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This work is an enquiry into the circumstances under which entropy methods can give an answer to the
questions of both quantum separability and classical correlations of a composite state. Several entropy func-
tionals are employed to examine the entanglement and correlation properties guided by the corresponding
calculations of concurrence. It is shown that the entropy difference between that of the composite and its
marginal density matrices may be of arbitrary sign except under special circumstances when conditional
probability can be defined appropriately. This ambiguity is a consequence of the fact that the overlap matrix
elements of the eigenstates of the composite density matrix with those of its marginal density matrices also
play important roles in the definitions of probabilities and the associated entropies, along with their respective
eigenvalues. The general results are illustrated using pure- and mixed-state density matrices of two-qubit
systems. Two classes of density matrices are found for which the conditional probability can be défined:
density matrices with commuting decompositions §2dthose that are decohered in the representation where
the density matrices of the marginals are diagonal. The first class of states encompass those whose separability
is currently understood as due to particular symmetries of the states. The second are a class of states that are
expected to be useful for understanding separability. Examples of entropy functionals of these decohered states
including the crucial isospectral case are discussed.
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I. INTRODUCTION rability criterion for generalized Werner states fqudits.
(See[1] for a derivation of the same result by the disorder

The theory of quantum entanglement has occupied a cermriterion, and references therein to other methods of arriving
tral place in modern research because of its promise of enogat the same resultThe above quoted entropy criteria are
mous utility in quantum computing, cryptography, etc. A ma-necessary but not sufficient and the equality signs in them
jor thrust of current research is to find a quantitative measurgjve the demarcation of separability from the entangled re-
of entanglement for general states. Approaches to this quegions. Nielsen and Kemgé] further provided a crucial iso-
tion based on the eigenvalue spectra of the system densifpectral example where two density matrices have the same
matrices, such as entropy methods, have given necessary lfectra both globally and locally, one of which is entangled
not sufficient conditions for particular states. However, it isand the other separable from the partial transpose condition
not known for what classes of states entropy conditions apor equivalently the positivity of concurrence. For this iso-
ply. Recently important questions have been rajde?] con-  spectral case, the Tsallis entropies are all equal foq athd
cerning the ability of entropy methods to decide on the quesso the conditional entropies are zero for @lINielsen and
tion of separability of a composite state. In particular, thekempe conclude that separability criteria based solely on
case of a Werner state of two qubitg=p|¥){(¥|+(1 eigenvalues of the composite density matrix and its marginal
—p)l/4 (0=p=<1) and |¥)=(|00)+|11))/v2 has been density matrices can never work. The same conclusion is
cited[1] to point out that it is separable by partial transposeadvocated inf2], whose authors also claim that the use of
criterion if and only if p<1/3, whereas the von Neumann Tsallis conditional entropy as if8,4] is wrong. Later in this
conditional entropy criterionS,;(A|B)=S;(A,B)—S,(A) paper, we will clarify the derivation given ii8,4] and show
=0 gives the condition of separability fa=<0.747.... Abe that it is indeed correct.
and Rajagopal3] also pointed out this result as well as the  From the above examples it is seen that entropy criteria
condition for separability based on the Bell inequality whichsometimes succeed and sometimes fail in identifying the
givesp<1/2=0.7071..., and obtained the necessary condiseparability of states. The purpose of this paper is to seek
tion for separabilityp<1/3 by employing the conditional under what conditions entropy methods can give an answer
Tsallis entropy condition. This condition, namely, to the questions of both quantum separability and classical
limg_... S4(A[B)=0, S4(A|B)={[Sq(A,B)—S4(A)J/[1+(1  correlations of a composite state and identify the reasons for
—0)S4(A)]}, with the Tsallis entropy defined aS;(p) it. It is found that separable states have a fixed sign for the
={(Tr p9—1)/(1—q)}, was derived by them undéne as- entropy difference whenever the conditional probability
sumption of the existence of conditional probabilltyshould  could be defined. Furthermore, we find two classes of states
be noted that fog=1 the Tsallis entropy as well as the for which this can be done. The first class of states, those
g-conditional entropy become the corresponding von Neuwith commuting decompositions, encompass most of the
mann versions of entropy;(p)=—{Tr pInp}, and condi- known examples for which the understanding of the separa-
tional entropy. In an extension of this work, Ap&] showed bility conditions took advantage of particular symmetries of
that the Tsallis entropy condition also gives the correct sepathe state$3—7]. The second class of states, which are deco-
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hered in the representation where the density matrices of theoncluding remarks are given along with the introduction of
marginals are diagonal, are a class with properties that arentropy functionals based on the decohered states. In the
expected to be useful in studying entanglement. These decéppendix, details are given of the general two-qubit pure-
hered states lead us to consider different entropy functionalstate density matrix in Sec. lll.

To this end, we first consider the most general form of a

bipartite density matriy(A,B), second, its special represen- Il. PRELIMINARIES IN TERMS OF SPECIAL

tation, and third, a further special form for it. The special REPRESENTATIONS

representation employed here is based on the diagonal rep- ) o i )
resentation of the marginal density matrices ffA,B) Consider a bipartite state of a composite system described

p(A)=Trg p(A,B) andp(B)=Tr, p(A,B). This representa- by the density matriyp(A,B) whose marginal density matri-
tion will be designated thév, 8} representation. In this rep- C€S are Tgp(A,B)=p(A) and Tp p(A,B)=0(B). These
resentationp(A,B) is not diagonal, in general. However, density matrices being Hermitian, trace-class operators have
this representation has a crucial property with respect to ddl€ir own diagonal representations in terms of orthonormal
coherence. Ifp(A,B) decoheres in this representation, so@1d complete statesiere we employ a discrete, finite num-
that its off-diagonal elements vanish, resulting in a decoPer Of states for simplicity, as in the cases of qudit sysjems

hered density matripy(A,B), it is found that the marginal [N their respective spaces:

density matrices of botp(A,B) andp4(A,B) are the same.

In the discu;sion of gntropy metho_ds for describing the en- p(A,B)=E ITYP(T)(T], p(/-\)=2 la)p(a)(al,
tanglement issues, this representation also makes it transpar- T @

ent that the overlap matrix elements of the composite states

with the product states of the marginal density matrices play

important roles. We show that only when the eigenstates con- a(B)=2> |Ba(B)Al, (1)
spire suitably can the conditional probabilities be unambigu- b

ously defined, thereby allowing entropy inequalities to be

estab_lished. This is found to happen for two classes of states. (T|T"Y=6p 2 ITWT|=1(A,B)=I(A)®(B),
One is the class of decohered statgé$A,B). The second ‘ T

class are states that have commuting operators in the sub-

systems of their decompositions. The corresponding forms

for the entropies for each of these classes will be investigated (ala’)=64q 2 |a@)(al=1(A),

to yield information about the separability and correlations “

inherent in them. It is important to point out that an entropy

functional based on the decohered density matrix is shown , _

here to distinguish the entangled and the separable states in (Blp 195,61 % B)(BI=1(B). @
the isospectral example given fith].

In order to illustrate the relationship of the properties ofHere| stands for identity operators in the spaces specified.
the entropies employed in examining the entanglement staHere it should be noted thdf) represents the composite
tus, we use as a guide the “concurrence” measi8®] state of thgAB) system in its most general form. In general,
which is a necessary and sufficient condition for entangleit is an entangled state. Also, since these are all density ma-
ment of two-qubit density matrices. Thus it is shown that thetrices, P(I"), p(«), andqg(3) are the corresponding prob-
eigenstates corresponding to the eigenvalues must also kilities and hence are positive, taking values between 0 and
included in deducing the entanglement status of a composite. The marginal density matrices may also be expressed in
system. These results are valid for both pure- and mixedthe following alternate forms:
state density matrices. In the case of a general two-qubit
pure-state density matrix, this formulation is shown to give a
necessary and sufficient condition for the separability. Sev- p(A)=Trg P(A,B)=; 2 (BIT)P(T)(T|B)
eral cases of bipartite mixed-state density matrices are used F
to illustrate our formulation. It should be emphasized that the
conditions obtained for the mixed states, however, are only =2 |a)p(a)al, ()
necessary but not sufficient. “

This paper is divided into four sections. In Sec. I, the
special representations in which the marginal density matri- o(B)=Trap(A,B)=> > (a|TYP(I'){T|a)
ces are diagonal and the ensuing properties are developed. T a
We employ these to represent the known concepts of en-
tanglement and correlations. Section Il contains the main => |B)a(B){Al, (4)
results of this work presented in the form of four theorems. B
We illustrate these results with specific examples of bipartite
density matrices to elucidate the theorems. A complete acso that we have the following relations between the eigen-
count of a pure state of a general two-qubit system is alsvalues of the marginal density matrices and those of the com-
included in this section. In the final Sec. 1V, discussion andposite density matrix:
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the mutual entropy is zero. In the more general form, the
pla)=2 > [e.BIT)PP(T) (5 mutual entropy may be nonzero, thus indicating the presence
boe of correlations in the system.
In some simple cases, one may express the composite

and density matrix in the form given above and check its sepa-

rability. For example, the Werner state quoted above may be
Q(ﬁ)=; ; (e, BIT)PP(T). (6)  written in the form

Here we have introduced the notati#m,ﬁ)=|a>|-,8>. It is pp:(1_3p)|/4+g _ > pi(A)®c(B)

important to note thap(«) andq(B) arenot marginal prob- i=13e=x%

abilities of the composite probability?(I") in view of the

appearance of the overlap matrix element in E§sand(6). + > pf(A)®0’i8(B)],

By using the completeness relations we may also express i=2e=*

the density matrix of the composite system in terms of the

states of A and B systems in which the representation wherepi(A)=o7(B)=(l,+&0)/2, with thed;’s the stan-

p(A,B) is not necessarily diagonal: dard Pauli 2<2 matrices and, a 2X2 unit matrix. One
immediately notices that separability of the Werner state fol-
lows if p<1/3, when the weights are all positive. Note that

P(A'B)Egg Z Z |, B){e, BIT") this result is derived without examining the eigenvalues at
weh all. But this direct method has not yielded a useful measure
XP(I')(T|a’,B'Ya',B'|. (7)  for the entanglement of general states.

Concurrencd8,9] is a valid measure of entanglement of
Working out the marginal density matrices from this exprestwo qubits. The system is separable if and onlyCifAB)
sion and comparing it with Eq$3),(4) and(5),(6), we obtain =0 and whenC(AB)=1 it is maximally quantum en-
the following expressions: tangled. The concurrend®(AB) of a density matrixp(AB)
[8,9] in the computational basis will be used here. It is
a,BITYP(T (T |, B)=p(a)d, 4 8 defined by first constructing the matrixXp(AB)
EF: 2,8: (@ ADPIT e’ f)=p()3, ® =(0,807)p* (AB)(0,®05), where ¢, is the standardy
component X2 Pauli matrix, angp* (AB) is the complex
and conjugate matrix ofp(AB). The concurrence is then given
by C(AB)=max\;—A,—A3—\4,0} where {\{,\5,\3,\4}
Er: D (a,BTYP(TNT |, B)=0(B) S5 - (9 ?re thi square roots of the eigenval-ues of the matrix product
@ p(AB)p(AB) arranged in decreasing order. It was also

) shown to be a symmetry-dependent measure, e.g., permuta-
There have been some recent suggestions to use anotl’tﬁ_{n symmetry [13,14. In the Werner exampleC(AB)

guantity called the_mutual entropy, which is L_Jsed in classical_ max(3p—1)/2,0 and this is in agreement with the result
contexts to examine the classical correlations among thﬁuoted above which was obtained from the separable decom-
?/ar |ablels(,) tol exf‘m'”: ]Eheothuantum entanglement and comeygision of the density matrix. Recall that the Tsallis entropy
ations[10-12. It is defined as criterion[3] gives the same correptvalues for the entangle-
ment status of the Werner state. We will presently demon-
strate that this criterion depends on the eigenvalues of the
Here S, stands for the von Neumann entropy. dfA,B) composite densﬂy matrix and its e_lgenfunctlons in a special
—p(A)®a(B), then S;(A:B)=0 and, conversely, if way. In view of this result, expressioii$) will be used here

p ' i ' to examine to what extent one can separate the quantum

A:B)=0, thenp(A,B)=p(A B). Such a composite X ) . .
dsé%sity)mairixehgsf n,o )coﬁsaleitﬁ)(r:(b()etwseen its gubg?/stemgntanglement from the classical correlations contained in a
.omposite density matrix.

This result is also true for classical systems. The concept 0 Wi h h h . | defined ab
mutual entropy in the Tsallis theory is not expressible in a e now show that the eigenvalues de Inéd -above,
neat form in view of the fact that the bipartite density matrix{)‘lf‘z’hﬂ_)“‘}’ may be expressed as .the eigenvalues
is not diagonal in thd|a,B)} representatiofisee Eq.(7)]. of p(AB)p(AB)=Zr p/|I')C(I',I""(I'"|, with C(I',I'")

A composite density matrix is said to be quantum sepa= Zr,P(I)(I'|G2®65|I'T)P(I')(TT[6206,1'").  Here
rable if it can be written as convex combinations of indi- the asterisk denotes the complex conjugate. Thus the eigen-
vidual density matrices oA and B in the form p(A,B) values involved in the computation of concurrence are re-
=3;wjp;(A)®0c;(B) (O=wj=<1), Z;w;=1. For classically lated to both the eigenvalues of the density matrix /)
correlated systems, a similar decomposition holds, and hen@nd an appropriate set of its matrix elements as indicated in
one often uses the terms “classically correlated” and “quan-the above expression. This already gives a hint that the
tum separable” interchangeably to describe such systemgigenfunctions generally also play an important role in deter-
For the special case when all thg’s are zero except for mining the entanglement status of the system. This will be
one, this expression reduces to the uncorrelated case whealescussed in more detail in the following sections.

Si(A:B)=S;(A)+Si(B)—S(A,B). (10
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TABLE |. Summary of the examples elucidating Theorems A-D.

Concurrence g-entropy difference
Example C(X,Y) S4(A,B) —Sy(A or B)

Quantum deficiD
Mutual entropyS

El C(A,B)=2/3 (g=1) D/In2=(5In5-81In2)/61In 2
Entangled mixed —(5/6)In(5/4)<0 =0.6016
Entangled(Theorem A# S/IN2=(3In3-21In2)/3In2

=0.9182
E2 C(B,C)=1/3 (q=1) D/In 2=(1/3)
Entangled mixed (5/6)In(5/4y>0 S/In2=3In3+8In2-5In5)/3In 2
Entangled(Theorem A =0.3817
E3 2/3 0 forallq D/In2=(2/3)
Entangled mixed Entangled(Theorem A S/In2=0.9183
E4 C(BC)=1 (q=1)—1In2<0 D/In2=1
Entangled pure Entangled ¢=1) S/in2=2
Bell state (Theorem B
E5 C(A,B)=0 In2>0 D/In2=0
Separable Separable S/In2=0
PAB=PA® O (Theorem D? Classically uncorrelated
E6 C(A,B)=0 0 forallq D/In2=0
Separable (Theorem D S/in2=1

pas=(pa® 0+t pa®0p)/2

Special cases of E@l) will now be discussed depending where Eq.(6) was used. SimilarlyS;(B) may be written
on the context defining the composite state. We state thdown. Each of the entropies defined in E¢kL) and(12) is
central results of this paper in the form of four theorems. Wepositive. But the difference between Ed4l) and (12) is
will also give some illustrative examples accompanyingSi(A,B)—Si(A) = =33, gl(a,B|IT)PP(I')In[P(I')/p(a)]
Theorems A, B, and D which are summarized in Table I.and a similar expression for the other difference. Sipge)
Possible entropy functionals based on Theorem C are dignd q(8) are not marginal probabilities of the composite

cussed in Sec. IV and an example of this, the quantum defrobability P(T"), the ratioP(I')/p(«) or P(I')/q(B) may
cit, is also included in Table 1. be greater than unity and hence no conclusion can be drawn

about the sign of {S;(A,B)—S;(A)} or {S;(A,B)

—S,(B)}. Only whenthe notion of conditional probability

can be defineavill such a ratio lie between 0 and 1, and the

. . .. above differences of entropies become “conditional entro-
Theorem AThe general composite mixed-state densitypias» haying only positive sign. Under special circum-

rr_1atr|x and its marginal d_ensny matrices do not have a fixe tances, they can also be zero.

sign for the entropy difference$S,(A,B)—S;(A)} and The relation between the sign of the entropy difference

{S1(A,B)—Sy(B)} and they may even be zero. and entanglement must be inferred from other considerations
Theorem A follows because, by the above considerationsg pe discussed later in this section.

we have It is interesting to note that in the Werner case, the eigen-

values of the composite state aRgy(I")=((3p+1)/4,(1

—p)/4,(1—p)/4,(1—p)/4), and the two marginal density

matrices are the same and their eigenvalues mé«)

=(1/2,1/2)=qgw(B). Therefore the rati®,y/qy will qualify

to be the conditional probability {f(3p+1)/4]/(1/2)<1 or

:_2 2 |(a,,8|F)|2P(F)In P(I) (11 for p<1/3. This is the same condition for separability de-

I ap rived earlier.

Three entangled mixed states, which have negative, posi-
and tive, and zero entropy difference, are now given to illustrate
Theorem A. These examples, as well as the ones used to
illustrate the other theorems, are physically motivated and
are all marginals of three-qubit pure-state density matrices
[13] which are related to the GHZ al classes of tripartite
states as defined {13]. The results for all the examples are

- BITYRP(IN)IN , 12 collected together in Table I.
Er: az,;a Ker AIDFP(I)INp(e) 12 Example E1Mixed state

IIl. MAIN RESULTS

S,(A,B)= —; P(I)InP(T)

Si(A)= —; p(a)inp(a)
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1 Although the sign of the entropy differences is not fixed
p1(AB)= g[(—2|10>+|01>)(—2<10|+<0ﬂ)+|00><00|], in general, the following three theorems identify situations
where the conditional probabilities can be defined and the
sign becomes fixed.

1 . .
p1(A)==(4]|1)(1]|+2]0){0]), Theorem B The entropy differences are in general less
6 than or equal to zero for an entangled pure state of two
1 qubits.
o1(B) = = (|1)(1]+5/0)(0]). 13) This follows by giving a complete account of a pure-state

density matrix. In the Appendix, we give the general formu-
las needed in developing the discussion of the pure-state den-
The marginal density matrices are already diagonal and thisity matrix of a two-qubit state. The representations that di-
saves one step in our procedure. This is the situation for alhgonalize the marginal density matrices given in Hgd.1)
the examples chosen here to illustrate the various theoremgnd (A12) are
The eigenvalues of the density matrices in Ef3) are

P1(I')=(0,05.2) and py(a)=(5.5), 4i(B)=(5.3). The p(A)=|ar)p(a)(a|+|az)paz)(asl,
entropy differences areS;(AB)—S,(A)=2In(§)<0 and p(ay),plaz)=[1*|s(A)|]/2, a7
S1(AB)—Sy(B)=0.

Example E2Mixed state o(B)=[B1)a(B1){B1l+|B2)a(B2){Bal,

(18
a(B1).a(B2)=[1=|s(B)[]/2.

The corresponding eigenvectors in terms of the familiar
computational basis are given by

1
p2(BC)= &[(|10)+]01)((10/+(01))+4|00)(00 ],

1
B)= = (|1){(1]|+5|0){0|)=0,(C). 14 _
p2(B) =5 (I11)(1]+5/0)0)=05(C). (14 A1)+ S4AA_[0),
The eigenvalues ar®,(I')=(0,02,2) and p,(a)=(%,2 lay)=—e "*MA_|1)+A,|0),
=0,(B). The entropy differences are equal aB¢g(BC)
—S,(B)=21n(%)>0. AL ={[|s(A)| =s3(A)112/S(A) [},

Example E3Mixed state )
) S1(A)+is,(A)
goA "1 Te

, (19
ps(AB) = 5(110)+ 01)) (10 +(01) +00)(00} ], VSI(A) +55(A)

(15  Wwith similar expressions for th& system. One may then
1 compute the system density matrix in terms of these. Since
p3(A)= §(|1><1| +2|0)(0])=a5(B), this system is a pure state, we have

S;(A,B)=0, S;(A|B)=—-S;(B), S;(A:B)=2S;(A).
and their eigenvalues ar®;(I')=(0,03,3) and ps(«a) 1(AB) 1(AlB) 1(B) il ) 1(A)

(20
, The entropy differences are zei®,(AB .

_ (83 (Z)) %3(1‘lc8)r) all g. by (AB) The entropies oA andB are equal because of Eg14) and

Examples(El)—(E3) are all entangled states as shown byare given by
the concurrence values in Table .

0<S;(A)=S(B)=— In - In

The property of the mutual entropy th&{(A:B)=0 is a 1(A)=5,(B) play)inpla) —plaz)in play)

known result but a proof of this in terms of tle, B} basis is <1. (22

illuminating because
It should be noted that EqA14) expresses the magnitudes

5 of the spin vectors oA andB in terms of the known con-
Sl(A:B):; aEB (e, BIT)FP(T)IN[P(I)/p(a)a(B)] currence[8,9,18 for the pure state given by E@gA2). The
' following interesting cases are evident from E@s11) and
=0. (16) (A12).
Case A The reduced density matrices are also pure states
The inequality follows from the property of the logarithm if the vectorss(A) ands(B) are unit vectors, when the equal-
InX=1—(1/X), for positive X, and the various normaliza- ity sign in Eq.(A13) is satisfied. The corresponding entro-
tions shown in Eq(2). The equality sign is obtained when pies are then zero. In this case we obtain the pure state to be
the composite system is both unentangled and uncorrelategeparablet turns out that this is also sufficient for the sepa-
i.e., when P(I')=p(a)q(B) or more generally when rability of the pure state.
p(A,B)=p(A)®c(B). This result is both necessary and suf- Case B The reduced matrices are maximally chaotic
ficient. mixed states if either of the two spin vectors is zero, and

022104-5



A. K. RAJAGOPAL AND R. W. RENDELL PHYSICAL REVIEW A66, 022104 (2002

hence the pure state isaximally entangledn this case, the that case, the off-diagonal elements in Ef).are eliminated
entropy of A is In2. The conditional entropy is negative, and only the diagonal elements endure. It should be empha-
—In2, and the mutual entropy is 2 In 2. sized that decoherence is basis dependentpg(W,B) can
Case C It follows from cases A and B that the inequality in general be entangled because it need not be diagonal in the
in Eqg. (A13) shows that for all other polarizations of the computational basis. For example, compare the Werner state
qubits 1/2<Tr, p2(A)<1 and the pure state is entangled. in the Bell basis and the computational basis. It is important
This also implies that the conditional entropy is negative. to note that our choice of tHev,3} representation is such that
Thus we may conclude that the entropy method works fothe marginal density matrices of the decohered system are
the discussion of entanglement of two-qubit pure states. Ththe same as those for the original system.
conditional entropy is negative if and only if it is entangled.  Proof of this theorem is straightforward. In this case we
An example of an entangled pure state density matrix i<an define conditional probabilities as in the classical case,
(E4) given below. because &Py(«|B)=Py4(a,B)/q(B)<1, etc., and condi-
Example E4Pure state tional entropy statements for both Tsallis and von Neumann
cases may be deducéga8l. It should be noted that the deco-
hered density matrix given by E3) is in general quantum
entangled because it cannot always be expressed as a convex
(22)  combination of pure-state density matricgg(A)®oi(B)}

1
pa(BC)= 5 [(|10~[01)((19 (0],

1 with positive weightsw; such thats,w;=1. If, however, we
pa(B)= §(|1><1| +]0)(0]) = a4(C). are given the entropy inequality, in view of Theorem A, we
cannot conclude that the composite density matrix is of the
The eigenvalues ar@,(I')=(0,0,0,1) andp,(a)=(%,} form Eq. (23). Also, we cannot deduce the form of the joint

probability given in Eq.(24).
The last statement in the above theorem is originally due

lo Klein [15]. He showed that whenever the off-diagonal

lements of a density matrix are discarddde to the “ran-
dom phase approximation” as was then a prevalent coicept
the von Neumann entropy increases. A simple proof of this
éollows from the Kullback-Leibler relation Tg,(Inp;
—In p,)=0 wherep,; andp, are any two density matrices in
the same space. Taking =p(A,B) and p,=p4(A,B), we
have —S;(A,B)—Trp(A,B)In py(AB)=0; but from Eq.

=04(B). The entropy differences are equal aBg(BC)
—S5;(B)=—1In2<0. This is a pure-state density matrix and,
as shown above, the negative entropy difference implies it i
entangled. This agrees with the result for the concurrenc
C(AB)=1.

Theorem CIf the eigenfunctions conspire in such a way
that one may express the composite density matrix in th
“decohered” form

pa(A,B)=2, |a,B)Py(a,B){ B, (23)  (23), the result is thus established.
“p A second class of density matrices for which conditional
where probability exists is found for commuting operators within

each subsystem of local decompositions. A composite den-
) sity matrix is quantum separabler classically correlatedf
Pd(OAB)ZEF: (@, B]T)[*P(T), (24 it can be written in the form of a convex combination

then p(a),q(B) are indeed marginal probabilities of the p(A,B)ZE Wipj(A)®0;(B),

composite  probability Pg4(a,8), and S;4(A,B) J

=S,(A),S;(B). Also, the entropy of a generai(A,B) is

less than or equal to that described by E2p): S;(A,B) (O=w;=<1), 2 wj=1. (253

<S;4(A,B). Equality is obtained whem(A,B)=p4(A,B)

and this can happen j#(A,B) commutes withp(A)®1(B)  This is a local representation in which the weigitscan be

andl(A)®o(B). interpreted as classical probabilities. Any entangled state can
We first discuss the significance of this diagonal form ofalso be given a local representation in the form called a local

the density matrix in théa,3) representation which diago- pseudomixturg16]:

nalizes the marginal density matrices. Equaii@8 in com-

parison with Eq(7) implies that p(A,B)=—tp (A,B)+(1+t)p"(A,B),  (25b

S(a,BITYP(T)(T|a',B"Y=Py(a,B) 54 a0 p' where each op~(A,B) are of the separable form given in
Eqg. (259 andt is a finite positive number. Thus pseudomix-

and Egs(8) and(9) then follow. This can happen if and only tures involve negative coefficients in their local representa-
if the system density matriy(A,B) commutes withp(A) tions and these do not have the properties of classical prob-
®I1(B) andI(A)®p(B). In Theorem D, and in several ex- abilities. The representatiof5b) is not unique, but the
amples given below including the Werner case, such a situminimum value oft represents a valid measure of entangle-
ation occurs. Equatiof23) can arise when there is “deco- ment[16].
herence” of the system either due to the effects of The nexttheorem relates the separability condition of Eq.
environment or due to a measurement process &2 In (259 to an entropy difference condition.
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Theorem D If, in a local representation of a composite simpler representations of the marginal density matrices
density matrix, the density matrices AfandB for different  p;(A)=X,|a)p;(a)(al, oj(B)=Zy|b)q;(b)(b|, and hence
j commute in their respective spaces, th&j(A,B) the composite density matrix takes the diagonal
=S,(A),S1(B). When they do not commute, the results areform  py(A,B)==,p|a,b)P(a,b)(a,b| where P(a,b)

as in Theorem A. =2;w;pj(a)q;(b). Then p(a)=Z;w;pj(a) and q(b)
Consider first the separable case given by 8§a. This ~ =ZX;w;q;(b) are marginals oP(a,b). Then the conditional
equation leads to the following marginal density matrices ofprobabilities can be defined and thus the inequalities follow.
A andB: Again, we see that if the entropy inequalities are obtained

for a given composite system, one cannot draw conclusions
A)= o (A)= 26 about the separability of the density matrix.
p(A) 2 Wipj(A) ; |@)p(a)al (263 Under the conditions of Theorem D, E(.6) takes a sim-

pler form:
with

Si(AB)=2, P(a,B)IN[P(a,B)/p(a)d(B)]=0. (29
p(a)=2 wi(alp(A)la), @b
o In Eq. (258, which is different from p(A,B)

and similarly =p(A)® o(B), the equality sign in Eq(29) implies classi-
cal correlation hidden in it as also suspectefilio—12. The
o(B)=, ngj(B)EE |8Ya(B){B] (26p ~ convex combination in E253 contains in it some classical
i B correlation even though it also defines quantum separability.
, If the local representation is of the entangled form given
with by Eq. (25b), then the marginal density matrices are of
the form p(A)=—tp (A)+(1-t)p*(A), and p(B)=
a(B)=> w(Blo;(B)|B), —tp (B)+(1—t)p*(B), where the expressions for the
] terms in the right hand side are of the form given in Eqgs.
where the states of and B diagonalize the sum of the (263 and(_26b):Adiscussio_r1 foIIowi_ng the lines Of. Theorem
. ) : ; D above in this case leading to similar conclusions for the
weighted density matrices. Also, we have in such a represern- . ; . . >
entropy differences is a bit more involved requiring further

tation that the composite density matrix is not diagonal in the 7 . 2
analysis and will be postponed to a later communication.

{a.f} basis: We will now give two examples of Theorem D that are of
the separable form of Eq25a which obey the commuting
p(AB)=2 X |a.B)P(aB;a’ B ) e Bl condition. These are also summarized in Table I.
@B o' p’ Example E5Mixed state
(27)
P(a,ﬁ;a’,ﬂ’)=; wia|pj(A)a"}Bloi(B)[B"). ps(AB)= %(|oo><oo|+|01><01|),

Note thatp and g are the marginal probabilities associated (30

1
with the composite density matrix as in Theorem A and the ps(A)=]0)0|, o5(B)= §(|0><0|+|1)(1|).
results for the corresponding entropies are ambiguous be-
cause here again we cannot define conditional probabilities., . . _ 11 _
However, when the density matricesAdfandB for different Their elgfnlvalues ar@S(F)__(O’O’Z’Z) andps(a)=(0.1),
j commute in their respective spaces, or if we can filtlia  ds(8)=(z,z). The entropy differences a® (AB) —S;(A)

Eq. (27) in the form =In2 andS;(AB)—S;(B)=0.
Example E6Mixed state
P(a,B;a',8")=Pp(a,B) 64,4 054 .
where pe(AB) = §(|11)(1]J+|00><00|),

(31)

[e% = alpi a a; 1
Po(a,f)=2 wi(alpi(A)la)(Bloy(B)IA). (28 oA = 2(11)(1I +0)(0) = o(B).

then the results of Theorem C follow as before. This is be- ) 11
causep andq are now the conditional probabilities associ- 1he eigenvalues of these aRy(I')=(0,03,7) and pg(a)
ated with the composite probabiliy(«,B) defined in Eq.  =(3,3)=0s(B). S4(A,B) —S4(A)=0 for all g.

(28). In the Werner state exampl&] given above and else-
The composite state in Theorem D turns out to|Bg  where[4], this commuting situation occurs, allowing condi-
=|a,b) because one can diagonalize simultaneously the denional probabilities to be defined, and thus these works are

sity matricesp;(A) for all j. In this case, one obtains the not wrong as alleged by Vollbrecht and W§#]. When one
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of the weightsw; is not positive, then the above argumentthe special states that diagonalize the marginal density ma-
fails, as happened in the Werner example. Also, as showtrices whereas the discord does not. The quantum deficit uses
under Theorem A, in the Werner-state example the condia decohered density matrix which maintains the same infor-

tional probability can be defined only far<1/3. mation contained in the marginal states A and B. This choice
removes as much of the ambiguity as possible in comparing
IV. DISCUSSION AND CONCLUDING REMARKS correlation and entanglement contributions even after envi-

ronment and/or measurement effects have taken place in the
There are only a few classes of density matrices for whicljecoherent process. In the examples given below, the quan-
computable entanglement measures and separability condism deficit is seen to track closely with the concurrence.
tions are known. Aside from the case of two qubits for which  As an example of the utility of the concept of quantum
the concurrence formula applies, the other known examplegeficit, consider the isospectral example given[1h. The
take advantage of particular symmetries of the density matri¥ntangled density matrix is given by=(A,B)={]11)(11
to obtain entanglement informati¢i]. Examples are isotro-  +|10)(10| +|01)(01] + |10)(01| +|01)(10[}/3. This has zero
pic states in arbitrary dimensions which are invariant undeentropy difference, quantum defidz= (2/3)In 2, and con-
UeU* whereU* is the complex conjugate df in some  currenceCr=2/3. For its separable isospectral counterpart
basis[5], and generalized Werner states Nf qubits [6] ps(A,B)={]11)(11] +2|00)(00}/3, the entropy difference,
which are invariant under all Unitary transformations of thequantum deficiL and concurrence are all zero. They both
form U®U. Both of these examples fall under the commut-have the same set of entropies for both the composite and
ing condition of Theorem D and it can be seen from thisthejr marginal density matrices, and therefore their mutual
pOint of view Why the Separability for these classes of den'entropies are the same, (3 73 1In 2)/3 Thus the quantum
sity matrices is expected to be tractable. The commuting coryeficit distinguishes the isospectral density matrices whereas
dition allowed conditional probabilitieS to be defined and th|Sthe mutual entropy and the entropy difference do not. This is
ingredient is important in defining separability conditions. pecause the decohered entangled state is a convex combina-
Thus the results of this paper are pertinent to most of thggn of product form and not given by a single product
known classes of density matrices for which entanglemenf(a) o(B). Although pe(A,B) and ps(A,B) have the
and separability are understood. In Theorem C, we had idersame spectra, the corresponding decohered density matrices
tified a second class of density matrices, the decohered depaye different spectra while preserving the reduced density
sity matrices in thda,B} basis, for which conditional prob- matrices forA andB.
abilities can also be defined. The decohered density matrices In the Werner-state examp'el the decohered density matrix
could thus be another candidate for a class whose entanglgs found to be
ment measure and separability conditions may also turn out
to be tractable. This class of density matrices therefore de-
serves further study. In particular, entropy functionals based Ppd(AB) =
on the decohered density matrices can be expected to be
useful in understanding separability. We give one example of
this, which we will call the quantum deficit, to illustrate its +
features within the examples. However, construction of an
entanglement measure based on decohered density matricgsy so the quantum deficit is found to be
awaits further study.
Sincepy(A,B) is the classically correlated version of the 1+3p 1-p 1-p
density matrix of the actual system, we may define the dif- Dwp(AB)= nl—% )+( 2 )In( 2 )
1+ p)
5 In

=2 aat+loooa)

P Ja1oa + oy on.

1+3pI
4

ference between the von Neumann entropy of the system and
that of the decohered state as theantum deficjt 1+p

4

D(A,B)=S,4(A,B)—S,(A,B)=0. (32

In Fig. 1, we display the behavior of concurrence, mutual

We also have another important inequality, . :
P quattty entropy, and quantum deficit as a function of the parangeter

D(AB)<S,(A:B). (33 of the Werner state. This clearly shows the presence of cor-
relations and entanglement in this important example. The
The proof of this inequality follows from the fact that Werner state is a special example for which every observa-

tion made in this work is verified. In Fig. 1, concurrencCe
D(AB)—S;(A:B)=S4(A,B)—S;(A)—S,(B), (34  (full line), mutual entropy scaled by In & (dotted curvé,
and quantum deficit scaled by InR, (dashed curve are all
which then is shown to be negative definite following theexpressed as a function of the parametevhich character-
Kullback-Leibler relation. The quantum deficit serves as azes the Werner state. The scaling of the mutual entropy and
measure of the quantum entanglement over and above tliee quantum deficit was so as to reflect the inequality
classical correlation. D(AB)<S;(A:B). Thus the curve folS always lies above
The quantum deficit is different from tlgiantum discord  that of D. The Werner state is classically correlaféd the
that Oliver and Zurek12,17] introduced in that we employ sense of Eq(289] for p<1/3 and entangled otherwise; for
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FIG. 1. Scaled quantum deficD(AB)/In2 (dashed curve
scaled mutual entrop$(A:B)/In 2 (dot-dashed curyeand concur-
renceC(AB) (solid curve for the Werner state, described in the
text.

p=0, itis uncorrelated while fop=1, it is entirely quantum
entangled. The scalefandD are zero forp=0, and forp
=1,S=2 andD=1. But for p<1/3, there are classical cor-
relations remaining becauseand D are both finite in this
region, with the curve foBlying above theD curve. Also,S
never crosses the concurrence line wiildies above forp
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determining the sign of the entropy differences of the com-
posite and its marginal density matrices. The second is the
importance of the overlap matrix elements of eigenstates of
the composite density matrix with those of the marginals.
And the third are the decohered density matrices in the rep-
resentation in which the marginal density matrices are diag-
onal. These are the bases for the four theorems given in the
paper. Together they give insight into the correlations and
entanglement of composite density matrices from the entropy
considerations.

In summary, we have shown in this paper that the eigen-
values of the composite density matrix and those of its mar-
ginal density matrices along with their overlap matrix ele-
ments of the respective eigenvectors determine the
correlation and entanglement properties of the system. This
is accomplished by choosing to study the system in the rep-
resentation in which the marginal density matrices are diag-
onal. We present four theorems to elucidate the advantages
of this representation and to identify classes of states which
have fixed sign for the entropy differences and relation to
quantum separability. Explicit computations are presented
for two-qubit systems described g the Werner stateb) a
general pure-state density matrix, gagla class of two-qubit
mixed states arising out of pure-state density matrices of
three-qubit states which serve as illustrations of this ap-
proach. Thus the inclusion of overlap matrix elements along
with the eigenvalues of the density matrix and their marginal
density matrices yields information regarding the correla-

less than about 0.5 and thereafter it lies below it, approachions and entanglement residing in them. This understanding

ing 1 asp=1. ThusD/In2 approximately tracks the quan-

tum entanglement as can be discerned from Fig. 1.

modifies the conclusions reached[i2].

Such tracking is also seen in the six examples given to
illustrate the various theorems. From Table |, we observe
consistent tracking between the concurrence values and the Both the authors are supported in part by the Office of
corresponding scaled quantum deflitin 2 associated with Naval Research.
known composite states. All these results are consequences
of the four theorems derived in this paper concerning various
forms of the density matrix of a composite system. Of these
examples,(E4, E5, and Epare noteworthy. ExampléE4)
represents a fully quantum entangled Bell state and Sé)h
D4(BC)/In2=1 represents the full guantum entanglement a
indicated also byC,(BC)=1. Example E5 represents a com-
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APPENDIX: ENTANGLEMENT OF A PURE STATE
OF TWO QUBITS

A general two-qubit pure state density matrix is written in
e form

: p(A,B)=|W)(¥], (A1)
pletely uncorrelated state both classically and quantum me-
chanically and henc8,(A:B), Ds(AB), andC5(AB) are all  where the two-qubit (2 2) state is given by
zero. Example E6 displays only classical correlatifiveing
of the form of Eq.(253] with S;(A:B)/In2=1, D¢(AB) |W)=ai1|1,1)+a191,00+a910,1) +a490,0), (A2)
=0=Cg(AB). The examples E1 and E2 exhibit opposite
entropy differences but they are both entangled. Example E®ith the normalization condition
with zero entropy difference is both quantum entangled and ) ) ) )
classically correlated. |@11|*+ [a10*+ |@ga| “+ a0 *= 1. (A3)

From the above observations, it is tempting to conjectur . .
that there may be a variational principle determiniBg eEPqu?tlon (AL) :nay Ee expressefdtr:n ;elrlms_of tliwe stand?rd
which will provide an entanglement measure. For examplet. au '_ Spin vectors by means of the foflowing known refa-
one may seek the minimud among allpy(A,B) generated lons.
by all transformations of the form {& U, on p(A,B) which
give the same marginals. This may be expressed in the form
D:minul®u2{3d_S|Pd(A-B)}-

There are three intertwining strands of ideas developed in
this paper. The first is the role of conditional probability in Thus

I2=([1)(1[+]0)(0D),

7,=1(|0)(1[=[1){0]),

71=([1)(0[+[0)(1]),

(A4)
73=(|1)(1[~[0){0}).
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1
P(AB)= 71 12(A)®15(B) +S(A)- H(A)@15(B)

+1,(A)@(B)-9(B)
3
+__El Cij(AB)T(A)®T(B){, (A5)

L=

where
S(A)=(s1(A),s,(A),s3(A)),

s1(A) = (ay.ag,+ al;80+ a16850+ ap300)

(A6)
S,(A)=i(aya5,— aj;801 1 10850~ 10300)
S3(A)=(|ay1?—|agyl®+|asd®—|agd?),
S(B)=(s1(B),s,(B),s3(B)),
s1(B) = (ayajp+ ala10t ap1850+ ag1800)»
(A7)

— 1 * * * *
S2(B) =i(a1a7p—a,2101 @000~ @01200)»

s3(B)=(|ay1?—|aid®+ag|®—|agd?).

Note that Eq.(A7) follows from Eq.(A6) by writing a;, in

place ofay,. These vectors are sometimes called “polariza-
tion” vectors associated with the qubits in analogy with op-

tical polarization vectors:
C11(A,B) = (a1150+ Aoe@11+ 10801+ A01870),
C1(A,B)=i(a11850— o1+ 10801~ A01870), (A8)
C13(A,B) = (21185, 1 801871~ 210200~ A0cA10)»

C21(A,B)=i(aya5,— a1~ 8108011 801870

PHYSICAL REVIEW A66, 022104 (2002

CoA A,B)=(—asa5— a1+ 810801+ 801870),

(A9)
Ca3(A,B) =i(a1;a8;— 80111~ 816850+ &0cd10)
Cai(A,B) = (aiiaiot 16811~ 10850~ Q00210)
CsxA,B) =i(a11a%o— 210811~ 01850+ 80051)
(A10)

Ca3(A,B)=(lay|®—|aio*—|ao]*+|agd?)-

From Eq.(A5) we obtain the marginal density matrices

1
p(A)=Trgp(AB)=S[12(A)+s(A)-7(A)], (A1)

1
o(B)=Trap(A,B)=5[12(B)+s(B) - 7(B)]. (Al2)
In general these density matrices obey the conditions
1
Trap(A)= S [1+[s(A)*)=1, (A13)

the inequality representing mixed and the equality a pure
state. We observe the following relationship after using the
normalization condition in Eq(A3) and the definitions in
Eqgs.(A6) and (A7):

1—|s(A)|?=4|ajja00—agsasd>=1-[s(B)|%. (A14)

Thus the condition in Eq(A13) is found to be obeyed in
general. The concurrence for the generic pure sta®),
C(AB)=2|aj;a00— agia1g, Was given in'8,9] as well as in
[18]. Also, Eq.(A14) was derived irf18].

We may also mention that a general two-qubit mixed-state
density matrix can always be expressed in terms of the Pauli
spin matrices in the form given in EqA5) and the two
marginal density matrices are then of the form given in Egs.
(A11) and(A12). The relation in Eq(A13) holds in this case
as well.
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