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Separability and correlations in composite states based on entropy methods
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This work is an enquiry into the circumstances under which entropy methods can give an answer to the
questions of both quantum separability and classical correlations of a composite state. Several entropy func-
tionals are employed to examine the entanglement and correlation properties guided by the corresponding
calculations of concurrence. It is shown that the entropy difference between that of the composite and its
marginal density matrices may be of arbitrary sign except under special circumstances when conditional
probability can be defined appropriately. This ambiguity is a consequence of the fact that the overlap matrix
elements of the eigenstates of the composite density matrix with those of its marginal density matrices also
play important roles in the definitions of probabilities and the associated entropies, along with their respective
eigenvalues. The general results are illustrated using pure- and mixed-state density matrices of two-qubit
systems. Two classes of density matrices are found for which the conditional probability can be defined:~1!
density matrices with commuting decompositions and~2! those that are decohered in the representation where
the density matrices of the marginals are diagonal. The first class of states encompass those whose separability
is currently understood as due to particular symmetries of the states. The second are a class of states that are
expected to be useful for understanding separability. Examples of entropy functionals of these decohered states
including the crucial isospectral case are discussed.

DOI: 10.1103/PhysRevA.66.022104 PACS number~s!: 03.65.Ud, 03.67.2a, 03.65.Ta
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I. INTRODUCTION

The theory of quantum entanglement has occupied a
tral place in modern research because of its promise of e
mous utility in quantum computing, cryptography, etc. A m
jor thrust of current research is to find a quantitative meas
of entanglement for general states. Approaches to this q
tion based on the eigenvalue spectra of the system de
matrices, such as entropy methods, have given necessar
not sufficient conditions for particular states. However, it
not known for what classes of states entropy conditions
ply. Recently important questions have been raised@1,2# con-
cerning the ability of entropy methods to decide on the qu
tion of separability of a composite state. In particular, t
case of a Werner state of two qubitsrp5puC&^Cu1(1
2p)I /4 (0<p<1) and uC&5(u00&1u11&)/& has been
cited @1# to point out that it is separable by partial transpo
criterion if and only if p<1/3, whereas the von Neuman
conditional entropy criterionS1(AuB)[S1(A,B)2S1(A)
>0 gives the condition of separability forp<0.747... . Abe
and Rajagopal@3# also pointed out this result as well as th
condition for separability based on the Bell inequality whi
givesp<1/&>0.7071..., and obtained the necessary con
tion for separabilityp<1/3 by employing the conditiona
Tsallis entropy condition. This condition, namel
limq→` Sq(AuB)>0, Sq(AuB)5$@Sq(A,B)2Sq(A)#/@11(1
2q)Sq(A)#%, with the Tsallis entropy defined asSq(r)
5$(Tr rq21)/(12q)%, was derived by them underthe as-
sumption of the existence of conditional probability. It should
be noted that forq51 the Tsallis entropy as well as th
q-conditional entropy become the corresponding von N
mann versions of entropy,S1(r)52$Tr r ln r%, and condi-
tional entropy. In an extension of this work, Abe@4# showed
that the Tsallis entropy condition also gives the correct se
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rability criterion for generalized Werner states ofN qudits.
~See@1# for a derivation of the same result by the disord
criterion, and references therein to other methods of arriv
at the same result.! The above quoted entropy criteria a
necessary but not sufficient and the equality signs in th
give the demarcation of separability from the entangled
gions. Nielsen and Kempe@1# further provided a crucial iso-
spectral example where two density matrices have the s
spectra both globally and locally, one of which is entang
and the other separable from the partial transpose cond
or equivalently the positivity of concurrence. For this is
spectral case, the Tsallis entropies are all equal for allq and
so the conditional entropies are zero for allq. Nielsen and
Kempe conclude that separability criteria based solely
eigenvalues of the composite density matrix and its marg
density matrices can never work. The same conclusion
advocated in@2#, whose authors also claim that the use
Tsallis conditional entropy as in@3,4# is wrong. Later in this
paper, we will clarify the derivation given in@3,4# and show
that it is indeed correct.

From the above examples it is seen that entropy crite
sometimes succeed and sometimes fail in identifying
separability of states. The purpose of this paper is to s
under what conditions entropy methods can give an ans
to the questions of both quantum separability and class
correlations of a composite state and identify the reasons
it. It is found that separable states have a fixed sign for
entropy difference whenever the conditional probabil
could be defined. Furthermore, we find two classes of st
for which this can be done. The first class of states, th
with commuting decompositions, encompass most of
known examples for which the understanding of the sepa
bility conditions took advantage of particular symmetries
the states@3–7#. The second class of states, which are de
04-1
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hered in the representation where the density matrices o
marginals are diagonal, are a class with properties that
expected to be useful in studying entanglement. These d
hered states lead us to consider different entropy function

To this end, we first consider the most general form o
bipartite density matrixr(A,B), second, its special represe
tation, and third, a further special form for it. The spec
representation employed here is based on the diagonal
resentation of the marginal density matrices ofr(A,B),
r(A)5TrB r(A,B) andr(B)5TrA r(A,B). This representa-
tion will be designated the$a, b% representation. In this rep
resentation,r(A,B) is not diagonal, in general. Howeve
this representation has a crucial property with respect to
coherence. Ifr(A,B) decoheres in this representation,
that its off-diagonal elements vanish, resulting in a de
hered density matrixrd(A,B), it is found that the margina
density matrices of bothr(A,B) andrd(A,B) are the same
In the discussion of entropy methods for describing the
tanglement issues, this representation also makes it tran
ent that the overlap matrix elements of the composite st
with the product states of the marginal density matrices p
important roles. We show that only when the eigenstates c
spire suitably can the conditional probabilities be unambi
ously defined, thereby allowing entropy inequalities to
established. This is found to happen for two classes of sta
One is the class of decohered statesrd(A,B). The second
class are states that have commuting operators in the
systems of their decompositions. The corresponding fo
for the entropies for each of these classes will be investiga
to yield information about the separability and correlatio
inherent in them. It is important to point out that an entro
functional based on the decohered density matrix is sho
here to distinguish the entangled and the separable stat
the isospectral example given in@1#.

In order to illustrate the relationship of the properties
the entropies employed in examining the entanglement
tus, we use as a guide the ‘‘concurrence’’ measure@8,9#
which is a necessary and sufficient condition for entang
ment of two-qubit density matrices. Thus it is shown that
eigenstates corresponding to the eigenvalues must als
included in deducing the entanglement status of a compo
system. These results are valid for both pure- and mix
state density matrices. In the case of a general two-q
pure-state density matrix, this formulation is shown to giv
necessary and sufficient condition for the separability. S
eral cases of bipartite mixed-state density matrices are u
to illustrate our formulation. It should be emphasized that
conditions obtained for the mixed states, however, are o
necessary but not sufficient.

This paper is divided into four sections. In Sec. II, t
special representations in which the marginal density ma
ces are diagonal and the ensuing properties are develo
We employ these to represent the known concepts of
tanglement and correlations. Section III contains the m
results of this work presented in the form of four theorem
We illustrate these results with specific examples of bipar
density matrices to elucidate the theorems. A complete
count of a pure state of a general two-qubit system is a
included in this section. In the final Sec. IV, discussion a
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concluding remarks are given along with the introduction
entropy functionals based on the decohered states. In
Appendix, details are given of the general two-qubit pu
state density matrix in Sec. III.

II. PRELIMINARIES IN TERMS OF SPECIAL
REPRESENTATIONS

Consider a bipartite state of a composite system descr
by the density matrixr(A,B) whose marginal density matri
ces are TrB r(A,B)5r(A) and TrA r(A,B)5s(B). These
density matrices being Hermitian, trace-class operators h
their own diagonal representations in terms of orthonorm
and complete states~here we employ a discrete, finite num
ber of states for simplicity, as in the cases of qudit system!
in their respective spaces:

r~A,B!5(
G

uG&P~G!^Gu, r~A!5(
a

ua&p~a!^au,

s~B!5(
b

ub&q~b!^bu, ~1!

~GuG8&5dG,G8 , (
G

uG&^Gu5I ~A,B![I ~A! ^ I ~B!,

^aua8&5da,a8 , (
a

ua&^au5I ~A!,

^bub8&db,b8 , (
b

ub&^bu5I ~B!. ~2!

Here I stands for identity operators in the spaces specifi
Here it should be noted thatuG& represents the composit
state of the~A,B! system in its most general form. In genera
it is an entangled state. Also, since these are all density
trices, P(G), p(a), and q(b) are the corresponding prob
abilities and hence are positive, taking values between 0
1. The marginal density matrices may also be expresse
the following alternate forms:

r~A!5TrB r~A,B!5(
G

(
b

^buG&P~G!^Gub&

[(
a

ua&p~a!^au, ~3!

s~B!5TrA r~A,B!5(
G

(
a

^auG&P~G!^Gua&

[(
b

ub&q~b!^bu, ~4!

so that we have the following relations between the eig
values of the marginal density matrices and those of the c
posite density matrix:
4-2
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p~a!5(
G

(
b

z^a,buG& z2P~G! ~5!

and

q~b!5(
G

(
a

z^a,buG& z2P~G!. ~6!

Here we have introduced the notationua,b&5ua&ub&. It is
important to note thatp(a) andq(b) arenot marginal prob-
abilities of the composite probabilityP(G) in view of the
appearance of the overlap matrix element in Eqs.~5! and~6!.

By using the completeness relations we may also exp
the density matrix of the composite system in terms of
states of A and B systems in which the representatio
r(A,B) is not necessarily diagonal:

r~A,B![(
a,b

(
a8,b8

(
G

ua,b&^a,buG&

3P~G!^Gua8,b8&^a8,b8u. ~7!

Working out the marginal density matrices from this expr
sion and comparing it with Eqs.~3!,~4! and~5!,~6!, we obtain
the following expressions:

(
G

(
b

^a,buG&P~G!^Gua8,b&5p~a!da,a8 ~8!

and

(
G

(
a

^a,buG&P~G!^Gua,b8&5q~b!db,b8 . ~9!

There have been some recent suggestions to use an
quantity called the mutual entropy, which is used in class
contexts to examine the classical correlations among
variables, to examine the quantum entanglement and co
lations @10–12#. It is defined as

S1~A:B!5S1~A!1S1~B!2S1~A,B!. ~10!

Here S1 stands for the von Neumann entropy. Ifr(A,B)
5r(A) ^ s(B), then S1(A:B)[0 and, conversely, if
S1(A:B)[0, thenr(A,B)5r(A) ^ s(B). Such a composite
density matrix has no correlation between its subsyste
This result is also true for classical systems. The concep
mutual entropy in the Tsallis theory is not expressible in
neat form in view of the fact that the bipartite density mat
is not diagonal in the$ua,b&% representation@see Eq.~7!#.

A composite density matrix is said to be quantum se
rable if it can be written as convex combinations of ind
vidual density matrices ofA and B in the form r(A,B)
5( jwjr j (A) ^ s j (B) (0<wj<1), ( jwj51. For classically
correlated systems, a similar decomposition holds, and he
one often uses the terms ‘‘classically correlated’’ and ‘‘qua
tum separable’’ interchangeably to describe such syste
For the special case when all thewi ’s are zero except for
one, this expression reduces to the uncorrelated case w
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the mutual entropy is zero. In the more general form,
mutual entropy may be nonzero, thus indicating the prese
of correlations in the system.

In some simple cases, one may express the compo
density matrix in the form given above and check its se
rability. For example, the Werner state quoted above may
written in the form

rp5~123p!I /41
p

2 H (
i 51,3;«56

r i
«~A! ^ s i

«~B!

1 (
i 52;«56

r i
«~A! ^ s i

2«~B!J ,

wherer i
«(A)5s i

«(B)5(I 21«ŝ i)/2, with the ŝ i ’s the stan-
dard Pauli 232 matrices andI 2 a 232 unit matrix. One
immediately notices that separability of the Werner state
lows if p<1/3, when the weights are all positive. Note th
this result is derived without examining the eigenvalues
all. But this direct method has not yielded a useful meas
for the entanglement of general states.

Concurrence@8,9# is a valid measure of entanglement
two qubits. The system is separable if and only ifC(AB)
50 and whenC(AB)51 it is maximally quantum en-
tangled. The concurrenceC(AB) of a density matrixr̂(AB)
@8,9# in the computational basis will be used here. It
defined by first constructing the matrix r̂̃(AB)
5(ŝ2^ ŝ2) r̂* (AB)(ŝ2^ ŝ2), where ŝ2 is the standardy
component 232 Pauli matrix, andr̂* (AB) is the complex
conjugate matrix ofr̂(AB). The concurrence is then give
by C(AB)5max$l12l22l32l4,0% where $l1 ,l2 ,l3 ,l4%
are the square roots of the eigenvalues of the matrix prod
r̂(AB) r̂̃(AB) arranged in decreasing order. It was al
shown to be a symmetry-dependent measure, e.g., perm
tion symmetry @13,14#. In the Werner example,C(AB)
5max$(3p21)/2,0% and this is in agreement with the resu
quoted above which was obtained from the separable dec
position of the density matrix. Recall that the Tsallis entro
criterion @3# gives the same correctp values for the entangle
ment status of the Werner state. We will presently dem
strate that this criterion depends on the eigenvalues of
composite density matrix and its eigenfunctions in a spe
way. In view of this result, expressions~1! will be used here
to examine to what extent one can separate the quan
entanglement from the classical correlations contained
composite density matrix.

We now show that the eigenvalues defined abo
$l1 ,l2 ,l3 ,l4%, may be expressed as the eigenvalu
of r̂(AB) r̂̃(AB)5(G,G8uG&C(G,G8)^G8u, with C(G,G8)
5(G1

P(G)^Guŝ2^ ŝ2uG1* &P(G1)^G1* uŝ2^ ŝ2uG8&. Here
the asterisk denotes the complex conjugate. Thus the ei
values involved in the computation of concurrence are
lated to both the eigenvalues of the density matrix of~AB!
and an appropriate set of its matrix elements as indicate
the above expression. This already gives a hint that
eigenfunctions generally also play an important role in de
mining the entanglement status of the system. This will
discussed in more detail in the following sections.
4-3
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TABLE I. Summary of the examples elucidating Theorems A–D.

Example
Concurrence

C(X,Y)
q-entropy difference

Sq(A,B)2Sq(A or B)
Quantum deficitD
Mutual entropyS

E1 C(A,B)52/3
Entangled mixed

(q51)
2(5/6)ln(5/4),0

Entangled~Theorem A!a

D/ ln 25(5 ln 528 ln 2)/6 ln 2
50.6016

S/ ln 25(3 ln 322 ln 2)/3 ln 2
50.9182

E2 C(B,C)51/3
Entangled mixed

(q51)
(5/6)ln(5/4).0

Entangled~Theorem A!

D/ ln 25(1/3)
S/ ln 25(3 ln 318 ln 225 ln 5)/3 ln 2

50.3817
E3 2/3

Entangled mixed
0 for all q

Entangled~Theorem A!
D/ ln 25(2/3)
S/ ln 250.9183

E4 C(BC)51
Entangled pure

Bell state

(q51)2 ln 2,0
Entangled (q51)

~Theorem B!

D/ ln 251
S/ ln 252

E5 C(A,B)50
Separable

rAB5rA^ sB

ln 2.0
Separable

~Theorem D!a

D/ ln 250
S/ ln 250

Classically uncorrelated
E6 C(A,B)50

Separable
rAB5(rA^ sB1rA8^ sB8)/2

0 for all q
~Theorem D!

D/ ln 250
S/ ln 251

aS1(A,B)2S1(B)50.
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Special cases of Eq.~1! will now be discussed dependin
on the context defining the composite state. We state
central results of this paper in the form of four theorems.
will also give some illustrative examples accompanyi
Theorems A, B, and D which are summarized in Table
Possible entropy functionals based on Theorem C are
cussed in Sec. IV and an example of this, the quantum d
cit, is also included in Table I.

III. MAIN RESULTS

Theorem A. The general composite mixed-state dens
matrix and its marginal density matrices do not have a fix
sign for the entropy differences$S1(A,B)2S1(A)% and
$S1(A,B)2S1(B)% and they may even be zero.

Theorem A follows because, by the above consideratio
we have

S1~A,B!52(
G

P~G!ln P~G!

52(
G

(
a,b

z^a,buG& z2P~G!ln P~G! ~11!

and

S1~A!52(
a

p~a!ln p~a!

52(
G

(
a,b

z^a,buG& z2P~G!ln p~a!, ~12!
02210
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where Eq.~6! was used. Similarly,S1(B) may be written
down. Each of the entropies defined in Eqs.~11! and~12! is
positive. But the difference between Eqs.~11! and ~12! is
S1(A,B)2S1(A) 5 2(G(a,bz^a,buG& z2P(G)ln@P(G)/p(a)#
and a similar expression for the other difference. Sincep(a)
and q(b) are not marginal probabilities of the composi
probability P(G), the ratioP(G)/p(a) or P(G)/q(b) may
be greater than unity and hence no conclusion can be dr
about the sign of $S1(A,B)2S1(A)% or $S1(A,B)
2S1(B)%. Only when the notion of conditional probability
can be definedwill such a ratio lie between 0 and 1, and th
above differences of entropies become ‘‘conditional ent
pies’’ having only positive sign. Under special circum
stances, they can also be zero.

The relation between the sign of the entropy differen
and entanglement must be inferred from other considerat
to be discussed later in this section.

It is interesting to note that in the Werner case, the eig
values of the composite state arePW(G)5„(3p11)/4,(1
2p)/4,(12p)/4,(12p)/4…, and the two marginal density
matrices are the same and their eigenvalues arepW(a)
5(1/2,1/2)5qW(b). Therefore the ratioPW /qW will qualify
to be the conditional probability if@(3p11)/4#/(1/2)<1 or
for p<1/3. This is the same condition for separability d
rived earlier.

Three entangled mixed states, which have negative, p
tive, and zero entropy difference, are now given to illustr
Theorem A. These examples, as well as the ones use
illustrate the other theorems, are physically motivated a
are all marginals of three-qubit pure-state density matri
@13# which are related to the GHZ andW classes of tripartite
states as defined in@13#. The results for all the examples ar
collected together in Table I.

Example E1.Mixed state
4-4
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r1~AB!5
1

6
@~22u10&1u01&)~22^10u1^01u!1u00&^00u#,

r1~A!5
1

6
~4u1&^1u12u0&^0u!,

s1~B!5
1

6
~ u1&^1u15u0&^0u!. ~13!

The marginal density matrices are already diagonal and
saves one step in our procedure. This is the situation fo
the examples chosen here to illustrate the various theore
The eigenvalues of the density matrices in Eq.~13! are

P1(G)5(0,0,16 , 5
6 ) and p1(a)5( 1

3 , 2
3 ), q1(b)5( 1

6 , 5
6 ). The

entropy differences areS1(AB)2S1(A)5 5
6 ln(4

5),0 and
S1(AB)2S1(B)50.

Example E2. Mixed state

r2~BC!5
1

6
@~ u10&1u01&)~^10u1^01u!14u00&^00u#,

r2~B!5
1

6
~ u1&^1u15u0&^0u!5s2~C!. ~14!

The eigenvalues areP2(G)5(0,0,26 , 4
6 ) and p2(a)5( 1

6 , 5
6 )

5q2(b). The entropy differences are equal andS1(BC)

2S1(B)5 5
6 ln (5

4).0.
Example E3. Mixed state

r3~AB!5
1

3
@~ u10&1u01&)~^10u1^01u!1u00&^00u#,

~15!

r3~A!5
1

3
~ u1&^1u12u0&^0u!5s3~B!,

and their eigenvalues areP3(G)5(0,0,13 , 2
3 ) and p3(a)

5( 1
3 , 2

3 )5q3(b). The entropy differences are zero,Sq(AB)
2Sq(A)50 for all q.

Examples~E1!–~E3! are all entangled states as shown
the concurrence values in Table I.

The property of the mutual entropy thatS1(A:B)>0 is a
known result but a proof of this in terms of the$a,b% basis is
illuminating because

S1~A:B!5(
G

(
a,b

z^a,buG& z2P~G!ln@P~G!/p~a!q~b!#

>0. ~16!

The inequality follows from the property of the logarith
ln X>12(1/X), for positive X, and the various normaliza
tions shown in Eq.~2!. The equality sign is obtained whe
the composite system is both unentangled and uncorrela
i.e., when P(G)5p(a)q(b) or more generally when
r(A,B)5r(A) ^ s(B). This result is both necessary and su
ficient.
02210
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Although the sign of the entropy differences is not fix
in general, the following three theorems identify situatio
where the conditional probabilities can be defined and
sign becomes fixed.

Theorem B. The entropy differences are in general le
than or equal to zero for an entangled pure state of
qubits.

This follows by giving a complete account of a pure-sta
density matrix. In the Appendix, we give the general form
las needed in developing the discussion of the pure-state
sity matrix of a two-qubit state. The representations that
agonalize the marginal density matrices given in Eqs.~A11!
and ~A12! are

r~A!5ua1&p~a1!^a1u1ua2&p~a2!^a2u,
~17!

p~a1!,p~a2!5@16us~A!u#/2,

s~B!5ub1&q~b1!^b1u1ub2&q~b2!^b2u,
~18!

q~b1!,q~b2!5@16us~B!u#/2.

The corresponding eigenvectors in terms of the fami
computational basis are given by

ua1&5A1u1&1eif~A!A2u0&,

ua2&52e2 if~A!A2u1&1A1u0&,

A65$@ us~A!u6s3~A!#/2us~A!u%1/2,

eif~A!5
s1~A!1 is2~A!

As1
2~A!1s2

2~A!
, ~19!

with similar expressions for theB system. One may then
compute the system density matrix in terms of these. Si
this system is a pure state, we have

S1~A,B!50, S1~AuB!52S1~B!, S1~A:B!52S1~A!.

~20!

The entropies ofA andB are equal because of Eq.~A14! and
are given by

0<S1~A!5S1~B!52p~a1!ln p~a1!2p~a2!ln p~a2!

<1. ~21!

It should be noted that Eq.~A14! expresses the magnitude
of the spin vectors ofA and B in terms of the known con-
currence@8,9,18# for the pure state given by Eq.~A2!. The
following interesting cases are evident from Eqs.~A11! and
~A12!.

Case A. The reduced density matrices are also pure sta
if the vectorss(A) ands(B) are unit vectors, when the equa
ity sign in Eq. ~A13! is satisfied. The corresponding entr
pies are then zero. In this case we obtain the pure state t
separable. It turns out that this is also sufficient for the sep
rability of the pure state.

Case B. The reduced matrices are maximally chao
mixed states if either of the two spin vectors is zero, a
4-5
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hence the pure state ismaximally entangled. In this case, the
entropy of A is ln 2. The conditional entropy is negativ
2 ln 2, and the mutual entropy is 2 ln 2.

Case C. It follows from cases A and B that the inequali
in Eq. ~A13! shows that for all other polarizations of th
qubits 1/2<TrA r2(A),1 and the pure state is entangle
This also implies that the conditional entropy is negative

Thus we may conclude that the entropy method works
the discussion of entanglement of two-qubit pure states.
conditional entropy is negative if and only if it is entangle

An example of an entangled pure state density matrix
~E4! given below.

Example E4. Pure state

r4~BC!5
1

2
@~ u10&2u01&)~^10u2^01u!#,

~22!

r4~B!5
1

2
~ u1&^1u1u0&^0u!5s4~C!.

The eigenvalues areP4(G)5(0,0,0,1) andp4(a)5( 1
2 , 1

2 )
5q4(b). The entropy differences are equal andS1(BC)
2S1(B)52 ln 2,0. This is a pure-state density matrix an
as shown above, the negative entropy difference implies
entangled. This agrees with the result for the concurren
C(AB)51.

Theorem C. If the eigenfunctions conspire in such a wa
that one may express the composite density matrix in
‘‘decohered’’ form

rd~A,B!5(
a,b

ua,b&Pd~a,b!^a,bu, ~23!

where

Pd~a,b!5(
G

z^a,buG& z2P~G!, ~24!

then p(a),q(b) are indeed marginal probabilities of th
composite probability Pd(a,b), and S1d(A,B)
>S1(A),S1(B). Also, the entropy of a generalr(A,B) is
less than or equal to that described by Eq.~23!: S1(A,B)
<S1d(A,B). Equality is obtained whenr(A,B)5rd(A,B)
and this can happen ifr(A,B) commutes withr(A) ^ I (B)
and I (A) ^ s(B).

We first discuss the significance of this diagonal form
the density matrix in the~a,b! representation which diago
nalizes the marginal density matrices. Equation~23! in com-
parison with Eq.~7! implies that

(G^a,buG&P~G!^Gua8,b8&5Pd~a,b!da,a8db,b8

and Eqs.~8! and~9! then follow. This can happen if and onl
if the system density matrixr(A,B) commutes withr(A)
^ I (B) and I (A) ^ r(B). In Theorem D, and in several ex
amples given below including the Werner case, such a s
ation occurs. Equation~23! can arise when there is ‘‘deco
herence’’ of the system either due to the effects
environment or due to a measurement process as in@12#. In
02210
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that case, the off-diagonal elements in Eq.~7! are eliminated
and only the diagonal elements endure. It should be emp
sized that decoherence is basis dependent andrd(A,B) can
in general be entangled because it need not be diagonal in
computational basis. For example, compare the Werner s
in the Bell basis and the computational basis. It is import
to note that our choice of the$a,b% representation is such tha
the marginal density matrices of the decohered system
the same as those for the original system.

Proof of this theorem is straightforward. In this case w
can define conditional probabilities as in the classical ca
because 0<Pd(aub)5Pd(a,b)/q(b)<1, etc., and condi-
tional entropy statements for both Tsallis and von Neuma
cases may be deduced@3#. It should be noted that the deco
hered density matrix given by Eq.~23! is in general quantum
entangled because it cannot always be expressed as a co
combination of pure-state density matrices$r i(A) ^ s i(B)%
with positive weightswi such that( iwi51. If, however, we
are given the entropy inequality, in view of Theorem A, w
cannot conclude that the composite density matrix is of
form Eq. ~23!. Also, we cannot deduce the form of the joi
probability given in Eq.~24!.

The last statement in the above theorem is originally d
to Klein @15#. He showed that whenever the off-diagon
elements of a density matrix are discarded~due to the ‘‘ran-
dom phase approximation’’ as was then a prevalent conce!,
the von Neumann entropy increases. A simple proof of t
follows from the Kullback-Leibler relation Trr1(ln r1
2ln r2)>0 wherer1 andr2 are any two density matrices i
the same space. Takingr15r(A,B) and r25rd(A,B), we
have 2S1(A,B)2Tr r(A,B)ln rd(A,B)>0; but from Eq.
~23!, the result is thus established.

A second class of density matrices for which condition
probability exists is found for commuting operators with
each subsystem of local decompositions. A composite d
sity matrix is quantum separable~or classically correlated! if
it can be written in the form of a convex combination

r~A,B!5(
j

wir j~A! ^ s j~B!,

~0<wj<1!, (
j

wj51. ~25a!

This is a local representation in which the weightswj can be
interpreted as classical probabilities. Any entangled state
also be given a local representation in the form called a lo
pseudomixture@16#:

r~A,B!52tr2~A,B!1~11t !r1~A,B!, ~25b!

where each ofr6(A,B) are of the separable form given i
Eq. ~25a! and t is a finite positive number. Thus pseudomi
tures involve negative coefficients in their local represen
tions and these do not have the properties of classical p
abilities. The representation~25b! is not unique, but the
minimum value oft represents a valid measure of entang
ment @16#.

The next theorem relates the separability condition of E
~25a! to an entropy difference condition.
4-6
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Theorem D. If, in a local representation of a composi
density matrix, the density matrices ofA andB for different
j commute in their respective spaces, thenS1(A,B)
>S1(A),S1(B). When they do not commute, the results a
as in Theorem A.

Consider first the separable case given by Eq.~25a!. This
equation leads to the following marginal density matrices
A andB:

r~A!5(
j

wjr j~A![(
a

ua&p~a!^au ~26a!

with

p~a!5(
j

wj^aur j~A!ua&,

and similarly

s~B!5(
j

wjs j~B![(
b

ub&q~b!^bu ~26b!

with

q~b!5(
j

wj^bus j~B!ub&,

where the states ofA and B diagonalize the sum of the
weighted density matrices. Also, we have in such a repre
tation that the composite density matrix is not diagonal in
$a,b% basis:

r~A,B!5(
a,b

(
a8,b8

ua,b&P~a,b;a8,b8!^a8,b8u,

~27!

P~a,b;a8,b8!5(
j

wj^aur j~A!ua8&^bus j~B!ub8&.

Note thatp and q are the marginal probabilities associat
with the composite density matrix as in Theorem A and
results for the corresponding entropies are ambiguous
cause here again we cannot define conditional probabili
However, when the density matrices ofA andB for different
j commute in their respective spaces, or if we can find aP in
Eq. ~27! in the form

P~a,b;a8,b8!5PD~a,b!da,a8db,b8 ,

where

PD~a,b![(
j

wj^aur j~A!ua&^bus j~B!ub&, ~28!

then the results of Theorem C follow as before. This is
causep and q are now the conditional probabilities assoc
ated with the composite probabilityPD(a,b) defined in Eq.
~28!.

The composite state in Theorem D turns out to beuG&
5ua,b& because one can diagonalize simultaneously the d
sity matricesr j (A) for all j. In this case, one obtains th
02210
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simpler representations of the marginal density matri
r j (A)5(aua&pj (a)^au, s j (B)5(bub&qj (b)^bu, and hence
the composite density matrix takes the diagon
form rd(A,B)5(a,bua,b&P(a,b)^a,bu where P(a,b)
5( jwj pj (a)qj (b). Then p(a)5( jwj pj (a) and q(b)
5( jwjqj (b) are marginals ofP(a,b). Then the conditional
probabilities can be defined and thus the inequalities foll

Again, we see that if the entropy inequalities are obtain
for a given composite system, one cannot draw conclusi
about the separability of the density matrix.

Under the conditions of Theorem D, Eq.~16! takes a sim-
pler form:

S1~A:B!5(
a,b

P~a,b!ln@P~a,b!/p~a!q~b!#>0. ~29!

In Eq. ~25a!, which is different from r(A,B)
5r(A) ^ s(B), the equality sign in Eq.~29! implies classi-
cal correlation hidden in it as also suspected in@10–12#. The
convex combination in Eq.~25a! contains in it some classica
correlation even though it also defines quantum separab

If the local representation is of the entangled form giv
by Eq. ~25b!, then the marginal density matrices are
the form r(A)52tr2(A)1(12t)r1(A), and r(B)5
2tr2(B)1(12t)r1(B), where the expressions for th
terms in the right hand side are of the form given in Eq
~26a! and~26b!. A discussion following the lines of Theorem
D above in this case leading to similar conclusions for
entropy differences is a bit more involved requiring furth
analysis and will be postponed to a later communication

We will now give two examples of Theorem D that are
the separable form of Eq.~25a! which obey the commuting
condition. These are also summarized in Table I.

Example E5. Mixed state

r5~AB!5
1

2
~ u00&^00u1u01&^01u!,

~30!

r5~A!5u0&^0u, s5~B!5
1

2
~ u0&^0u1u1&^1u!.

Their eigenvalues areP5(G)5(0,0,12 , 1
2 ) and p5(a)5(0,1),

q5(b)5( 1
2 , 1

2 ). The entropy differences areS1(AB)2S1(A)
5 ln 2 andS1(AB)2S1(B)50.

Example E6. Mixed state

r6~AB!5
1

2
~ u11&^11u1u00&^00u!,

~31!

r6~A!5
1

2
~ u1&^1u1u0&^0u!5s6~B!.

The eigenvalues of these areP6(G)5(0,0,12 , 1
2 ) and p6(a)

5( 1
2 , 1

2 )5q6(b). Sq(A,B)2Sq(A)50 for all q.
In the Werner state example@3# given above and else

where@4#, this commuting situation occurs, allowing cond
tional probabilities to be defined, and thus these works
not wrong as alleged by Vollbrecht and Wolf@2#. When one
4-7



n
ow
d

ic
n
ch
pl
tr

-
de

he
ut
his
en
o

his
s
th
e
e

de
-
ic
g
o
d
se
o

ts
a
tr

e
di
a

he

t

ma-
uses
for-
ice
ring
nvi-

the
uan-

m

art
,
oth
and
ual

reas
s is
bina-
ct

rices
sity

trix

al
er
cor-
he

rva-

and
lity

r
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of the weightswi is not positive, then the above argume
fails, as happened in the Werner example. Also, as sh
under Theorem A, in the Werner-state example the con
tional probability can be defined only forp<1/3.

IV. DISCUSSION AND CONCLUDING REMARKS

There are only a few classes of density matrices for wh
computable entanglement measures and separability co
tions are known. Aside from the case of two qubits for whi
the concurrence formula applies, the other known exam
take advantage of particular symmetries of the density ma
to obtain entanglement information@7#. Examples are isotro
pic states in arbitrary dimensions which are invariant un
U ^ U* whereU* is the complex conjugate ofU in some
basis @5#, and generalized Werner states ofN qubits @6#
which are invariant under all unitary transformations of t
form U ^ U. Both of these examples fall under the comm
ing condition of Theorem D and it can be seen from t
point of view why the separability for these classes of d
sity matrices is expected to be tractable. The commuting c
dition allowed conditional probabilities to be defined and t
ingredient is important in defining separability condition
Thus the results of this paper are pertinent to most of
known classes of density matrices for which entanglem
and separability are understood. In Theorem C, we had id
tified a second class of density matrices, the decohered
sity matrices in the$a,b% basis, for which conditional prob
abilities can also be defined. The decohered density matr
could thus be another candidate for a class whose entan
ment measure and separability conditions may also turn
to be tractable. This class of density matrices therefore
serves further study. In particular, entropy functionals ba
on the decohered density matrices can be expected t
useful in understanding separability. We give one example
this, which we will call the quantum deficit, to illustrate i
features within the examples. However, construction of
entanglement measure based on decohered density ma
awaits further study.

Sincerd(A,B) is the classically correlated version of th
density matrix of the actual system, we may define the
ference between the von Neumann entropy of the system
that of the decohered state as thequantum deficit,

D~A,B!5S1d~A,B!2S1~A,B!>0. ~32!

We also have another important inequality,

D~AB!<S1~A:B!. ~33!

The proof of this inequality follows from the fact that

D~AB!2S1~A:B!5Sd~A,B!2S1~A!2S1~B!, ~34!

which then is shown to be negative definite following t
Kullback-Leibler relation. The quantum deficit serves as
measure of the quantum entanglement over and above
classical correlation.

The quantum deficit is different from thequantum discord
that Oliver and Zurek@12,17# introduced in that we employ
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the special states that diagonalize the marginal density
trices whereas the discord does not. The quantum deficit
a decohered density matrix which maintains the same in
mation contained in the marginal states A and B. This cho
removes as much of the ambiguity as possible in compa
correlation and entanglement contributions even after e
ronment and/or measurement effects have taken place in
decoherent process. In the examples given below, the q
tum deficit is seen to track closely with the concurrence.

As an example of the utility of the concept of quantu
deficit, consider the isospectral example given in@1#. The
entangled density matrix is given byrE(A,B)5$u11&^11u
1u10&^10u1u01&^01u1u10&^01u1u01&^10u%/3. This has zero
entropy difference, quantum deficitDE5(2/3)ln 2, and con-
currenceCE52/3. For its separable isospectral counterp
rS(A,B)5$u11&^11u12u00&^00u%/3, the entropy difference
quantum deficit, and concurrence are all zero. They b
have the same set of entropies for both the composite
their marginal density matrices, and therefore their mut
entropies are the same, (3 ln 322 ln 2)/3. Thus the quantum
deficit distinguishes the isospectral density matrices whe
the mutual entropy and the entropy difference do not. Thi
because the decohered entangled state is a convex com
tion of product form and not given by a single produ
r(A) ^ s(B). Although rE(A,B) and rS(A,B) have the
same spectra, the corresponding decohered density mat
have different spectra while preserving the reduced den
matrices forA andB.

In the Werner-state example, the decohered density ma
is found to be

rpd~AB!5S 11p

4 D ~ u11&^11u1u00&^00u!

1S 12p

4 D ~ u10&^10u1u01&^01u!.

And so the quantum deficit is found to be

DWp~AB!5S 113p

4 D lnS 113p

4 D1S 12r

4 D lnS 12p

4 D
2S 11p

2 D lnS 11p

4 D .

In Fig. 1, we display the behavior of concurrence, mutu
entropy, and quantum deficit as a function of the parametp
of the Werner state. This clearly shows the presence of
relations and entanglement in this important example. T
Werner state is a special example for which every obse
tion made in this work is verified. In Fig. 1, concurrenceC
~full line!, mutual entropy scaled by ln 2,S ~dotted curve!,
and quantum deficit scaled by ln 2,D ~dashed curve!, are all
expressed as a function of the parameterp which character-
izes the Werner state. The scaling of the mutual entropy
the quantum deficit was so as to reflect the inequa
D(AB)<S1(A:B). Thus the curve forS always lies above
that of D. The Werner state is classically correlated@in the
sense of Eq.~28a!# for p<1/3 and entangled otherwise; fo
4-8
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SEPARABILITY AND CORRELATIONS IN COMPOSITE . . . PHYSICAL REVIEW A 66, 022104 ~2002!
p50, it is uncorrelated while forp51, it is entirely quantum
entangled. The scaledS andD are zero forp50, and forp
51, S52 andD51. But for p<1/3, there are classical co
relations remaining becauseS and D are both finite in this
region, with the curve forS lying above theD curve. Also,S
never crosses the concurrence line whileD lies above forp
less than about 0.5 and thereafter it lies below it, approa
ing 1 asp51. ThusD/ ln 2 approximately tracks the quan
tum entanglement as can be discerned from Fig. 1.

Such tracking is also seen in the six examples given
illustrate the various theorems. From Table I, we obse
consistent tracking between the concurrence values and
corresponding scaled quantum deficitD/ ln 2 associated with
known composite states. All these results are conseque
of the four theorems derived in this paper concerning vari
forms of the density matrix of a composite system. Of the
examples,~E4, E5, and E6! are noteworthy. Example~E4!
represents a fully quantum entangled Bell state and
D4(BC)/ ln 251 represents the full quantum entanglement
indicated also byC4(BC)51. Example E5 represents a com
pletely uncorrelated state both classically and quantum
chanically and henceS1(A:B), D5(AB), andC5(AB) are all
zero. Example E6 displays only classical correlations@being
of the form of Eq. ~25a!# with S1(A:B)/ ln 251, D6(AB)
505C6(AB). The examples E1 and E2 exhibit oppos
entropy differences but they are both entangled. Example
with zero entropy difference is both quantum entangled
classically correlated.

From the above observations, it is tempting to conject
that there may be a variational principle determiningD
which will provide an entanglement measure. For exam
one may seek the minimumD among allrd(A,B) generated
by all transformations of the form U1^ U2 on r(A,B) which
give the same marginals. This may be expressed in the f
D5minU1^ U2

$Sd2Surd(A,B)%.
There are three intertwining strands of ideas develope

this paper. The first is the role of conditional probability

FIG. 1. Scaled quantum deficitD(AB)/ ln 2 ~dashed curve!,
scaled mutual entropyS(A:B)/ ln 2 ~dot-dashed curve!, and concur-
renceC(AB) ~solid curve! for the Werner staterp described in the
text.
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determining the sign of the entropy differences of the co
posite and its marginal density matrices. The second is
importance of the overlap matrix elements of eigenstates
the composite density matrix with those of the margina
And the third are the decohered density matrices in the r
resentation in which the marginal density matrices are di
onal. These are the bases for the four theorems given in
paper. Together they give insight into the correlations a
entanglement of composite density matrices from the entr
considerations.

In summary, we have shown in this paper that the eig
values of the composite density matrix and those of its m
ginal density matrices along with their overlap matrix e
ments of the respective eigenvectors determine
correlation and entanglement properties of the system. T
is accomplished by choosing to study the system in the r
resentation in which the marginal density matrices are di
onal. We present four theorems to elucidate the advanta
of this representation and to identify classes of states wh
have fixed sign for the entropy differences and relation
quantum separability. Explicit computations are presen
for two-qubit systems described by~a! the Werner state,~b! a
general pure-state density matrix, and~c! a class of two-qubit
mixed states arising out of pure-state density matrices
three-qubit states which serve as illustrations of this
proach. Thus the inclusion of overlap matrix elements alo
with the eigenvalues of the density matrix and their margi
density matrices yields information regarding the corre
tions and entanglement residing in them. This understand
modifies the conclusions reached in@1,2#.
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APPENDIX: ENTANGLEMENT OF A PURE STATE
OF TWO QUBITS

A general two-qubit pure state density matrix is written
the form

r~A,B!5uC&^Cu, ~A1!

where the two-qubit (2̂ 2) state is given by

uC&5a11u1,1&1a10u1,0&1a01u0,1&1a00u0,0&, ~A2!

with the normalization condition

ua11u21ua10u21ua01u21ua00u251. ~A3!

Equation ~A1! may be expressed in terms of the standa
Pauli spin vectors by means of the following known re
tions:

I 25~ u1&^1u1u0&^0u!, t15~ u1&^0u1u0&^1u!,
~A4!

t25 i ~ u0&^1u2u1&^0u!, t35~ u1&^1u2u0&^0u!.

Thus
4-9



w

N
p a
t p
t

ure
the

tate
auli

qs.

A. K. RAJAGOPAL AND R. W. RENDELL PHYSICAL REVIEW A66, 022104 ~2002!
r~A,B!5
1

4 H I 2~A! ^ I 2~B!1s~A!•t~A! ^ I 2~B!

1I 2~A! ^ t~B!•s~B!

1 (
i , j 51

3

Ci j ~A,B!t i~A! ^ t j~B!J , ~A5!

here

s~A!5„s1~A!,s2~A!,s3~A!…,

s1~A!5~a11a01* 1a11* a011a10a00* 1a10* a00!,
~A6!

s2~A!5 i ~a11a01* 2a11* a011a10a00* 2a10* a00!,

s3~A!5~ ua11u22ua01u21ua10u22ua00u2!,

s~B!5„s1~B!,s2~B!,s3~B!…,

s1~B!5~a11a10* 1a11* a101a01a00* 1a01* a00!,
~A7!

s2~B!5 i ~a11a10* 2a11* a101a01a00* 2a01* a00!,

s3~B!5~ ua11u22ua10u21ua01u22ua00u2!.

ote that Eq.~A7! follows from Eq.~A6! by writing a10 in
lace ofa01. These vectors are sometimes called ‘‘polariz

ion’’ vectors associated with the qubits in analogy with o
ical polarization vectors:

C11~A,B!5~a11a00* 1a00a11* 1a10a01* 1a01a10* !,

C12~A,B!5 i ~a11a00* 2a00a11* 1a10a01* 2a01a10* !, ~A8!

C13~A,B!5~a11a01* 1a01a11* 2a10a00* 2a00a10* !,

C21~A,B!5 i ~a11a00* 2a00a11* 2a10a01* 1a01a10* !,
052306~2000!.

02210
-
-

C22~A,B!5~2a11a00* 2a00a11* 1a10a01* 1a01a10* !,
~A9!

C23~A,B!5 i ~a11a01* 2a01a11* 2a10a00* 1a00a10* !,

C31~A,B!5~a11a10* 1a10a11* 2a10a00* 2a00a10* !,

C32~A,B!5 i ~a11a10* 2a10a11* 2a01a00* 1a00a01* !,
~A10!

C33~A,B!5~ ua11u22ua10u22ua01u21ua00u2!.

From Eq.~A5! we obtain the marginal density matrices

r~A![TrB r~A,B!5
1

2
@ I 2~A!1s~A!•t~A!#, ~A11!

s~B![TrA r~A,B!5
1

2
@ I 2~B!1s~B!•t~B!#. ~A12!

In general these density matrices obey the conditions

TrA r2~A!5
1

2
@11us~A!u2#<1, ~A13!

the inequality representing mixed and the equality a p
state. We observe the following relationship after using
normalization condition in Eq.~A3! and the definitions in
Eqs.~A6! and ~A7!:

12us~A!u254ua11a002a01a10u2512us~B!u2. ~A14!

Thus the condition in Eq.~A13! is found to be obeyed in
general. The concurrence for the generic pure state~A2!,
C(AB)52ua11a002a01a10u, was given in@8,9# as well as in
@18#. Also, Eq.~A14! was derived in@18#.

We may also mention that a general two-qubit mixed-s
density matrix can always be expressed in terms of the P
spin matrices in the form given in Eq.~A5! and the two
marginal density matrices are then of the form given in E
~A11! and~A12!. The relation in Eq.~A13! holds in this case
as well.
e
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