, the states Utilizing the definition of the Wigner function frorf2],

(74) and (75) are the same. Hence, one can find the timeon€ can optain for the cohgrent state Of.‘.a free parfieth
evolution of the first moments of the rotational motion in this (for determination, we consider only positive charge

case as follows:

1
1 Wii1,a(P.0) = —zexd — (p—2a")?]
a(t)=*rxaq—F——= e 732
r - =%
4 Njwt? 1/4
1+ — XIW 1+N\2(p+x)?
—» | 1+N23(p—x)?
Mot al\iw’t? 5 " ,
xexp| —2| o, | 2sir? —|- S X expg —x2)cog 2(q— \2a')x]dx.
- N0t (79
2

Due to the negative square of the coordinate dispersion
for strong localized states, there exists the supposition that
such states are impossible. In Fig. 5 we plot the Wigner
L function for such a state. One can see that negative square

dispersion is the consequence of the “vacuum perturbations”
a'z'z)\ngtz 1 r()\?wzt2> P g P

xexp| Fi| (1-AY)ot—| a,|%sin\2wt)

_ + Zarcta on the size near the Co.mpton wavelength_ in the .domain

M2 2 around the origin of coordinates. However, this state is local-
ized very well. The perturbations do not influence the ex-
4 pected values of observables when the mean moment is away

from 0.

Therefore, from the comparison of this equation and Eq. The Wigner function for the coherent statg5) of the

(66), one can conclude that the localization along ztexis  relativistic rotator can be written as the following expression

leads to the peculiarities of the rotational motion for the time[21]:

(76)
1+
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0

e(m,n)

2 o em I e(mr V2 @F iP)al V2= ip)al"

_i —n2_pn2 _ 2
Wi+1,0(P,0) = —exp(—q*=pexp(—|al*)

min(m,n) 1
: (80)
go [—2(g%+p?) K (m—Kk)! (n—Kk)!k!
|
wheree(n,m) is thee factor of two variables: istic case presented here. Note, that for a free particle, where
these states are the standard coherent states, the measure is
_ E(m)+E(m) determined by Eq(5). Hence we consider more complicated
e(n,m)= ——. (81 AN
2\E(n)E(m) cases of a relativistic rotator.

It is known (see, for exampld,7]), that the integral mea-

The plot of this Wigner function is presented in Fig. 6. Un- sure in Eq.(4) for the coherent state§5) can be written in
like the case of a free particle, “vacuum perturbations” in- the form

crease agz— here. They may be seen as the large negative
domain near the origin of coordinates.

! "

VII. RESOLUTION OF UNITY dM(a)=N(|a|2)W(|a|2)T, (82

The resolution of unity is one of the key properties of the

coherent states. In this section we consider it for the relativ- . . . .
where the weight functiom(x) is determined from the fol-

0.49, "\ lowing integral equation:
035 \\
+ oo
030 \ f XMA(X)dx=n![£2(n)]!. (83)
0.25 ‘ \\ 0
020 | ’
w 0.5 ///’”", " \ The resolution of unity for the states given in E@b) is
. /////’”, ', ”“\ rather more complicated than usual. We do not develop that
0.1¢| /// ,’, "'” resolution of unity in this paper, but we hope to return to this
0 //l’" ," 'm‘ guestion in a subsequent article.
000 .'A!.""!.’.g' I”"'."" '.. “h‘ 2 oy
RO e 40.00
= - 35.00
T F e 30.00
(@) P 25.00
0.6-(1)5'00 -5.00 5.00 15.00 20.00
P 15.00
-0.40 L
-0.20 5.00
q -0.00 0.00
-5.00
020 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60
0.40 q
(b) 0.60 FIG. 6. The contours of the Wigner function for the coherent

state of a relativistic rotator. The ratio of the Compton wavelength
FIG. 5. The Wigner function@ and its contourgb) for the and oscillator length ia =8. The mean momentum and coordinate
coherent state of a free particle. The ratio of the Compton waveare 16nc and 1/4 ., respectively. The coordinate is given i
length and character wave-packet length\is 8. The mean mo- units; the momentum is given mc units (absolut¢. The domain of
mentum is &nc. In this plot momentum is given imc and the the negative values is marked in black.
coordinate in\.=#A/mc units.
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VIIl. CONCLUSIONS ties and are the so-called nonlinear coherent states. This de-

In this paper we have considered the relativistic cohere ftormatlon 'S the. consequence of the Interaction W'.th the

state taking into account the fact that eigenfunctions of thré/gcuum. In fact it is very sr_nall, and Iea}ds to |nS|gn|f|can_t

standard coordinate and momentum operators have bo@:ﬁergnggs for the mean trajectory, but it leads to essential
eculiarities for the second moments.

charge components. However, the coherent states presen d-

here contain only one charge component and in that case t A specific peculiarity for the case of a particle in a con-
X iy 9 P X r%?ant homogeneous magnetic field is the fact that the “mean
real and imaginary parts of the parameterare uniquely

related to the expected values of the standard coordinate a@(gsmons of the translational and rotational motions do not

; We obtained thi it th h the determi mmutate with each other. Hence, we cannot construct the
momentum. Ve oblained Inis resutt througn e determings ;o .ot states that satisfy our conditions here. However, we
tion of the coherent states as eigenstates of the even part R%ve presented states which, first of all, satisfy condit®n

the annihilation operator. Indeed, these coherent states do N25m the Introduction and. second satisfy conditiahonly
satisfy the property of temporal stability, and time evolutionlcor one degree of freedor'n '

of the mean position and momentum is, generally speaking, & Furthermore, it should be noticed that relativistic quantum

no?rt]“(\)/:zle?ltfitﬁgi'n the even part of the annihilation Opera_motion has other peculiarities, which are not consequences
tor, one needs to change the standard coordinate to tf}oﬁf the nontrivial charge structure _of the coordinate and mo-
Ne’vvton—Wigner position for the case of a free particle entum operators. These properties re;ult from the Ehrgnfest
Hence, the average coordinate and momentum have no F‘)th_eorem bepause the relat|V|.st|c_Ham|lton|an is effegnvgly
o : ﬁonquadratlc. For a free particle it leads to the effective in-
culiarities here. Nevertheless, the second mométiisper- crease of the maseffective mass can be presented here

TS“?”) differ from ones i_n the nonl_ocal theory and n_onrelativ- For the rotational motion it leads to the low-frequency fluc-
istic quantum mechanics, especially for very localized Stateﬁumions of the gyration radius

Both the coordinate and momentum have a nontrivial
charge structure in the case of a relativistic rotator. Further-
more, the even parts of these operators do not satisfy the
commutation relations of the usual Heisenberg-Weyl algebra. The authors thank K. A. Penson and J.-M. Sixdeniers for
“Mean positions” have the property of a deformed algebra infruitful discussion of this work and for their very useful com-
this case. Therefore, the coherent states have some peculiaments.
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